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Abstract

Background

Various altitude training regimes, systematically used to improve oxygen carrying capacity

and sports performance, have been associated with increased oxidative stress and inflam-

mation. We investigated whether increased intake of common antioxidant-rich foods attenu-

ates these processes.

Methods

In a randomized controlled trial, 31 elite endurance athletes (23 ± 5 years), ingested antioxi-

dant-rich foods (n = 16), (> doubling their usual intake), or eucaloric control foods (n = 15)

during a 3-week altitude training camp (2320 m). Fasting blood and urine samples were col-

lected 7 days pre-altitude, after 5 and 18 days at altitude, and 7 days post-altitude. Change

over time was compared between the groups using mixed models for antioxidant capacity

[uric acid-free (ferric reducing ability of plasma (FRAP)], oxidative stress (8-epi-PGF2α) and

inflammatory biomarkers (IFNγ, IL1α, IL1RA, IL1β, IL2, IL5, IL6, IL7, IL10, IL12p70, IL13,

IL17, TNFα, MCP-1 and micro-CRP). The cytokine response to a stress-test (VO2max ramp

test or 100 m swimming) was assessed at pre- and post-altitude.

Results

FRAP increased more in the antioxidant compared to the control group (p = 0.034). IL13

decreased in the antioxidant group, while increasing in the controls (p = 0.006). A similar

trend was seen for IL6 (p = 0.062). A larger decrease in micro-CRP was detected in the anti-

oxidant group compared to controls (β: -0.62, p = 0.02). We found no group differences for
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the remaining cytokines. 8-epi-PGF2α increased significantly in the whole population (p =

0.033), regardless group allocation. The stress response was significantly larger post-alti-

tude compared with pre-altitude for IL1β, IL6, IL7, IL13, IL12p70 and TNFα, but we found no

group differences.

Conclusions

Increased intake of antioxidant-rich foods elevated the antioxidant capacity and attenuated

some of the altitude-induced systemic inflammatory biomarkers in elite athletes. The antioxi-

dant intervention had no impact on the altitude-induced oxidative stress or changes in acute

cytokine responses to exercise stress-tests.

Introduction

Several endurance athletes incorporate various hypoxic training modalities to their annual

training plan to increase their oxygen carrying capacity and ultimately improve sports perfor-

mance [1]. The combination of hypoxia and exercise can result in a more pronounced impact

on immune system than hypoxia or exercise alone [2–4]. During altitude training camps ath-

letes seem to be at increased risk for immunological disturbances, infections and illness [4–6],

which may jeopardize the desired altitude-induced increase in hemoglobin mass [7, 8]. The

systemic concentration of several inflammatory cytokines increases following training at alti-

tude illustrating an immune system response to hypoxia [9, 10]. Altitude training is also associ-

ated with an elevation in free radical production, reduction in plasma antioxidant capacity and

subsequent increase in oxidative stress [11–13]. Both acute [14] and long-term hypoxic expo-

sures [15, 16] augment oxidative stress, and the magnitude of the oxidative stress response

seems to depend on the total hypoxic dose (duration and meters above sea level) [17].

Although the underlying mechanisms of hypoxia-induced reactive oxygen species (ROS) over-

production are not entirely clear, reductive stress within the mitochondria, augmented cate-

cholamine production, decreased mitochondria redox potential and xanthine oxidase pathway

activation, have previously been suggested [12].

Diets low in antioxidant-rich foods are associated with increased plasma inflammatory

mediators and decreased plasma antioxidant concentration in endurance athletes both at rest

and following exercise [18, 19]. Whereas, it has been suggested that athletes on a high-antioxi-

dant diet may experience increased protection against training-induced respiratory illness by

better maintenance of the pro-oxidant/antioxidant balance, especially at altitude [20]. Several

authors have studied the impact of dietary antioxidants on redox balance and biomarkers of

oxidative stress and inflammation in well trained athletes, but these have mainly investigated

supplements and extracts [21–24], with only a few utilizing a food-based approach to augment

antioxidant intake [25–27]. To our knowledge, no previous study has examined the effects of

common antioxidant-rich foods on biomarkers of oxidative stress and inflammation during

training at altitude in athletes. Given the increasing awareness around the potential negative

effects of chronic high dose antioxidant supplementation on training adaptation [28, 29], we

chose to apply a food-based approach.

Thus, the aim of the current study was to determine whether increased consumption of

foods naturally rich in antioxidants influences biomarkers of systemic oxidative stress and

inflammation in response to training at moderate altitude in elite endurance athletes during
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their general preparation phase. We also aimed at testing whether the antioxidant-rich foods

would affect the acute systemic inflammatory stress response to a maximal physical exertion

stress-test (VO2max ramp test or 100 m swimming). We conducted a randomized controlled

trial to test our hypothesis that increased intake of antioxidant-rich foods would limit these

oxidative stress and inflammatory responses to altitude training.

Methods

Compliance with ethical standards

This study protocol (S1 Text) was approved by the Norwegian Regional Ethics Committee

(REK number 626539) 12th October 2015. All participants provided written informed consent

after receiving comprehensive oral and written information about the project protocol follow-

ing the formal enrollment 12-18th October. After a short delay the study was also registered in

Clinical trials (NCT03088891) The registration in clinicaltrials.gov was not a prerequisite for

ethical approval in Norway at the time of the project initiation.

Study design

The CONSORT flowchart (Fig 1) shows the outline of the study. This parallel randomized

clinical trial with allocation ratio ~1:1 was conducted in October- November 2015, during

the athletes’ general preparation phase, less than a year prior to the Rio 2016 Olympic and

Paralympic Games. Data and samples before and after the altitude camp were collected at the

Norwegian Olympic Sports Centre, Oslo, Norway while data and sample collection during

the 3-week altitude camp (21st October–10th November) took place at the High-Altitude

Training Centre (Centro di Alto Rendimiento, CAR) in Sierra Nevada, Spain (2320m) (Fig

2). All testing was completed within one week pre-and post-altitude camp for every athlete

except for the swimmers. Due to logistical challenges, the swimmers’ stress-tests post altitude

were completed thirteen days after return to sea level (on Nov 24th). Assessment of iron status

three weeks prior to altitude camp (Fig 1) is a general part of the athletes’ regular health mon-

itoring and was used to provide information whether iron supplementation at altitude was

required.

Participants and allocation to interventions

In total, 31 national team athletes from different sports, who attended the yearly altitude train-

ing camp arranged by the Norwegian Olympic Sports Centre, were invited to this study

(females n = 8, males = 23; Paralympic athletes = 4, Olympic athletes = 27), including seven

World Championship medalists (Table 1). All invited athletes agreed to participate. Partici-

pants were randomly allocated to receive either antioxidant-rich foods or eucaloric control

foods with significantly lower antioxidant content. Each participant was given a random id

number prior to randomization. The randomization to intervention or control croup was per-

formed using computer generated random sequence stratified by sport and gender. The

researcher who performed the randomization was not involved in the participant enrolment

or group allocation. All researchers involved in testing and sample analysis were blinded. Dur-

ing the altitude training camp, athletes followed their respective National teams’ training pro-

grams and lived and consumed all their main meals at CAR. The total hypoxic exposure was

between 440–480 hours at 2320m above sea level. For practical reasons the pre-and post-alti-

tude tests were conducted over two days [30]. All assessments included in the present paper

were conducted on day two (Fig 2B).
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Dietary intervention

All intervention foods, both for the antioxidant and control group were provided by the Nor-

wegian Olympic Sports Centre, shipped to Spain from Norway, weighed with 1-gram accuracy

(Electronic kitchen scale, Page Evolution, Soehnle, Germany), packed and delivered daily at

the same time for the whole 3-week period. Study participants in the antioxidant-rich food

group received 750 ml fruit-, vegetable- and berry smoothie, 50 g dried berries and fruits, 40 g

walnuts, and 40 g dark chocolate (70% cocoa content) daily, while the control group received

220 ml milkshake, 330 ml recovery beverage, 90 g salty and sweet crackers, and 50 g white

chocolate. The total antioxidant content of foods, measured with the FRAP method [31], was

21.2 mmol/day and 2.8 mmol/day for antioxidant-rich and control group, respectively. See

Koivisto et al. [30] for detailed information about the food item selection and the antioxidant

content of each food item. The participants were asked to consume the food items (isocaloric,

Fig 1. CONSORT flowchart.

https://doi.org/10.1371/journal.pone.0217895.g001
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4.2 MJ or 1000 kcal/day for both groups) between their main meals, thus replacing some of

their usual snacks. The participants were not allowed to use any antioxidant supplements dur-

ing the study. All participants received comprehensive oral and written information about the

study, but the group allocation was not revealed to them.

Fig 2. Timeline of the study. A) Timeline of testing before, during and after the three-week altitude training camp (2320m), and B) the setup for the pre-and post-

altitude stress-tests (VO2max ramp test or 100 m swimming).

https://doi.org/10.1371/journal.pone.0217895.g002

Table 1. Baseline characteristics.

Antioxidant group (n = 16) Controls

(n = 15)

p1

Age (yrs) 23 ± 5 24 ± 5 0.622

Height (cm) 185 ± 8 185 ± 9 0.848

Weight (kg) 81.8 (31.8) 75.9 (38.8) 0.892

VO2max (mL/kg/min) 67.6 (24.2) 66.5 (8.1) 0.428

Training volume (hrs/week) 20.1 ± 6.3 17.0 ± 5.0 0.234

Sex

males 12 (75%) 11 (73%) 1.0b

females 4 (25%) 4 (27%)

Able-bodied/disabled athletes

Able-bodied athletes 14 (88%) 13 (87%) 1.0b

Athletes with disabilities 2 (13%) 2 (13%)

Values are presented as mean ± standard deviation (SD) or median (range) for non-normally distributed data or

count (%).
1Indicates difference between groups.
b Fisher’s exact tests were used to compare categorical variables between the groups.

https://doi.org/10.1371/journal.pone.0217895.t001
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Blood and urine sampling

Blood samples were collected before, during and following altitude camp from a peripheral

vein into two EDTA treated tubes by experienced nurses/technicians and centrifuged within

10 minutes at 1500 g after the blood draw. When sampled at sea level, double aliquots of

plasma were directly frozen on dry ice and stored at -80˚ C until analysis. At altitude, the

plasma samples were frozen at -20˚ C for 4–7 days before packaging on dry ice and shipment

to University of Oslo where they were stored at -80˚ C until analysis.

Urine samples were collected before, during and after altitude camp following an overnight

fast from the first void after 04:00. Urine samples (1.5mL) were directly frozen on dry ice and

stored at -80˚ C until analysis. Urine samples collected at altitude were frozen at -20˚ C for 4–7

days before they were shipped on dry ice to University of Oslo and stored at -80˚ C until

analysis.

Exercise stress-tests

For the assessments of antioxidant capacity and inflammation at rest, and in response to maxi-

mal physical exertion stress-test, blood samples were collected after an overnight fast and 10–

15 minutes following a VO2max ramp test (for all but swimmers, n = 16) or 100 m all-out swim-

ming (for swimmers, n = 10). The stress-tests were conducted before and after the altitude

training camp (Fig 1). All participants were familiar with the exercise tests and followed the

exact same standardized, individualized warm-up preceding pre- and post-altitude stress-test

(~30 min). In the VO2max ramp test the running speed (10.5% treadmill incline) was increased

by 1 km h−1 every minute for the first three minutes, followed by a stepwise increase by 0.5

km h−1 each minute until volitional exhaustion (typical total duration: 5 min 46 s). The swim-

mers swam 100 m using their favored stroke with maximal effort imitating a standard compe-

tition setting (short course pool, 25m). The stress-tests were scheduled at the same time of day

pre-and post-altitude for each participant (between 8:30–10 am). Personnel, who analyzed

blood and urine samples and conducted the stress-tests were blinded to the group allocation.

Detailed information about the VO2max ramp test and 100 m swimming performance and the

reason for selecting those as performance/stress tests can be found in our previous article [30].

The dietary intake was recorded 24 hours prior to the stress-tests before altitude, and the par-

ticipants were asked to replicate the dietary intake prior to testing post altitude.

Outcome variables

The results on the primary outcome variables have been reported previously [30]. The second-

ary outcomes of the research project examined in the current study are described below.

Ferric reducing ability of plasma (FRAP). Plasma FRAP is a global indicator of antioxi-

dant capacity. In the plasma, FRAP is primarily sensitive to uric acid, ascorbic acid, and α-

tocopherol. Uric acid contributes to 60% of the total FRAP measurements while its role as an

endogenous antioxidant is inconclusive [32]. Therefore, FRAP was measured in plasma after

removal of uric acid. In the literature this method is referred to as “modified-FRAP analysis”

[33]. For preparation of plasma extracts for modified FRAP, 10 μL uricase (0.1 units/10 μL) in

Triz buffer (pH 8.5, 400 mmol/L) were added to 25 μL plasma. After incubation for 6 min at

room temperature, 80 μL ethanol were added to precipitate proteins. Samples were placed at

4˚C for 10 min before centrifugation at 13000 g at 4˚C for 10 minutes. The uric acid- and pro-

tein free- supernatant were used for modified FRAP analysis. FRAP values were obtained by

measuring the reduction of a ferric tripyridyltriazine complex to Ferrous (II) (blue) by absor-

bance at 593nm 5’ after 5’minutes of incubation as described by Benzie et al. [32].

Antioxidant-rich foods, oxidative stress and inflammation at altitude
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Cytokines. Interferon (INF)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1α, IL-

1β, IL-1RA, IL-2, IL-5, IL-6, IL-7, IL-8, IL-10, IL12p70, IL13, IL17 and monocyte chemoattrac-

tant protein (MCP)-1 were measured in plasma by a sandwich immunoassay-based protein

array system (Milliplex Human Cytokine/chemokine Magnetic Bead panel assay, CAT HCY-

TOMAG-60K, USA). Cytokine detection was performed according to the manufacturer’s

instructions. Detection was performed with the use of the MAGPIX system, (www.

luminexcorp.com) and the xPONENT software was used to process the data. All samples were

run in single wells, except the standard curve points, which were run in duplicates. Three kits

with identical lot numbers were used for the analyses. In order to avoid eventual batch effects,

all time-point samples from each person were analysed using the same kit and stratified based

on sports and intervention group. Intra- and inter-assay CVs reported by the manufacturer

are 2–13% and 5–19%, respectively [34].

Micro-CRP. C-reactive protein was measured with a Hitachi 917 Automated Biochemis-

try Analyzer. Analytical CV is 1.8% in Fürst laboratory in Oslo, Norway [35].

Creatinine. Determination of creatinine in urine was performed by a colorimetric enzy-

matic principle using a MAXMAT PL II multidisciplinary diagnostic platform and the Creati-

nine PAP kit, (ERBA Diagnostics, Montpellier, France) as previously described [36].

8-epi-PGF2α (F2-isoprostane). The determination of the F2-isoprostane 8-epi-PGF2α in

urine was performed by liquid chromatography–mass spectrometry as described by Bastani

et al. [37]. The 8-epi-PGF2α ng/g creatinine ratio was determined by first converting creati-

nine (mmol/L to g/mL), then dividing 8-epi-PGF2α concentration (ng/mL) with creatinine

concentration (g/mL). Creatine adjusted -8-epi-PGF2αwas used to minimize the potential vari-

ation in 8-epi-PGF2α caused by variation in urine volume.

Statistical analyses

Normally distributed data are presented as mean ± standard deviation (SD), non-normally dis-

tributed data as median and range, and categorical data as ranks and percentages. Two samples

T-tests or Mann Whitney U Test (for non-normally distributed data) were performed to deter-

mine differences in baseline characteristics between the groups.

All values for cytokines, FRAP, 8-epi-PGF2α and micro-CRP were logarithmically trans-

formed. Cytokines that were below the limit of detection were imputed by maximum likeli-

hood estimation which has been described a suitable method for imputation of values below

detection limits [38].

The effect of the dietary intervention on the plasma concentrations of cytokines was

assessed by linear mixed model regression to account for dependence related to repeated mea-

surements within each subject. The model included cytokines, FRAP or 8-epi-PGF2α as out-

come variable, whereas group, timepoint and their interaction term (group × timepoint) were

included as fixed effects. Model correction for baseline differences was performed for all cyto-

kines that were significantly different at baseline as indicated in table footnotes. To adjust for

random variability among subjects, subject ID was added as a random effect. Because there

were no obvious patterns of reliance in the data, and because the Akaike Information Constant

was generally lower, an unstructured covariance structure was assumed in the model. Separate

models for all outcome variables was created to evaluate the effect of time alone for the total

study population and included timepoint as a fixed effect and subject ID as a random effect.

These analyses were carried out irrespectively of the interaction analyses. Estimated marginal

means and their 95% confidence intervals were extracted from the models and reported for

each timepoint per group, along with the nominal p-value for the group × timepoint interac-

tion term. Because some of the models were adjusted for baseline differences, we plotted the
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relative changes from baseline for illustrative purposes. For micro-CRP, which we measured

only on two occasions (pre- and post-altitude), we used ordinary least squares regression to

evaluate the difference between groups over time. The grouping variable and baseline micro-

CRP were included as covariates in the model. To evaluate the response in plasma cytokine

concentrations to exercise stress test (VO2max ramp test or 100 m swimming), we calculated

the delta (Δ) (post-test concentration—pre-test concentration). Because the values were loga-

rithmically transformed, the Δ represent the ratio of post-test to pre-test concentrations. All p-

values were considered significant at< 0.05. The statistical analyses were carried out using R

v.3.0.2 (R for statistical computing, Vienna, Austria), with packages “lme4”, “lmertest” and

“emmeans”. Plots were made using the “ggplot2” package.

Sample size. This study is part of a larger altitude project [30] where hemoglobin mass

(Hbmass) was the primary outcome and thus used as the main variable for sample size estima-

tion as previous described [30]. An online calculator was used for the sample size calculation

(http://www.powerandsamplesize.com) revealing a need for 7 subjects per group with 1-β =

0.8 and α = 0.05 [39]. The calculation was based on expected increase in Hbmass in response to

altitude training by 5.3% [40, 41] and a hypothesized lower adaptive response to altitude train-

ing of 1.7% [41] in the intervention group and a standard deviation for change in Hbmass of

2.3% based on previous unpublished data obtained in Norwegian national team athletes.

Results

Baseline characteristics

The cohort consisted of 23 males and 8 female Norwegian elite athletes (mean age of 23 years)

from five different summer sports: swimming (n = 11), rowing (n = 14), kayaking (n = 4), tri-

athlon (n = 1) and middle-distance running (n = 1). There were no significant differences

between the groups in baseline characteristics as presented in Table 1.

Intervention effects on antioxidant capacity, oxidative stress and

biomarkers of inflammation

Estimated marginal means from mixed model analysis and their corresponding confidence

intervals for all cytokines, 8-epi-PGF2α, FRAP and micro-CRP at each measured timepoint are

presented in S1 Table.

We found a difference in slopes between antioxidant and control group with a significant

group × timepoint interaction for FRAP, where the FRAP increase in the antioxidant group

was higher compared to the control group (Fig 3). Post hoc analysis revealed that the increase

in FRAP in the intervention group by the post-altitude timepoint contributed to this difference

between the groups. 8-epi-PGF2α, a marker of oxidative stress, did not change between the

groups (pinteraction = 0.453) (Fig 3).

We found a difference between the groups with regards to change over time for IL13

where the intervention group decreased, and the control group increased from baseline

(group × timepoint, pinteraction = 0.006) (Fig 4). A similar trend was found for IL6 (pinteraction =

0.062) (Fig 4). The difference in slopes between the groups for IL13 and IL6 became more evi-

dent when excluding the post-altitude visit in the model (S2 Table), both showing a significant

decrease in the antioxidant group compared to the control (pinteraction = 0.023 and 0.006,

respectively). There was no difference between the groups with regards to change over time for

the rest of the cytokines measured (INF-γ, IL-1α, IL-1β, IL-1RA, IL-2, IL-5, IL-7, IL-8, IL-10,

IL12p70). Finally, the change in log transformed plasma concentrations of micro-CRP was

Antioxidant-rich foods, oxidative stress and inflammation at altitude

PLOS ONE | https://doi.org/10.1371/journal.pone.0217895 June 13, 2019 8 / 19

http://www.powerandsamplesize.com
https://doi.org/10.1371/journal.pone.0217895


significantly different between groups with a larger decrease in micro-CRP in the intervention

group compared to controls (β for antioxidant vs. control: -0.62, standard error 0.24, p = 0.02).

Effects of the altitude training on oxidative stress and biomarkers of

systemic inflammation in the total population

We assessed whether there was an effect of time spent at the altitude in the total study popula-

tion. The regression coefficients and standard errors are presented in S3 Table. We observed a

positive effect of time on post-altitude 8-epi-PGF2α (p = 0.033). Also, a significant effect of

time was found for IL7 (β: -0.08, p = 0.03) from baseline to post-altitude (S1 Fig).

Intervention effects on the cytokine response to the exercise stress-tests

Log-transformed cytokine concentrations before and after VO2max ramp test/100 m swimming

(n = 26) are presented in S4 Table. We assessed the effects of altitude on the cytokine response

to the VO2max ramp test/100 m swimming by comparing the calculated Δ values (post-test con-

centrations − pre-test concentrations) for all log-transformed cytokines pre- and post-altitude.

No significant differences were found between the groups with regards to the change in stress-

test response.

Fig 3. Relative change for FRAP (ferric reducing ability of plasma) and 8-epi-PGF2α in antioxidant and control groups from baseline to day 5 and 18 at

altitude, and day 7 post-altitude. Nominal p-value of< 0.05 for the group × timepoint interaction from linear mixed model regression was considered significant.

The statistical analyses were carried out using R v.3.0.2 (R for statistical computing, Vienna, Austria), with packages “lme4”, “lmertest” and “emmeans”. Plots were

made using the “ggplot2” package.

https://doi.org/10.1371/journal.pone.0217895.g003
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Effects of altitude training on the cytokine response to the exercise stress-

tests in the total population

We found significant effects of altitude training in the stress-test response for several cytokines,

as shown in Fig 5. Overall, IL1β, IL6, IL7, IL13, IL12p70 and TNFα increased more at the post-

altitude VO2max /100 m swimming tests compared to the pre-altitude tests (S4 Table). The pre-

and post- delta (Δ) values (post-test concentration − pre-test concentration) are presented

with p-values in S5 Table.

Discussion

This study is the first to examine whether increased intake of antioxidant-rich foods during a

3-week training camp at moderate altitude affects systemic oxidative stress and inflammation

at rest and in response to maximal physical exertion in elite endurance athletes.

We show, that it is possible to elevate the plasma antioxidant capacity in elite athletes during

training at moderate altitude by increasing daily intake of common antioxidant-rich foods.

We also observe that more than doubling the daily antioxidant-rich food intake [30] attenu-

ated the altitude-induced increase in micro-CRP, IL13 and a strong trend for IL6. However,

no significant differences were detected between the antioxidant and control group for the

Fig 4. Relative change for IL13 and IL6 in antioxidant and control group during 3-week altitude training camp (2320m). Nominal p-values of< 0.05 for the

group × timepoint interaction from linear mixed model regression were considered significant. The statistical analyses were carried out using R v.3.0.2 (R for statistical

computing, Vienna, Austria), with packages “lme4”, “lmertest” and “emmeans”. Plots were made using the “ggplot2” package.

https://doi.org/10.1371/journal.pone.0217895.g004
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remaining measured cytokines or for the altitude-induced increase in 8-epi-PGF2α, a bio-

marker of oxidative stress. The acute inflammatory response to VO2max ramp test/100 m

swimming was significantly increased following the 3-week altitude training camp for IL7,

IL13, TNFα, IL12p70, IL1β and IL6, although there was no difference in response between the

groups.

Intervention effects on antioxidant capacity (FRAP)

The antioxidant capacity increased more in the antioxidant group compared to the controls.

This is in line with previous studies in healthy individuals that show increase in FRAP follow-

ing acute antioxidant-rich food intake [42–44]. However, the delayed increase in FRAP allows

us to speculate that the antioxidant-rich foods lead to a gradual up-regulation of endogenous

antioxidant defences, by liberating some of the antioxidant capacity of the molecules detectable

by FRAP, rather than exerting an instant free radical scavenging effect. Indeed, it has previ-

ously been demonstrated that compounds in fruits and vegetables can modulate gene-expres-

sion in vitro and in vivo [45, 46] and upregulate gene-expression relevant for stress-defences

[47]. This may also indicate that a longer exposure of phytochemicals from mixed foods is

required for their full biological effect.

Fig 5. The change in log-transformed plasma cytokine concentrations in response to exercise stress-test (VO2max ramp test/100 m swimming) pre- and post-

altitude presented as delta (Δ) (post-test concentration − Pre-test concentration). P-values were calculated using ordinary least squares regression with Δ as the

outcome variable and time (post-altitude vs. pre-altitude) as the predictor.

https://doi.org/10.1371/journal.pone.0217895.g005
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Previous studies have reported reduced antioxidant capacity (FRAP) in hypoxia (up to

20%) in well-trained athletes [16, 17, 48]. However, unexpectedly the control group in the cur-

rent study experienced only a modest decrease in FRAP. Although the total intake of antioxi-

dant-rich foods remained unchanged in the control group, both groups increased their juice

intake during the altitude camp [30]. Perhaps, this may have contributed to a lower decrease

in FRAP among the controls compared to previous investigations [16, 17, 48].

Another potential explanation could be the upregulation of endogenous antioxidant system

(redox-sensitive adaptations) triggered by low-moderate intensity training [49], also described

as exercise-induced hormesis [50]. Indeed, recent reviews conclude that hypoxic exercise,

especially when performed at low intensities, might concomitantly increase both free radical

production and antioxidant capacity [12, 13]. Thus, possibly, rigid control of training intensity

of all study participants by their respective national team coaches during the altitude camp

may have contributed to a lower reduction in FRAP compared to other trials.

Noteworthy, uric acid in the FRAP analysis was removed because of its role as an endoge-

nous antioxidant is inconclusive [32]. Despite that plasma uric acid has shown to increase fol-

lowing exercise and hypoxia due to purine metabolism in skeletal muscle [13], this xanthine

oxidase-driven pathway also includes ROS production and does not appear to be a compensa-

tory mechanism to amplify plasma antioxidant capacity [51]. Given that uric acid contributes

to 60% of the total FRAP measurements, FRAP data in the current study is lower compared to

literature that has not applied the modified-FRAP assessment [16, 48].

Intervention effects on oxidative stress (8-epi-PGF2α)

We did not find any differences in slopes between the groups for 8-epi-PGF2α, a reliable bio-

marker for lipid peroxidation [52]. This finding is in line with most previous studies that

report no effect of antioxidant supplementation on hypoxia-induced oxidative stress [53–55].

We found a 28% increase in 8-epi-PGF2α in the whole population. Previous studies in elite

athlete population without antioxidant supplementation have reported both augmented

(~60%) [16], or no change [48], in lipid peroxidation (MDA) following 18 days of hypoxia

(live high-train low model with simulated altitude). Noteworthy, both studies [16, 48] reported

a significant increase in biomarker for oxidative damage to proteins with a concomitant reduc-

tion in FRAP. The inconsistency in these findings may be attributed to both type of biomark-

ers measured as well as the use of various altitude/hypoxic training modalities (terrestrial vs

simulated) and differing hypoxic dose [12].

Intervention effects on cytokines

Our principal new finding revealed that increased antioxidant-rich food intake attenuated the

altitude-induced increases in micro-CRP, IL13 and a strong trend for IL6. The altitude-

induced increase in IL13 was 54% in the control group, while in the antioxidant-rich food

group IL13 reduced by 55%. The response pattern was similar for IL6. Both IL13 and IL6 are

important players in the cell mediated immunity. IL13 has both pro- and anti-inflammatory

properties [56]. Abnormal expression of IL13 is found in many autoimmune diseases with an

inflammatory response [56], while IL6 is released mainly by white blood cells and activates the

synthesis of acute phase proteins, like CRP [57]. IL6 is also acutely released by muscle fibers in

response to exercise and in response to oxidative stress [58] and is involved in the adaptive

response to training. However, chronically elevated IL6 and CRP levels are associated with a

wide variety of diseases [59]. The antioxidant intervention in the current study revealed a

strong trend for reduction in fasting basal IL6, but it did not alter the acute exercise-induced
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increase in IL6. This suggests that the intervention had an impact on the basal systemic inflam-

matory profile of the participants without affecting exercise-induced signaling.

We found a significant altitude-induced increase in IL7 in the whole cohort but no differ-

ence was observed between the groups. Given that IL7 is also a myokine, released in response

to exercise, we can’t exclude the possibility that some of the cytokine responses could also

reflect increase in exercise-induced signaling, rather than a response to altitude alone [60].

The attenuated effects on micro-CRP and IL6 found in the current study are in agreement

with the vast body of literature showing anti-inflammatory effects of plant-based foods in in

the general population [61, 62], as well as in athletes [25, 63]. Because IL13 is both involved in

pro-and anti-inflammatory responses the interpretation of the result is not straight-forward.

However, an attenuated IL13 and IL6 response may have particular clinical relevance for respi-

ratory health in endurance athletes, given their central role orchestrating the response to

upper respiratory tract infections and implication in asthma [64]. Intriguingly flavonoids have

previously been associated with decreased upper respiratory tract infection in healthy individ-

uals [65], although not unambiguously [66].

For the majority of the measured interleukins we did not detect any impact of the antioxi-

dant-rich foods on the altitude-induced cytokine response. The complexity of the cytokine

responses, where some have inflammatory and others anti-inflammatory properties, and the

various source of their origin (e.g. myocytes, leukocytes) may explain some of this variation

[67]. Potentially also the dose and duration of the intervention was insufficient to impact the

cytokine response [65]. Finally, the lack of group differences might also be due to the large

inter-individual variation in the biomarkers measured. However, the repeated measures design

of the current study strengthens the statistical power.

To summarize, the antioxidant intervention in the present study increased antioxidant

capacity and attenuated some of the cytokine responses to altitude training but had no detect-

able impact on the oxidative stress biomarker, 8-epi-PGF2α, which increased in both groups.

Based on our results, we speculate that the antioxidant intervention only had a marginal effect

on free radical scavenging and rather affected other modes of phytochemicals’ actions such as

inducing endogenous antioxidant defenses and curtailing the basal systemic inflammatory

state of the study participants. The long-term clinical relevance of the altered antioxidant

capacity and cytokine response to antioxidant-rich foods in response to altitude training

remains to be investigated. Ultimately, minimizing the number of missed workouts due to ill-

ness while maximizing the training response are the most relevant measures for endurance

athletes and their coaches who utilize altitude training. Thus, future studies should register ill-

ness incidence in addition to a spectrum of blood- and muscle-borne inflammatory and oxida-

tive stress indices.

Limitations

The current study is executed at moderate altitude thus the findings cannot be extrapolated to

sojourns at higher altitudes (e.g. mountaineers/climbers> 3000 m). We did not assess activity

of antioxidant enzymes, thus, we are not able to provide direct information about the possible

alterations in endogenous antioxidant defense. Furthermore, we did not assess oxidative dam-

age to proteins or DNA, limiting conclusions to lipid peroxidation. We did not assess plasma

volume changes following the VO2max/100 m swimming tests. Thus, there is a possibility

for hemoconcentration due to partial dehydration during the stress tests. However, it is

unlikely that dehydration would be significant since sweat losses during 30 min warm-up and

VO2maxramp test/100 m swimming in temperate climate (17˚C for VO2max and 27˚C for 100

m swim) are expected to be low. Most importantly, however, the interindividual variability in
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hemoconcentration in the post stress-test sample would have been similar for the antioxidant

and control group and should not have affected the group comparisons. Finally, we were not

able to obtain biopsies of these athletes due to the close proximity of the Olympic Games, thus

information about the cellular impact of antioxidant-rich foods locally in skeletal muscle is

lacking.

Conclusion and perspectives

The present study is the first to examine the impact of increased intake of antioxidant-rich

foods on the oxidative and inflammatory response to altitude training (2320 m) in elite endur-

ance athletes. We observed that more than doubling the daily antioxidant intake from natural

food sources (e.g. fruit-berry-vegetable smoothies, nuts, dark chocolate and dried fruits/ber-

ries) in elite athletes increased the antioxidant capacity but did not affect oxidative stress as

measured by 8-epi-PGF2α. Also, increased antioxidant-rich food intake attenuated the alti-

tude-induced increases in systematic inflammatory biomarkers (micro-CRP, IL13, IL6),

although it did not affect the altitude-induced inflammatory response to exercise stress-test. In

addition, since the groups had similar beneficial increases in hemoglobin mass in response to

the altitude training as previously reported [30], we suggest that increasing intake of natural

antioxidant-rich foods is a sensible addition to elite athlete’s dietary routines while training at

moderate altitude.
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