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Abstract 

Radionuclides are a special group of substances posing both radiological and chemical hazards to organisms. As a 

preliminary approach to understand the combined effects of radionuclides, exposure studies were designed using 

gamma radiation (Gamma) and depleted uranium (DU) as stressors, representing a combination of radiological 

(radiation) and chemical (metal) exposure. Juvenile Atlantic salmon (Salmo salar) were exposed to 70 mGy external 

Gamma dose delivered over the first 5h of a 48 h period (14 mGy/h), 0.25 mg/L DU were exposed continuously for 

48 h and the combination of the two stressors (Combi). Water and tissue concentrations of U were determined to 

assess the exposure quality and DU bioaccumulation. Hepatic gene expression changes were determined using 

microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). 

Effects at the higher physiological levels were determined as plasma glucose (general stress) and hepatic histological 

changes. The results show that bioaccumulation of DU was observed after both single DU and the combined 

exposure. Global transcriptional analysis showed that 3122, 2303 and 3460 differentially expressed genes (DEGs) 

were significantly regulated by exposure to gamma, DU and Combi, respectively. Among these, 349 genes were 

commonly regulated by all treatments, while the majority was found to be treatment-specific. Functional analysis of 

DEGs revealed that the stressors displayed similar mode of action (MoA) across treatments such as induction of 

oxidative stress, DNA damage and disturbance of oxidative phosphorylation, but also stressor-specific mechanisms 

such as cellular stress and injury, metabolic disorder, programmed cell death, immune response. No changes in 

plasma glucose level as an indicator of general stress and hepatic histological changes were observed. Although no 

direct linkage was successfully established between molecular responses and adverse effects at the organism level, 

the study has enhanced the understanding of the MoA of single radionuclides and mixtures of these. 
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1 Introduction 

Concern for combined effects has been raised in the recent decade due to exposure to multiple stressors in the 

aquatic environment (Holmstrup, 2010; Laskowski, 2010; Vanhoudt et al., 2012). Multiple stressors refer to co-

exposure to fundamentally different stressors that influence the performance of an organism simultaneously, 

including abiotic stressors such as organic and inorganic chemicals, radiation, salinity, temperature, pH, and biotic 

stressors such as bacterial infection and food web relationships. Radionuclides may produce toxic effects in exposed 

organisms due to their chemical toxicity (e.g. heavy metal) and irradiation effects (e.g. alpha, beta, gamma radiation, 

x-ray). Thus, organisms exposed to a radionuclide are eventually facing a multiple stressor exposure situation, and 

effects associated with chemical and radiological toxicity are difficult to differentiate. Anthropogenically produced  

radionuclides such as cobalt (60Co) are released to the environment from the  nuclear weapon and fuel cycles, while 

naturally occurring radionuclides (NORM) such as uranium are enriched in minerals such as alum shales (Salbu, 

2009). Global, regional and local deposition of radionuclides may potentially affect various environmental 

compartments, whereof the aquatic environmental is essential for the transport of radioactive substances. Fish are in 

this respect key aquatic species, not only because of their position in the food web structure and ecosystem functions, 

but also due to their high value as food sources for human. Therefore, fish have been commonly used as vertebrate 

models in various multiple stressor studies with radionuclides (Mothersill et al., 2007; Salbu et al., 2008; Olsvik et 

al., 2010; Vanhoudt et al., 2012; Bourrachot et al., 2014; Bucher et al., 2014; Gagnaire et al., 2014; Augustine et al., 

2015; Lange et al., 2015). 

Being a key NORM element, natural U includes the isotopes 234U, 235U and 238U. To obtain high proportion of 

fissile 235U for civil use in nuclear power reactors and military use in nuclear weapons, natural U undergoes an 

enrichment process. The remaining material after enrichment is depleted of 234U and 235U and is therefore referred to 

as depleted uranium (DU). The main isotope in DU is 238U, a weak alpha emitter, which has much lower specific 

activity (approximately 1.47 × 104 Bq/g) and longer half-life (4.5×109 years) than the other U isotopes, and the 

chemical toxicity of DU is thus believed to be more important than its radiotoxicity (Sheppard et al., 2005). 

Depleted U is widely used in many applications, such as military use of armor penetrators, and civil use of 

counterweights for airplane construction and irradiation shielding. Gamma radiation, on the other hand, is ionizing 

radiation emitted from decay of high energy states of unstable nuclei such as 60Co. The high energy gamma radiation 

from 60Co (1173.23 and 1332.49 keV) is long ranged and widely used in many different fields such as sensors in the 

civil sector, medical treatment for cancer (e.g. gamma-knife), or used as a clean gamma radiation source in 

experimental irradiation facilities. In areas with extensive U mining, contamination by nuclear detonations or 

accidents and high NORM emission mixtures of radionuclides representing both internal and external exposure of 

ionizing radiation and as well as a number of non-radioactive metals toxic elements may pose an hazard to organism 

in the recipient (Lind et al., 2013). 

The biological effects of DU and gamma radiation have been widely documented for mammalian species. It is 

well-known that both DU and gamma radiation induce cellular free radicals, such as reactive oxygen species (ROS), 

through Haber-Weiss and Fenton reactions (DU) or by excitation and ionization of water molecules (gamma 

radiation). The excessive formation of ROS may subsequently lead to cellular oxidative stress as a primary mode of 
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action (MoA) of these stressors, which may result in a number of cellular responses, such as DNA damage, 

apoptosis, inflammation and disturbance of cell signaling (Pourova et al., 2010). If present in the environment as 

bioavailable metal species, U may accumulate and distribute to tissues such liver and bone in aquatic species such as 

fish. Although DU excrete in a similar way as many other metals, this bioactive metal may affect several cellular 

targets and cause biological effects such as DNA damage and nuclear receptor signaling (Pereira et al., 2012; Song 

et al., 2012; Lerebours et al., 2013), interference with lipids and membrane-associated proteins and modulation of 

the functions of enzymes/proteins in the mitochondria (Lerebours et al., 2009; Lourenco et al., 2010; Song et al., 

2012). In contrast to chemical stressors, radiation interacts with targets throughout the body and thereby exerting 

their toxicity directly (e.g. DNA breaks) or indirectly (via free H+ and OH- radicals) (Salbu et al., 2008). Therefore, 

the potential interactions between radiation and chemical stressors may be rather complex. Effects of gamma 

radiation has been amply demonstrated including induction of oxidative stress, DNA damage, apoptosis (Olsvik et 

al., 2010; Heier et al., 2013), perturbation of the mitochondrial respiratory chain (O'Dowd et al., 2009) and genomic 

instability (O'Dowd et al., 2006; Mothersill et al., 2007; Salbu et al., 2008).  

To understand the combined toxicity of environmental stressors, substantial knowledge on their toxicological 

mechanisms is usually required. Vanhoudt and co-workers recently reviewed available multiple stressor studies, and 

pointed out there is an urgent need to improve systematic and mechanistic knowledge and quantitative assessments 

of multiple stressor effects and possible interactions (Vanhoudt et al., 2012). By understanding the MoA, which 

defines the critical molecular events leading to an adverse outcome, appropriate toxicological endpoints can be 

selected for use in the prediction of multiple-stressor effect. Toxicogenomics (OMICS) such as that provided by 

transcriptomics (DNA microarray, RNA sequencing), proteomics and metabolomics may assist the identification of 

potential MoA of a stressor, low-exposure-level stress responses and potential interactions between stressors in a 

genome-wide scale (Finne et al., 2007; Spurgeon et al., 2010; Altenburger et al., 2012).  

As an initial approach to decipher the multiple stressor effect of radionuclides in aquatic vertebrates, the present 

study aimed to assess the hepatic molecular (global transcriptomics) and adverse effects (plasma glucose stress 

response and hepatic histopathology) in Atlantic salmon (Salmo salar) exposed to gamma radiation and DU singly 

and in combination. The objectives of this study were to: 1) characterize the short-term stress responses in fish 

exposed to gamma radiation and DU to characterize the MoAs of these stressors; 2) to assess how these two 

stressors act in combination to cause combined toxicity. 

 

 

2 Materials and methods 

2.1 Exposure and fish sampling 

The experimental conditions and use of fish in this study strictly followed the Norwegian Welfare Act and research 

animal legislation by the local representative of the Norwegian Animal Research Authority (NARA ID: 3026). 

Briefly, Atlantic salmon juveniles (parr) were maintained at the Fish Laboratory of Norwegian University of Life 

Sciences (NMBU, Ås, Norway) and transported to the FIGARO gamma radiation experimental facility (NMBU, Ås, 

Norway). The test fish was acclimated to the experimental water (lake water from Maridalsvannet, Oslo, Norway) 
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conditions 7 days prior to the exposure studies. Feeding was stopped two days prior to the start of the exposure study 

Feeding was stopped two days prior to the start of the exposure study in order to avoid interaction of food on U 

speciation and minimize the influence of feces on U speciation.  

Three exposure experiments were run simultaneously: 1) exposure to a single total dose of 70 mGy (12.2-15.8 

mGy/h) gamma radiation (1173.23 and 1332.49 keV, representing two gamma ray lines emitted in each decay) 

delivered over the first 5 h of a 48 h experimental period; 2) exposure to a single nominal concentration of 0.25 

mg/L DU (UO2(CH3COO)2·2H2O, purity ≥ 98.0 %, specific activity 1.459×104  Bq/g, 57.3 % of the radioactivity 

from natural U, Fluka, Sigma-Aldrich, Buchs, Switzerland) continuously for 48 h; 3) exposure to a combination of  

gamma radiation and DU using the same exposure regimes as the single stressor studies. The chosen gamma dose 

and U concentration were both environmentally relevant (Simon et al., 2010; Salbu, 2011; Lind et al., 2013) and 

previously demonstrated to cause transcriptional effects in Atlantic salmon (Olsvik et al., 2010; Song et al., 2012; 

Heier et al., 2013; Song et al., 2014b), and thus considered optimal for studying the interaction of the two stressors. 

A 60Co gamma source (63 GBq) was used for external irradiation of fish, and the field dosimetry (air kerma rates 

measured with an ionization chamber) was traceable to the Norwegian Secondary Standard Dosimetry Laboratory 

(Norwegian Radiation Protection Authority, NRPA, Oslo, Norway). The geometric center of the exposure boxes 

(W5 x L40 x H20 cm) was used as reference point and assumed to represent the best estimate of the dose. The 

maximum hypothetical variation in dose to fish was estimated to be ±13 % by calculating the increased dose rate in 

the unlikely case that fish would stay in the box area closest to the source. Controls (no radiation, with or without 

DU) were placed in the same room, outside the beam cone and shielded by lead. For the controls, the external 

(background) dose rate to the fish was 0.2 µGy/h (Thermo Eberline FHT6020). Six fish in each treatment group 

were exposed in dark exposure chambers (30 L, fish loading approx. 3 g/L) in a closed flow-through system 

supplied with aerated lake water (Maridalsvannet, Norway). The dark exposure chambers were used to minimize 

additional stress to fish. The general water quality was monitored throughout the exposure, including logging of pH, 

temperature and conductivity. The sizes of the test fish (length 11.9 ± 0.3 cm, weight 14.95 ± 1.3 g, mean ± SD) 

were similar across groups. 

After 48 h, fish were immediately sacrificed by cephalic concussion. Blood samples were collected for 

determination of plasma glucose level using the i-STAT® portable analyzer (Abbott Point of Care Inc., Princeton, 

NJ, USA) with EC8+ cassette (Abbot, East Windsor, USA), according to the manufacturer’s instructions. Fish were 

then dissected according to the EMERGE protocol (Rosseland et al., 2001) to collect tissue samples for chemical 

analysis, gene expression analysis (snap-frozen in liquid nitrogen and stored at -80 ºC) and histopathological 

analysis (tissue submerged in 10 mL of 10% phosphate buffered formalin, pH = 7, and stored at 4 ºC). 

 

2.2 Chemical analysis 

The chemical analysis of variables in the control and DU containing test waters has been described previously (Song 

et al., 2012). Briefly, water samples were collected for measuring the concentrations of major cations (Ca, Mg, Na, 

K and Al) using inductively coupled plasma optical emission spectrometry (ICP-OES, Perkin Elmer, Optima 5300 
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DV), and anions (NO3-, SO4
2- and Cl-) using Iachat IC5000 ion chromatograph. Total organic carbon (TOC) was 

determined using the total organic analyzer (Shimadzu TOC cpn, Kyoto, Japan). 

Inductively coupled plasma mass spectrometry (ICP-MS, Perkin Elmer Sciex ELAN 6000) was used to measure 

the concentrations of U in the exposure water and salmon liver. For measurement of U in the liver, samples were 

weighed and mixed with HNO3, milliQ water and an internal standard. Samples were digested using an ultraclave 

(Milestone, Leutkirch, Germany) and diluted (10% ultrapure HNO3 solution) prior to measurement of U 

concentrations using ICP-MS. The limits of detection (LD) for ICP-MS were 0.0056 µg/L and 0.0005 µg/g, for 

water and salmon liver samples, respectively. 

 

2.3 Global transcriptomic analysis 

Transcriptional changes were determined by a custom oligonucleotide microarray based on the consensus 

contingous (contig) mRNA and expressed sequence tags (EST) sequences of Atlantic salmon and rainbow trout 

(Oncorhynchus mykiss). Over 44,000 (44 k) unique probes were designed in Earray (Agilent Technologies, Santa 

Clara, USA) and printed on a 60 k oligoarray (Agilent Technologies, Santa Clara, CA, USA). For transcriptional 

analysis, total RNA was isolated from approximately 20-30 mg liver using RNeasy Plus Mini Kit (Qiagen, Hilden, 

Germany), as described previously (Song et al., 2012). The microarray analysis was performed according to 

Agilent’s standard protocol “One-Color Microarray-Based Gene Expression Analysis, version 6.5”, with small 

modifications (Song et al., 2014a). 

Raw microarray data (signal intensity) was corrected for background signal, flagged for low quality and missing 

features and log2 transformed for normalization (quantiles) using GeneSpring GX v11.0 (Agilent Technologies). 

Statistical analysis of the normalized microarray data was performed using the Bioconductor 

(http://www.bioconductor.org/) package LIMMA (Smyth, 2005) in the R statistical environment v3.1.2 

(http://www.r-project.org/). Different contrasts were defined over the linear model in the statistical tests to identify 

transcriptional effects due to single and multiple stressor exposures, as described previously (De Coninck et al., 

2014). No multiple testing correction was performed in order to avoid any loss of relevant data, as previously 

suggested (Song et al., 2014b). The raw and normalized microarray data has been deposited in Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo, GEO accession number: GSE74012). 

To understand the biological significance of the DEGs, functional enrichment analysis based on Gene Ontology 

(GO) was performed first using a hypergeometric test followed by a Benjamini–Hochberg (BH) false discovery rate 

(FDR) correction in Cytoscape v2.8 (Smoot et al., 2011) application Bingo v2.4 (Maere et al., 2005). Relationships 

between enriched GOs and related parent terms at higher functional levels were built using directed acyclic graph 

(DAG) and visualized in Cytoscape. For a more in-depth characterization of potential MoAs, salmon DEGs were 

mapped to their mammalian orthologs using a modified Inparanoid algorithm (Ostlund et al., 2010) as previously 

described (Song et al., 2014a) prior to pathway analysis using Ingenuity Pathway Analysis (IPA, 

Ingenuity®Systems, www.ingenuity.com). The enrichment of toxicity and canonical pathways were determined to 

get insight into the hepatic toxicological responses using curated mammalian models as proxies for fish. Venn 

http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/geo
http://www.ingenuity.com/
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diagram analysis was performed using Venny (http://bioinfogp.cnb.csic.es/tools/venny/). A probability (p) value of 

0.05 was applied to all statistical tests. 

 

2.4 qPCR analysis 

The quantitative real-time reverse transcription polymerase chain reaction (qPCR) was used to verify the 

microarray results. Briefly, complementary DNA (cDNA) was made from 2 μg total RNA by reverse transcription 

using a High Capacity cDNA Archive Kit (Applied Biosystems, Foster City, California, USA) according to the 

manufacturer’s instructions. The diluted cDNA template (5 ng), non-template control (NTC, i.e. nuclease-free water) 

and no-reverse-transcriptase control was then amplified in a 20 μL reaction containing 400 nM forward/reverse 

primers (Invitrogen™,Carlsbad, California, USA) and PerfeCTa® SYBR® Green FastMix® (Quanta 

BioSciencesTM, Gaithersburg, MD, USA) using a BioRad  CFX 384 platform (Bio-Rad Laboratories, Hercules, CA, 

USA). An additional step of melting curve analysis was included to ensure the quality of amplification (i.e. valid 

amplification when amplicon had a unique melting peak). Standard curves were run with 50, 10, 2 and 0.4 ng of 

cDNA. Relative expressions were then determined from the standard curves based on threshold cycle (Cq) value by 

CFX Manager v3.0 (Bio-Rad) as described previously (Song et al., 2014a). Target gene expression was normalized 

to the geometric mean two reference genes, 18s ribosomal RNA (18s) and elongation factor 1 alpha b (ef1ab), as 

they were stably expressed cross treatments. All primer sequences used in the qPCR analysis (Table 1) were 

designed using Primer3 v0.4 (Rozen and Skaletsky, 2000) on basis of the contig sequences used for designing the 

microarray probes and putative Salmo salar mRNA sequences in GenBank (Benson et al., 2005). 

 

Table 1. Primer sequences for real-time qPCR. Full descriptions of gene symbols can be found in Appendices (Table A3). 

Gene symbol GenBank accession Forward (5'-3') Reverse (5'-3') 

18s AJ427629 TGTGCCGCTAGAGGTGAAATT GCAAATGCTTTCGCTTTCG 

Ef1ab AF321836 TGCCCCTCCAGGATGTCTAC CACGGCCCACAGGTACTG 

Cox6b1 BT125515.1 GACAATGCTTGGCACATACG TGTCAGCAGATGCAGAGTCC 

Atp1a1 EG857701 ATAGCTGCACACCCTGGAAT CTGGACACGCATAACACAGC 

Myc BT059112.1 GGACTCAATGCCAAACCACT CGTGTCTATGTCCGAGAGCA 

Prkcd BT058908.1 GCTGGCAGAGTTGAAAGGTC ACAGGTGTTCCTTGGACTGG 

Camk2da BT072752.1 GGATCTGTCAACGGTCCACT TGACACCGTCAGCTTTCTTG 

Xrcc5 XM_005800723.1 GGAGGATGAAGGAAACGTGA TCGATCAACAAACCACCTGA 

 

For qPCR verification, target DEGs representative of key regulators in toxicologically relevant canonical 

pathways were selected. Briefly, raw data was normalized to the geometric mean of the reference gene expression 

and checked for outlier using the ROUT test (Graphpad Software, Inc., San Diego, CA, USA). Differential gene 

expression was determined using one-way ANOVA followed by a Tukey HSD posthoc test. Data that failed to fulfil 

the assumptions of normal distribution and equal variance were analyzed using a Kruskal-Wallis non-parametric test 

followed by a Dunn’s posthoc test. A probability (p) value of 0.05 was applied to all statistical tests. Statistical 

analysis was performed using Graphpad Prism v5.0 (Graphpad Software). 

 

http://bioinfogp.cnb.csic.es/tools/venny/
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2.5 Histopathological analysis 

Liver and gill histopathological analysis was also performed to examine potential changes at the light microscopic 

level. The collected tissue samples for histopathological analysis were submerged in 10 % phosphate buffered 

formalin and subsequently embedded in paraffin wax according to standard procedures. Sections were cut at 3-4 μm 

and stained with hematoxylin and eosin. Tissue sections were also stained with Periodic Acid Schiff (PAS) to 

visualize presence of glycogen (including amylase digestion as control) (Kiernan, 1999). Sections were examined 

using a Leica microscope equipped with a Leica DFC 420 digital camera (Leica Microsystems GmbH, Wetzlar, 

Germany). 

 

 

 

3 Results 

3.1 Quality control and exposure verification 

The exposure media had average temperature of 9.7 ± 0.2 ºC (mean ± SD), conductivity of 3.4 mS/m and pH of 7.3 

throughout the experiment. No significant changes of water TOC, ion and anion concentrations were observed 

throughout the study (Table 2). The measured concentrations of U in the media were 0.2 mg U/L (DU and Combi), 

and 0.41 μg U/L (Gamma and Control). The liver concentrations of U in Atlantic salmon after 48 h exposure were 

5.5 ± 2.3 ng U/g w.w. (mean ± SD, n=6) and 5.8 ± 3.0 ng U/g w.w. in DU and Combi, respectively. Less than 0.5 

ng/g ww U was found in the control and Gamma exposed fish. No mortality or visible morphological change was 

observed in test fish after the exposure. After 48 h, the blood glucose level was found to be slightly higher in 

Gamma (7.4 ± 5.8 mM, mean ± SD) and Combi (6.7 ± 4.2 mM) compared to DU (4.1 ± 0.9 mM) and Control (4.5 ± 

1.6 mM). 

 

Table 2. Uranium concentrations, total organic carbon (TOC), major cations and anions in the test media after 48 exposure. Gamma: gamma 
radiation; DU: depleted uranium; Combi: Gamma+DU. 

Treatment 

group 

U concentration 

(mg U/L) 

TOC 

(mg/l) 
Cl- (mg/l) NO3- (mg/l) SO4

2- (mg/l) Na (mg/l) Mg (mg/l) Al (µg/l) K (mg/l) Ca (mg/l) 

Control 0.00041 4.98 1.94 0.16 2.60 1.77 0.59 95 0.83 3.12 

Gamma 0.00041 5.08 1.67 0.16 2.71 1.77 0.59 96 0.78 3.09 

DU 0.2 5.20 1.76 0.15 2.68 1.77 0.60 101 0.78 3.27 

Combi 0.2 5.21 1.69 0.15 2.69 1.74 0.59 101 0.74 3.08 

 

3.2 Global transcriptional response 

The microarray analysis identified a total of 3122 (1273 up-, 1849 down-regulated), 2303 (1004 up-, 1299 down-) 

and 3460 (1484 up-, 1976 down-) genes being differentially expressed in salmon liver after exposure to Gamma, DU 

and Combi, respectively (Figure 1). Among these DEGs, the majority was found to be treatment-specific by Venn 

diagram analysis, whereas 349 were identified as commonly regulated by all treatments. A higher number of DEGs 

were found to be commonly regulated by both Gamma and Combi (814) than that between DU and Combi (286). 

The complete DEG list can be found in Appendices (Table A1). 
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  Gene Ontology-based functional enrichment analysis showed that 30 (Gamma) and 32 (Combi) GO functions were 

overrepresented after exposure, whereas no significant enrichment of GO was found for DU. Overrepresented GOs 

were linked to a range of biological functions, such as metabolic processes, oxidoreductase activity and membrane 

functions (Figure 1). The complete list of GO terms can be found in Appendices (Table A2). 

 

Figure 1. Venn diagram analysis of differentially expressed genes (DEGs) and associated overrepresented Gene Ontology (GO) functions 

(numbers in brackets) that were regulated in the liver of Atlantic salmon (Salmo salar) due to the effects of 70 mGy gamma radiation (Gamma, 5 

h exposure), 0.25 mg/L depleted uranium (DU, 48 h exposure) and their combination (Combi) after short-term exposure. BP (solid circle): 

biological process; MF (open square): molecular function; CC (solid square): cellular component. The number of individual GOs for each 

category has been indicated for each term. 

 

Ortholog mapping resulted in 59.4 % (Gamma), 56.9 % (DU) and 59.5 % (Combi) of Atlantic salmon DEGs being 

successfully mapped to mammalian orthologs and resulting mammalian orthologs used in Ingenuity Pathway 

Analysis (full list in Appendices, Table A3). The toxicity pathway analysis showed that 28 (Gamma), 19 (DU) and 

31 (Combi) pathways were affected. Ten pathways were commonly affected by all treatments, while a considerable 

number of treatment-specific pathways were also identified (Figure 2-A). A higher number of toxicity pathways 

were found to be commonly affected by Gamma and Combi than that between DU and Combi. The complete list of 

toxicity pathways can be found in Appendices (Table A4). 
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Figure 2. Venn diagram analysis of toxicity pathways (A), canonical pathways (B) and the main (apical) canonical pathway categories (C) that 

were affected by 70 mGy gamma radiation (Gamma, 5 h exposure), 0.25 mg/L depleted uranium (DU, 48 h exposure) and their combination 

(Combi) in the liver of Atlantic salmon (Salmo salar). 

 

In addition to toxicity pathway analysis, the enrichment of well-curated canonical pathways was also determined in 

order to get more insight into the potential toxic mechanisms of the stressors. Differentially expressed genes 

involved in 112, 93 and 102 canonical pathways were found to be affected by Gamma, DU and Combi, respectively. 

Among these, 41 were found to be commonly regulated by both single and the combination of test stressors (Figure 

2-B). A higher number of canonical pathways were found to be commonly affected by both Gamma and Combi than 

that between DU and Combi. Thirty-one (Gamma-specific), 21 (DU-specific) and 20 (common between Gamma and 

DU) pathways were only affected by the single stressors (i.e. Gamma or DU), while 31 were uniquely affected in 
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fish exposed to the combination of the two stressors. Grouping the pathways into higher functional categories to 

obtain an overall distribution of top pathway functions (Figure 2-C). A few functional categories revealed that 

immune response, intracellular and second messenger signaling and cell growth proliferation and development were 

affected by the stressors. Functional categories such as primary metabolic processes (degradation, utilization and 

assimilation), generation of precursor metabolites and energy and sugar derivatives biosynthesis were found to be 

stressor-specific,. The complete list of canonical pathways can be found in Appendices (Table A5). 

 

3.3 qPCR verification 

Genes for qPCR verification were selected on the basis of their representativeness of major pathways being 

affected by the stressors, including mitochondrial electron transport chain (cytochrome c oxidase subunit VIb 

polypeptide 1 (cox6b1), Na+/K+ ATPase alpha 1 (atp1a1)), DNA repair (X-ray repair complementing defective 

repair in Chinese hamster cells 5 (xrcc5)), calcium signaling (calcium/calmodulin-dependent protein kinase II delta 

(camk2da)) and apoptosis (v-myc avian myelocytomatosis viral oncogene (myc) and protein kinase C delta (prkcd)). 

Generally, the expression of most target genes tested using microarrays had good accordance (i.e. direction of 

regulation and magnitude of regulation) with that determined using qPCR (Figure 3), except for camk2da, which 

displayed higher fold changes by microarrays than that measured by qPCR. 

 

 

Figure 3. Expression of genes that were regulated by 70 mGy gamma radiation (Gamma), 0.25 mg/L depleted uranium (DU) and their 

combination (Combi) after short-term exposure in Atlantic salmon (Salmo salar) measured by microarray (blue, N=4) and real-time qPCR 

(yellow, N=4-6). Letter a: no significant difference from control; b: significantly different from control; c: significantly different from Gamma; d: 

significantly different from DU. 

 

3.4 Histological effect 
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No adverse histological changes were observed in the liver following various treatments. Moderate vacuolization of 

the parenchymal liver tissue was considered to represent moderate glycogen storage (PAS positive, not shown) 

digested by amylase (Appendices, Figure A1). The morphology of the gills was not different in the treated groups 

compared to the controls and no specific pathological changes were observed in any of the groups (Appendices, 

Figure A1). 

 

 

4. Discussion 

The present work was designed to investigate effects induced in Atlantic salmon exposed to a combination of 

sublethal dose/concentration of gamma radiation and DU, representing radiation effects and metal toxicity of a 

radionuclide. The exposure regime was chosen based on the previous findings (Olsvik et al., 2010; Heier et al., 2013) 

by the current research group that Atlantic salmon exposed to high dose rate (12.2-15.8 mGy/h) for a short period 

had similar pattern of transcriptional regulation compared to 48h uranium exposure (Song et al., 2012; Song et al., 

2014a). Toxic mechanism-focused analysis was used to evaluate the combined toxicity of Gamma and DU on global 

gene expression. The test organism used in this study, Atlantic salmon, is known to be one of the most sensitive fish 

species which has great values not only for the aquatic ecosystem, but also for human as important commercial fish 

in Northern Europe. Hypothetical accidents may indeed cause exposure of juvenile salmon to a range of 

radionuclides including gamma emitters and mg/L levels of U (runoff from NORM tailings) has been reported in 

freshwater systems in Norway (Popic et al., 2011). 

The exposure experiment was performed in a highly controlled manner that caused no significant differences in 

general exposure conditions or water variables. Chemical analysis showed a clear increase in liver concentration of 

DU in salmon liver after single DU and Combi exposure. It should be noted that trace amount of DU was also 

detected in both Control and Gamma groups, due to the low natural background DU concentrations in the lake water 

(Maridalsvannet, Oslo, Norway) which was used to rear the test fish prior to the exposures (Song et al., 2012). The 

lack of differences between the two exposure groups (DU and Combi) indicated that the current exposure design 

was capable of maintaining stable exposure conditions over time and any differences observed between treatment 

groups were in fact related to the treatment effects. The bioconcentration factor (BCF) of U for liver (0.022 ± 0.009 

L/kg) in this study was higher compared to the BCF (0.013 ± 0.007 L/kg) obtained by the same research group in a 

previous study, in which Atlantic salmon were also exposed to 0.25 mg/L DU for 48 h (Song et al., 2012; Song et al., 

2014a). The difference in U bioaccumulation between the two exposure studies was likely due to the differences in 

U speciation, which is normally influenced by water quality and U concentrations and may affect the uptake of U. 

The exposure variables in the present study (i.e. actual U concentration 0.20 mg/L, pH 7.3, temperature 9.7 ± 0.2 °C, 

TOC, 5.1 ± 0.1 mg/L) were slightly different from the previous studies (i.e. actual U concentration 0.26 mg/L, pH 

7.1-7.3, temperature 4.4 ± 0.2°C, TOC 4.6 ± 0.6 mg/L) by the same research group. Nevertheless, the BCFs in the 

present study were within the range of BCFs reported for U (0.001 to 149 L/kg) elsewhere (Sheppard et al., 2005; 

Goulet, 2011). The large differences in reported BCFs illustrate that it is essential to link toxic effects to both water 

and tissue concentrations of U to ensure comparability between studies. The bioaccumulation of DU in fish tissues 
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have been previously reported by a number of studies (Pyle et al., 2001; Barillet et al., 2007; Lerebours et al., 2009; 

Lerebours et al., 2010; Barillet et al., 2011; Kraemer and Evans, 2012; Lerebours et al., 2013). However, it appears 

that the current study is the first to report hepatic bioaccumulation of U in teleost fish. In the present study, fish were 

exposed to a sublethal dose of gamma radiation, DU and their combination. The test concentration (0.25 mg U/L) 

used in DU and combined exposure was within the range of the environmental U concentration of 0.02 μg/L to 3 

mg/L (Salbu et al., 2013) and the reported median lethal concentration (LC50, 96 h) of approximately 3-6 mg/L in 

teleost fish (Sheppard et al., 2005). The reported median lethal dose (LD50) of gamma radiation in fish is 

approximately 11-56 Gy after 30 days exposure and 9-23 Gy after 40-50 days exposure (UNSCEAR, 1996), which 

were higher than the total dose (70 mGy) used in the present study. As a result, the exposures performed for both 

stressors were considered low and clearly sublethal to salmon. 

In terms of assessing the combined toxicity at the gene level, microarray analysis was performed. Treatment-

related DEGs were used to characterize and compare major MoAs of the single stressors with that obtained for the 

combination of the two. Comparative analysis of biological functions associated with DEGs showed that Gamma 

and DU may have a few common cellular targets, including water molecules, macromolecules (e.g. DNA and 

protein) and the enzymes in the mitochondria. Gamma and DU may induce ROS by interacting with water 

molecules to produce free radicals and subsequently induce oxidative stress. This primary MoA has been widely 

recognized for ionizing radiation and metals, and is well-documented in a number of fish studies (Barillet et al., 

2007; Lerebours et al., 2009; O'Dowd et al., 2009; Olsvik et al., 2010; Song et al., 2012; Heier et al., 2013; Song et 

al., 2014a; Song et al., 2014b). Based on the current study, both Gamma, DU and their combination caused cellular 

responses indicative of oxidative stress in the salmon livers. This was deduced from the enrichment of the toxicity 

pathway related to oxidative stress after single Gamma and DU exposure (see (Song et al., 2014a; Song et al., 2014b) 

for details), and specifically the enrichment of DEGs in the nuclear factor erythroid 2-like 2 (nrf2)-mediated 

oxidative stress response pathway after exposure to Gamma and Combi. The nrf2-mediated oxidative stress response 

is usually activated by ionizing radiation in the post-exposure period (McDonald et al., 2010) as an adaptive 

response  to the differential regulation of the antioxidant genes such as catalase (CAT), peroxiredoxin-1(prdx1) and 

thioredoxin (txn) (Crawford and Davies, 1994). Moreover, GO functional analysis also showed overrepresentation 

of biological processes such as ROS scavenging after exposure to Combi, but not in the single gamma or DU 

treatment, supporting the proposal that exposure to the two stressors caused oxidative stress. When focusing on the 

supporting DEGs in these pathways, different patterns of transcriptional response were found between treatments. It 

seems that Combi had more similar oxidative stress response to Gamma than to DU,  as similar pattern of gene 

expression in the nrf2-mediated transcriptional regulation pathway was observed in Gamma and DU. This applies in 

particular to the up-regulation of ATP-binding cassette sub-family c member 2 (abcc2), heat shock protein 90kDa 

beta 1 (hsp90b1) and stress-induced-phosphoprotein 1 (stip1), and down-regulation of glutathione s-transferase theta 

1 (gstt1) and glutathione s-transferase kappa 1 (gstk1) that were in agreement with proposed MoA of these stressors 

in the previous studies (Morel and Barouki, 1999; O'Dowd et al., 2009; Olsvik et al., 2010; Song et al., 2012; Heier 

et al., 2013; Song et al., 2014a; Song et al., 2014b). Repression of the antioxidant genes may be due to the decreased 

demand for antioxidant activities, or due to the interference of ROS with redox-based signaling pathways that 
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produced negative feedbacks to the normal antioxidant signaling (Pourova et al., 2010). Although no common 

pathway related to oxidative stress was found for DU and Combi, both treatments caused antioxidant responses by 

the induction of the cat gene, which encodes the cat enzyme for converting hydrogen peroxide to water and oxygen, 

indicating that antioxidant defense might be activated by these stressors as observed previously (Song et al., 2014a; 

Song et al., 2014b) 

After short-term exposure, pathways related to DNA double strand break (DSB) repair were found to be 

significantly enriched in all treatment groups, indicating increased cellular signaling related to DNA damage. 

Gamma mainly regulated genes involved in the gadd45 signaling, DSB repair (by non-homologous end joining), and 

toxicity pathway such as p53 signaling. The p53 gene is normally activated following ionizing radiation-induced 

ataxia telangiectasia mutated (ATM) signaling and serves as an upstream regulator of various cellular responses, 

such as cell cycle regulation, DNA repair and apoptosis (Krauss, 2008). The gadd45 and DSB repair pathways are 

usually downstream processes of p53 and involved in the regulation of cell cycle progression and DNA repair 

mechanisms (Krauss, 2008). Depleted U mainly regulated two different canonical pathways in response to potential 

DNA damage, including ATM signaling and DSB repair (by homologous recombination). The ATM signaling was 

also enriched by DEGs in the Combi group, together with several canonical pathways involved in cell cycle arrest, 

such as cell cycle: G1/S checkpoint regulation, cell cycle: G2/M DNA damage checkpoint regulation, cyclins and 

cell cycle regulation. Interestingly, most of these pathways shared the gadd45g gene as a common responsive DEG. 

The gadd45g gene has previously been proposed as a biomarker representative of DNA damage after exposure to 

DU (Song et al., 2012) and ionizing radiation (Grace et al., 2002; Song et al., 2014b). Although different responses 

to DNA damage were observed, they were likely initiated by the same upstream transcriptional regulators, 

presumably the ATM signaling pathway. The effects of the two stressors on gene expression associated with DNA 

damage and repair pathways have been reported previously in fish (Lerebours et al., 2009; Song et al., 2012; 

Lerebours et al., 2013; Song et al., 2014a; Song et al., 2014b). DNA damage has also been considered as a key MoA 

of ionizing (gamma) radiation (Olsvik et al., 2010; Song et al., 2014b) and DU in fish (Lerebours et al., 2009; 

Lourenco et al., 2010; Song et al., 2012; Lerebours et al., 2013; Song et al., 2014a). DNA damage can be induced 

through direct or indirect actions by these stressors. Ionizing radiations may cause direct ionization of the DNA 

molecule and break the hydrogen bonds and/or oxygen-phosphate bonds (Razskazovskiy et al., 2000; Rak et al., 

2011) thus leading to DNA strand breaks, whereas DU may affect the normal functions of DNA by binding to the 

DNA molecule and leading to the formation of U-DNA adduct (Stearns et al., 2005; Wilson et al., 2014). The 

indirect DNA damage is normally a result of oxidative damage caused by ROS (Miller et al., 2002; Miura, 2004). 

No matter which type of DNA damage mechanism is involved, the stress signals in most cases are detected by the 

phosphatidyl inositol 3-kinase-like family of serine/threonine protein kinases (PIKKs), including ATM (double-

strand break responsive) and serine/threonine-protein kinase (ATR, single-strand break responsive), in most of the 

higher organisms (Abraham, 2001; Krauss, 2008). Therefore, the downstream events of DNA damage were 

essentially similar after exposure to Gamma, DU and Combi. The down-regulation of a few DNA damage 

associated genes found in the present study, such as gadd45g, breast cancer 1 (brca1) and double strand break repair 

protein RAD50 (rad50) supported the hypothesis that these stressors commonly affect the DNA damage and repair 
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signaling. The regulation of these genes have been observed previously in Atlantic salmon after exposure to gamma 

radiation and DU (Song et al., 2012; Song et al., 2014a; Song et al., 2014b).   One of the key findings in the present 

study was that Gamma, DU and Combi all affected the functions of the mitochondria, and especially the electron 

transport chain (ETC). The mitochondrion has been widely considered as a key target of environmental stressors 

(Meyer et al., 2013). Disruption of mitochondrial functions such as DNA integrity and energy production has often 

been linked to many diseases such as cancer, Parkinson’s disease and Alzheimer’s disease in human (Meyer et al., 

2013). Perturbations of the mitochondrial ETC have also been documented in fish exposed to gamma radiation 

(O'Dowd et al., 2009; Song et al., 2014b) and DU (Lerebours et al., 2009; Lerebours et al., 2010; Song et al., 2014a). 

Although a common cellular target for Gamma and DU was likely identified, DEGs supporting this hypothesis were 

still found to be different between the stressors. For example, Gamma generally repressed genes such as cytochrome 

c oxidase subunit VIIc (cox7c) and ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit (atp5d) 

involved in all ETC protein complexes, whereas DU induced genes such as cytochrome c oxidase subunit VIb 

polypeptide 1 (cox6b1) and cox7c in ETC complex I, III and IV. These results were similar to the previously 

reported transcriptional changes in the mitochondrial ETC in fish after exposure to gamma radiation and DU 

(Lerebours et al., 2009; Song et al., 2014a; Song et al., 2014b). Exposure to Combi led to a mixture of up-regulated 

and down-regulated DEGs which were found in both Gamma and DU groups (Appendices, Figure A2). These 

evidences suggested that Gamma and DU may commonly affect the mitochondrial ETC, but likely with different 

MoAs. The repression of mitochondrial ETC genes by low-dose Gamma has not been well-understood, although 

similar findings have been previously reported (Song et al., 2014b). The induction of ROS by gamma radiation 

leading to oxidative stress in the mitochondrion may be one of the potential mechanisms involved in the repression 

of genes in the ETC (Kam and Banati, 2013). Besides ROS induced by external stressors, the mitochondrial ETC 

itself can also be a major source of intracellular ROS, as the ETC machinery is driven by multiple redox reactions 

(Drose and Brandt, 2012). As stress response to excessive ROS, a self-uncoupling mechanism in the mitochondria 

may be activated to reduce the ROS production from ETC (Mailloux and Harper, 2011; Shabalina, 2011; Mailloux 

and Harper, 2012). Another possible mechanism may be that Gamma-induced oxidative stress activated self-

destructive programs in the cells, such as apoptosis that would inhibit downstream transcriptional activities involved 

in the ETC. The inhibition of mitochondrial ETC activity by ionizing radiation has been reported for several 

mammalian species (Kam and Banati, 2013), and only a limited number of studies has been performed on fish so far. 

A recent study on rainbow trout exposed to low doses (0.1-1 Gy) of gamma radiation for 2 h showed a general 

tendency of repression of mitochondrial ETC genes and enzymes in different tissues (O'Dowd et al., 2009). 

Depleted U seems to affect the mitochondrial ETC through different mechanisms. Uncoupling of OXPHOS is one 

potential MoA of DU in fish (Song et al., 2014a). Dissimilar to organic uncouplers, DU may potentially disturb the 

ETC by affecting the mitochondrial permeability transition pore (MPTP) and causing abnormal regulation of the 

mitochondrial osmolarity, which may eventually lead to disruption of proton gradient across the mitochondrial inner 

membrane (Song et al., 2014a). This mechanism has also been proposed for metals such as cadmium and mercury 

(Belyaeva et al., 2011). The activation of ETC genes by DU may therefore be a potential compensatory mechanism 
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in response to the loss of the mitochondrial membrane potential, abnormal osmoregulation in the mitochondrion and 

reduced ATP production.  

Several downstream events may take place as consequences of oxidative stress, DNA damage and mitochondrial 

dysfunction, such as programmed cell death and immune response. Apoptosis is a type of programmed cell death 

and usually activated by oxidative stress (Chandra et al., 2000), DNA damage (Roos and Kaina, 2006) and 

mitochondrial dysfunction (Eckert et al., 2003). The apoptosis signaling pathway was significantly regulated by both 

single and multiple stressors in this study. Based on the supporting DEGs, different types of apoptosis signaling, 

such as intrinsic (mitochondrial), extrinsic (death receptor) and endoplasmic reticulum (ER) stress-induced apoptotic 

pathways were found to be regulated by all treatments. Genes associated with the extrinsic apoptosis seemed to be 

repressed by exposure to DU and Combi, potentially due to the down-regulation of nuclear factor kappa b (nf-κb). 

Interestingly, nf-κb was induced by Gamma. This transcriptional effect has not been reported previously in fish 

exposed to these stressors, and the differential regulation of the nf-κb gene by DU and Gamma may indicate 

counteracting effect of these two stressors on apoptotic signaling when in combination. Depleted U and Combi also 

affected a caspase-independent apoptotic pathway through the induction of apoptosis-inducible factor, mitochondrial 

1 (aifm1). This gene has previously been observed to be induced in Atlantic salmon after exposure to DU (Song et 

al., 2014a). Induction of genes and enzymes involved in apoptosis, such as b-cell all/lymphoma 2 (bcl-2), caspase 3 

(casp3), caspase 6 (casp6) and bcl2-associated x protein (bax) have been reported previously in fish exposed to 

gamma radiation (Salbu et al., 2008; Olsvik et al., 2010; Song et al., 2014b) and DU (Lerebours et al., 2009; Song et 

al., 2012; Song et al., 2014a). 

The present study also identified multiple immune-related pathways related to Gamma, DU and Combi exposure. 

The activation of immune function is a common stress response in fish exposed to environmental stressors such as 

metals (Carlson and Zelikoff, 2008), and may also be a downstream event of oxidative stress (Al-Huseini et al., 

2013; Gostner et al., 2013). A study on chronic exposure to a total dose of 4 Gy gamma radiation significantly 

reduced the antibody response in rainbow trout (Knowles, 1992), indicating an immune suppressive mechanism. 

Another study showed that after receiving a sublethal dose of 20 Gy gamma radiation, transfer of diseases such as T-

cell leukemia to irradiated zebrafish was greatly facilitated due to the ablation of the immune response (Traver et al., 

2004). Relatively more studies have documented the effect of DU on the immune system in fish. A study with 

zebrafish showed that genes involved in the inflammatory response such as interleukin-1b (IL-1b) were induced 

after a 28 d exposure to 23-130 μg/L DU (Lerebours et al., 2009). A wide range of immune-related hepatic 

histological effects, such as pigmented macrophage proliferation, haemorrhaging, glomerular lesions, tubules 

necrosis and inflammatory response were observed in Lake whitefish (Coregonus clupeaformis) after dietary 

exposure to 100-10000 μg/L DU for 10-100 days (Cooley et al., 2000). Another study measured the phenoloxidase-

like (PO) activity as a biomarker of immune function in zebrafish exposed to 20 μg/L DU and observed increased 

PO activity after 48 h and repressed after 96 h (Gagnaire et al., 2013). Diverse immune-related pathways were 

significantly enriched in the present study, including major immune responses such as cellular immune response (e.g. 

production of nitric oxide and reactive oxygen species in macrophages), humoral immune response (e.g. B cell 

receptor signaling), cytokine signaling and inflammatory response (e.g. il-8 signaling), and pathogen-influenced 
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signaling (e.g. caveolar-mediated endocytosis signaling), as several interleukin (IL) genes (e.g. IL1R1) and major 

histocompatibility complex (HLA) genes (e.g. HLA-DRA) were found to be induced by the stressors. These 

findings were similar to the immune responses in fish after exposed to gamma radiation and DU (Lerebours et al., 

2009; Song et al., 2014a; Song et al., 2014b). A few immune-related pathways showed suppression or potentiation 

response. For example, the IL-1 signaling pathway (inflammatory response) was found to be significantly enriched 

by Gamma or DU, but not the combination of the two, indicating potential counteraction of supporting genes in this 

pathway by the two stressors when present in combination. The primary immunodeficiency signaling pathway was 

found to be regulated only by Combi, thus suggesting that the two single stressors were affecting more DEGs 

associated with this cellular function when exposed in combination. 

It needs to be noted that not all single DEGs identified by microarray analysis in this study were statistically 

significant due to lack of FDR correction. However, the findings at the GO and pathway level with multiple 

supporting DEGs increased the confidence for generating hypotheses on the potential MoAs of these stressors. In 

addition, qPCR verification of several key biomarker genes also supported that a selection of DEGs were in fact 

significantly expressed and thus supporting the identifying key MoAs. Although several transcriptional changes 

were identified, no adverse effect such as histological change at the organ level or changes in weight or condition 

index was identified. The exposure was not sufficiently high to cause damage observed as morphological changes at 

light microscopic level or in circulating glucose level, which has been proposed to be a biomarker for general stress 

(Roche and Boge, 1996; Pottinger and Carrick, 1999). This might be due to the low exposure level, short exposure 

duration, limited selections of apical endpoints to measure and potential equilibrium established between stressor-

induced damage and rapid activation of corresponding compensatory mechanisms (e.g. antioxidant defense and 

DNA repair). Future work is required to include more endpoints at higher organismal levels in order to link stress 

responses at the molecular level to any functional or morphological changes at organ level.  

 

 

5. Conclusions 

The present study mainly focused on hepatic transcriptional responses to evaluate the combined effects of gamma 

radiation (Gamma) and depleted uranium (DU) on Atlantic salmon after short term exposure. Mechanistic 

evaluation of combined effects revealed that considerable discrepancies of global transcriptional changes and their 

associated toxicological pathways existed in fish between single and combined exposure, although many of the 

cellular responses could be grouped into a few common higher functional categories, such as immune response, 

growth and development and signal transduction. Three potential modes of action (MoAs) were proposed for 

Gamma, DU and the combination, including induction of oxidative stress, DNA damage and disturbance of 

oxidative phosphorylation. Due to the low exposure level and short duration, the present study was not able to link 

molecular responses to measurable effects at organ level. In conclusion, this study has characterized and compared 

the potential toxic mechanisms of Gamma, DU and their combination. 
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