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Abstract

Biochar application to soil is currently widely advocated for a variety of reasons related to sustainability. Typi-

cally, soil amelioration with biochar is presented as a multiple-‘win’ strategy, although it is also associated with

potential risks such as environmental contamination. The most often claimed benefits of biochar (i.e. the ‘wins’)

include (i) carbon sequestration; (ii) soil fertility enhancement; (iii) biofuel/bioenergy production; (iv) pollutant

immobilization; and (v) waste disposal. However, the vast majority of studies ignore possible trade-offs between
them. For example, there is an obvious trade-off between maximizing biofuel production and maximizing bio-

char production. Also, relatively little attention has been paid to mechanisms, as opposed to systems impacts,

behind observed biochar effects, often leaving open the question as to whether they reflect truly unique proper-

ties of biochar as opposed to being simply the short-term consequences of a fertilization or liming effect. Here,

we provide an outline for the future of soil biochar research. We first identify possible trade-offs between the

potential benefits. Second, to be able to better understand and quantify these trade-offs, we propose guidelines

for robust experimental design and selection of appropriate controls that allow both mechanistic and systems

assessment of biochar effects and trade-offs between the wins. Third, we offer a conceptual framework to guide
future experiments and suggest guidelines for the standardized reporting of biochar experiments to allow effec-

tive between-site comparisons to quantify trade-offs. Such a mechanistic and systems framework is required to

allow effective comparisons between experiments, across scales and locations, to guide policy and recommenda-

tions concerning biochar application to soil.
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Introduction

Biochar is produced from the thermal degradation of

organic material in the absence of oxygen. It differs

from charcoal in that it is produced with the intention

of application to soil rather than as fuel (Lehmann &

Joseph 2009). Biochar is often promoted as having sev-

eral potential benefits or ‘wins’, including carbon (C)

sequestration, soil fertility enhancement, provision of

biofuels, pollutant immobilization and disposal of

organic wastes, among others. However, in many

instances, it is not possible for all benefits to be simulta-

neously maximized and negative effects may also occur

such as priming of soil organic matter (Cross & Sohi

2011; Zimmerman et al. 2011), or the introduction of

contaminants into the soil (Chan & Xu 2009). Gains over

one timeframe could also turn into losses over the

longer term, when considering all aspects. The longevity

of biochar implies that negative effects can endure in

soil, potentially for thousands of years (Glaser et al.

2002). The type of feedstock and production conditions

affect the properties of the resulting biochar and its

associated effects (Jeffery et al. 2011; Zimmerman 2010).

The question remains whether other effects of biochar

application could be as long-lasting as the C storage;
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clarification of risks and testing across a broad spectrum

of soil-crop combinations is vital before large-scale

applications can be advocated.

Proponents of biochar deployment frequently draw

parallels with historical practices of soil improvement

conducted by Amerindians in the Amazon basin (creat-

ing the Amazonian Dark Earth or ‘terra preta de Indio’,

generally referred to as ‘terra preta’) (Sombroek 1966).

Terra preta appears to achieve two ‘wins’ through

achieving high levels of fertility compared to surround-

ing unamended soils, while demonstrably sequestering

C in the soil. Extrapolating to the current day, this sug-

gests circumvention of the ‘carbon dilemma’ described

by Janzen (2006). Janzen stated that a ‘paradox’ exists

with regard to soil organic matter (SOM). SOM stocks

should be conserved to sequester C, but at the same

time decomposition of SOM is the driving force for

increasing overall soil quality through activation of the

soil food web and mineralization of nutrients. Terra

preta appears to store large amounts of C at the same

time as achieving relatively high levels of fertility for

which the cycling of SOM is conventionally assumed

necessary, thereby supposedly achieving the ‘win–win’

stated earlier.

For biochar precisely the same ‘win–win’ was pro-

posed as was claimed for terra preta (Glaser et al. 2002).

This led to the proposition that biochar application to

soil outside of the Amazon basin has the same potential

to sequester carbon and improve soil fertility in the

manner described for terra preta. However, despite the

link between biochar and terra preta being almost rou-

tinely made in the introductory sections of biochar

reports, the justification for this association is often

poorly outlined and there is as yet little to no evidence

that adding biochar to soils will create terra preta like

soils.

Recent work has identified further ‘wins’ that are

often associated with biochar. Laird (2008) described

biochar as a ‘win–win–win’ technology due to the pro-

duction of biofuel during biomass pyrolysis. Other

potential benefits or ‘wins’ include the suppression of

greenhouse gas emission such as N2O and CH4 from

soils (Karhu et al. 2011; Cayuela et al., 2013a, 2013b); the

remediation of contaminated soils as biochar strongly

binds to most organic pollutants (Cornelissen et al.

2005); and waste disposal (Cascarosa et al. 2013).

In this article, we consider the potential benefits that

are associated with biochar before discussing why it is

not possible for all such benefits to be simultaneously

maximized and some negative effects may occur; trade-

offs, therefore, are inevitable. We then provide a

conceptual framework to allow identification of the

potential benefits of biochar application in a given situa-

tion and hence the trade-offs between them. Finally, we

make a call for standardized experimental techniques

and reporting of results to allow robust and policy-rele-

vant judgements to be made. Key to any advances is to

acknowledge that biochars often have very different

properties (Schimmelpfennig & Glaser, 2012), to the

extent that the characterization of a material as ‘biochar’

can be insufficient and must be connected to a descrip-

tion of the biochar that has been studied or discussed.

This critical point should be kept in mind when the

term ‘biochar’ is used in the following sections.

Trade-offs

To conceptualize the trade-offs associated with different

uses of biochar, we present a graphical framework that

is focused on the most frequently reported potential

benefits of biochar (Fig. 1). This framework will aid the

identification of the best biochar to apply to a soil in a

given situation. The identification of trade-offs could

result in maximization of a particular benefit and/or

minimization of trade-offs. In combination with life-

cycle assessment and other information to determine

how to weigh multiple biochar benefits and trade-offs,

optimization of feedstock, pyrolysis technology and

application modes should be possible (Roberts et al.

2010; Sparrevik et al. 2013). While we focus here on

trade-offs between the most often reported benefits of

biochar application, we acknowledge that there are

other potential benefits that are not explicitly considered

here (e.g., water retention, effects on soil biodiversity

through increased refugia, decreasing greenhouse gas

emission). Furthermore, currently the axes on Fig. 1 are

qualitative owing to insufficient data to produce quanti-

tative axes. There is currently no single metric by which

trade-offs can be quantified. Our aim here was to pres-

ent the concept of trade-offs and the figure is a way of

conceptualizing them. Furthermore, the figure will help

to direct future research as researchers can aim to pro-

duce the necessary data and analyses to allow conver-

sion of the axes from qualitative to quantitative.

Here, we present three different scenarios, repre-

sented by Fig 1 a–c. Figure 1a shows an idealized bio-

char where all five of the most often reported benefits

or ‘wins’ are maximized (solid black line). Figure 1b

shows that when biochar is produced for maximum soil

fertility effects, this trades-off against biofuel production

for reasons discussed below. The residence time of such

‘agronomic’ biochars in the soil are relatively high and

so they still count as a win for climate change mitiga-

tion. Figure 1c shows a biochar made from waste prod-

ucts (solid black line) that maximizes the waste disposal

win but at a cost of not maximizing soil fertility effects

as much as may be possible if a different feedstock was

used. As stated above, these figures are only conceptual
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and there are currently insufficient data to make the

axes quantitative. This will change as new data become

available.

Climate change mitigation vs. soil fertility

A substantial proportion of biochar can remain un-

decomposed in the soil over centuries to millennia

(Spokas 2010; Zimmerman 2010). This implies that bio-

char has the potential to mitigate climate change

through sequestering C for extended periods, in addi-

tion to other mechanisms that reduce greenhouse gas

emissions (see below). However, the timeframe over

which C remains sequestered in the soil is uncertain as

biochar properties vary and depend on feedstock type

and processing conditions (e.g., fast vs. slow pyrolysis,

pyrolysis temperature) (Spokas 2010; Zimmerman 2010),

local climatic conditions, soil type and native soil biota.

The main factor affecting the turnover rate of uncharred

C in soils is its interaction with the organo-mineral frac-

tion of the soil that can lead to physical and physico-

chemical stabilization (Liang et al. 2008; Schmidt et al.

2011; Dungait et al. 2012). However, charring confers a

greater stability of residues. Direct oxidative ageing

methods that compare biochar of various types with

natural char in soil suggest that >60% of the C in fresh

biochar will remain after 100 years (Cross & Sohi 2013).

The chemical composition of the biochar must, there-

fore, play some role. It is yet to be determined whether

the stabilization mechanisms proposed by Schmidt et al.

(2011), such as physical disconnection and organo-min-

eral associations, apply to all instances of biochar and

their relative importance.

In addition to C sequestration, other effects on the soil

greenhouse gas balance have been reported (Sohi et al.

2009). Biochar addition resulted in reductions in meth-

ane (CH4) emission from the soil, possibly through

increasing soil aeration (Rondon et al. 2005; Karhu et al.

2011). Furthermore, biochar decreased nitrous oxide

(N2O) emissions from soils (e.g., Schouten et al. 2012)

via a number of mechanisms (Singh et al. 2010; Cayuela

et al., 2013a, 2013b). For example, biochar addition

might change the microbial community including N2O-

producing organisms, or alter soil structure and thereby

the anaerobic volume of the soil in which denitrification

takes place (Van Zwieten et al. 2009). It may also cause a

shift of the product ratio N2O: N2 towards N2 after acid

neutralization by alkaline biochar (D€orsch et al. 2012),

probably alleviating the posttranscriptional inhibition of

N2O reductase in acid soils (Liu et al. 2010). Biochar has

also been suggested to function as an ‘electron shuttle’

that facilitates the transfer of electrons to denitrifying

microorganisms (Cayuela et al., 2013a, 2013b). A last

possible mechanism is that biochar could sorb N2O
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Climate change

Waste disposalBiofuels

Soil remedia on

Soil fer lity

Climate change

Waste disposalBiofuels

Soil remedia on

Soil fer lity

Climate change

Waste disposalBiofuels

Soil remedia on

(a)

(b)
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Fig. 1 Conceptualization of important examples of biochar

trade-offs: (a) An idealized biochar in which five potential ben-

efits of biochar production and soil application are maximized

(black polygon). The dotted black polygon represents the soil’s

potential with regard to all four factors in the absence of bio-

char. Therefore, when the black polygon falls within or outside

of the border of the dotted polygon this represents a negative

effect or positive effect, respectively, when compared to that

which would occur in the absence of biochar. (b) Climate

change mitigation and crop productivity potential are maxi-

mized at the cost of biofuel provision. Other factors remain

unaffected compared to what would exist in the absence of bio-

char. (c) Biochar made from waste products maximizes the

waste disposal win of biochar but at a cost of not maximizing

soil fertility effects as much as may be possible if a different

feedstock were used. The dotted grey polygon allows for com-

parison with a situation in which the crops are all removed

and burned for biofuel as shown by increases in biofuel provi-

sion and improvements in climate change mitigation (com-

pared to the energy provided by the biofuel being obtained

from fossil fuels).
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sufficiently to suppress emissions (Van Zwieten et al.

2009; Cornelissen et al. 2013a). However, it is important

to note that the time frame over which these effects per-

sist remains to be determined. Such information will be

vital for inclusion in life-cycle assessments that aim to

quantify trade-offs.

Increased soil fertility has been reported following

biochar application with results being highly variable

(Jeffery et al. 2011; Biederman & Harpole, 2013). Elucida-

tion of several of the mechanisms behind these observed

effects, and quantification of their longevity, is still

required. Evidence suggests that the underlying mecha-

nisms may include: increased cation exchange capacity

(CEC) (Liang et al. 2006); increased plant-available

water contents (Karhu et al. 2011), improved drainage of

excess water (Ayodele et al. 2009); a liming effect in

acidic soils (Yamato et al. 2006) or acid neutralization

through the addition of organic anions in biochars pro-

duced at low temperatures (Yuan et al. 2011); the pres-

ence of available nutrients in the biochar (Angst & Sohi,

2013); and increased abundance of soil microbes (O’Neill

et al. 2009; Liang et al. 2010), including mycorrhizal

fungi (Warnock et al. 2007; Solaiman et al. 2010) and

decomposers (Zackrisson et al. 1996).

The time range over which these effects operate var-

ies considerably. Liming effects and direct nutrient

addition effects are likely transient as nutrients are uti-

lized or leached from the system. Such effects likely

result from the addition of ash inclusions with the bio-

char (Mukherjee et al. 2011) rather than from the biochar

C itself. Other effects may be longer lived, but slower to

develop, such as increased CEC and associated nutri-

ent-binding effects through surface oxidation of biochar

particles (Liang et al. 2006) or increased plant-available

water due to the high porosity of biochar particles

increasing the water-holding capacity of soils (Karhu

et al. 2011).There is evidence that some types of biochar

have phytotoxic effects depending on the original feed-

stock and temperature of pyrolysis (Gell et al. 2011), but

evidence also exists that charcoal can adsorb and inacti-

vate phytotoxic compounds (Hille and Ouden 2005).

It is probable that there will be a trade-off between

these two established ‘wins’. This could be the definitive

case of ‘hoarding’ rather than ‘using’ in the context of

Janzen’s ‘Carbon Dilemma’ (Janzen 2006). As mentioned

above, terra preta apparently achieves beneficial results

with regard to both C sequestration and maintenance of

enhanced levels of fertility compared to surrounding

soils (Glaser et al. 2002). However, whether such con-

current benefits can also be achieved with biochar addi-

tion to soil, and at what level the benefits may trade-off

against each other, remains to be determined, particu-

larly in the long term and in temperate regions. For

example, Quilliam et al. (2012) reported that double

dosing and extra loading of biochar in a temperate field

plot only provided transient effects on soil fertility over

4 years. However, Mao et al. (2012) found that the rela-

tively high CEC of Mollisols in Iowa were due to the

high black C contents of the soils. This suggests that

biochar (which contains large proportions of black C, its

defining chemical feature) has the potential to increase

soil fertility through CEC effects, even in temperate

soils. It should be noted, however, that mollisols have a

high pH with relatively high Ca and P contents. Hence,

it is possible that this is an exceptional case. A trade-off

may occur between producing biochar that maximizes

C sequestration potential vs. biochars with desired agro-

nomic properties, due to the use of oxidation to ‘age’

biochars (i.e. accelerate the formation of biochar proper-

ties that develop over time in the soil) and increase their

CEC. Such increased CECs will help the biochar to

adsorb cations and reduce nutrient leaching, but the

oxidation process leads to a loss of C, thereby reducing

C sequestration potential. Evidence suggests that oxida-

tion of biochars may concur with reduced recalcitrance

of the biochar in soil, further reducing the biochar’s C

sequestration potential (Nguyen et al. 2010).

Biochar has been reported to cause priming of SOM

(both positive and negative), specifically over short peri-

ods of time (Steinbeiss et al. 2009; Zimmerman et al.

2011; but see Cross & Sohi, 2011; Jones et al. 2012). This

suggests another potential trade-off of biochar even

when focusing on C sequestration. Potential short-term

losses of native SOM are smaller than the C gain of bio-

char and might be negligible in many cases (Woolf &

Lehmann 2012). However, a trade-off may also exist

with faster cycling SOM potentially leading to reduc-

tions in the quality of C available in the soil for use by

the biota (i.e. as SOM is reduced), even if the overall

quantity of C actually increases (i.e. in the form of

biochar).

Provision of biofuel vs. production of biochar

Growing crops for biofuel production have given rise to

concern about the trade-off regarding the land that is

needed to grow these crops, as this land could other-

wise be used for food crops or conservation (e.g. Tilman

et al. 2009). Pyrolysis of waste products to produce bio-

char while concurrently producing biofuel is thought to

at least partially circumvent this problem. However,

some trade-offs between stabilized and actively cycling

SOM are likely unavoidable because plant material that

is removed from the field and converted to biofuel is no

longer available for decomposition. Although biochar C

when returned to the soil would more than compensate

for the C removed in plant material, most of which

would decompose, there is an important temporal

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12132
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delay with respect to the soil C balance and soil fertil-

ity (Whitman et al. 2010, 2011). Furthermore, the quality

of the C will differ as discussed previously, and alloca-

tion of biochar in different locations than those from

where biomass was removed may create additional

trade-offs.

Life-cycle assessment has demonstrated that, if

potential soil effects are not included, greenhouse gas

(GHG) reduction effects are similar when biomass is

used to produce biochar as when it is subject to com-

plete combustion for energy production (Roberts et al.

2010; Woolf et al. 2010). When potential effects such

as increased plant growth, reduced N2O emissions,

etc., are factored in, biochar production can be favour-

able compared to combustion of biomass (Hammond

et al. 2011). However, there is an inherent trade-off in

the pyrolysis process between production of energy

and production of biochar; increasing biochar produc-

tion will always decrease energy production within

the same energy pathway (Gaunt & Lehmann 2008).

There is thus a trade-off in policy objectives between

bioenergy and energy security vs. C abatement (Sohi

2012).

Different pyrolysis conditions and feedstocks lead to

the production of different proportions of biochar, con-

densable gas and bio-oil. This gas and bio-oil can then

be collected and used as a biofuel (Mahinpey et al.

2009). Slow pyrolysis of feedstock has been calculated to

be more energy efficient, in terms of energy input vs.

energy output, than production of biofuel through fer-

mentation of feedstock to produce ethanol. Gaunt &

Lehmann (2008) reported that where slow pyrolysis

technology is optimized to produce biochar for soil

application, a reduction in energy output of ca. 30%

occurs compared to fast pyrolysis optimized for biofuel

production. Thus, maximizing the production of biofuel

through fast pyrolysis reduces the amount of biochar

that is produced (IEA 2006). If all biochars are similarly

stable in the soil (stability is critical for C sequestration

potential), this would suggest lower overall C abate-

ment. Slow pyrolysis favours biochar production and

by the same token could maximize the C sequestration

potential, at the cost of diminished output of biofuel

products. Recent work has demonstrated that biochar

produced through pyrolysis has beneficial effects when

compared to the solid residue (i.e. solid by-products) of

bioethanol production in terms of CO2 and N2O emis-

sions (Cayuela et al. 2013a). Also, a smaller quantity of

biochar of high stability can have the same C abatement

value as a larger quantity of less stable biochar (Crom-

bie et al. 2012). Further work is needed to compare

energy pathways to allow quantification of trade-offs

that inevitably occur between energy and biochar

production.

Changing pyrolysis conditions to maximize either

biochar or biofuel production is likely to affect the

C : N : P stoichiometry of the resulting biochar. How-

ever, while the majority of the beneficial effects of bio-

char on crop productivity stems from pH effects and

the ability of biochars to retain N and P from other

sources, evidence suggests that N and P can be avail-

able from some types of biochars (De la Rosa and

Knicker, 2011; Wang et al. 2012; Chintala et al. 2013).

Differential losses of C and N during pyrolysis occur as

a function of temperature (Enders et al. 2012). Addi-

tional properties (such as those affecting soil pH) may

impact the bioavailability of nutrients, particularly P,

present in both biochar and bulk soil. This confounds

prediction of the likely effects of a given biochar on the

stoichiometry of the soil solution. However, it is evident

that trade-offs will occur between maximizing biofuel

production from pyrolysis and producing biochar with

optimal C : N : P stoichiometry for a given soil/crop/

climate combination (Gaunt & Lehmann 2008). There-

fore, the effects of different pyrolysis conditions on the

C : N : P stoichiometry of biochars and their effects on

bioavailability in the soil is an important area of future

research.

Feedstock selection vs. the use of wastes

One readily apparent trade-off regarding choice of feed-

stock for biochar production is that of stability of the

resulting biochar vs. its nutrient content. For example,

evidence suggests that biochars made from poultry litter

support greater increases in crop productivity than

those made from wood (Jeffery et al. 2011) which proba-

bly at least partly result from higher nutrient contents

in this feedstock. However, biochars made from poultry

litter are less stable in the soil than those made from

wood (Singh et al. 2012).

The paucity of feedstocks in many parts of the world

suggests that another trade-off may occur. In such areas,

such as much of Africa, all of the aboveground crop bio-

mass produced, and not just the grain or fruit, is uti-

lized for a range of purposes such as animal feed,

roofing materials, mulch to reduce water requirements

or incorporation into the soil to improve organic matter

content. Therefore, it may be difficult to reserve signifi-

cant amounts of feedstock for biochar production, and

environmental degradation may result when alternative

feedstocks for biochar production are sought (e.g.,

through deforestation). As such, entry points for adop-

tion of biochar technologies may occur through substi-

tution of current technologies, such as the switch from

burning fire wood to pyrolysis stoves for cooking

(Torres-Rojas et al. 2011). However, the implementation

of biochar technology in Africa can be a contentious

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12132
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issue for a variety of social reasons (for further discus-

sion see Leach et al. 2012).

One method that potentially circumvents the problem

of paucity of feedstocks is the use of waste materials to

produce biochar. In theory, any C-based feedstock can

be pyrolysed to produce biochar, and so biochar pro-

duction has the potential to mitigate the increasing

global problem of waste disposal. To date, a wide range

of waste streams have been considered and tested,

including biosolids (Chan & Xu, 2009), tannery wastes

(Muralidhara, 1982), paper sludge (Rajkovich et al. 2011)

and sewage and wastewater sludge (Bridle & Pritchard

2004; Hossain et al. 2010). The type of feedstock affects

the properties of the resulting biochar (Kloss et al. 2012)

in terms of crop yield effects (Jeffery et al. 2011) and

recalcitrance in the soil (Zimmerman 2010; Singh et al.

2012). Furthermore, it is likely to affect whether the

resulting biochar is classified as a waste product, with

implications regarding its permissibility for soil applica-

tion (Sohi et al. 2010). Legislative issues surrounding

biochar application to soils produced from waste prod-

ucts, and the classification of such biochar in terms of

policy, is vital before its large-scale application can be

implemented. Such a discussion is beyond the scope of

this article but has been covered in terms of European

policy implications by Van Den Bergh (2009).

The type of feedstock and pyrolysis conditions also

affect the types and concentration of contaminants in

the resulting biochar. For example, heavy metals, which

are generally found in high concentrations in sewage

sludge and biosolids, are increased in concentrations

following pyrolysis (Chan & Xu 2009). To assess poten-

tial trade-offs, an assessment of whether heavy metals

pose a greater risk in the sewage/biosolids stream or in

the soil biochar stream is required. Such an assessment

would necessarily examine whether such contaminants

are more or less bioavailable in biochar compared to the

original feedstock. Biochar can reduce the bioavailability

of contaminants such as heavy metals that are already

present in the soil (Park et al. 2011). In addition, while

biochar can contain polycyclic aromatic hydrocarbons

(PAHs; by-products of incomplete combustion) these

amounts are low and hardly bioavailable such that

biochars leach PAHs far below water quality criteria

(Hale et al., 2012). However, as discussed previously

biochars can vary considerably in their physical and

chemical properties and as such bioavailability of PAHs

(and other contaminants) should be monitored. Owing

to the high cost of such monitoring this presents

a potential hurdle to wide-scale implementation of

biochar application to soil.

The use of waste products to produce biochar can

lead to biochar with suboptimal properties. One exam-

ple is the high sodium (Na) content that biochars

produced from food wastes sometimes contain (Rajko-

vich et al. 2011). However, Na is mobile in soil and will

leach out relatively quickly. Nevertheless, such biochars,

which could reduce crop growth initially, need to be

applied in smaller amounts, or they need to be applied

well in advance of planting so that the Na has time to

leach out. This leads to a further trade-off between

applying biochar when possible (e.g., when labour is

available, at an appropriate time to plough the field)

compared to when it would function optimally (e.g.,

sufficiently before planting to allow time for Na to be

leached).

The fact that any C-rich feedstock can be turned into

biochar has also led to suggestions by the popular

media that other waste materials, such as plastic, could

be used for biochar production too (e.g. Harrabin 2009;

Lovelock 2009; Black 2010). However, ‘plastic’ denotes a

wide range of different compounds, and what is suit-

able for use as a feedstock needs further research both

in terms of biofuel production and suitability of the pro-

duced biochar for soil application. While pyrolysing

plastics may release compounds such as syngas that

could be used for energy, from a climate change mitiga-

tion viewpoint, plastics are generally highly recalcitrant

and it seems probable that subjecting them to pyrolysis

will release more C into the atmosphere than would

occur if they were buried in a landfill. If C sequestration

is the goal, this is perhaps not a sensible option.

Contaminated-soil remediation vs. soil fertility

Addition of activated carbon to contaminated soil and

sediment is sometimes used as a remediation strategy.

Biochar also has the potential to perform this role as it

has a high sorption capacity for persistent organic pol-

lutants and pesticides (although generally lower than

activated carbon) (Luthy et al. 1997; Cornelissen et al.

2005). While the use of activated carbon is an estab-

lished practice for soil remediation, amending biochar

to soil or sediment can also lower the bioavailable con-

centrations of pollutants and pesticides by one to two

orders of magnitude. This is similar to what can be

achieved through adding activated carbon, but is poten-

tially less costly (Yang & Sheng 2003; Ghosh et al. 2011;

Jakob et al. 2012).

Soil fertility increases resulting from biochar addition

are often relatively modest in well-fertilized soils in

temperature regions (Jeffery et al. 2011). As the effect of

biochar on pollutant immobilization can be rather

strong, the use of biochar in the temperate zone may be

more relevant for alleviating soil and sediment contami-

nation than for promoting crop growth. Life-cycle

assessment (LCA) is required to examine the relative

benefits of both uses. For example, one LCA study
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6 S . JEFFERY et al.



showed that activated biochar was greatly superior to

an anthracite-based activated carbon for remediating a

dioxin-contaminated fjord system in Norway, even

though the biochar was slightly less chemically active in

immobilizing dioxins, owing to its C sequestration

potential (Sparrevik et al. 2011).

Other Trade-Offs

Further to the above-mentioned trade-offs between the

most often reported ‘wins’ (also see Fig. 1), other trade-

offs related to biochar use are evident. Here, we provide

three further examples of such trade-offs.

Biochar and conservation tillage

A seldom acknowledged trade-off that may occur

when applying biochar to soil is that it is necessary to

bury the biochar in order to prevent it from being

eroded by wind or water. This is usually done by mix-

ing the biochar into the topsoil, either mechanically or

by hand. Such mixing requires disturbance and cultiva-

tion of the soil, which promotes native SOM loss as

well as potentially other side effects in those situations

where incorporation is not part of on-going manage-

ment. Therefore, wide-scale biochar application may

trade-off against the benefits that no-till farming brings.

Direct surface application (e.g., added to slurry or in

muck spreading) is also possible, although such appli-

cation techniques run the risk of the biochar being

eroded by wind or rain (Rumpel et al., 2006). A possi-

ble response to mitigate this potential trade-off is to

combine biochar with minimum tillage conservation

farming practices, and apply biochar, for example, in

the hoe basins or rip lines where cultivation takes place

(Hobbs et al. 2008; Giller et al. 2009). This would also

reduce the amount of biochar needed for fertility

effects (Cornelissen et al., 2013b) and so helps circum-

vent some of the trade-offs that occur due to competi-

tion for feedstocks. However, such a strategy is labour

intensive and unlikely to be implemented in large-scale

arable systems, unless it can be combined with applica-

tion of manures which may already be part of on-going

soil management.

Biochar production and human health

Another potential trade-off exists between soil fertility

and human health effects. For example, a biochar pro-

duced from maize cobs proved to be very effective for

soil fertility in Zambia, increasing harvests by up to a

factor four (Cornelissen et al., 2013b). However, the

only realistic way for these farmers to produce biochar

in the near term is through traditional kilns that emit

particles <10 lm (PM10), CH4 and carbon monoxide

(CO), as they cannot afford cleaner retort pyrolysis tech-

nologies. Charcoal particles (i.e. soot) have adverse

effects on human health such as causing the lung dis-

ease pneumoconiosis, in addition to contributing to glo-

bal warming (Baveye 2007). Thus, while beneficial to

the farmers in terms of crop yield, a complete LCA

using technology that was available to farmers showed

that biochar implementation may have adverse health

effects and was only slightly beneficial for climate

change mitigation (since the emitted CH4 is a strong

GHG, offsetting C sequestration) (Sparrevik et al. 2013).

The areas that are most likely to experience these prob-

lems are also those where the potential benefit of bio-

char to crop production appears to be the highest:

smallholder farms in developing countries (Sparrevik

et al. 2013). The level of this trade-off is likely to vary

and could be reduced or eliminated with the use of

lower emission pyrolysis cook stoves.

Increased resistance to pests vs. decreased pesticide
effectiveness

Elad et al. (2010) and Meller Harel et al. (2012) have

reported that biochar can induce systemic resistance in

some plant species (peppers, tomatoes and strawberries)

to some fungal pathogens and other pests such as the

broad mite (Polyphagotarsonemus latus). Should this

effect also be found for field-grown crops, biochar may

reduce the need for fungicides and potentially other

pesticides. However, a trade-off likely exists as some

evidence also suggests that pesticides are less effective

when applied following biochar application (Yu et al.

2009; Graber et al. 2012). The issue of whether increased

resistance to pests is sufficient to counter the reduced

efficacy of pesticides and the wider-scale implications of

biochar application to soil on pest populations requires

further work.

Experimental Set-Up

There is now a large body of pertinent and robust litera-

ture on the effects of biochar on soil properties and pro-

cesses. These include crop yields from multi-year field

experiments (e.g. Kimetu et al. 2008; Gaskin et al. 2010;

Major et al. 2010; Jones et al. 2012; G€uere~na et al., 2013),

possible priming effects on soil organic matter (e.g.

Zimmerman et al. 2011) and disease resistance (Meller

Harel et al. 2012). However, most research is still phe-

nomenological and descriptive; there is comparatively

little research studying mechanisms behind observed

effects (Sohi et al. 2010; G€uere~na et al., 2013). Such a

mechanistic understanding is imperative to allow the

assessment of potential trade-offs that is needed before
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large-scale application of biochar should be promoted.

For this reason, we provide recommendations for exper-

imental design to guide progress towards on the one

hand (i) a mechanistic (i.e. reductionist) understanding

and on the other hand; (ii) a systems (i.e. holistic)

understanding.

Use of experimental controls

In order to allow elucidation of underlying mechanisms

in comparison to the life-cycle effects of implementing a

biochar system, quite different experimental designs are

required. Traditionally, biochar effects have been

assessed through comparisons with negative controls

(i.e. with no addition). However, considerable scope

also exists for comparing biochar addition with positive

controls to address systems-level questions. The choice

of controls (negative and/or positive) should depend on

the situation and the hypothesis being tested. One way

forward in this field could involve the use of multiple

positive controls; having only one control allows the

testing of only one hypothesis, whereas multiple con-

trols allow the testing of several competing hypotheses.

In addition, resolving questions about the systems

impact of implementing biochar may require different

controls than resolving questions about soil and plant

processes. Therefore, in many cases, comparisons with

positive controls that contain the uncharred feedstocks

from which the biochar was produced are desirable. For

example, many of the beneficial effects of adding bio-

char produced from poultry manure to a soil may also

occur when adding the un-pyrolysed poultry litter

(Chan et al. 2008). Inclusion of positive controls in

experimental designs is vital to allow for the effects of

biochar per se to be quantified and to move towards a

systems understanding of the effects of biochar applica-

tion to soil.

When soil fertility effects are the main subject of

investigation, a positive control might involve the addi-

tion of the un-pyrolysed and/or ashed feedstock (i.e. a

positive control). This would allow quantification of the

effects of pyrolysis on increasing the availability of

nutrients relative to fresh organic matter, and control-

ling the provision of soluble nutrients present in ash. It

would reflect direct soil incorporation and combustion

as two alternative uses for the same biomass. To estab-

lish trade-offs in feedstock use, rates of addition should

probably be based on equivalent mass of the starting

material. This would allow quantification of the effects

of reduced residue incorporation on soil processes that

are likely to occur if such residue is removed for biochar

production. Such approaches make sense in systems

and life-cycle studies, whereas process-based investiga-

tions may benefit from other sets of controls. The intent

and purpose of the research is therefore important for

driving decisions on choice of controls.

In addition to a systems understanding, a mechanistic

understanding is also critical. It has been reported

repeatedly that biochar application reduces CH4 and

N2O emissions from the soil (Singh et al. 2010; Liu et al.

2011; Cayuela et al., 2013a, 2013b). However, without

understanding the mechanisms behind these results it is

not possible to robustly extrapolate to other environ-

ments, soil types or soil and crop combinations. As

mentioned above, possible mechanisms include biochar

reducing soil N availability directly, or indirectly

through increasing P availability and thereby plant N

uptake and immobilization. Such hypothesized mecha-

nisms could be tested experimentally through compari-

son of biochar addition with a carefully selected

positive control (i.e. with addition) as well as a negative

control (i.e. without addition). For example, if the

reduced N2O emissions occur as a result of reduced N

availability due to changes in the C : N ratio, compari-

sons with positive control treatments containing high

C : N ratio uncharred residues such as wood or straw

may be informative. This would be pertinent if N-lim-

ited crops such as cereals were grown. Alternatively,

increasing P availability in the positive controls and

monitoring N2O emissions would allow testing of the

hypothesis that changes in P availability increases plant

N uptake, reducing N surplus within the soil thereby

reducing N2O emissions.

Types of positive control

Biochar often leads to acid neutralization or a liming

effect in acidic soils, although the strength of the liming

effect will vary between biochar types. Soil pH plays an

important role in the availability of nutrients and other

ions in the soil, some of which can increase to toxic lev-

els in acidic soils (e.g. Al), (Liang et al. 2006). Therefore,

a control treatment in which the pH is adjusted to bring

the soil pH in line with the biochar treatments would

often be useful (Hass et al. 2012) to allow distinguishing

those biochar effects that occur beyond pH effects.

Other types of positive controls may include the use of

plastic chips of the same size as biochar particles, or

perlite to increase the soil WHC. Again, the choice of

positive control will depend on the hypothesis being

tested.

Finally, additions of nutrients to positive controls at

the same rate as those present in leachable ash would

allow differentiation between effects resulting from

changes in nutrient availability relative to direct or indi-

rect effects of biochar on the soil microbial community,

water retention, etc. Quantification of nutrients could

take place as a pilot experiment in which the amount of
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available nutrients such as N, P and K following biochar

addition are analysed, and then this amount applied in

the main experiment as a control. While the rate of

release may be different, it would at least allow some

control of nutrient effects and so aid identification of

biochar effects without the influence of nutrients. While

use of such a control has several potential weaknesses

that would need to be overcome (such as different

release rates of nutrients from biochar compared to fer-

tilizer) efforts in this direction are necessary to allow

identification of biochar effects beyond nutrient effects.

Inclusion of positive controls in an experimental design

should not (and indeed, must not in most instances)

preclude the inclusion of negative controls as well.

Time

Positive controls seek to match the projected, initial

effects of a biochar addition. Over time the residual

effects of a biochar and positive control are likely to

diverge. Thus, an alternative approach is to remove a

property of the biochar such as the potential nutrient

content. This could be achieved by understanding the

pattern of nutrient release from biochar and repeated

leaching (Angst & Sohi 2013) or, for the effects of time

on CEC, biochar ‘ageing’ (Cross & Sohi 2013).

A tiered approach to choice of controls

To achieve a mechanistic understanding of the effects of

biochar, we suggest that moving forward with biochar

research may benefit from a three-tiered approach, a

framework for which is provided in Fig. 2. We suggest

that, when the question at hand warrants it, a useful

approach for experiments looking at the effects of bio-

char application could involve the use of both positive

(i.e. addition of un-pyrolysed feedstock) and negative

(i.e. no addition) controls (Level One controls; Fig. 2). It

may also be useful to include ‘subtractive’ controls

(Fig. 2). This would consist of controls in which the

amount of un-pyrolysed feedstock added is reduced by

an equivalent amount to that which is removed to pro-

duce the biochar. This would allow investigation of the

effects of reduced C inputs into the soil due to removal

of crop residues for biochar production.

However, to achieve a full mechanistic understanding

of biochar effects it is necessary to distinguish between

the effects of the biochar itself and effects such as nutri-

ents added through ash, which are likely to be short-

lived. For such experiments, we suggest that further

controls would likely be necessary; examples of which

are given in Level Two of Fig. 2. Inclusion of such con-

trols has the added advantage of overcoming some of

the shortcomings of relatively short-term experiments.

For example, nutrient or liming effects associated with

biochar are likely to be relatively short-lived as nutri-

ents are utilized or leached from the soil. Addition of

nutrients to controls at the quantities as present in bio-

char will allow for effects beyond nutrient additions to

be quantified. While the rate of release between biochar

and fertilizer (including slow-release fertilizer) is likely

different, this may give an indication of what benefits

remain once such nutrients are no longer present or

available.

Finally, extrapolation of results from biochars pro-

duced from the same feedstocks but under different

pyrolysis conditions should be undertaken with caution,

despite being a potentially appealing short-cut in maxi-

mizing our understanding of biochar and its effects

within the soil and wider environment. Biochars pro-

duced under different conditions likely show differ-

ences in terms of ash content, and therefore differences

in liming effects, nutrient concentrations and ratios. It is

vital that studies reporting the effects of biochar appli-

cation to soil also include as much information as possi-

ble about the biochar characteristics and manufacturing

or preparation conditions.

Reporting of Results

Comprehensive reviews and meta-analyses are impor-

tant for aggregating effects and allowing more robust

extrapolation, and hence guidance of policy and direct-

ing of future research. They are particularly pertinent

for areas in which experimental results at a relatively

small scale need to be up-scaled due to proposed large-

scale implementation, as is the case for biochar (similar

to other areas such as compost research which suffers

from many of the same problems as biochar research). It

would therefore be useful if data presented in primary

research manuscripts comply with the guidelines

described by the Cochrane Collaboration (Higgins and

Green 2009) concerning the production of systematic

reviews and meta-analyses and as first suggested for

biochar research by Verheijen et al. (2010).

To maximize the utility of studies for meta-analyses,

as many auxiliary variables as possible should be

reported. These should include both biochar and soil

properties; e.g. CEC and pH of soil before and after

application, nutrient content of biochar, pyrolysis condi-

tions (especially temperature), feedstock, soil properties,

crop or plant type, and fertilizer used (type and dose),

as well as climatic information, particle size, and mode

and depth of incorporation where possible. Supporting

such advances, approaches to provide standards or

specification have emerged, for example, by the Interna-

tional Biochar Initiative (IBI 2012). Use of a reference

biochar, produced from the same feedstock under the
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same conditions, will aid cross-site comparisons and

therefore quantification of differences in interactions of

a given biochar with contrasting soil types.

Furthermore, it is desirable that such information is

reported in a standardized way. In many experiments,

particularly those involving pots or mesocosms, applica-

tion rate has been variably reported as% w/w (e.g.

Meller Harel et al. 2012), as t ha�1 of C equivalence (e.g.

Woolf et al. 2010) or as t ha�1 of biochar mass equiva-

lence (e.g. Karhu et al. 2011). This complicates compari-

son of between-site results and standardization of units

across papers as much as is possible is therefore useful.

We recommend that application rates should be

reported as t ha�1 mass equivalents, because not all

researchers have the necessary equipment to analyse

their biochar in units of t C ha�1. This recommendation

is in addition to study-specific reporting (such as %

w/w in the case of microcosm experiments) where dif-

ferent units may be warranted such as volume if target-

ing the physical impact on bulk soil, or concentration if

targeting chemical effects.

Future Research and Conclusions

Owing to the extensive range of combinations of bio-

char, soils and plants, much research still needs to be

undertaken to understand the large variety of resulting

interactions and their effects. As research progresses, it

will be possible to make extrapolations with increasing

robustness as, for example, the database upon which

meta-analysis can be performed grows. Such informa-

tion is vital to guide the development of certification

schemes such as that proposed by the International Bio-

char Initiative, and The European Biochar Certificate,

which is already implemented in part of Europe, as well

as to guide policy. However, as discussed above, trade-

offs will almost inevitably occur between the potential

‘wins’ following biochar application to soil; such trade-

offs are generally not yet quantified, or even identified.

Experimental designs that consider such trade-offs

between the wins should therefore be a priority.

To effectively guide future research, a representativity

analysis (i.e. an analysis of which soil, biochar, crop

combinations have been studied and whether it is repre-

sentative of combinations ultimately deployed) is

urgently needed to allow identification of the gaps in

current research. For example, the meta-analysis of Jeff-

ery et al. (2011) indicates that relatively few biochar

experiments have taken place in temperate regions, or

have focused on major crops such as potato. A repre-

sentativity analysis would be a very useful tool for

researchers as well as providing guidance to policy

makers as to where to direct research funding.

In conclusion, the large and growing body of research

reported in the literature demonstrates the potential of

biochar application to soil to provide a range of benefits.

However, such benefits are unlikely to be maximized in

all situations and trade-offs will inevitably occur

between them. Furthermore, there are currently insuffi-

cient data in the literature to draw conclusions concern-

ing biochar production and application to soil in all

situations. Published long-term experiments in particu-

lar are lacking and are vital to assess the long-term

implications of biochar application.

Char Type

Posi ve control:
Add uncharred

feedstock

Nega ve Control:
Disturb soil without amendment in 

same way as experimental 
treatments (e.g. rotavate, sieve and 

mix etc. )

Level 1 
Controls

Level 2 
Controls

“Main” Char proper es

High pH High N, P, K

Liming 
treatment 

(equalise pH)

Addi on of N, P, 
and/or K at 

same levels as 
in biochar

Increased WHC

Keep controls at same 
WHC through 

carefully controlled 
irriga on.

Use of inert porous 
substance such as 

perlite to raise WHC 
of controls

Increased micro-nutrients

Add micronutrients most 
present in char or most 

per nent to crop type (eg. 
B, Mo, for legumes)

Subtrac ve control:
Amount of unpyrolysed

feedstock added is reduced 
equivalent to that needed to 
be removed to produce the 

biochar

Fig. 2 Flow chart for identification of appropriate controls. Level 1 controls represent the minimum controls to allow the impacts of

biochar to be identified and quantified. Level 2 controls represent the controls necessary to gain a mechanistic understanding of the

impacts of biochar application to soil.
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To quantify and predict such trade-offs it is neces-

sary to move towards a mechanistic understanding of

the effects of biochar application. One way to move

towards such an understanding is through judicious

choice of controls. Standardized reporting of results

will aid cross-site comparisons and aid quantitative

reviews. Such steps will allow biochar research to

move forwards while remaining firmly grounded in

robust science, and will allow policy to be effectively

developed to maximize the potential benefits of

biochar while concurrently avoiding or minimizing

negative effects.
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