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Abstract 

 

RNA-seq has become a widely used method to study transcriptomes, and it is now possible to 

perform RNA-seq on almost any sample. Nevertheless, samples obtained from small cell 

populations are particularly challenging, as biases associated with low amounts of input RNA can 

have strong and detrimental effects on downstream analyses. Here we compare different methods 

to normalize RNA-seq data obtained from minimal input material. Using RNA from isolated 

medaka pituitary cells, we have amplified material from six samples before sequencing. 

Both synthetic and real data are used to evaluate different normalization methods in order to 

obtain a robust and reliable pipeline for analysis of RNA-seq data from samples with very limited 

input material. The analysis outlined here shows that quantile normalization outperforms other 

more commonly used normalization procedures when using amplified RNA as input, and will 

benefit researchers employing low amounts of RNA in similar experiments. 
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Introduction 

RNA-seq has become the leading tool for transcriptomics, and has advantages over microarrays 

that make it possible to discover new genes and transcripts and reveal alternative splice isoforms, 

in addition to providing information about gene expression (6; 22; 23). The number of 

sequencing reads produced is a function of the abundance of each transcript, and thus the read 

density is used to quantify gene expression (6; 17; 23). RNA-seq obtained from small cell 

populations, rare tissue samples or even single cells is becoming increasingly feasible. However, 

there is usually a need to amplify the material obtained from such samples due to very small 

amounts of RNA available for sequencing. Different amplification protocols exist (3; 26; 30; 35), 

which could conceivably affect the downstream gene expression results. In order to improve the 

reliability of RNA-seq data obtained from such amplified material, data processing methods may 

need to be optimized. 

Different features may be of importance depending on the specific research project; some 

might be important for all studies, while others only apply to certain settings. For instance, 

metrics related to accuracy and biases in gene expression measurements are of great importance 

for expression profiling projects. Samples with low input for an RNA-seq analysis may result in 

unexpected biases in the data, for instance due to differences in library complexity. If not noticed 

and left untreated, this could have substantial effects on the subsequent biological interpretation.  

Here, we investigate whether post-sequencing computational procedures could be applied 

to resolve bias associated with amplification. In every RNA-seq experiment, normalization is 

required to make the gene expression values comparable between samples (5; 25). Usually, the 

only experimental effect that is removed is the difference in sequencing depth between samples, 

although methods have been developed to remove additional, transcript-specific effects (8).  
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Using a transgenic line of the model fish medaka (Oryzias latipes) where expression of 

green fluorescent protein (Gfp) is under control of the endogenous luteinizing hormone beta (lhb) 

promoter (9), we have isolated the lhb-expressing gonadotrope cells and focused exclusively on 

the gene expression in these cells as analyzed by RNA-seq. This procedure results in very small 

amounts of cell material, necessitating pre-sequencing amplification of mRNA. In the resulting 

sequencing data, we detected biases that were conceivably the result of this amplification. In this 

study, we have attempted to reproduce these effects by data simulation, and demonstrate how 

computational normalization procedures can ameliorate or worsen the amplification bias. This 

has resulted in a comprehensive and general strategy which yields accurate and reproducible gene 

expression results starting from minimal amounts of material.  
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Materials and methods 

 

Animals  

Japanese medaka (Oryzias latipes) of the d-rR strain were used for all experiments. The lhb:Gfp 

transgenic line used in this study is homozygous for a Gfp cassette under the control of the 

endogenous medaka luteinizing hormone beta-subunit (lhb) promoter (9). Medaka were housed 

in re-circulating systems with water temperature at 27–28 °C and a light-dark cycle of L14:D10. 

Fish were fed a combination of dry feed SDS 300–400 (Special Diets Services, UK) and live 

brine shrimp (Artemia franciscana) nauplii (Argent Chemical lab, Redmond, WA, USA). All fish 

used in these experiments were synchronized at the embryo stage, such that all the fish in a 

sample were the same age. Handling and use of fish was in accordance with approved regulations 

for the care and welfare of research animals at the University of Oslo. 

 

Genetic sex determination 

Juvenile and adult female medaka were initially identified based on secondary sex characteristics 

(14), and then anesthetized in benzocaine (0.5 mg/ml) before cutting off a small piece of the 

caudal fin. DNA was extracted from the fin clip using Wizard Genomic DNA Purification Kit 

(Promega, Madison, WI, USA). All samples were analyzed by PCR using Platinum Taq 

polymerase (Invitrogen, Carlsbad, CA, USA) according to product specifications. The same 

primers were used for the autosomal gene dmrt1a and the male sex specific gene dmrt1bY (dmy): 

forward 5'−CCGGGTGCCCAAGTGCTCCCGCTG−3' and reverse 

5'−GATCGTCCCTCCACAGAGAAGAGA−3' primer (Eurofins MWG Operon, Germany), as 

has been described previously (21). The cycling parameters included an initial step at 94 °C for 2 

min, followed by 40 cycles comprising denaturation at 94 °C for 15 s, annealing at 53 °C for 15 s, 
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and extension at 72 °C for 70 s, followed by a final elongation step at 72 °C for 5 min. Female 

and male control samples were included in each run. Agarose gel electrophoresis of the PCR was 

run to evaluate the initially phenotyped female medaka. Transverse sections of the ovaries of 

approximately 5 juvenile and adult genotyped female medaka from each sampling group were 

prepared and subjected to standard hematoxylin-eosin staining to verify that the juvenile fish 

were sexually immature and adult fish were sexually mature before sampling. 

 

Dispersed pituitary cell culture 

The procedure for isolating individual cells from the pituitary of medaka was established (32) and 

optimized based on primary culture conditions for Atlantic cod (10). Genotyped female medaka 

were anaesthetized in benzocaine (0.5 mg/ml) prior to dissection. The spinal cord was quickly 

severed before the pituitary was collected under a dissecting microscope with fine forceps and 

immediately immersed in ice-cold artificial extracellular (EC) solution. The EC solution 

comprised 134 mM NaCl, 2.9 mM KCl, 2.1 mM CaCl2, 1.2 mM MgCl2, 1.8 mM glucose, 10 mM 

4–(2–hydroxyethyl)–1–piperazineethanesulfonic acid (HEPES), and 1% bovine serum albumin 

(BSA) dissolved in dH2O. The EC solution was adjusted to pH 7.75 with NaOH and osmolality 

to 280 mOsm/kg with mannitol prior to sterile filtration. Pituitaries from approximately 30 

animals were pooled for each sample, except for juvenile sample 1 that was pooled from a larger 

amount of pituitaries (for details see table 1). 

Following sampling, the pituitaries were spun down in a tabletop centrifuge and EC 

solution was removed. Before cell dispersion, a solution comprising 0.1% trypsin type II-S 

(Sigma, St. Louis, MO, USA) and 0.2% collagenase type I (Merck KGaA, Darmstadt, Germany) 

freshly prepared in ice-cold (Ca2+- and Mg2+-free) phosphate buffered saline (PBS) (Invitrogen), 

adjusted to pH 7.75 with NaOH and osmolality to 280 mOsm/kg with NaCl, was added twice to 
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wash the pituitaries. After removal of the wash solution the pituitaries were enzymatically 

digested with the trypsin/collagenase solution while gently shaken in a water bath at 26 °C for 30 

min. The trypsin/collagenase solution was replaced by 0.1% trypsin inhibitor type I-S (Sigma) in 

modified PBS, supplemented with approximately 2 µg/ml DNase I (Sigma), and incubated for 

another 20 min at 26 °C. Subsequently, the tissue pieces were mechanically dissociated in ice-

cold EC solution by gentle pipetting using a glass pipette. Cells were centrifuged at 200 g for 10 

min and the supernatant was replaced by 100 µl ice cold EC solution, wherein the samples were 

resuspended. The samples were kept on ice until sorting, about 30 min after dissociation. 

 

Fluorescence activated cell sorting of lhb-expressing gonadotropes 

Gfp-positive lhb-expressing gonadotropes of female medaka were sorted from the dissociated 

pituitary cell suspension by fluorescence activated cell sorting (FACS) on a FACS Aria Cell 

Sorter (BD Pharmingen, San Jose, CA, USA), and further analyzed with the BD FACS DiVa 

Software v.5.0.2 (BD Pharmingen). Prior to sorting the instrument was cleaned and calibrated 

with fluorescent beads to ensure that the accuracy of sorting was greater than 99%. To maintain 

the most optimal and stable conditions for the dispersed pituitary cells, FACS sorting was 

performed in EC solution (described in the previous section). To exclude cells entering apoptosis 

as a result of the cell isolation procedure, the cell suspension was incubated for 30 min with 5 µl 

allophycocyanin (APC) conjugated Annexin V (BD Pharmingen), which has the advantage of 

marking both early and late apoptotic cells. The cell solution was filtrated through a 70 µm filter 

before sorting to remove potential cell clusters. 

The pulse of forward scatter (FSC) and side scatter (SSC) were detected and used to gate 

cells such that debris and dead cells, as well as healthy doublet cells (two or more cells that stick 

together) were excluded from all samples. The cells exhibiting strong Gfp fluorescence 
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(fluorescein isothiocyanate channel, FITC) upon excitation with 488 nm laser and low APC 

(Annexin V) fluorescence upon excitation with 633 nm laser were collected in EC solution at 4 

°C. After sorting, the cells were centrifuged at 200 g for 10 min, followed by careful removal of 

the supernatant. Cells were then lysed by vortexing for 1 min in 500 µl Trizol (Invitrogen) and 

snap frozen in liquid nitrogen. 

 

RNA isolation and cDNA synthesis 

Different methods of RNA isolation were tested to obtain as much RNA as possible from the 

sorted lhb-expressing cells, including Trizol and different commercial column based protocols. 

Trizol was chosen as the method of RNA isolation as it resulted in a higher yield and similar 

RNA integrity as compared to the column based protocols.  

Total RNA was extracted from the Trizol lysed cells in line with the manufacturer’s 

guidelines, with the exception of the use of smaller volumes in all steps during Trizol isolation, as 

this was found to improve the yield. The snap freezing of the FACS sorted cells in liquid nitrogen 

prior to RNA isolation resulted in considerably higher amounts of RNA compared to direct 

isolation without including this step. The RNA concentration was measured with the Qubit RNA 

assay kit on a Qubit fluorometer (Invitrogen). RNA integrity was assessed by Agilent 2100 

Bioanalyzer on a RNA 6000 Pico chip (Agilent Technologies, Santa Clara, CA, USA) where all 

samples had a RIN > 8. RNA was DNase-treated using TURBO DNA-free (Ambion, Austin, TX, 

USA) according to product specifications and stored at –80 °C until cDNA synthesis.  

cDNA was synthesized and amplified from total RNA using the Ovation RNA-Seq 

System V2 (NuGEN Technologies, San Carlos, CA, USA), according to the manufacturer’s 

instructions. After amplification the cDNA was purified with MinElute Reaction Cleanup Kit 
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(Qiagen), and the yield was measured by NanoDrop (Thermo Fisher Scientific, Waltham, MA, 

USA). The purified cDNA was stored at –20 °C until sequencing. 

 

Illumina library preparation and sequencing 

Library preparation and sequencing was performed at the Norwegian Sequencing Centre, 

University of Oslo. The amplified cDNA produced by Ovation RNA-Seq System V2 was 

fragmented on a Bioruptor sonicator (Diagenode, Denville, NJ, USA) for 12 min on low power to 

yield a modal fragment size of approximately 300 bp before continuing with Illumina’s protocol 

for library generation. Fragmented cDNA (500 ng) was then used as input on a SPRIworks 

automated system (Beckman Coulter, Brea, CA, USA), employing 10 cycles of PCR with 

Phusion polymerase. Adapters and primers were sourced from Bioo Scientific (Austin, TX, 

USA). The RNA-seq paired-end libraries were subjected to paired end sequencing with a read 

length of 100 nucleotides on an Illumina HiSeq2000 instrument according to the manufacturer’s 

protocol. The image analysis and base calling were performed by RTA (version 1.13: 

http://support.illumina.com/sequencing/sequencing_software/real-

time_analysis_rta/downloads.ilmn), and the fastq files were generated and demultiplexed by 

CASAVA (version 1.8.2: 

http://support.illumina.com/sequencing/sequencing_software/casava.ilmn). 

 

Read alignment and quantification 

The quality of all sequencing samples was examined using FASTQC (version 0.10.1: 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 10 nucleotides were trimmed from 

the start of every read using the FASTX-toolkit (version 

0.0.13, hannonlab.cshl.edu/fastx_toolkit/download.html. Reference sequences and annotations for 

http://hannonlab.cshl.edu/fastx_toolkit/download.html
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the medaka genome (MEDAKA1, (12)) were obtained from Ensembl (release 67). This reference 

was supplemented with the sequence of the Gfp cassette, as well as the part of the fshb (follicle-

stimulating hormone beta-subunit) transcript (GenBank AB541981) missing from the assembly 

(11). The tshb (thyroid-stimulating hormone beta-subunit) gene was annotated based on its 

known transcript sequence (GenBank XM_004068796). Library insert sizes were determined 

from alignments of subsets of data to medaka cDNA sequences using Bowtie2 (version 2.0.0-

beta6). Read pairs were aligned to the medaka genome sequence using Tophat2 (version 2.0.4) 

(13), using Bowtie2 as the short read aligner at ‘very sensitive’ settings. The resulting BAM 

alignment files were inspected with SAMtools version 0.1.18 (18), Picard tools (version 1.73: 

http://picard.sourceforge.net/), and the Integrative Genomics Viewer version 2.3 (27). Secondary 

alignments, i.e. alignments that meet Tophat’s criteria but are less likely to be correct than 

simultaneously reported primary alignments, were removed from the BAM files. Global statistics 

of these alignments were gathered using the Picard tools programs CollectRnaSeqMetrics, 

EstimateLibraryComplexity, and CollectGcBiasMetrics. Fragment (read pair) alignment counts 

per transcript were determined from SAM alignment files using the Python package HTSeq-

count (version 0.5.3p9: http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html), 

using the ‘strict’ settings to exclude reads aligning ambiguously with respect to annotated gene 

structures. Counts were summarized at the level of Ensembl-annotated genes.  

As an alternative quantification procedure, we used RSEM (version 1.2.15) (16) using Bowtie2 

as the short read aligner. The reference was prepared from cDNAs predicted by Ensembl, using 

the --no-polyA option. Counts and FPKM-normalized expression were summarized at the level of 

Ensembl genes. 

The commands used for alignment and quantification are available as Supplemental Material. 
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Simulated data 

Synthetic count datasets of different complexities were generated based on the count data of the 

three adult samples. These values were scaled to fragments per 10 million, pooled, and divided 

by three. This way, all rare transcripts detected in only one of the samples are included in the 

synthetic transcriptome, albeit at very low ‘concentrations’ (all artificial concentrations can be 

interpreted as transcript molecules per volume). Of this initial sample, a series of serial dilutions 

was made by dividing by the square root of 10, resulting in 10-fold dilution every second step. 

Artificial concentrations in the most complex sample (undiluted) ranged from 0.28–133900, 

summing up to a total of 107; in the least complex sample (1000× diluted) concentrations ranged 

from 0.00028–133.9, summing up to 10000. 

Prior to simulated sequencing, these samples were amplified to a uniform total artificial 

RNA amount of 107 (i.e. no amplification was performed for the undiluted sample). Transcripts 

were amplified at rates depending on their concentration. The rates (v) were approximated by 

assuming Michaelis-Menten kinetics for the rate-limiting steps: 

 

𝑣𝑖 =
[transcript 𝑥𝑖]

[transcript 𝑥𝑖] + 𝐾𝑚
 

 

Amplification was either linear or exponential. In linear amplification, the same template 

is used iteratively to produce new strands that can themselves not act as new templates. The 

reaction rates are then dependent only on the initial concentration of each transcript. In 

exponential amplification (PCR), new templates are formed at every cycle, affecting the reaction 

rates in the next cycle. 
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Finally, amplified samples were converted to counts by sampling a specified number of 

fragments from the concentrations assuming a Poisson process. For each transcript, this yields an 

integer value from a distribution with mean and variance equal to its concentration. This adds an 

amount of sampling noise to the amplified samples that is consistent with perfect technical 

replication (20) (but much lower than is usually observed for biological replicates (5; 25; 31)). 

The effects of normalization procedures on the simulated data were quantified by taking 

the mean of the relative deviation for each gene expression value xij from the overall mean for 

that gene: 

 

deviation(𝑥𝑖𝑗) =
|𝑥𝑖𝑗 − mean(𝑥𝑖)|

mean(𝑥𝑖)
       for each gene 𝑖 and sample 𝑗  

 

overall deviation =
∑ ∑ deviation(𝑥𝑖𝑗)𝑚

𝑗=0
𝑛
𝑖=0

𝑛𝑚
        for 𝑛 genes and 𝑚 samples 

 

Data analysis 

Raw count data per gene were transformed to normalized gene expression values using scaling by 

the (estimated) library size and the annotated mean transcript length in kilobases (22). For library 

size calculation, the number of aligned fragments counted by HTSeq, as well as estimates 

(DESeq-like robust scaling factor, trimmed mean of M-values, and upper quartile) from the R 

package edgeR (version 3.2.4) (28) were used.  

Alternative normalization was performed using the R package cqn (conditional quantile 

normalization, version 1.6.0) (8), using the mean length of annotated transcripts per gene, and the 

GC% of these, as explanatory variables. In cases where quantile normalization assigned a small 
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non-zero expression value to genes without aligning reads, the expression value was reset to zero. 

Quantile normalization replaces the original expression values by a common value for each 

expression rank (4). It may therefore occur that genes with the same expression rank in multiple 

samples are assigned exactly the same normalized expression value. In order to avoid these ties, 

the expression values of genes with the same rank x in two samples were adjusted upwards or 

downwards based on original fragment alignment counts per million, to values belonging to the 

ranks x – 0.33 and x + 0.33. Expression values belonging to partial ranks were calculated by 

interpolation along a spline curve connecting all expression values and ranks. If more than two 

samples were affected, the expression values were distributed evenly along the x ± 0.33 interval. 

Differential expression between juvenile and adult samples was determined using the R 

packages edgeR and NOISeq (version 2.0.0) (33; 34) with the NOISeqBIO option of handling 

biological replicates. As an expression threshold for testing, a gene was required to have at least 

10 aligning fragments per million read pairs in at least two samples.  

All analyses on count data were performed in R (version 3.0.1) with Bioconductor 

(version 2.12). The R code used for normalization and simulated amplification is available as 

Supplemental Material. All diagnostic plots were generated using the R package ggplot2 (version 

0.9.3.1) (38). 

 

Data availability 

The data used in this study is publically available at Sequence Read Archive (SRA) at NCBI with 

the following accession numbers: SRX641220, SRX641221, SRX641222, SRX641223, 

SRX641225 and SRX641226. 
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Results 

 

Cell selection, RNA isolation and sequencing  

Specific lhb-expressing gonadotrope cells were isolated for RNA-seq utilizing a transgenic line 

of medaka (lhb:Gfp), and only female fish were included in this study. Females were selected 

based on phenotypic characteristics, and subsequently subjected to a genotypic sex verification 

assay. The presence or absence of the male sex determining gene, a DM-domain gene on the Y 

chromosome named dmrt1bY (dmy), determines the testicular or ovarian pathway of gonad 

development, respectively (21; 24). While 100% of the adult fish that were sorted as females 

based on phenotypic differences were genotyped as females, the number decreased to around 

80% for the juveniles. 

The dissection of pituitaries exhibiting Gfp fluorescence in the lhb-expressing 

gonadotropes was performed as depicted in figure 1. Fluorescence-activated cell sorting (FACS) 

was employed to isolate populations of lhb-expressing gonadotrope cells. Intact cells were 

separated from debris based on the forward light scatter (FSC), a measure of cell size (figure 2A). 

Side scatter (SSC) gauges cell granularity or intracellular complexity, and was used to separate 

single cells from doublets and clumps of cells (figure 2B). Finally, cells exhibiting high Gfp 

fluorescence and low Annexin V APC fluorescence were selected (figure 2C). Gfp fluorescence 

was very intense, possibly indicating very high levels of gfp gene expression. In adult medaka, 

17–28% of the of the total number of single pituitary cells were healthy singlet Gfp-expressing 

lhb-gonadotropes, and were thus sorted and used for further analysis. The number was 

dramatically decreased for juveniles, where 4–14% of the cells were sorted (table 1). 

The limited amount of total RNA isolated from the samples (especially from juvenile 

medaka pituitaries) was insufficient to meet Illumina’s recommendations for library preparation 
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and sequencing. We therefore decided to use the Ovation RNA-Seq System V2 as an alternative 

method for preparing cDNA libraries. The Ovation system is based on Ribo-SPIA technology, 

and provides a fast and simple method for preparing linearly amplified cDNA from total RNA. 

Single Primer Isothermal Amplification (SPIA) is a DNA amplification process that uses a 

DNA/RNA chimeric primer, DNA polymerase and RNase H in a homogeneous isothermal assay 

providing highly efficient amplification of DNA sequences (15). The amplified samples were 

sequenced at 100 nt paired end and generated between 69–91 million read pairs (see table 1). 

Analysis using FASTQC did not reveal any problems with sequencing in specific samples, 

however the first 10 nucleotides of reads displayed reduced quality in all samples, and were 

therefore not included in further analyses.  

 

Quantification and structural biases 

The long read pairs obtained in this work are suitable for RNA-seq quantification with a 

reference genome, using a splicing-aware alignment program such as Tophat (36). This approach 

yields rich information on the transcriptome composition (e.g. transcript isoforms). Spliced 

alignment of the 11–100 bp parts of the reads to the entire medaka genome resulted in alignment 

efficiencies of 67–79% for the different samples (table 2). Of the aligned bases, 15.7–19.5% 

mapped to annotated transcripts (coding sequences and untranslated regions). All samples 

exhibited a distinct coverage bias towards the 3′ ends of transcripts (table 2). A detailed analysis 

of the average coverage along the 1000 most highly expressed transcripts revealed that this effect 

is not identical for all samples, with especially adult sample 2 showing higher coverage at the 3′ 

ends of these transcripts, and less at the 5′ ends (figure 3A).  

For each sample and each annotated gene, the number of fragments (read pairs) aligning 

to that gene was counted. 17617 of 20425 annotated genes in the medaka genome had at least one 
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aligning read in at least one sample. The number of detected genes (at least one read per gene) 

varied considerably between samples, ranging from 11855 in juvenile sample 3 to 16812 in adult 

sample 1, but was generally higher in the adult samples (table 2). If a small threshold is added to 

exclude sequencing and alignment noise, the pattern remains the same (the set of genes in which 

99% of fragments aligns, table 2). The distributions of count values also vary considerably 

between samples (figure 3B), indicating the need for a computational normalization procedure to 

make samples comparable. As in every RNA-seq experiment, raw counts need to be corrected for 

the total sequencing depth (i.e. the total number of aligning fragments) (22), which may differ 

between samples (tables 1 and 2). In addition, juvenile samples 2 and 3 deviate from the common 

distribution pattern, which could be an indication of intrinsically non-comparable samples. 

In addition to spliced alignment with Tophat, we also quantified fragment counts per gene 

using RSEM, using predicted cDNAs instead of the annotated genome as a reference. Count 

patterns were very similar (Pearson correlation 0.96–0.97 for the same samples quantified using 

either method), including the deviation of juvenile samples 2 and 3 (data not shown). 

 

Amplification bias reproduction in synthetic data 

Since the deviation is limited to the samples that were generated from the lowest amounts of 

input DNA (table 1) and exhibit the lowest transcriptome complexity (table 2), we suspected that 

it could be an artifact of RNA amplification. At extremely low RNA concentrations, 

amplification has been found to be less efficient than at moderate to high concentrations (3). Such 

a bias could conceivably lead to the patterns observed in figure 3B: highly abundant transcripts 

are unaffected, but moderately to lowly expressed genes are depleted. 

In order to test this hypothesis, we generated simulated data based on the adult medaka 

samples (see methods). We used both in silico linear amplification (figure 4A,B) and exponential 
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amplification (figure 4B) to mimic the bias observed in the real samples (figure 3B). A number of 

artificial concentrations of the synthetic data were generated using serial dilutions, and the two 

methods produced very different distribution patterns of the simulated count values at different 

levels of severity (figure 4B). Both the ‘mild linear’ and ‘mild exponential’ protocols produced 

count value distributions similar to those observed for the affected juvenile medaka samples. For 

further analysis, we used a combination of ‘mild linear’ simulated samples (figure 4C) that 

include random variation in sequencing depth, and to a large degree resembles the pattern we 

observed in the real samples (figure 3B). 

 

Normalization and bias correction in synthetic data 

We subsequently investigated whether post-sequencing computational procedures – specifically, 

normalization procedures intended to make samples comparable – are still valid in the presence 

of amplification bias. The most straightforward normalization procedure scales all fragment 

counts by the exact determined sequencing depth. In addition, we evaluated several estimators by 

which to scale the counts. These approximations of the effective sequencing depth are less 

affected by the high expression of just a few genes than the actual quantified total number of 

fragments (5; 25). Subsequently, fragment counts are often divided by gene length, such that final 

quantifications reflect transcript numbers rather than transcript weight (nucleotide numbers). In 

addition to dividing by sequencing depth and transcript length, we also evaluated quantile 

normalization, which forces the count distributions for each sample towards a common averaged 

distribution (4; 8). 

The effects of the different normalization procedures on the simulated data of figure 4C 

are shown in figure 5A–F. In the distribution plots in figure 5A raw counts have been divided by 

the empirically determined number of aligning fragments per sample (in millions), as well as by 
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the transcript length (in kilobases), yielding FPKM normalized values (FPKM: fragments per 

kilobase per million mapped fragments). At high expression levels, this results in better 

alignment of the distributions than in the realistic simulated data (figure 4C). Using a robust 

estimator of the sequencing depth (in this case, the DESeq library size estimate), similarly shaped 

distributions overlap slightly worse than with FPKM, especially at the highest dilutions (figure 

5B). Finally, quantile normalization dramatically alters the distributions to yield almost perfect 

alignment at high expression values, but poor alignment at low expression (figure 5C).  

Figure 5D–F offers an alternative view of the effects of normalization on the simulated 

data, showing that some bias still remains in the data after normalization. The magnitude of this 

bias can be quantified by taking the mean absolute deviation for all samples and genes (see 

methods). Since the simulated data are intended to reflect perfect technical replicates, the 

theoretical lower limit and desired result of this measure is 0 (corresponding to horizontal straight 

lines at deviation 0 in figure 5D–F). If all detected transcripts are taken into consideration, the 

mean overall deviation is 0.21, 0.19 or 0.10 for FPKM, robust, and quantile normalization, 

respectively. If only the top 1000 genes by expression are considered, the overall deviations are 

0.02, 0.19 and 0.03, respectively, reflecting the good alignment of FPKM and quantile trend 

curves with the deviation=0 line at high expression, and the poor alignment for robust 

normalization (right sides of figure 5D–F). 

We quantified the effects of normalization for several additional combinations of samples 

(figure 6), ranging from no amplification bias at all to a scenario involving extreme exponential 

amplification bias (see figure 4B). If no bias is present, only the effects of sequencing depth need 

to be mitigated by normalization, and the residual deviation is very low for every procedure (it is 

not zero because of the Poisson sampling noise added to each sample). If moderate to severe bias 

is present, the five methods evaluated produce very different results, with FPKM generally very 
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poor at low expression levels (all genes) but surprisingly best if only the highest expressed genes 

are considered. In contrast, robust estimators (DESeq-like, trimmed mean of M-values, and upper 

quartile) perform poorly especially for the most abundant transcripts. Quantile normalization 

results in the least overall residual bias, and only slightly more bias than FPKM at high 

expression levels. 

 

Normalization and bias correction on real data 

Figure 7 illustrates the effects of the different normalization procedures on the real samples. The 

distribution plots of figure 7A demonstrates better alignment of FPKM normalized samples at 

high expression levels than we observed in the raw data (figure 3B), similar to the situation 

observed for the simulated data (figure 5A). Using a robust estimator of the sequencing depth 

results in similarly shaped distributions (figure 7B). However, the alignment of juvenile samples 

2 and 3 with the other samples is poor. As well as for the synthetic data, quantile normalization 

dramatically alters the distributions to yield perfect alignment at high expression values for the 

real samples, but no alignment at low expression (figure 7C). Two additional normalization 

procedures, scaling by the trimmed mean of M-values (TMM) and upper quartile (UQ) estimates 

of library size, yielded results very similar to robust normalization (data not shown). Figure 7D-F 

provides an alternative view of the effects of normalization, and resembles the bias pattern 

observed for the simulated data (figure 5D-F). We obtained essentially the same results when 

using the alternative (RSEM) fragment counts as input for normalization (not shown). 

The variation in expression values between FPKM and quantile normalization can largely 

be explained by the different methods of correcting for transcript length (figure 8). Using quantile 

normalization, longer genes tend to get higher expression values than using FPKM normalization, 

while this effect is reversed for shorter genes (figure 8B). This is the result of the entire 
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conditional quantile normalization procedure (8), which has been designed to remove length bias 

(as well as GC% bias) from the count data by fitting smoothing functions to the observed 

relationship between count numbers and quantifiable biases. The resulting corrected count values 

are then subjected to quantile normalization. 

 

Differential gene expression 

In order to determine which transcripts are significantly more or less abundant in either of the 

two stages (juvenile or adult), we subjected normalized counts of expressed genes to two methods 

for assessing differential expression. We evaluated the methods edgeR (a parametric method, 

which assumes a negative binomial distribution of variance for each gene) and NOISeqBIO (a 

non-parametric method, relying on an empirical model of the variance). 8501 genes above an 

expression threshold were tested for differential expression (these genes are responsible for 

approximately 99% of quantified fragments, see table 2).  

Figure 9 presents the results of the tests using the data from the three normalization 

procedures described above (FPKM, robust, and quantile). In figure 9A, the biases remaining or 

introduced after normalization are summarized for each expression level and each stage (cf. 

figure 7D-F). Figure 9B and 9C show the fraction of genes called differentially expressed (p 

<0.05) by edgeR and NOISeqBIO, respectively. In total, for FPKM, robust, and quantile 

normalized data, respectively, edgeR found 933, 1113, and 1113 genes differentially expressed 

(with a 10% Benjamini-Hochberg false discovery rate: 154, 304, and 328 genes), where 

NOISeqBIO found 497, 742, and 743 genes differentially expressed. (No further multiple testing 

correction was applied to the NOISeqBIO data, as it is not clear whether this is possible or 

necessary (7; 33).) 
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Figure 9D and 9E show how the numbers of differentially expressed genes differ and 

overlap between the different methods. The methods mostly find the same genes, with the 

exception that robust normalization finds far fewer genes that are higher in adults than in 

juveniles. Using FPKM or quantile normalization, structural biases at low expression levels 

translate directly to high amounts of apparent differential expression. Using robust scaling 

normalization (as well as using TMM or UQ scaling normalization, data not shown), biases are 

also present at medium to high expression levels. This results in a high percentage of genes 

categorized as significantly higher expressed in juveniles than in adults, with very few genes 

higher in adults. 
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Discussion 

 

In the current study, we have utilized a transgenic line of medaka where expression of Gfp is 

under control of the lhb promoter (9) to isolate pure and healthy populations of lhb-expressing 

gonadotropes for RNA-seq. In all samples, the expression levels for gfp and lhb rank firmly 

amongst the most highly expressed genes, indicating that cell selection was invariably successful 

(shown in figure 8A). The very high gfp expression is consistent with the excessive levels of 

fluorescence observed for selected cells (figure 2C). In turn, lhb also exhibits similarly high 

expression levels and demonstrates that this cell population does indeed allocate considerable 

resources to hormone production. 

The samples studied here are atypical input for an RNA-seq analysis. Both the low 

amounts of RNA and the nature of endocrine tissue (certain hormone encoding transcripts are 

assumed to be overrepresented) may result in unexpected biases in the data, which, if not noticed, 

may have substantial effects on the subsequent biological interpretation. We therefore analyzed 

the resulting data in detail, and attempted to correct any technical artifacts and biological biases 

with careful application of bioinformatics normalization procedures. These are intended to make 

expression values comparable both between samples and between genes (within samples). 

Due to the small amounts of RNA isolated from the lhb-expressing gonadotropes, a 

sensitive RNA amplification method for RNA-seq from small amounts of total RNA was utilized 

to obtain sufficient material for sequencing. This enrichment and amplification method, the 

Ovation RNA-Seq amplification system, has been shown to perform equally well or even better 

than other amplification systems (1). Although the Ovation system provides high reproducibility 

and generates relatively few ribosomal RNA reads (1; 19; 35; 37), it does still yield substantially 

larger fractions of reads of non-genic origin (approximately 60% of total aligned reads, (19; 35) 
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and table 2). This is presumably caused by the Ovation RNA-Seq protocol that does not select for 

polyadenylated RNA, and consequently the majority of the reads originate from other sources 

than mRNA. However, the ‘intergenic’ fraction of the transcriptome may also be exaggerated by 

expression from non-annotated parts of the genome. For instance, 7.0–16.1% of all aligned reads 

map to a single scaffold (scaffold2480), predominantly next to annotated mitochondrial genes. 

The effect of ‘extragenic’ read alignment is compensated for by the vast amounts of reads 

produced by Illumina sequencing (table 1).  

Observations of reduced quality encountered in the first 10 nucleotides of the reads are 

also likely to have been introduced by the Ovation RNA-seq amplification procedure and were 

removed from further analysis. Similar observations have also been reported by others that 

described the presence of Ovation RNA-Seq SPIA primer in the beginning of the reads (19). 

Examination of the average coverage along the transcripts revealed that the samples 

showed a higher coverage towards the 3′ end of the transcript (figure 3A). Other studies have also 

reported that the Ovation RNA-seq system produce a bias towards an increased coverage at the 3′ 

end, and it has been suggested that this bias could be due to the use of oligo(dT) primers in 

addition to random primers during first-strand cDNA synthesis (1; 29; 35). In an earlier pilot 

experiment with regular Illumina library preparation without amplification, we did not observe 

this effect (data not shown), suggesting that the bias is a technical artifact associated with the 

Ovation system, rather than the product of biological influences or sample handling procedures. 

In addition, the magnitude of the effect differs between samples, while no straightforward 

correlation can be observed with other sequencing or alignment statistics (tables 1 and 2), with 

the possible exception of GC nucleotide content of aligned sequences. If left uncorrected, this 

bias will lead to overestimation of the abundance of very short transcripts, and underestimation of 

the abundance of long transcripts. We have applied a procedure (R package cqn) that attempts to 
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correct for this bias by establishing an empirical relationship between annotated transcript length 

and expression level. Compared to non-corrected data, this results in higher expression levels for 

longer transcripts (figure 8B–D), although a structural bias towards lower expression remains 

(figure 8D). More importantly, however, the magnitude of the bias appears to be equalized 

between samples. Depending on downstream normalization procedures, in non-corrected data, 

the outlier sample (adult 2) receives consistently deviating expression values (figure 7). The cqn 

procedure always includes quantile normalization (8), and therefore the correction was not 

applied in combination with scaling normalization. 

A possible concern when sequencing from very small amounts of RNA is the uniqueness 

of the resulting amplified fragments. If the original RNA pool contained a small number of 

molecules relative to the number that have eventually been sequenced, this will distort expression 

values. Final library complexity may be further impaired by preferential amplification of highly 

abundant species. As a result, at low input complexity, rare transcripts (from genes with low 

expression) may be missing from the amplified library altogether. As a measure of this 

complexity, we have counted the number of genes that was detected in every sample (table 2). 

Especially juvenile samples 2 and 3 appear to be less complex than the adult samples. This is 

likely caused by the extremely low amounts of input RNA in these two samples, which also show 

an aberrant distribution of fragment counts (figure 3B). 

In order to exclude that these patterns are the result of the particular bioinformatics 

procedures used up to this point, we performed the alignment and quantification in duplicate, 

using two independent methods: alignment to a genomic reference using Tophat followed by 

counting using HTSeq, as well as alignment to a reference transcriptome and subsequent 

counting using RSEM. In both cases, we counted fragments (read pairs) rather than reads, and 

used the total fragment count as the library size during all subsequent normalization procedures. 



 

25 
 

This choice results in expression values that are robust in the presence of low-quality second 

reads. Both quantification methods yielded very similar results, demonstrating that the choice of 

quantification method did not have a major influence. 

It is not immediately clear that juvenile samples 2 and 3 can actually be compared with 

the other samples. We therefore investigated whether residual structural bias exists at the gene 

level after each normalization procedure. If samples are intrinsically comparable, it is expected 

that on average this bias is close to zero (i.e. expression of specific genes will differ little between 

replicates). The effects of the different normalization procedures on the simulated data (figure 5) 

displays a similar expression pattern to the observed pattern in the real samples (figure 7). FPKM 

normalization results in better alignment of the distributions than in the synthetic and real raw 

count data, while robust normalization has a slightly worse effect on the distributions than 

FPKM. Quantile normalization outperforms all other normalization methods both for the 

simulated and the real data. Here, the distributions are dramatically altered to yield close to 

perfect alignment at high expression values, at the expense of poor alignment at low expression 

(figure 5C and 7C). In figure 7D-F, for each sample, the local regression line illustrates the trend 

of deviation of gene expression values from the condition mean. Except at very low expression 

values, variation is not higher for juvenile samples 2 and 3, demonstrating that all juvenile 

samples are indeed bona fide biological replicates and do not reflect fundamentally different 

transcriptomic states. 

Interestingly, the scaling normalization procedures that make the explicit assumption that 

samples are comparable (robust DESeq-like, figures 7B and 7E) result in the strongest residual 

biases. TMM and UQ scaling estimates yielded results very similar to robust scaling (figure 6). 

FPKM is vulnerable to the presence of a few very highly expressed genes (5; 25), which may be 

expected in endocrine tissue (2), but it outperforms all other scaling estimates (figure 6). On the 
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real data, quantile normalization performs best at medium to high expression values, but worst at 

low expression (figures 7C and 7F). However, using simulated data and additional scenarios, 

quantile normalization often performs much better than any other procedure, with the exception 

of FPKM for high expression levels (figure 6). The resulting expression values after each 

procedure are analogous to FPKM, where an FPKM of 1–3 has been shown to very 

approximately correspond to 1 transcript per cell for specific cell types (22). 

The good performance of quantile normalization on simulated biased data can be 

explained by the nature of the amplification bias. If the bias is assumed to be the result of lower 

amplification efficiencies for rare transcript species (3), the net effect will be lower count values 

for these species, but no change in expression rank. Quantile normalization, in turn, acts on these 

ranks and assumes that the same rank belongs to the same expression level for every sample. In 

the case of amplification bias, the net result is similar to scaling by a different factor for every 

expression level, instead of by a single factor for all transcripts. 

Finally, we evaluated two fundamentally different methods of determining whether genes 

are differentially expressed between conditions (figure 9). We only tested the 8501 genes with 

expression levels above a threshold (see experimental procedures), which approximately 

translates to the set of genes in which 99% of fragments align (table 2). This threshold is still too 

liberal, as differential gene expression is strongly influenced by structural biases that emerge 

below expression levels of approximately 5–10 (figure 9). Below these levels, therefore, 

quantified gene expression should be interpreted with caution, and qualitative rather than 

quantitative (e.g. ‘detected’ instead of ‘higher than’). At higher expression levels, both 

differential expression methods find modest amounts of differential expression. edgeR appears 

less affected by the expression level, whereas NOISeq clearly detect more differential expression 

at high expression levels (figure 9C). The juvenile/adult symmetry in differential expression is 
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more even with NOISeq, as edgeR has a strong preference for either stage at different expression 

levels (figure 9B–E). Due to very limited sample availability it was not yet possible for us to 

verify any differentially expressed genes using qPCR. Care should therefore be taken when 

interpreting biological significance of the differentially expressed genes between the different 

methods. 

In summary, this study reveals that the biases associated with low amounts of input RNA 

can have a strong and detrimental effect on downstream analyses. A very common RNA-seq 

pipeline includes robust normalization and edgeR differential expression analysis, a combination 

that on our data yields improbable results (figure 9B middle panel). However, using both 

synthetic and real data we demonstrate that quantile normalization, a procedure standard for 

microarrays but not common for RNA-seq, is an effective remedy that compensates for the 

effects of large differences in sequencing library complexity. Following normalization, we found 

that differential expression testing was most optimal using NOISeq. The strategy outlined here to 

examine specific cells by RNA-seq from low input yields highly reproducible results, which is 

essential for their use in differential expression studies. These technical optimizations provide a 

solid basis for further detailed study focusing on the regulatory processes in these cells. 

Furthermore, this specific computational pipeline will be beneficial for other researchers working 

with low input material for RNA-seq.  
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Figure legends 

 

Figure 1 

Pituitary dissection from adult lhb:Gfp transgenic medaka. Fish were anaesthetized prior to 

dissection. (A) Head of medaka exposing the top of the brain after removal of skull roof. (B) The 

brain flipped over after severing the medulla oblongata, exposing the pituitary (white arrowhead). 

(C) The pituitary displaying Gfp fluorescence from the lhb-expressing gonadotropes can be 

collected using fine forceps (overlay of light- and fluorescent micrographs). Scale bars represent 

500 µm. 

 

Figure 2 

Fluorescence activated cell sorting (FACS) of individual lhb-expressing gonadotrope cells 

following enzymatic dispersion of pituitaries from adult lhb:Gfp transgenic medaka. (A) Gating 

was performed to remove dead cells and debris prior to sorting (defined as cells appearing on the 

left side of the red dotted line). Forward scatter A (area) measures cell size, side scatter A detects 

intracellular complexity. (B) Of the proportion selected as live cells, gating was further used to 

remove doublets (two or more cells sticking together, defined as cells appearing above the red 

dotted line, as measured by side scatter W (width), such that only single cells were selected. (C) 

Parameters for sorting were adjusted such that cells exhibiting strong FITC (Gfp) fluorescence 

(>700) and low APC (Annexin V) fluorescence (<200), i.e. healthy, individual, lhb-expressing 

gonadotropes, were selected for further studies (green cell population in the lower, right corner of 

the dot plot). In all panels, green dots represent the Gfp-positive lhb-expressing gonadotropes. 

Marginal gradients indicate the relative density of cells in the plot along the axes, with dark 

colors indicating more cells. 
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Figure 3 

Biases in raw count data. (A) Plots of coverage over the length of transcripts. For highly 

expressed transcripts in each sample, the relative alignment location of reads within the 

transcripts was calculated using Picard tools. This reveals a clear bias in detection efficiency 

towards the 3′ end of transcripts. The bias is more prominent in some replicates (adult sample 2, 

blue line). (B) The distribution of gene expression values in raw counts per sample demonstrates 

the need for normalization between samples. In these raw counts, the effective sequencing depth 

is the most dominant effect on overall expression values. For example, at higher count values, 

there is on average a 7-fold difference between juvenile sample 1 (red) and adult sample 1 (cyan). 

In addition, the pattern is very different in juvenile samples 2 (yellow) and 3 (green). 

 

Figure 4 

Replication of distribution bias using synthetic data. (A) In silico linear amplification and 

sequencing of samples diluted up to 1000× recapitulates the count distribution pattern observed 

for the real data (figure 3B). These samples were processed assuming a mild bias (Km = 1). (B) 

Exponential amplification with a mild bias, as well as linear amplification with a stronger bias 

(Km = 10) produced similarly shaped distributions. Exponential amplification assuming a strong 

bias (Km = 10) produces a very different distribution pattern (yellow dotted line). (C) Realistic 

counts, based on linear amplification with a mild bias, for six samples: two undiluted, two diluted 

10×, and two diluted 100×. In addition, the sequencing depth was varied randomly between 0.8–

1.2×107 fragments. 
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Figure 5 

The effect of different normalization procedures on the simulated data of figure 4C. Distribution 

of expression values using FPKM normalization (A), robust normalization (B) and quantile 

normalization (C). All procedures remove the effects of sequencing depth to some extent. Some 

bias remains, as shown in panels D–F. Here, for all samples and all genes, the deviation from the 

mean expression value of all six samples is plotted (black dots, with transparency added to reduce 

overplotting artifacts). Deviation is defined as expression in a specific dilution divided by mean 

expression in all samples. The trend of deviation versus expression level is highly dependent on 

the dilution, as shown by local regression (loess) lines for each sample. These plots indicate that 

normalization may introduce, rather than remove, sample-specific biases, resulting in reduced 

reproducibility. Normalization methods used are (D) FPKM, (E) robust DESeq-like, and (F) 

quantile.  

 

Figure 6 

Quantification of the residual deviation after normalization. Shown are data from scenarios with 

(A) six non-amplified samples; (B) two undiluted, two 10× diluted and two 100× diluted, 

amplified with a mild linear bias (similar to figure 4C and 5A–F); (C) the same but with mild 

exponential amplification; (D) three undiluted and three 100× diluted, amplified with strong 

linear bias (see figure 4B); (E) and the same but with strongly biased exponential amplification. 

All data shown are the means of 10 independent simulation runs, each with independent random 

sampling noise and sequencing depth (between 0.8–1.2×107). For each simulation scenario, the 

residual deviation in all detected genes, as well as in the top 5000 and 1000 by expression is 

given. Error bars are not shown, as standard deviations were at most 0.01 in all cases.  

 



 

39 
 

Figure 7 

The effects of normalization on juvenile and adult medaka pituitary samples. Post-normalization 

density distributions (A–C) and deviation plots (D–F) are analogous to figure 5, with the effects 

of FPKM (A, D), robust (B, E) and quantile (C, F) shown. In panels D–F, deviation is plotted 

relative to the condition mean (juvenile or adult), rather than to the overall mean. 

 

Figure 8 

The effect of transcript length on final expression values. (A) Scatter plot of gene expression 

values (mean over all six samples) obtained by either FPKM or quantile normalization. The loess 

regression line (cyan) shows good overall agreement of the methods. Orange and green dots 

represent the expression values of lhb and gfp, respectively. (B) The same scatterplot, but with 

genes colored by transcript length, suggests that the remaining differences in expression values 

between the two methods can be largely explained by differences in normalizing for length. 

Longer genes tend to receive higher expression values using conditional quantile normalization 

(cqn) than using FPKM normalization. For shorter genes, this effect is reversed. The 2.5% of 

transcripts with the most extreme lengths have been omitted from the color scale to avoid 

obscuring the effect by these generally lowly expressed genes (e.g. the 78 Kb titin (ttn) transcript, 

and genes shorter than the sequencing read length).  (C, D) Illustration of the effect of transcript 

length on expression values for the top 1000 highly expressed genes (again ignoring very short 

and long genes). Loess regression lines for each sample show that expression values for short 

transcripts (~300 bp) are on average much higher than for long genes (~3000 bp). This effect is 

larger in FPKM-normalized data (C) than in cqn/quantile-normalized data (D), and more 

prominent in FPKM-normalized adult sample 2 (with the strongest 3′–5′ count bias, see figure 

3A). 
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Figure 9 

The effect of biases on differential expression. Every normalization procedure handles sample 

biases differently, which ultimately affects differential expression. From left to right, the effect 

and results of FPKM, robust, and quantile normalization are shown. All plots share a common x-

axis (expression values). (A) Deviation plots indicate that sample-specific biases result in reduced 

reproducibility. For both conditions, the deviation trend from the mean expression value is shown 

(computed by loess local regression). Here, deviation is defined as the mean expression for a 

gene in a condition divided by its mean expression over all samples. Shaded areas indicate 95% 

confidence intervals. (B, C) Differential expression between juveniles and adults, as determined 

by edgeR (B) or NOISeq (C). Shaded areas represent the fraction on genes at a certain expression 

level called differentially expressed at p <0.05. In red, genes significantly higher expressed in 

juvenile; in cyan, genes significantly higher expressed in adults. (D, E) VENN diagrams showing 

differentially expressed genes found by egdeR (D) and NOISeq (E) for the three different 

normalization methods (FPKM, robust and quantile). Genes exhibiting higher expression in 

adults than in juveniles are upregulated (cyan), while lower expressed genes in adults than in 

juveniles are considered downregulated (red).  
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Figure 5 
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Figure 6 
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Table 1. Samples and sequencing data 

 

* Percentage sorted healthy and single Gfp-expressing cells as a fraction of the total amount of single pituitary cells  

Sample Juvenile 1 Juvenile 2 Juvenile 3 Adult 1 Adult 2 Adult 3 

Year 2011 2012 2012 2011 2012 2012 

Fish age 

(months) 
3 2 2 8–10 8–10 8–10 

Pituitaries 130 35 30 30 25 30 

Sorted cells 13 000 1000 1000 40 000 33 000 37 000 

Sorted cells of 

total (%)* 
14% 6% 4% 23% 17% 28% 

RNA (ng) 6.0 0.5 0.5 50 45 50 

Raw sequencing 

data (Gb) 
13.71 17.73 17.74 16.22 17.61 18.27 

Fragment size 

(mean ± SD) 
175 ± 45 225 ± 63 233 ± 74 172 ± 44 215 ± 63 228 ± 74 

Read pairs 68535934 88660600 88706345 81119072 88048386 91341897 
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Table 2. Alignment information 

 

Sample Juvenile 1 Juvenile 2 Juvenile 3 Adult 1 Adult 2 Adult 3 

Reads 

aligned to 

genome 

77.0% 72.0% 66.6% 79.2% 69.5% 71.5% 

Of these, 

aligned to 

coding 

regions 

14.4% 16.4% 13.8% 17.7% 14.7% 15.5% 

… aligned 

to UTRs* 1.7% 2.7% 1.9% 1.8% 2.5% 2.1% 

… aligned 

to introns 
18.4% 20.7% 19.5% 20.1% 20.8% 19.7% 

… aligned 

to 

intergenic 

regions 

65.4% 60.1% 64.8% 60.4% 62.0% 62.7% 

Read pairs 

counted 
11.6% 12.6% 9.8% 14.5% 11.4% 11.6% 

3′ / 5′ 

coverage 

bias 

3.77× 4.89× 3.92× 3.31× 6.63× 4.00× 

Median 

GC content 

(IQR)† 

45% (11%) 46% (14%) 46% (13%) 45% (11%) 43% (12%) 45% (13%) 

Detected 

genes 
14364 12421 11855 16812 15618 16176 

Genes in 

which 99% 

of 

fragments 

align 

8876 7596 7146 10144 9157 9657 

* UTR = Untranslated regions, † IQR = Interquartile range 


