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Abstract 

Mytilus species are important organisms in marine systems being highly abundant and widely 

distributed along the coast of Europe and worldwide. They are typically used in biological effects 

studies and have a suite of biological effects endpoints that are frequently measured and evaluated for 

stress effects in laboratory experiments and field monitoring programmes. Differences in 

bioaccumulation and biological responses of the three Mytilus species following exposure to copper 

(Cu) were investigated. A laboratory controlled exposure study was performed with three genetically 

confirmed Mytilus species; M. galloprovincialis, M. edulis and M. trossulus. Chemical 

bioaccumulation and biomarkers were assessed in all three Mytilus species following a 4 day and a 21 

day exposure to waterborne copper concentrations (0, 10, 100 and 500 µg/L). Differences in copper 

bioaccumulation were measured after both 4 and 21 days, which suggests some physiological 

differences between the species. Furthermore, differences in response for some of the biological 

effects endpoints were also found to occur following exposure. These differences were discussed in 

relation to either real physiological differences between the species or merely confounding factors 

relating to the species natural habitat and seasonal cycles. Overall the study demonstrated that 

differences in chemical bioaccumulation and biomarker responses between the Mytilus spp. occur with 

potential consequences for mussel exposure studies and biological effects monitoring programmes. 

Consequently, the study highlights the importance of identifying the correct species when using 

Mytilus in biological effects studies. 
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1. Introduction 

The Mytilus species have been frequently used in biological effects studies in both laboratory 

exposure tests and biomonitoring programmes worldwide. This is mostly due to their ability to 

bioaccumulate contaminants from the water column as well as having a large number of validated 

biological effect endpoints that can be measured and quantified. Mussels are a recommend 

biomonitoring organism of the International Corporation for the Exploration of the Seas (ICES) 

integrated biomonitoring scheme (ICES, 2011) and routinely used within national monitoring 

programmes (e.g. Mussel Watch (Goldberg et al., 1978); Artic Marine and Assessment Program 

(AMAP) (Christensen et al., 2002; Dietz et al., 2000); Prestige Oil Spill Biomonitoring (Marigómez et 

al. 2013); Biological Effects of Environmental Pollution on Marine Coastal Ecosystems (Lehtonen & 

Schiedek, 2006); Norwegian Water Column Monitoring (Brooks et al., 2011; Hylland et al., 2008), 

providing information on the health status of particular water bodies. 

It has been frequently assumed that the mussels collected from the field and then used within 

biological effects studies are a distinct species whether being Mytilus edulis (Lmk.) in Northern 

Europe, M. galloprovincialis (Lmk.) in Southern Europe and M. trossulus (Gould) within the Baltic 

and North Atlantic coast of America. However, this generalisation has been increasingly challenged 

by recent studies that have shown Mytilus species in a patchy distribution with all three Mytilus spp. 

and hybrids occurring within the same populations (Väinölä and Strelkov, 2011; Kijewski et al., 2011; 

Brooks and Farmen, 2013). Since environmental factors can have significant effects on the mussel’s 

external morphology (Seed, 1968; Akester and Martel, 2000), it is not always possible to reliably 

distinguish between Mytilus species by mere visual inspection. This can therefore lead to 

misrepresentation of Mytilus with potential implications for biomonitoring programmes and exposure 

studies using transplanted wild mussels as well as for aquaculture. 

The ability of the different Mytilus spp. to bioaccumulate contaminants is not fully known, 

although some studies have reported differences. For example, higher concentrations of heavy metals 

were measured in M. trossulus compared to M. edulis in mussels collected from the same field 

population and in the same size category (Lobel et al., 1990). The authors suggested slower growth 

rates in M. trossulus rather than differences in metal metabolism between the two species. 



 4 

Consequently, M. trossulus within the same size category as M. edulis would tend to be older and 

experience a longer exposure history and opportunity to bioaccumulate. 

Biological responses or biomarkers can be defined as cellular, biochemical, molecular, or 

physiological changes that are measured in cells, body fluids, tissues, or organs within an organism 

and are indicative of xenobiotic exposure and/or effect (Lam and Gray, 2003). Differences in 

biomarkers between the Mytilus species have to the authors knowledge not been fully investigated. 

However, species differences in genotoxic response have been indicated with different background 

assessment criteria (BACs) for the three Mytilus species with respect to the frequency of micronuclei 

in haemocyte cells (ICES, 2011). Histological parameters including, adipogranular rate and gonadal 

status were found to be statistically different between M. edulis, M. galloprovincialis and their hybrids 

sampled from the same location in the UK (Bignell et al., 2008). Additionally, the differences in the 

mussel’s general physiology and behaviour can have impacts on fitness and biological response. For 

instance, differences in reproductive strategy (i.e. spawning times) of M. edulis and M. 

galloprovincialis have been found to occur (Hilbish et al., 2002). Such differences in spawning are 

likely to impact energy budgets between the species and influence general fitness at different times of 

the year. Furthermore, Mytilus species have been found to be differentially susceptible to parasitism 

(Coustau et al. 1991), which may suggest some underlying difference in general physiology. Hence, 

there is increasing evidence to suggest that the biological responses between the Mytilus species do 

exist, although there remains a lack of controlled laboratory investigations, which are needed to 

measure the full extent of these potential differences. 

Thus, the main aim of this study was to determine if differences in chemical bioaccumulation 

and biomarker responses occur between the three Mytilus species M. edulis, M. trossulus and M. 

galloprovincialis following a relatively short (4 days) and a longer (21 days) exposure to acute 

waterborne copper concentrations. The biological responses measured in mussels after 4 days included 

the genotoxic biomarker, micronuclei formation (Baršienė et al., 2010); and the oxidative stress 

biomarker glutathione (Regoli & Principato, 1995). These biomarkers are known to respond relatively 

quickly to contaminant stress, and in particular to copper, with 4 days copper exposure considered a 

sufficient amount of time to cause a measureable response. Moreover, lysosomal membrane stability 
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(LMS), and lysosomal structural changes (LSC), as well as neutral lipid (NL) and lipofuscin (LF) 

accumulation in the mussel digestive gland were measured after 21 days of exposure. The biological 

responses selected are known to be responsive to copper exposure and are widely used mussel 

biomarkers in both exposure studies and biomonitoring programmes. The findings will be discussed in 

relation to potential implications for biological effects studies and biomonitoring programmes. 

 

2. Material and methods 

2.1. Collection of mussels and acclimation 

Mussels were collected from three separate locations, which were known to contain one of the 

three Mytilus species. M. edulis were collected in late autumn from the lower intertidal zone at low 

tide at the Outer Oslo fjord, Norway (59.488 N 10.498 E), and brought back to the NIVA marine 

research station in Solbergstrand, Norway. M. trossulus were collected in late autumn from Tingvoll 

fjord, west coast of Norway (62.81 N 8.275 E), and transported within an ice-cooled cooler box to the 

NIVA marine research station within 4 h. M. galloprovincialis were collected from low intertidal zone 

in winter at Mundaka in the Biscay Bay (43.410 N 2.698 W), and were carefully packed in an ice-

cooled styrene box and transported by overnight airfreight to the NIVA marine research station. All 

mussels on arrival were placed in aquaria of flowing seawater, with the temperature maintained at 15 

± 2oC for 4-6 weeks prior to testing. This acclimation period was considered sufficient for the mussels 

to adapt to the controlled laboratory conditions before testing (Widdows and Bayne, 1971; Altieri, 

2006). No mortalities were recorded during transport and acclimation. The mussels were fed daily 

with a concentrated solution of Shellfish diet 1800® containing a mixture of four marine microalgae 

(Reed Mariculture Inc. USA). 

 

2.2. Exposure to copper 

The three mussel species were exposed to high, middle and low stable doses of copper chloride 

(CuCl2) solution within a flow-through seawater system. With an established filtered (10 µm) seawater 

flow rate of 3 L/ min at 15 ± 2oC and 33 ‰ salinity, a concentrated solution of CuCl2 was dosed into 

the seawater inlet pipe, to provide total nominal copper concentrations of 10, 100 and 500 µg/ L (0.16, 
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1.57 and 7.87 µM Cu). Fifty mussels of each group were exposed per treatment. The three mussel 

species of each exposure condition were placed inside the same glass aquarium and separated by a 

perforated plastic screen that allowed water flow but prevented mixing of the mussels. The flow-

through set-up was designed to ensure that all mussels within the same aquaria received identical 

exposure to copper. The mussels were fed every two days with of Shellfish diet 1800® and sub-

sampled after 4 days and after 21 days of exposure. 

 

2.3. Mussel sampling 

After 4 days, a sub-sample of the mussels from each group was removed from the exposure tanks and 

sampled for haemolymph and selected tissues. The haemolymph was removed from the abductor 

muscle with a hypodermic syringe and used to measure micronuclei formation. The digestive gland, 

gills and gonad were excised and placed in separate labelled cryovials before being snap frozen in 

liquid nitrogen. Each mussel was given a code number that was independent of the exposure dose, 

which enabled the biomarker analysis to be performed blind. The digestive gland was used to measure 

GSH whilst the gonad was used to confirm Mytilus species. In addition, the whole soft tissue of 

mussels were excised from their shells and placed in individual 50 mL Nalgene containers. Three 

replicates of five mussels from each treatment and species group were excised. The samples were 

stored at -20oC until required for copper analysis. 

After 21 days the remaining mussels were sampled. Digestive gland, gonad and gill tissue were 

removed from individual mussels and placed in pre-coded cryovials and snap frozen in liquid nitrogen. 

The digestive gland was used to measure histochemistry (LMS, LSC, NL, LF), and the gonad was 

used to confirm Mytilus species. Three replicates of the whole soft tissue of five mussels were excised 

from their shells and placed in individual 50 mL Nalgene containers. The samples were stored at -20oC 

until required for copper analysis. 

All mussels were identified to Mytilus species from DNA isolated from gonad tissue samples, 

followed by PCR amplification and gel electrophoresis. The individual species were determined 

before samples were selected for bioaccumulation and biomarker measurements to ensure that only 

pure M. edulis, M. trossulus and M. galloprovincialis were analysed. 
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2.3. DNA isolation, amplification and Gel electrophoresis 

Total DNA was extracted from 20-40 mg of gonad tissue from frozen mussels using 

QuickExtract DNA extraction solution (Epicentre, Madison, Winsconsin, USA) following the 

manufacturer’s recommended protocol. Briefly, the tissue was homogenised in 0.1 mL QuickExtract 

DNA extraction solution by vortexing for 15 seconds, incubated at 65°C for 10 min, vortexed for 

another 15 seconds, and finally incubated at 98°C for 2 min. The homogenates were then diluted 1:10 

in molecular grade H2O. For species identification, polymerase chain reaction (PCR) were used to 

amplify a specific 180 base pair (bp) segment for M. edulis, 168 bp segment for M. trossulus or 126 bp 

segment for M. galloprovincialis of the Glu gene (polyphenolic adhesive protein) as described by 

Inoue et al. (1995). The 25 µL PCR reactions contained 5 µL of DNA template, 300 µM forward and 

reverse primers, 2x SsoFast EvaGreen Mastermix  (BioRad, Hercules, CA, USA), and were subjected 

to a 5 min pre-heating stage at 95ºC followed by 35 cycles of 30 sec at 95ºC, 30 sec at 55ºC, 30 sec at 

72ºC, and final extension step of 10 min at 72ºC. 

One µL of the PCR product was loaded onto a DNA 1000 chip (Agilent technologies, Santa 

Clara, California, USA) and run in a Bioanalyser instrument (Agilent technologies, Santa Clara, 

California, USA) for visualisation of amplicon size. 

 

2.4. Bioaccumulation of copper 

Individual whole mussel samples were selected based on the results of the mussel speciation 

assessment, with three mussels measured per group. Samples were defrosted, homogenised and a sub 

sample taken of approximately 5 g. Total copper concentrations were determined by inductively 

coupled plasma optical emission spectrometry (ICP OES). 

 

2.5. Condition index 

The condition index of fifteen individual mussels from each group was calculated from the ratio of the 

weight of the soft tissue to the total weight (shell + soft tissues + palleal liquid) of the mussel, 

multiplied by 100 (Damiens et al. 2007). 
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2.6. Micronuclei formation in mussel haemocytes (MN) 

Approximately 0.1 mL of haemolymph was removed from the posterior adductor muscle of each 

mussel with a hypodermic syringe containing 0.1 mL PBS buffer (100 mM PBS, 10 mM EDTA). The 

haemolymph and PBS buffer were mixed briefly in the syringe before being placed on a microscope 

slide. The slide was then placed in a humid chamber for 15 min to enable the haemocytes to adhere to 

the slides. Excess fluid was drained and the adhered haemocytes were fixed in 1% glutaraldehyde for 

5 min. Following fixation, the slides were gently rinsed in PBS buffer and left to air-dry overnight. 

The dried slides were brought back to the laboratory for further processing. Slides were stained with 1 

µg/mL bisbenzimide 33258 (Hoechst) solution for 5 min, rinsed with distilled water and mounted in 

glycerol McIlvaine buffer (1:1). The frequency of micronuclei formation was measured on coded 

slides without knowledge of the exposure status of the samples to eliminate bias. The frequency of 

micronuclei in haemocytes was determined microscopically at 100x objective (final magnification 

~1000x). A total of 2000 cells were examined for each experimental group of mussels. Only cells with 

intact cellular and nuclear membranes were scored. MN were scored when: (a) nucleus and MN have a 

common cytoplasm; (b) colour intensity and texture of MN is similar to the nucleus; (c) the size of the 

MN is equal or smaller than 1/3 of the nucleus; and (d) MN are apparent as spherical structures with a 

sharp contour (Bolognesi and Fenech, 2012). 

 

2.7. Reduced glutathione 

Reduced glutathione (GSH) was measured in cytosolic fraction of digestive gland samples by 

conjugation of monochlorobimane (mCB) (Life Technologies Ltd, Paisley, UK) to the sample GSH, 

forming a stable and fluorescent product (Kamenic et al., 2000). All samples were diluted 1:10 to 

obtain protein concentration between 0.3 and 1 mg/mL and a GSH standard curve was prepared with 

dilutions ranging from 1.5 to 100 µM. Standards and samples were pipetted into 96-well microtiter 

plates in three and four replicates of 50 µL respectively. Finally, 50 µL of the reaction buffer, 

consisting of Trisbuffer pH 7.8 with 200 µM mCB and 2U/mL equine GST (Sigma Aldrich) was 

added to all wells. The plates were incubated at room temperature in the dark for 18 hours before 
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analysis in a Victor Wallac microplate reader (Perkin Elmer) at emission 486 nm and excitation 405 

nm. In order to correct for quenching of fluorescence, all samples were then spiked with GSH-mCB 

product prepared from 1 nmole of GSH and analysed again at the same settings. Concentration of 

reduced GSH was determined by relating measured FU to the GSH standard curve. A correction factor 

for quenching was derived by calculating the difference between the expected spike FU and the spike 

FU actually observed in the spiked samples. Finally GSH was related to the protein concentration of 

each sample, to give the GSH activity in nmoles/min/mg protein (Žegura et al., 2006). 

 

2.8 Histochemistry 

2.8.1. Lysosomal membrane stability (LMS) 

The determination of lysosomal membrane stability (LMS) was based on the time of acid labilisation 

treatment required to produce the maximum staining intensity according to UNEP/RAMOGE (1999), 

after demonstration of hexosaminidase (Hex) activity in digestive cell lysosomes. Eight serial 

cryotome sections (10 µm) were subjected to acid labilisation in intervals of 0, 3, 5, 10, 15, 20, 30 and 

40 min in 0.1 M citrate buffer (pH 4.5 containing 2.5% NaCl) in a shaking water bath at 37°C, in order 

to find out the range of pre-treatment time needed to completely labilise the lysosomal membrane, 

denoted as the labilisation period (LP; min). Following this treatment, sections were transferred to the 

substrate incubation medium for the demonstration of Hex activity. The incubation medium consisted 

of 20 mg naphthol AS-BI-Nacetyl-b-D glucosaminide (Sigma, N 4006) dissolved in 2.5 mL 2-

methoxyethanol (Merck, 859), and made up to 50 mL with 0.1 M citrate buffer (pH 4.5) containing 

2.5% NaCl and 3.5 g low viscosity polypeptide (Sigma, P5115) to act as a section stabiliser. Sections 

were incubated in this medium for 20 min at 37°C, rinsed in a saline solution (3.0 % NaCl) at 37°C for 

2 min and then transferred to 0.1 M phosphate buffer (pH 7.4) containing 1 mg/mL diazonium dye 

Fast Violet B salt (Sigma, F1631), at RT for 10 min. Slides were then rapidly rinsed in running tap 

water for 5 min, fixed for 10 min in Baker’s formol calcium containing 2.5% NaCl at 4°C and rinsed 

in distilled water. Finally, slides were mounted in Kaiser’s glycerine gelatin. The time of acid 

labilisation treatment required to produce the maximum staining intensity was assessed under the light 

microscope as the maximal accumulation of reaction product associated with lysosomes 
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(UNEP/RAMOGE 1999). Although two maximum staining peaks may be observed in some cases, the 

first one was always considered. Four determinations were made for each animal by dividing each 

section in the acid labilisation sequence into 4 approximately equal segments and assessing the LP in 

each of the corresponding set of segments. The mean LP value was then derived for each section, 

corresponding to an individual digestive gland. 

 

2.8.2. Lysosomal structural changes (LSC) 

The histochemical reaction for β-Gus was demonstrated as in Moore (1976) with the modifications 

described by Cajaraville et al. (1989). Frozen tissue sections (8 μm) from 10 mussels were put at 4°C 

for 30 min and then brought to room temperature before staining. Slides were incubated in freshly 

prepared β-Gus substrate incubation medium consisting of 28 mg naphthol AS-BI-β-glucuronide 

(Sigma, N1875) dissolved in 1.2 mL of 50 mM sodium bicarbonate, made up to 100 mL with 0.1 M 

acetate buffer (pH 4.5 containing 2.5% NaCl) and 15% of polyvinyl alcohol at 37 °C for 40 min in a 

shaking water bath and then transferred to a post-coupling medium containing 0.1 g Fast Garnet 

(GBC) (Sigma, F8761) dissolved in 100 mL of 0.1 M phosphate buffer (pH 7.4 containing 2.5% NaCl) 

in the darkness and at room temperature for 10 min. Afterwards, sections were fixed in Baker's formol 

calcium containing 2.5% NaCl at 4°C for 10 min and rinsed briefly in distilled water. Finally, sections 

were counterstained with 0.1% Fast Green FCF (Sigma, F7252) for 2 min, rinsed several times in 

distilled water and mounted in Kaiser's glycerol gelatine.  

Five measurements using a 100x objective lens were made in each individual using image 

analysis (BMS, Sevisan). The mean value of the stereological parameters was determined for each 

mussel digestive gland (Lowe et al., 1981): lysosomal volume density (VvL), lysosomal surface-to-

volume ratio (S/VL) and lysosomal numerical density (NvL). 

 

2.8.3. Intracellular accumulation of neutral lipids (NLs) 

Intracellular NLs were demonstrated histochemically by staining with Oil Red O (ORO) (Culling, 

1974). Cryostat sections (8 μm) were transferred to a cabinet at 4 °C and fixed in Baker’s solution 

(2.5% NaCl) for 15 min. Then sections were dried at room temperature, washed in isopropanol (60%) 
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and rinsed in (ORO) staining solution for 20 min. The ORO stock solution is a saturated (0.3%) 

solution of ORO (BDH, 34061) in isopropanol. The staining solution was freshly made by dissolving 

60 ml stock solution in 40 ml distilled water and filtering after a 10 min gap to stabilize the solution. 

The staining solution is only stable for 1-2 h. Stained sections were differentiated in 60% isopropanol, 

washed in water, counterstained with 1% Fast Green FCF (Sigma, F7252) for 20 min and mounted in 

Kaiser´s glycerine gelatine. Five measurements using a 40x objective lens were made in each 

individual using image analysis (BMS, Sevisan). The mean volume density of neutral lipids in 

digestive alveolies (Vv) was determined for each mussel. 

 

2.8.4. Lipofuscin (LF) determination 

LF content of tertiary lysosomes was quantified using Schmorl reaction (Pearse, 1972). Cryostat 

sections (8 μm thick) were fixed for 15 min in Baker buffer at 4°C. Then, they were rinsed in distilled 

water and placed in Schmorl’s solution, which contains 1% ferric chloride and 1% potassium 

ferricyanide, at a ratio of 3: 1. Sections were stained in this solution for 5 min. After that, they were 

washed with 1% acetic acid for 1 min, followed by rinsing in distilled water. The slides were mounted 

in Kaiser´s glycerine gelatine. 

 

2.9. Statistics 

SPSS v 17.0 software (SPSS INC., Chicago, Illinois) and Statistica v11 software (Statsoft Inc), were 

employed for the statistical analyses. Homogeneity of variance (Levene’s test) and normality of data 

(Kolmogorov-Smirnov’s) were tested before statistical analyses (Sokal & Rohlf, 1995). Statistically 

significant differences among species were tested according to the Duncan’s post-hoc test based on 

one-way analysis of variances (1-way ANOVA) for parametric variables (Cu bioaccumulation, MN, 

GSH, Vv, SvL, S/VL, Nv), and the Mann-Whitney’s U-test for non-parametric variable (LP). 

Furthermore, statistically significant differences between unexposed and exposed mussels for each 

species were tested according to the Student t-test for parametric variables (Vv, SvL, S/VL, Nv) and 

the Mann-Whitney’s U- test for non-parametric variable (LP) A 95% significance level (P<0.05) was 

established for all statistical analyses carried out. 
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3. Results 

3.1. Mytilus species determination 

The method of DNA amplification and gel electrophoresis of mussel gonad tissue was successful in 

differentiating between the three Mytilus species. Single bands were identified at 180 bp for M. edulis 

168 bp for M. trossulus and 126 bp for M. galloprovincialis. The proportion of the Mytilus spp. and 

hybrids from the different populations are shown in table 1. As expected M. galloprovincialis, M. 

edulis and M. trossulus were the dominant mussel species in the populations collected from Bilbao, 

the outer Oslo fjord and Tingvoll fjord in Norway respectively. However, pure populations were not 

found at any of the sampling locations, with a single M. trossulus identified from the Bilbao 

population as well as five M. galloprovincialis/ M. edulis hybrids. Hybrids of M. galloprovincialis/ M. 

edulis (n=1) and M. edulis/ M. trossulus (n=3) were found in the outer Oslo fjord population. Highest 

variability was seen in the Tingvoll fjord population with hybrids of M. edulis/ M. trossulus (n=13) 

and M. galloprovincialis/ M. trossulus (n=3) as well as M. edulis found in addition to the dominant M. 

trossulus. 

 

3.2. Copper Bioaccumulation 

Copper concentrations in whole body burden of individual mussels following exposure to a range of 

copper concentrations after 4 and 21 days are shown in figure 1. No differences in the 

bioaccumulation of copper were observed between the Mytilus spp. after 4 days exposure to 10 and 

100 µg/L Cu. However, for the highest copper concentration (500 µg/ L), Cu bioaccumulation in M. 

trossulus was markedly higher and approximately 3 times the Cu bioaccumulation of both M. edulis 

and M. galloprovincialis. 

 

Both 100 and 500 µg/ L Cu were lethal to all three Mytilus spp. with 100% mortality recorded in the 

exposed mussels after 21 days exposure. Consequently, only the copper concentrations for the Mytilus 

spp. from the control and lowest copper concentration (10 µg/ L) are presented. Following the 21 day 

exposure to 10 µg/ L Cu, tissue copper concentrations in M. edulis and M. trossulus were markedly 
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higher and approximately 3 times the concentration of copper accumulated in the tissue of M. 

galloprovincialis. 

 

The bioaccumulation of Cu in the control group for all three Mytilus spp. was almost identical between 

1 and 2 mg/ kg after 4 and 21 days. For the 10 µg/ L exposure group, the bioaccumulation of Cu in M. 

galloprovincialis after 4 and 21 days was almost identical at approximately 6 mg/ kg. In contrast, the 

bioaccumulation of Cu in M. edulis and M. trossulus after 21 days (~17-18 mg / kg) was 

approximately double the concentration measured after 4 days (7-8 mg / kg). 

 

3.3. Biological effects measurements following a 4 day exposure 

3.3.1. Condition Index 

The condition index (CI) was found to differ between the Mytilus spp. (Figure 2). Overall, M. 

galloprovincialis had the lower CI followed by M. edulis and M. trossulus. In contrast, the CI of M. 

edulis and M. trossulus was lower in mussels exposed to 10 µg /L Cu for 4 days compared to their 

respective controls, although exposure to high copper concentrations (up to 500 µg/ L) did not 

decrease the CI any further to that observed at 10 µg/ L Cu. 

 

3.3.2. Micronuclei formation 

The frequency of micronuclei in the haemocytes of the Mytilus spp. following 4 day Cu exposure is 

shown in figure 3. In the control groups, the micronuclei frequency was markedly higher in M. edulis 

compared to the other two. Following 4 day Cu exposure, M. edulis appeared to be the most sensitive 

with a significant increase in micronuclei at 10 µg/ L. In comparison, micronuclei frequency was 

significantly increased in M. galloprovincialis at 100 µg/ L. In M. trossulus, 500 µg/ L was required to 

increase micronuclei frequency from control levels, although the level of significance was marginally 

above p<0.05 at 0.052. 

 

3.3.4. Reduced glutathione (GSH) 



 14 

Reduced glutathione (GSH) concentrations in the digestive gland of the mussels showed very little 

difference between the Mytilus species or between nominal Cu exposures with no significant 

differences recorded (Figure 4). Mean GSH concentrations in all groups were between 4.5 and 9 nmol/ 

mg protein. 

 

3.4. Biological effects measurements following a 21 day exposure 

 

3.4.1. Condition Index 

As previously observed for CI after 4 days exposure, M. galloprovincialis had a lower CI than M. 

edulis and M. trossulus (Figure 5). The CI was unresponsive to copper exposure after 21 days in all 

three mussel species. 

 

3.4.2. Histochemistry 

Lysosomal membrane stability (LMS) 

No significant differences were found in LMS between control Mytilus spp., neither between exposed 

Mytilus spp. (Figure 6). In the comparison between control and exposed groups of each species, only 

M. trossulus showed significant decrease in LMS after 21 days.  

 

Lysosomal structural changes (LSC)  

Differences between species were recorded for lysosomal volume density (Vv) and lysosomal surface 

to volume ratio (S/V) (Figure 7). In the control groups, Vv was significantly lower in M. 

galloprovincialis compared to M. edulis and M. trossulus (Figure 7A). Moreover, higher S/V values 

were recorded in M. galloprovincialis than in M. edulis and M. trossulus. In exposed groups, M. 

galloprovincialis showed significantly lower Vv and higher S/V than M. edulis (Figure 7B). In 

addition, significant decreases on Vv values were observed in M. edulis and M. trossulus after Cu 

exposure to 10 µg/ L for 21 days. Lysosomal numerical density (Nv) showed no significant 

differences neither between species, nor among control and exposed mussels (Figure 7C). 
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Intracellular accumulation of neutral lipids 

Intracellular neutral lipid (NL) accumulation of unexposed M. edulis was significantly higher than 

unexposed M. galloprovincialis (Figure 8). However, in M. edulis, NL accumulation tended to 

decrease after 10 µg Cu/ L exposure for 21 days. Regarding M. trossulus, their Vv values in control 

and exposed groups were between those of the other two species. Although following Cu exposure NL 

accumulation in M. trossulus tended to increase. 

 

Lipofuscin determination 

Differences in the content of lipofuscins were observed between species and, as well as, between 

controls and exposed mussels (Figure 9). M. galloprovincialis showed higher concentration of 

lipofuscins than M. edulis and M. trossulus. In all mussel species less lipofuscin content was observed 

after 10 µg Cu/ L exposure for 21 days. In addition, M. edulis appeared to have smaller lipofuscins 

than the other two species. 
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4. Discussion 

The patchy distribution of Mytilus species around the European coast and elsewhere has made it 

difficult to assume the correct species without first confirming through genetic identification (Brooks 

& Farmen, 2013; Kijewski et al. 2011). For instance, of the 85 mussels analysed from the Northern 

coast of the Basque Country, which were initially considered to be entirely M. galloprovincialis, 5 

individuals of M. galloprovincialis/ edulis hybrids as well as a single M. trossulus individual was 

detected. Likewise, Mytilus populations from the Oslo fjord had 95% of pure M. edulis and 5% of 

hybrids. In contrast, the Tingvoll fjord nr Molde, Norway had a mixed population despite having a 

dominate species present. Therefore, genetic species identification should be used if specific Mytilus 

species are required, which may be of significance when for example the bioaccumulation and 

biomarker responses to chemical stress differ between the species.  

Although it has been relatively well documented that metal bioaccumulation in mussels is variable 

with certain metals (Rainbow, 2007), differential uptake of one metal (i.e. Cu) between mussel species 

is less well defined. Marked differences in copper bioaccumulation were clearly evident between the 

Mytilus species following both a 4 day and a 21 day exposure to elevated copper concentrations. To 

the author’s knowledge, the current study was the first time a comparative laboratory exposure has 

been performed on the three Mytilus species. Previous evidence of differences in metal 

bioaccumulation between Mytilus species was reported in mussels collected from field populations 

where M. edulis and M. trossulus co-existed (Lobel et al., 1990). The increased metal bioaccumulation 

in M. trossulus was explained by the authors in terms of the slower growth rate of this species 

compared to M. edulis. Consequently, mussels of the same size range represented older M. trossulus 

than M. edulis and therefore a longer exposure history. However, this explanation would not explain 

the observations within a controlled laboratory experiment, where the exposure duration and 

concentrations were known. The significantly higher concentrations of copper found in whole soft 

tissue homogenates of M. trossulus compared to M. edulis and M. galloprovincialis after 4 days are 

therefore more likely to represent a physiological difference between the species. Possible reasons for 

the observed differences in metal bioaccumulation may include either the varying ability to sequester 

and/ or excrete metals from Mytilus tissue (Ackerman & Nishizaki, 2004) as well as possible 
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differences in the cellular lipid content between the species. However, alternatively it is not possible to 

completely eliminate confounding factors that may have arisen due to the mussels being collected 

from different habitats. For example, differences in exposure histories, seasonal reproductive cycles, 

and physicochemical differences between their natural environmental conditions. Also the seasonal 

temperature in which the mussels had been collected in their respective sampling sites and the 

temperature used along the experiment were different for the different species 

(http://www.seatemperature.org). Procedures were taken to reduce these external factors as far as 

possible, such as collecting mussels from similar environments of low physical and contaminant stress 

and a long acclimation period in the laboratory prior to testing, however such factors cannot be fully 

excluded. 

After the three week exposure only the mussels from the 10 µg/ L Cu exposure group and the control 

group were available due to total mortalities at 100 µg/L and 500 µg/L Cu, although incidentally there 

was no apparent difference in the acute toxicity of copper to the different Mytilus species. Differences 

in copper bioaccumulation did occur after 21 days exposure, although somewhat different to that 

observed after only 4 days. Bioaccumulation was almost identical between M. edulis and M. trossulus 

after 21 days, which were both significantly higher than copper measured in M. galloprovincialis. 

Whether differences in metal body burden remain after longer exposure durations of months or years 

may have more implications to aquaculture practices. However, the differences observed after 4 and 

21 days indicate that some physiological variation exists, which could influence the outcome of 

laboratory exposures and/or field transplantation studies using mixed populations. 

Further differences in metal bioaccumulation in mussels have been reported in field populations, with 

differences attributed to tidal height, body size and condition index (Mubiana et al., 2006). In the 

present study, condition index was found to differ between the species, with overall a higher condition 

index observed in the order M. trossulus, M. edulis and M. galloprovincialis. Since this appears to 

pattern metal bioaccumulation between the species, with a significant positive correlation between 

condition index and copper bioaccumulation (p<0.05, Spearman’s rank coefficient), it may provide 

some insight into the observed differences. Since the Mytilus individuals were all collected from 

different locations (i.e. Basque Country, Northern Norwegian coast and outer Oslo fjord, Norway), 
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difference in their seasonal cycles and overall reproductive condition are likely to vary. For instance, 

M. galloprovincialis experience a seasonal temperature range of 12oC in March up to 21oC in August. 

In contrast, the Norwegian mussels, M. edulis and M. trossulus have a seasonal temperature range of 

2oC to 14oC and 5oC to 17oC in March and August respectively. The mussels were collected between 

October and November where average water temperatures were 9, 9.9 and 16.5oC for M. edulis, M. 

trossulus and M. galloprovincialis respectively (www.seatemperature.org). The exposure was 

performed at 15oC and differences in temperature acclimation and effects on body metabolism and 

physiological processes may be a contributing factor for the observed differences in bioaccumulation. 

 

4.1. Biomarker responses 

Micronuclei formation is widely used as a sensitive measure of genotoxicity in mussels (Barsiene et al. 

2010; Brooks et al., 2011). ICES assessment criteria exist for Mytilus species, with separate 

assessment criteria suggested for M. edulis, M. trossulus and M. galloprovincialis of 2.5, 4.5 and 3.9 

micronuclei per 1000 nuclei respectively (ICES, 2011; Davies and Vethaak, 2012). These assessment 

criteria have been established from data available in mussels from European coastal waters as opposed 

to comparative laboratory studies (Davies and Vethaak, 2012). However, they do recognise that 

differences in response occur when exposed to contaminant stress. In our laboratory exposure, M. 

edulis individuals were found to be the most sensitive of the mussels with respect to micronuclei 

formation, with an increase in micronuclei frequency following four days exposure to the lowest 

nominal copper concentration. The lower assessment criteria for this species, appears to support the 

view that it is the most sensitive genotoxic response of the three Mytilus species. Additionally, the 

micronuclei response of M. galloprovincialis at 100 µg/L and M. trossulus at 500 µg/L after 4 days 

also corresponds with the rank order of the assessment criteria with the latter being the least sensitive. 

Reduced glutathione (GSH) plays a central role in cellular antioxidant defence as well as being 

involved in metal sequestration and detoxification. The lack of response of glutathione in the digestive 

gland of all Mytilus species, despite exposure to high copper concentrations, would suggest that 4 days 

exposure was not suitable for the optimal up regulation of these proteins in the mussel tissues. 

However, there is evidence that shows a reduction in GSH in mussels following only one day 
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exposure to copper (Canesi et al., 1999). In contrast, Regoli & Principato (1995), found elevated levels 

of GSH in Mytilus digestive gland following a 3 week exposure to copper. In the present study, 

elevated copper concentrations in the mussel tissues were evident after only 4 days, indicating a clear 

exposure of the mussel to the metal. The lack of significant response does appear to be related to the 

exposure duration, although whether the exposure duration should be shorter or longer than 4 days is 

not certain. The lack of responsiveness of GSH could also be connected with responses at other levels 

of biological organisation such as lysosomal alterations, since it is known that lysosomes in the 

digestive gland of mussels play a key role in metal sequestration, accumulation, and detoxification 

(Soto and Marigómez, 1997). 

Digestive cell lysosomes are very sensitive to a wide range of contaminants and their responses are 

widely used as general stress or effect biomarkers of pollution, both in field and laboratory studies 

(Moore, 1988; Regoli, 1992; Etxeberria et al., 1994; Marigómez et al., 1996; Marigómez and Baybay- 

Villacorta, 2003; ICES, 2011; Izagirre et al., 2014a). In the present study after 21 days of exposure at 

10 µg Cu/ L, membrane destabilisation and lysosomal structural changes were measured. The 

lysosomal membrane stability test is recommended by the OSPAR Convention to assess the biological 

effects of contaminants (UNEP/RAMOGE, 1999). Overall, mussels are considered healthy when they 

exhibit LP values above 20 min and stressed when LP values are below 10 min (Viarengo et al., 2000; 

Dagnino et al., 2007; Izagirre and Marigómez, 2009). In the present study, low LP values were 

recorded in controls of the three Mytilus spp. Nevertheless, low LP values were also observed in 

natural conditions at certain moments of the process of intracellular digestion (Tremblay and Pellerin-

Massicote, 1997; Izagirre et al., 2009) and in different lysosomal populations of laboratory control M. 

edulis (Moos et al., 2012). In fact, M. edulis showed the lowest LP values in the control group. After 

Cu exposure, only LP was maintained in M. edulis and decreased in M. galloprovincialis and M. 

trossulus. However, only M. trossulus showed a significant decrease in LP value, which was in 

accordance with the other biomarkers, indicating that M. trossulus was the most sensitive species. 

The assessment of lysosomal structural changes provides an indication of general environmental stress 

exhibited by the mussel (Cajaraville et al., 2000; Marigómez and Baybay-Villacorta, 2003). Overall, 

exposure of mussels to pollutants induces lysosomal enlargement (Moore, 1988; Etxeberria et al. 
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1994; Marigómez & Baybay-Villacorta, 2003). However, a decrease in lysosomal size was shown 

after 21 days exposure in M. edulis and M. trossulus. These results are in accordance with Etxeberria 

et al., (1994), who observed a significant reduction in Nv of M. galloprovincialis following 20 days 

exposure to 8 µg Cu/L. This response has also been observed in mussels exposed to organic pollutants 

(Moore, 1998; Cajaraville et al., 1995; Marigómez & Baybay-Villacorta, 2003). In fact, lysosomal size 

reduction itself appears to be transient since longer exposure times have been found to provoke 

lysosomal enlargement (Cajaraville et al., 1995). 

In addition to chemical stress, lysosomal biomarkers change depending on natural environmental 

factors, such as temperature (Etxeberria et al., 1995; Tremblay et al., 1998; Izagirre et al., 2014b; 

Mugica et al., submitted). For instance, lysosomal size and membrane stability show marked seasonal 

variability, with lysosomes more conspicuous (high Vv, Sv and low S/V values) in the summer than in 

winter and their membranes are more destabilized (low LP values). Furthermore, low lysosomal 

responsiveness in winter has been previously reported (Garmendia et al., 2010; Lekube et al., 2014; 

Mugica et al., submitted). Since the study was performed at 15°C, which was more representative of 

winter for M. galloprovincialis and spring for M. edulis and M. trossulus, due to their different 

geographical origins. The mussels were therefore more likely adapted to different seasonal patterns in 

water temperature and food availability. This could be a reason for the lack of lysosomal 

responsiveness in M. galloprovincialis to Cu exposure and the significant differences with M. edulis 

and M. trossulus. 

Intracellular neutral lipid accumulation in the lysosomes and cytosol of the digestive cells of mussels 

has been mainly linked to pollution. However, intracellular neutral lipid accumulation differs between 

geographical locations and can vary throughout the year, mainly due to changes in the reproductive 

cycle and food availability (Cancio et al., 1999; Garmendia et al., 2010). The observed differences in 

VvNL between Mytilus spp. could therefore be due to natural factors such as temperature and 

reproductive cycle, rather than any physiological and/or cellular differences caused by metal exposure. 

Lipofuscins are pigments regarded as the end products of lipid peroxidation (Moore, 1990; Yin, 1996; 

Terman et al., 1999; Brunk and Terman, 2002). Their accumulation in digestive cells is one of the best 

documented changes in lysosomal content in response to pollutant exposure, and therefore, lipofuscin 



 21 

accumulation is considered a general response (Viarengo et al., 1990; Regoli, 1992). In the present 

study, lipofuscin accumulation followed the same pattern of VvLys, with a higher amount of lipofuscins 

in controls than in exposed groups. This decrease is in accordance with lysosomal enlargement 

indicating a close relation between these two biomarkers. The reduction of lysosomes and lipofuscins 

could be explained by cell type replacement and tissue renewal processes, which are typical responses 

in long term pollutant exposures (Cajaraville et al, 1995; Zaldibar et al., 2007). 

It has been shown that the responsiveness of M. trossulus was higher when exposed to Cu stress than 

the other studied species. However, differences between the initial conditions of mussels from the 

different geographical locations cannot be ignored and such differences were thought to influence, to a 

certain extent, some of their biological responses. However, in the case of M. edulis and M. trossulus 

similar temperatures and seasonal patterns were experienced prior to laboratory acclimation. During 

the experiment, water temperatures were maintained at 15oC, which was considered to be a 

compromise between the temperate ranges experienced by the Norwegian mussels and those from the 

Basque coast. However, the seawater temperature was typical of the summer months in Norway and 

the winter months on the Basque coast (www.seatemperature.org). Although the long acclimation 

period of 4-6 weeks was thought to be sufficient time for the normalisation of the physiological 

parameters (Widdows and Bayne, 1971; Altieri, 2006), there is still a lack of knowledge of the 

biological responses of mussels with changes in seasonal/thermal patterns. For instance, the use of 

energy reserves, gonad development and food availability could be important factors, which are 

known to change with the seasons (Garmendia et al., 2010). Another important factor that could 

modulate the biomarkers is the age of the mussels. In the present work, mussels of similar size have 

been used in order to normalise these differences but recent work has confirmed that mussels from 

different geographical areas could have different growth rates and different biomarker responses 

(Izagirre et al. 2014b). 

In conclusion, it is clear from this study that differences in metal bioaccumulation and biomarker 

responses occur between the three Mytilus species, which may influence the assessment of the 

environmental health status in marine pollution programmes; particularly knowing that a large extent 

of geographical areas around the European coast have two or three of the species studied and their 
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hybrids (Kijewski et al., 2011; Brooks and Farmen, 2013). However, the potential physiological 

differences between species could be buffered by the adaptation to particular environmental conditions 

and make similar the responses to pollutants and other environmental stressors. Thus, future research 

is needed to determine the degree of influence of the species in biological responses to pollutants 

especially in different mussel species from the same population/sampling point. 
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Table 1. The numbers of the various Mytilus complex species within the collected populations. 

Mytilus complex 
Bilbao 

(n=85) 

Outer Oslo fjord 

(n=78) 

Tingvoll fjord nr Molde, 

Norway (n= 73) 

M. galloprovincialis 79 (93%)   

M. edulis  74 (95%) 1 (1%) 

M. trossulus 1 (1%)  56 (77%) 

M. galloprovincialis/ M. 

edulis hybrid 
5 (6%) 1 (1%)  

M. galloprovincialis/ M. 

trossulus hybrid 
  3 (4%) 

M. edulis/ M. trossulus hybrid  3 (4%) 13 (18%) 

NB: only the pure Mytilus were selected for bioaccumulation and biomarker measurements. 

 

 



 

Figure 1. The bioaccumulation of copper measured in individual whole mussel homogenates of the 

different Mytilus spp. following an A) 4 day and a B) 21 day exposure to nominal copper 

concentrations (median ± quartiles, n= 3). * Significantly different from control group (0 Cu); † 

significant difference from other Mytilus within treatment group. 
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Figure 2. Condition index of the three Mytilus spp. following 4 day exposure to nominal copper 

concentrations (mean, SD (box) ± SE (outer line), n=10). 
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Figure 3. The frequency of micronuclei in haemocytes of the three Mytilus species following 4 day 

exposure to nominal copper concentrations (µg/ L, mean ± SE, n=10). * significantly different from 

control group. 
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Figure 4. Glutathione in digestive gland samples of the three Mytilus species following a 4 day 

exposure to nominal copper concentrations (µg/ L, mean, SD (box) ± SE (outer line), n=10). Note 

GSH was note measured in M. edulis at 10µg /L. 
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Figure 5. Condition index of the three Mytilus spp. following 21 day exposure to nominal copper 

concentrations (µg/ L, mean, SD (box) ± SE (outer line), n=10). 
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Figure 6. Lysosomal membrane stability (LMS) measured as labilisation period (LP) in the digestive 

gland cells of the three Mytilus spp. following 3 week nominal copper exposure (µg/ L Cu). Intervals 

indicate standard deviation, asterisks indicate significant differences among control and exposed 

mussel of the same species according to the Man-Whitney U-test (p<0.05). 
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Figure 7. Lysosomal structural changes in digestive gland of the three Mytilus spp. following 21 day 

nominal copper exposure (µg/ L Cu). (A) Lysosomal volume density (VvL); (B) lysosomal numerical 

density (Nv); and (C) lysosomal surface to volume ratio (S/VL). Intervals indicate standard deviation, 

asterisks indicate significant differences among control and exposed mussel of the same species 

according to the Duncan’s test performed after one-way ANOVAs (p<0.05) and hashes indicate 

significant differences of M. edulis and M. trossulus respecting M. galloprovincialis in each 

experimental condition according to the Student t-test (p<0.05). 



 

Figure 8. Intracellular neutral lipid volume density (VvNL) in digestive gland of the three Mytilus spp. 

following 21 day copper exposure (µg/ L Cu). Intervals indicate standard deviation and hashes 

indicate significant differences of M. edulis and M. trossulus respecting M. galloprovincialis in each 

experimental condition according to the Student t-test (p<0.05). 

  



 

Figure 9. Histochemistry of lipofuscins in digestive gland of mussels. (A) Control M. 

galloprovincialis; (B) Control M. edulis; (C) 10 µg Cu/ L exposed M. edulis for 21 days. Scale bar = 

50 μm. 
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