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Abstract 
A new method for blood detection in whitefish fillets is presented. The method is based on diffuse 
reflectance hyperspectral imaging in the VIS/NIR range, and unmixing of measured absorbance spectra 
into known spectra for hemoglobin, water and muscle tissue. Scattering effects are modelled as a 
polynomial function of wavelength, and are included in the unmixing procedure. The unmixing method 
is based on a modified Beer-Lambert law and is performed using a non-negativity constrained least 
squares algorithm. Application of the method to images of samples with varying amounts of blood 
results in a very good fit between measured and modelled spectra. Reference measurements on 
homogenized cod muscle with controlled concentrations of added blood are used to model the 
relationship between the spectral unmixing results and hemoglobin concentration, enabling pixel-by-
pixel estimation of hemoglobin concentration. The method is seen as a useful tool for automatic quality 
grading and processing of fillets in the whitefish industry. 
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1 INTRODUCTION 

Hyperspectral imaging (HSI) is a combination of two measurement techniques, imaging and 
spectroscopy, which produces images where each pixel contains detailed spectral information. Light 
interacting with different types of material is absorbed and/or scattered at characteristic wavelengths 
depending on the materials’ composition and structure. Spectral information from HSI can therefore 
be used to determine the composition of the imaged material, or to distinguish between different 
types of material. A typical application is remote sensing, where the spectral information is used to 
classify different types of terrain and vegetation (Keshava, 2003; Thenkabail et al., 2011; van der Meer 
et al., 2012). Other applications include medical imaging (Lu and Fei, 2014), mineralogy (Kruse, 1996) 
and food quality control (Elmasry et al., 2012; Gowen et al., 2007).  

In the field of food quality control, spectral information is used for measurement of chemical 
composition, (e.g.  the amount of water, fat etc. (ElMasry and Wold, 2008)), measurement of microbial 
spoilage (Huang et al., 2013; Wu and Sun, 2013), and detection of product defects (e.g. apple rot, 
parasites in fish etc. (Elmasry et al., 2012; Sivertsen et al., 2012)). HSI has also been applied for 
estimation of fish fillet shelf life and differentiation between fresh and frozen-thawed fillets (Sivertsen 
et al., 2011; Zhu et al., 2013). 

For the fish industry, one of the most important quality parameters is the amount and 
distribution of blood in the fillet. Blood in the fish muscle is primarily caused by stress and bruising 
during catch, and/or inadequate bleeding of the fish after catch (Rotabakk et al., 2011). Blood in the 
fillet produces red stains and a general reddish discoloration that renders the product less appetizing. 
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Blood also acts as a catalyst for lipid oxidation during storage, causing a rancid smell and taste (Larsson 
et al., 2007; Richards and Hultin, 2002).  

Absorption spectra for cod hemoglobin within the visible (VIS) part of the electromagnetic 
spectrum are shown in Figure 1 (Olsen and Elvevoll, 2011). The absorption spectrum varies with the 
oxidative state of the blood. When the fish is alive, the blood contains a mix of oxy- and 
deoxyhemoglobin, and after the fish is slaughtered and filleted, the hemoglobin gradually undergoes 
autoxidation and becomes methemoglobin. The absorption spectra for these hemoglobin states can 
be used to estimate blood concentration in hyperspectral images of fish fillets. 

A heuristic approach to detect and visualize the presence of blood in the images is to study the 
hyperspectral image at a wavelength where light absorption by hemoglobin is relatively high for all 
oxidation states, for example 525 nm. To correct for variations in illumination and scattering, the image 
can be normalized using an image from a wavelength where absorption of hemoglobin is low, for 
example 715 nm. This approach has been used to detect the center line of the fillet, where the blood 
concentration is relatively high (Sivertsen et al., 2009). However, there are other effects that can yield 
a similar ratio of absorption between the two wavelengths, and the method is therefore not very 
robust. The method also does not utilize the full extent of information in the hyperspectral image. 

In most applications of hyperspectral imaging, multivariate techniques are used to analyze the 
spectra. Several different applications have led to development of a large set of statistical analysis 
techniques, and the choice of technique for a specific problem is based on the nature of the data 
available. For example, if the spectroscopic measurement can be related to one or several known 
response variables (e.g. chemical concentrations), Partial Least Squares (PLS) models can be trained 
using the known responses, and then used to estimate unknown responses directly from spectral 
information (ElMasry et al., 2007; Wold et al., 2001). However, PLS modelling often represents a “black 
box” where the responses are estimated without the analyst really knowing what the regression 
coefficients mean. In this work, we employ a method termed non-negativity constrained spectral 
unmixing, which decomposes the measured spectrum into a set of absorption spectra known a priori. 
This physics-based approach yields results that are more easily interpreted than those of PLS or similar 
models. The technique is best known from remote sensing, where it is used to separate contributions 
from different types of rock, soil and vegetation with known reflection spectra (Keshava, 2003; van der 
Meer et al., 2012). Since the absorption spectra of hemoglobin are well known, the technique also has 
potential for detection of blood in fish fillets. To the best of our knowledge, this combination of 
hyperspectral imaging and spectral unmixing to estimate of blood in fish fillets is novel. 

 

Figure 1: Absorption spectra for oxy-, deoxy- and methemoglobin measured by a spectrophotometer, with equal 
molar concentrations and equal path length (Olsen and Elvevoll, 2011). 
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The constrained spectral unmixing method is also combined with an estimation of effects 
caused by light scattering. Scattering in biological tissues is an active research field in itself, especially 
within the field of medicine, and a large set of scattering models and measurement methods have 
been developed (Cheong et al., 1990; Jacques, 2013; Jacques and Pogue, 2008). In general, the 
interaction between tissue and light is a complex function of the absorbance of different 
chromophores (e.g. blood) and the tissue scattering properties, and it is difficult to separate the two 
exactly in measurements. Wavelength-dependent scattering effects also introduce a wavelength-
dependent optical path length in tissue, and modifications to the Beer-Lambert law have been 
proposed to include scattering and variable path length (Delpy et al., 1988; Sassaroli and Fantini, 2004). 

In this work, we make the heuristic and simplifying assumption that the variable path length 
effect is negligible, and that the effect of scattering is to introduce a baseline shift in the measured 
absorbance spectra. The baseline is assumed to be a slowly varying function of wavelength and is 
modelled as a low-order polynomial. This approach is similar to the extended multiplicative scatter 
correction (EMSC) often applied in infrared spectroscopy (Afseth and Kohler, 2012; Martens et al., 
2003). The same approach has also been applied for analysis of blood oxygenation in hyperspectral 
images, with good results (Gillies et al., 2003; Häggblad et al., 2010). In this work, we show that even 
though the scattering model is simple, it generally produces a good fit between with the measured and 
modelled spectra.  

 

2 THEORY 

2.1 ADDITIVE MIXING MODEL 
The underlying assumption of the spectral unmixing model used here is that the total chemical 

absorption of light is a sum of absorption spectra for the different constituents in the mixture, 
weighted by their concentrations. In mathematical terms, 

 
𝑠ch,tot(𝜆) =  ∑𝑎𝑖

𝑁

𝑖=1

𝑒𝑖(𝜆) , (1) 

where 𝜆 denotes wavelength, 𝑠𝑐ℎ,𝑡𝑜𝑡(𝜆) is the total chemical absorption spectrum, 𝑎𝑖  and 𝑒𝑖(𝜆) are 
the concentrations and absorption spectra of each chemical component, respectively, and 𝑁 is the 
number of components. Note that path length for the light is assumed to be equal for each component. 
The concentrations  𝑎𝑖  and absorption spectra 𝑒𝑖(𝜆)  are also referred to in the literature as 
abundances and endmembers, respectively (Keshava, 2003). 

In practical measurements, the chemical absorption spectra are mixed together with effects 
of scattering. If these effects are modelled as a polynomial, as described in the introduction, the total 
measured spectrum 𝑠𝑚𝑒𝑎𝑠(𝜆) can be written as  

where the last sum corresponds to polynomials of the wavelength 𝜆, of degree 𝑀− 1. To simplify the 
notation and adapt it for linear algebra, Eq. (2) can be written as  

 𝒔 = 𝑬𝒂 +  𝜦𝒃  , (3) 

 
𝑠meas(𝜆) =  ∑𝑎𝑖

𝑁

𝑖=1

𝑒𝑖(𝜆) + ∑𝑏𝑖𝜆
𝑖−1

𝑀

𝑖=1

 , (2) 



4 
 

where 𝒔 = [𝑠1, 𝑠2, … , 𝑠𝐾]
𝑇  is the measured spectrum, sampled at 𝐾  discrete wavelengths 

[𝜆1, 𝜆2, … , 𝜆𝐾] . The end member spectra are grouped together in 𝑬 = [𝒆1,𝒆2,, … , 𝒆𝑁] , where the 

individual spectra are given by 𝒆𝒊 = [𝑒𝑖,1, 𝑒𝑖,2, … , 𝑒𝑖,𝐾]
𝑇 , and the end member abundances are 

contained in 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑁]
𝑇 . The term 𝜦𝒃 is structured similarly to 𝑬𝒂, with the polynomial 

contained in the matrix 𝜦 = [𝝀0, 𝝀1, … , 𝝀𝑀−1] , where 𝝀𝒊 = [𝜆1
𝒊 , 𝜆2

𝒊 … , 𝜆𝐾
𝒊 ]𝑇 , and the scattering 

coefficients are contained in 𝒃 = [𝑏1, 𝑏2, … , 𝑏𝑀]
𝑇. 

2.2 SPECTRAL UNMIXING 
Spectral unmixing of the measured spectrum 𝒔  is performed to estimate the individual 

abundances 𝑎𝑖, while simultaneously taking into account the effects of scattering. By their physical 
nature, the abundances cannot have a negative value, so 𝑎𝑖 ≥ 0, for all 𝑖. The scattering coefficients 
𝑏𝑖  are however not constrained in any way. Thus, Eq. (3) poses a mixed constraint problem. The 
problem can be separated into purely constrained and unconstrained parts, an approach known as 
separable least squares (Golub and Pereyra, 1973), by some algebraic manipulation. Equation (3) is 
rearranged into 

A best-fit estimate for 𝒃 is obtained from the normal linear least squares solution, yielding  

where 𝜦+ = (𝜦𝑇𝜦)−𝟏𝜦𝑻 is the so-called pseudoinverse. The estimate 𝒃̂ is inserted for 𝒃 in Eq. (3), 
yielding 

The “projection matrix” 𝑷 = 𝑰 − 𝜦𝜦+ is applied to both the measured spectrum 𝒔 and to the end 

member spectra 𝑬, yielding modified spectra 𝑷𝒔 = 𝒔̃ and 𝑷𝑬 = 𝑬̃. The projection matrix transforms 
the spectra to a vector subspace where the least-squares solutions for the scattering coefficients 𝒃 are 
already applied. The result is a purely constrained problem, 

which can be solved with an algorithm adapted for non-negativity-constrained least squares (NNLS) 
problems. The de facto standard algorithm for NNLS was first introduced by Lawson and Hanson 
(Lawson and Hanson, 1974), and this is also the algorithm implemented in this work. A fast version of 
the algorithm is described in (Bro and De Jong, 1997). Solving Eq. (7) yields a least-squares solution 𝒂̂, 

which is inserted into Eq. (5) to obtain the scattering coefficients 𝒃̂. 

 

3 MATERIALS AND METHODS 

3.1 ENDMEMBER SPECTRA 
Endmember spectra for hemoglobin in three different oxidation states (oxy-, deoxy- and 

methemoglobin) were taken from (Olsen and Elvevoll, 2011). Tabulated values for the spectra were 
obtained through personal communication with Stein H. Olsen. The three spectra were measured 
using a spectrophotometer, using the same path length and hemoglobin concentration in each 
measurement.  

Tabulated values for the water absorption spectrum were taken from the high-resolution 
measurement described in (Pope and Fry, 1997). Since these values only cover the wavelength range 

 𝜦𝒃 =  𝒔 − 𝑬𝒂  . (4) 

 𝒃̂ =  (𝜦𝑇𝜦)−𝟏𝜦𝑻 ⏟        
𝜦+

(𝒔 − 𝑬𝒂)  , (5) 

 (𝑰 − 𝜦𝜦+)⏟      
𝑷

𝒔 =  (𝑰 − 𝜦𝜦+)⏟      
𝑷

𝑬𝒂  . (6) 

 𝒔̃ =  𝑬̃𝒂,   𝒂 ≥ 𝟎  , (7) 
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between 380-700 nm, the water spectrum was completed with tabulated values from (Hale and 
Querry, 1973), to cover wavelengths between 700 and 950 nm.  

The five endmember spectra used in the model are shown in Figure 2 a). These also include a 
cod muscle spectrum, which was included to account for spectral effects which could not be explained 
by scattering, hemoglobin or water spectra. The muscle endmember spectrum was based on a 
hyperspectral image of a cod fillet with relatively little blood, determined through visual inspection of 
fillet color. However, all samples of cod muscle contain some amount of blood, in addition to a 
significant amount of water. The measurement is also affected by scattering effects. The cod spectrum 
was therefore pre-processed by applying the spectral unmixing model with blood, water and scattering 
as endmembers, and removing the contributions of these endmembers from the spectrum. Scattering 
was modelled as a polynomial of degree 1 (𝑀 = 2). This choice is explained in Section 3.2.  The resulting 
corrected muscle spectrum is shown in Figure 2 b).  

Note that the endmember spectra in Figure 2 a) have been normalized to have an equal area 
under the curve to easily compare the features of the spectra in the same plot. Also, since the spectra 
were measured at different experimental conditions, they are not directly comparable in terms of 
absolute absorbance. However, in this work it is the spectral shapes rather than the absolute values 
that are important for the method to work. In the spectral unmixing procedure, non-normalized 
spectra were used, and since the hemoglobin spectra were measured under the same conditions, the 
estimated abundances for the three hemoglobin states are directly comparable. 

3.2 CHOICE OF SCATTERING PARAMETERS 
The effect of scattering on the measured absorbance spectrum was modelled as a low-order 

polynomial, as described in the introduction and Section 2.1. During development of the methodology, 
polynomials of different degrees were tested. To ensure that the effect of scattering was smoothly 
varying across the spectral range, the polynomial degree was restricted to 2 or lower (𝑀 = 1, 2, or 3). 
Different values for 𝑀 resulted in some differences in summed hemoglobin abundance for a set of test 
images. There were also differences in the relative abundances of oxy-, deoxy- and met-hemoglobin, 
but without any clear indication of which estimate was more plausible. The coefficient of 
determination, 𝑅2 (Walpole et al., 2002), was used to assess the fit between the modelled spectra and 
measurements, and the fit generally increased with increasing 𝑀. This is expected, as an increase in 
polynomial order translates into more degrees of freedom for fitting the scattering contribution to the 
measured spectrum. However, use of a 2nd order polynomial seemingly lead to “overfitting” to the 
measured spectra, with a very large part of the absorption spectrum in the 430-650 nm range being 
explained as scattering. To avoid overfitting while still achieving a relatively high goodness of fit, the 
scattering polynomial order was set to 1 (𝑀 = 2) for all results presented in this work.   

3.3 HYPERSPECTRAL IMAGING 
Hyperspectral images were recorded using a VNIR-640 imaging spectrograph (Norsk Elektro 

Optikk, Skedsmokorset, Norway), which operates in a pushbroom imaging mode. The spectrograph 
was fitted with a lens focused at 1 meter distance with a 50 mm depth of field. The spatial resolution 
was 0.5 x 0.5 mm, and the spectral resolution was 10 nm for the spectral range of 430-1000 nm.   

The spectrograph was mounted 1020 mm above a conveyor belt carrying the samples to be 
imaged. The samples were illuminated with a custom-made light source, which consists of 14 halogen 
bulbs (50 W) mounted inside a box consisting of 10 mm thick high-density polytetrafluoroethylene 
(PTFE, also known as Teflon) plates. The box was designed to make the light from the bulbs reflect 
from the walls before exiting onto the conveyor belt, to create a uniform and diffuse illumination, as 
shown in Figure 3. To minimize the effect of ambient light, all other lights were turned off during 
measurements. 
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                a) 

 
                b) 

Figure 2: Endmember spectra included in the analysis. a) Absorption spectra of water, muscle and blood in different 
oxidation states, normalized for equal area under the curve. b) Cod muscle absorption spectrum, before and after unmixing 
and removal contributions from blood, water and scattering. 

All processing of hyperspectral data was performed using IDL (Exelis Visual Information 
Solutions, Bracknell, United Kingdom).  

The raw image recorded by the camera includes effects due to spatial variation in illumination 
and the spectral characteristics of the halogen lamps. To correct for these and convert the image into 
absolute reflectance values, a calibration standard was imaged before each hyperspectral 
measurement series. The standard consisted of a large high-density PTFE plate with a smaller inset 
plate made of optical grade low-density PTFE (Spectralon, manufactured by LabSphere, Inc., North 
Sutton, New Hampshire, USA). The low-density PTFE has over 99% diffuse reflectance in the 430-1000 
nm range of the camera, while high-density PTFE has a diffuse reflectance of approximately 95 % 
around 430 nm, which drops to approximately 80 % at 1000 nm (Tsai et al., 2008).  

The spatial variation of the illumination was measured by extracting an image line from the 
high-density PTFE plate, 𝐼HD-PTFE(𝜆, 𝑥). The lamp characteristics were measured by extracting the 
spectrum from a single pixel from the low-density PTFE plate, 𝐼LD-PTFE(𝜆, 𝑥𝑘), where 𝑥𝑘 denotes the 
spatial coordinate of the pixel. These measurements were used to calibrate each subsequent image, 

 

where 𝐼meas(𝜆, 𝑥, 𝑦) is the uncalibrated image, and the logarithm is used to convert the image 
units from light reflectivity to apparent absorbance. The factor 0.99 is used to account for the 99% 
diffuse reflectance of the low-density PTFE. 

Color images were synthesized from the hyperspectral images using a CIE 1964 10 degree 
standard observer model and a CIE D65 daylight illumination model (Wyszecki and Stiles, 1982). 

3.4 REFERENCE MEASUREMENTS ON HOMOGENIZED COD MUSCLE 
Reference samples with known concentrations of blood were made by homogenizing cod 

muscle and adding different quantities of blood. Blood was acquired from Atlantic cod kept at the 
Tromsø Aquaculture Research Station in Tromsø, Norway. The cod was carefully netted from a cage 
and killed immediately with a blow to the head. Blood was collected from the caudal vein and stored 

 

𝑆meas(𝜆, 𝑥, 𝑦) =  −ln

(

 (
𝐼meas(𝜆, 𝑥, 𝑦)

𝐼HD-PTFE(𝜆, 𝑥)
)

⏟          
Spatial corr.

∙ (
𝐼HD-PTFE(𝜆, 𝑥𝑘)

𝐼LD-PTFE(𝜆, 𝑥𝑘)
∙ 0.99)

⏟              
Spectral corr. )

    , (8) 
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at 4°C in 4 ml tubes spray coated with Lithium Heparin to avoid coagulation. Samples of homogenized 
cod muscle were made from fillets purchased at a local supermarket. According to the staff, the cod 
had arrived three days before purchase. The fillets were trimmed to remove skin, dark muscle, and 
small blood spots and homogenized by running them twice though a meat grinder. The homogenized 
muscle was thoroughly mixed by hand to ensure a uniform distribution of the blood already present 
in the muscle. 

The blood was lysed by adding 2% of Triton X-100 (Sigma-Aldrich, St. Louis, Missouri, USA), to 
break up the membranes of the blood cells and make the hemoglobin easier to mix with the muscle. 
The lysate was then diluted with deionized water to obtain relative blood concentrations in the range 
2.5-100 %. 3 ml of each blood-water mixture was added to 150 g of homogenized muscle, mixed by 
hand for approximately 2 minutes and put into rectangular plastic Petri dishes (100 x 100 x 15 mm). A 
control sample with 150 g muscle and no added blood was also included. The samples were placed 
together on a plate and imaged with the hyperspectral imaging setup described in section 3.2.  

A modified Hornsey hematin method (Hornsey, 1956) was used to determine the 
concentration of total heme pigment in the homogenized muscle and the blood lysate. The method 
converts all forms of hemoglobin into acid hematin, and thus measures only the total hemoglobin 
concentration, not the individual concentrations of oxy-, deoxy- and methemoglobin.  

Three 5 g replicates of minced muscle and three 0.5 ml replicates of blood lysate were used. 
The samples were placed in 50 ml centrifuge tubes and diluted with de-ionized water (0.5 ml for muscle 
samples, 4 ml for lysate).  20 ml of acetone and 0.5 ml of 37% hydrochloric acid (HCl) were added to 
each sample, and the mixture was vortexed for 15 s and then stored in a refrigerator at 4 °C. After 60 
min, the mixture was filtered through a Whatman no. 1 filter paper. The filtrate was centrifuged at 
10 000 G for 15 min, before measuring the absorbance at 512 nm using a UV-1800 UV-VIS 
spectrophotometer (Shimadzu Europe GmbH, Germany). The amount of heme pigment was calculated 
using a standard curve made from bovine hemoglobin (Sigma-Aldrich, St. Louis, Missouri, USA). 

 

 

a) 

 

b) 

Figure 3: Hyperspectral imaging setup with custom made illumination box. a) Schematic drawing showing a side 
view of the conveyor belt. The camera line of view is indicated with a dashed line. b) Picture of the imaging setup.: 
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3.5 FISH FILLET SAMPLES WITH VARYING AMOUNTS OF BLOOD 
Atlantic cod (n=9) were selected by researchers from Nofima AS at a fish landing facility at 

Husøy (Senja, Norway), on February 9. 2017. The landed fish were collected from vessels using either 
gill nets or seines. The fish were selected based on exterior appearance to represent a spectrum from 
good to bad quality with regard to blood.  

The fish was packed in polystyrene boxes and transported on ice to the Nofima facilities and 
were filleted and imaged using the hyperspectral imaging setup on Feb. 10. Out of 18 fillets, 4 fillets 
with varying amounts of blood were selected to demonstrate the method described in this paper.  

4 RESULTS 

4.1 DEMONSTRATION OF UNMIXING FOR SINGLE SPECTRUM 
Figure 4 demonstrates the removal of scattering effects and the spectral unmixing for a 

spectrum taken from a single pixel of a hyperspectral image of a cod fillet. In Figure 4 a), the original 
spectrum is shown as a continuous line, and the effect of scattering is modelled as a 1st-degree 
polynomial, shown as a dashed line. The scatter corrected spectrum (the original spectrum with the 
scatter polynomial subtracted) is shown as a dash-dot line.  

In Figure 4 b), the scatter corrected spectrum is shown as a black continuous line. The unmixed 
spectra of muscle, water and hemoglobin in different states is shown as green, blue and red lines, 
respectively. The sum of the unmixed spectra, which represents the best-fit model of the measured 
spectrum, is plotted as a black dashed line. The modelled spectrum follows the measured spectrum 
closely, indicating that the fit is relatively good.  

 

4.2 RESULTS FOR HOMOGENIZED SAMPLES 
A color image of the homogenized samples with controlled concentrations of added blood is 

shown in Figure 5, together with example spectra from some of the samples. The main difference 
between the spectra is the amount of absorption in the range 450-650 nm, which is explained by the 
difference in hemoglobin concentration. The estimated scattering effects, indicated as dashed blue 
lines, change slightly with blood concentration; at low concentrations, the loss of light due to scattering 
is highest at long wavelengths, while at high concentrations, the loss of light is highest at short 
wavelengths. The scattering properties of the muscle itself should be the same for all samples, and the 
observed effect indicates that the spectral unmixing model (and its underlying assumptions) cannot 
completely separate absorption and scattering. However, the fit between the measured spectra and 
the spectra modelled by unmixing, as indicated by R2, is quite good both for low and high hemoglobin 
concentrations. This shows that the unmixing model is able to account for the spectral variations in 
the data. 

 

Figure 6 shows the abundancies for each endmember as a function of hemoglobin 
concentration in the homogenized samples. The abundancies are mean values based on image regions 
covering the center of each sample, covering approximately 18000 measurement pixels 
(corresponding to 45 cm2) per sample. The methemoglobin abundancy is relatively constant for all the 
samples, which is expected, since the artificially added blood contains mostly oxy- and 
deoxyhemoglobin. The abundancies for oxy- and deoxyhemoglobin increase monotonically with 
hemoglobin concentration, but the curves flatten at higher concentrations, indicating a non-linear 
relationship between abundancies and concentration.  
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The muscle and water abundancies increase slightly with increasing hemoglobin 
concentration, even though the samples are identical except for varying amounts of hemoglobin. This 
indicates that the unmixing method cannot completely de-couple the effects of the different 
abundancies and that some of the variation in hemoglobin is translated into variation in muscle and 
water abundancies. Note however, that the relative change is much smaller than compared to the 
change for oxy- and deoxyhemoglobin. 

The three abundancies for blood can be summed into a total blood abundance. Figure 7 shows 
the relationship between the mean total blood abundance and hemoglobin concentration for each 
sample and an exponential model fitted to the curve. The exponential model is of the form: 

where 𝑐 is the hemoglobin concentration in mg per g muscle, 𝑎blood,total is the sum of the three 

blood abundancies, and 𝐴 and 𝐵 are constants which are calculated to fit the curve. The exponential 
model can be used to translate any total blood abundance value (within the data range used to fit the 
model) to a hemoglobin concentration value. This is demonstrated in Figure 8, which shows both an 
image of total blood abundance for the homogenized samples, and a corresponding image of 
hemoglobin concentration, calculated using the exponential model. Note that the conversion both 
represents a correction of the baseline level (samples with low concentrations appear lighter) and a 
correction for non-linearity between total blood abundance and hemoglobin concentration. The 
samples with the highest concentrations show some heterogeneity, which could be due to 
heterogeneous properties of the muscle and/or imperfect mixing of muscle and blood. 

 
          a) 

 
               b) 

Figure 4: Demonstration of spectral unmixing for a single pixel spectrum. a) Originally measured spectrum, 
scattering effects estimated as 1st-degree polynomial, and spectrum with scattering effects subtracted. b) Measured spectrum 
(scatter corrected) with spectrum modelled as a sum of blood, water and muscle endmembers. 

 

 

 𝑐 = 𝐴(exp(𝐵 ∙ 𝑎blood,total) − 1)   , (9) 
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Figure 5: Color image of homogenized cod muscle with different amounts of artificially added blood. The chemically 
measured hemoglobin concentration in mg per g muscle is indicated for each sample. Example spectra from some of the 
samples are also shown, with black lines indicating the original spectrum, dashed blue lines indicating estimated scattering 
effects, red lines indicating the scatter corrected spectrum and dashed green lines indicating fitted spectrum from the 
unmixing model. The fit between the measured and the modelled spectrum is indicated with R2 correlation coefficients.: 
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Figure 6: Endmember abundancies as function of hemoglobin concentration in homogenized samples (average 
values from center area of each sample). 

 

 

Figure 7: Polynomial model of hemoglobin concentration in muscle as a function of total blood abundance (sum of 
oxy-, deoxy- and methemoglobin abundancies). 
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a) 

 
b) 

Figure 8: Conversion of blood abundance to hemoglobin concentration, demonstrated on image of homogenized 
samples. a) Total blood abundance. b) Hemoglobin concentration, calculated using exponential model shown in Figure 7. 

 

4.3 BLOOD ANALYSIS FOR FILLETS WITH DIFFERENT AMOUNTS OF BLOOD 
To demonstrate the performance of the spectral unmixing method, hyperspectral images of 

four different fillets were analyzed, and hemoglobin concentration was calculated using the 
exponential model. Color images and blood concentration images are shown in Figure 9. The fillets are 
sorted according to increasing blood concentration and number of blood defects.  

All the blood analysis images show a line running along the middle of the fillet with small spots 
of increased blood levels. The line corresponds to blood vessels along the backbone of the fish that 
were cut during filleting. The fillet shown in a) and e), which is an example of a high-quality fillet, 
generally has a low amount of blood in the muscle and only a small blood spot in the very top, toward 
the neck. The fillet shown in b) and f) also has low blood levels, but has a small blood spot close to the 
center of the fillet, which could be considered a defect in some cases. The fillet in c) and g) has a slightly 
elevated amount of blood in the muscle and also has several large blood spots along the center line. 
These defects are serious and will, in most cases, cause the fillet to be down-graded (not top quality). 
The last fillet, shown in d) and h), has very elevated blood levels throughout the muscle and also several 
blood spots, making it a decidedly low-quality fillet.  
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a) 

 
b) 

 
c) 

 
d) 

 

 
e) 

 
f) 

 
g) 

 
h) 

 
Figure 9: Color images (a-d) and corresponding blood concentration images (e-h) from four example fillets. The black 

lining in the belly was not removed prior to imaging, resulting in the white areas in the blood analysis images. The vertical 
stripe seen in some of the images is due to a few weak pixels in the hyperspectral camera. 
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5 DISCUSSION  

We have described and demonstrated a spectral unmixing approach for analysis of blood in 
hyperspectral images of cod fillets. The method is based on a priori knowledge of the absorbance 
properties of blood in different oxidation states, in addition to absorption in water and muscle. The 
modelled spectra show a very good fit to the measured spectra for several cases with varying amounts 
of blood in the fillets. By using reference measurements with known concentrations of blood, it is also 
possible to make quantitative estimates of hemoglobin concentration based on the unmixing results. 
The method is general in nature and can be expanded to include additional constituents of fish fillets, 
such as fat, melanin etc. 

The blood measurement method was demonstrated for cod fillets in this work, but we also 
expect the method to be applicable to other fish species. The performance for other white fish species 
should be comparable to that of cod, while species with reddish muscle color, such as salmon, may be 
more challenging due to the spectral overlap between hemoglobin and muscle pigments (Ottestad et 
al., 2011). The method may also be applicable for detection of blood in other types of meat, for 
example in chicken meat, where blood spots and heightened blood levels are regarded as a major 
quality defect (Alvarado et al., 2007). 

The reference measurements for hemoglobin concentration were performed on homogenized 
samples of cod muscle. This ensures that, unlike samples taken from intact cod fillets, the samples 
have a relatively uniform distribution of blood. However, homogenizing the muscle also changes its 
light scattering properties by cutting long muscle fibers into smaller parts and creating small air pockets 
in the sample. The practical effect of this difference between reference samples and intact fillets has 
so far not been studied but will be the subject of a future study. The differences in scattering properties 
should be accounted for to some degree by the estimation of scattering effects in the spectral unmixing 
method. The blood concentration images shown in Figure 7 also appear slightly speckled, especially at 
high blood concentrations. This is probably due to the heterogeneous nature of the minced muscle 
samples, with bright spots being caused by pieces of connective tissue, and dark spots being caused 
by slightly non-uniform distribution of blood. However, the exponential model used for estimation of 
hemoglobin concentration is based on mean values from a large area from each sample, and we 
therefore believe that the estimation of hemoglobin concentration from hyperspectral images is 
relatively accurate. 

By including spectra for oxy-, deoxy- and methemoglobin in the spectral unmixing model, we 
enable estimation of the abundance of each of these individual endmembers. During storage, oxy- and 
deoxyhemoglobin in blood oxidizes into the methemoglobin state, and the relative abundance of 
methemoglobin may therefore be useful for shelf life estimation (Sivertsen et al., 2011). Using all three 
endmembers also enables the estimation of total blood abundance independent of the oxidation 
process. However, the reference method used to measure hemoglobin concentration in the 
homogenized samples only measures total hemoglobin, and is not able to distinguish between the 
three states. The results shown in Figure 6 indicate that the amount of methemoglobin is low and 
relatively constant for all the homogenized samples. In future work, reference measurements could 
be expanded to include samples where methemoglobin concentrations are expected to be higher, for 
example frozen-thawed samples. Oxy- and deoxyhemoglobin could also be chemically converted to 
methemoglobin prior to being mixed into a homogenized sample by adding potassium ferricyanide 
(K3Fe(CN)6) (Olsen and Elvevoll, 2011). 

The relationship between blood concentration and blood abundancies is non-linear, as shown 
in Figure 6. At high concentrations, the curve “flattens out”. A possible explanation for this is that the 
average path length of the light inside the sample changes as function of hemoglobin concentration. 
When the concentration is low, absorption of light inside the sample is also low, and the light which is 
emitted from the sample surface is a result of backscattered light both from the surface and from 
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deeper within the sample. When the concentration is high, the light that travels far into the sample is 
absorbed before it can be backscattered towards the surface, and the emitted light from the sample 
surface consists of light that has travelled a shorter average distance inside the sample. This 
absorption-dependent path length effect leads to a non-linear relationship between concentration and 
absorption, and thus also between concentration and abundancies.  

The muscle endmember is based on a spectrum from a hyperspectral image of cod and 
corrected for the contributions from hemoglobin and water absorption using spectral unmixing. This 
is a heuristic approach which “fills the gap” between the set of independently measured endmembers 
and practical measurements of fillets, enabling spectral unmixing with a good model fit for most cases. 
A previous study found that for extractions of pure cod muscle in water and methanol, there is very 
little absorption in the 300-600 nm region (Stormo et al., 2004). This finding could indicate that the 
muscle endmember used in the current work partly describes inaccuracies between the model and the 
practical measurements, in addition to some absorbance due to compounds in the muscle. In future 
work, we aim to understand the absorbance in muscle better and, if possible, replace the muscle 
endmember with endmembers of known chemical compounds.  

The peak at approximately 605 nm in the corrected muscle spectrum could possibly be 
attributed to cytochrome oxidase, the terminal enzyme in the respiratory chains of mitochondria. The 
enzyme contains the two cytochromes a and a3, which each contain haem A, and has absorption peaks 
at 445 and 605 nm (Mathews et al., 1999; Yonetani, 1960). Inclusion of cytochrome oxidase in models 
of light absorption in tissue has been shown to improve model fit in an application with fiber-optic 
reflectance imaging of heart tissue in calves (Lindbergh et al., 2010). If the observed peak in the 
corrected muscle spectrum is indeed due to cytochrome oxidase, inclusion of a cytochrome oxidase 
endmember could improve the model.  

One of the main applications for the method described here is classification of fillets according 
to blood defects. Currently, such classification is often done manually and subjectively during fillet 
production. Training data for automatic classification could be established by using an expert panel to 
classify a large set of fillets according to perceived quality. The same fillets could then be imaged with 
a hyperspectral camera and analyzed using the method described here. This would allow thresholds 
for automatic quality grading to be set using quantitative thresholds on hemoglobin concentration. 
Separate thresholds could be set for different parts of the fillet (loin, belly, tail), which often are 
portioned into products of different value.  

Hysperspectral cameras are generally far more expensive than standard cameras, making 
them less accessible as an option for industrial applications. However, the method described in this 
work can potentially be simplified by reducing the number of spectral bands, as demonstrated in 
(ElMasry et al., 2007). If a limited number of bands yield a sufficient accuracy, imaging can be 
performed by use of a standard monochrome camera combined with narrow bandpass filters, and/or 
by alternating between LED lights transmitting in key spectral bands. 

6 CONCLUSIONS 

We have described and demonstrated a spectral unmixing approach for detection of blood in 
diffuse reflectance hyperspectral images of cod fillets. The method is based on a priori knowledge of 
the absorbance properties of blood in different oxidation states, in addition to absorption in water and 
muscle. The method also includes estimation of scattering effects, which are modelled as a linear 
function of wavelength. The unmixing model generally yields a very good fit between measured and 
modelled spectra, and by using reference measurements with known blood concentrations, the model 
also enables quantitative estimation of blood concentration in the fillet surface. This high-resolution 
mapping of blood represents a useful tool for quality grading in the whitefish processing industry.  
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