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Multiple-stressor effects in an apex 
predator: combined influence of 
pollutants and sea ice decline on 
lipid metabolism in polar bears
Sabrina Tartu   1, Roger Lille-Langøy2, Trond R. Størseth3, Sophie Bourgeon1,4, Anders 
Brunsvik3, Jon Aars1, Anders Goksøyr2, Bjørn Munro Jenssen5, Anuschka Polder6, Gregory W. 
Thiemann7, Vidar Torget5 & Heli Routti1

There is growing evidence from experimental and human epidemiological studies that many pollutants 
can disrupt lipid metabolism. In Arctic wildlife, the occurrence of such compounds could have serious 
consequences for seasonal feeders. We set out to study whether organohalogenated compounds (OHCs) 
could cause disruption of energy metabolism in female polar bears (Ursus maritimus) from Svalbard, 
Norway (n = 112). We analyzed biomarkers of energy metabolism including the abundance profiles 
of nine lipid-related genes, fatty acid (FA) synthesis and elongation indices in adipose tissue, and 
concentrations of lipid-related variables in plasma (cholesterol, high-density lipoprotein, triglycerides). 
Furthermore, the plasma metabolome and lipidome were characterized by low molecular weight 
metabolites and lipid fingerprinting, respectively. Polychlorinated biphenyls, chlordanes, brominated 
diphenyl ethers and perfluoroalkyl substances were significantly related to biomarkers involved in lipid 
accumulation, FA metabolism, insulin utilization, and cholesterol homeostasis. Moreover, the effects 
of pollutants were measurable at the metabolome and lipidome levels. Our results indicate that several 
OHCs affect lipid biosynthesis and catabolism in female polar bears. Furthermore, these effects were 
more pronounced when combined with reduced sea ice extent and thickness, suggesting that climate-
driven sea ice decline and OHCs have synergistic negative effects on polar bears.

Since many chemicals are lipid-soluble, it is relevant to investigate whether their concurrent and continuous 
presence in adipose tissues may be harmful1. A major role of adipose tissue is to store ingested energy in the 
form of triglycerides during periods of energy excess and make it available during periods of energy deprivation2. 
Recently it has been recognized that adipose tissue is an endocrine organ involved in functions such as immune 
response, inflammation, reproduction and metabolism3,4. In mammals, the regulation of lipid metabolism is 
the result of the concomitant action of the central nervous system and several organs such as the liver, muscles 
and adipose tissue, via hormonal messengers. In white adipocytes, fatty acid (FA) transport, synthesis, uptake 
and lipid hydrolysis are controlled by a set of genes mostly regulated by “the master regulator of adipogenesis”: 
the nuclear receptor peroxisome-proliferator activated receptor gamma (PPARG)5. Several factors interact with 
PPARG to facilitate lipid metabolism (e.g. lipid synthesis, storage and hydrolysis). These include, for example, 
the PPARG-coactivator-1 (PGC1), which increases the expression of genes encoding respiratory chain proteins, 
enzymes of FA oxidation, and causing white adipocytes to acquire features of brown adipocytes6. Another factor 
interacting with PPARG is the sterol regulatory element-binding protein 1 (SREBP1)7, which leads to increased 
FA synthesis and their storage as triglycerides in adipocytes and peripheral tissues8–10. Cluster of differentiation 36 
(CD36) and FA binding protein 4 (FABP4) are PPARG target genes whose gene products are involved in FA uptake 
and transport10. Moreover, the FA synthase (FASN) induces FA synthesis and produces ligands to PPARG10,11. 
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The breakdown of triglycerides to free FAs (FFAs) and diacylglycerol occurs via the action of the patatin-like 
phospholipase domain-containing protein 2 (PNPLA2), another PPARG target gene product, and the second 
hydrolysis step (break down of diacylglycerol to monoacylglycerol and FFAs) is catalyzed by lipase E (LIPE, also 
known as hormone sensitive lipase) and other lipases12. Adiponectin (ADIPOQ), a protein hormone regulated by 
PPARG, sensitizes insulin and stimulates energy metabolism in tissues13,14.

Several experimental and epidemiological studies on mammals have indicated that organohalogenated com-
pounds (OHCs) such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated 
diphenyl ethers (PBDEs) and poly- and perfluoroalkyl substances (PFASs) affect lipid metabolism15–19. Arctic top 
predators, such as polar bears (Ursus maritimus), are among the most polluted species in the world20 and have 
evolved large body lipid stores in response to seasonal variation in prey availability and cold temperatures21. Polar 
bears have a unique metabolism that enables them to deal with a lipid-rich diet and to efficiently accumulate 
adipose tissue during periods of food abundance22,23. Within a few months (generally from April to July), polar 
bears feed actively and can accumulate up to 50% of their body mass as lipids, through consumption of seal 
blubber during the ringed seal (Pusa hispida) pupping and moulting periods24. These energy stores are metabo-
lized during periods of food scarcity or reproductive fasting. For instance, polar bears frequently fast in autumn 
if stranded in areas without access to sea ice, and prey encounter is thought to be low in winter25. Female polar 
bears can sustain a 4–8 month fasting period (late autumn/early winter to the following spring) during denning, 
associated with parturition and lactation26. The reproductive success of female polar bears thus directly depends 
on their lipid stores24.

There is a lack of information on how pollutants may affect energy metabolism in free-ranging polar bears. 
An appropriate response to seasonal feeding is to accumulate triglycerides in adipose tissue when food is avail-
able and release this energy in the form of FAs and glycerol in times of food scarcity. Routti et al. (2016) recently 
showed that lipophilic pollutants (e.g. PCBs, OCPs and brominated flame retardants: BFRs) stored in polar bear 
adipose tissue modulate the polar bear PPARG function and the differentiation of polar bear stem cells into adi-
pocytes27. Furthermore, pollutants are suspected to impair thyroid hormone concentrations in polar bears28–32 
and thyroid hormones are known to be involved in the synthesis, mobilization and degradation of lipids33,34. 
Improved knowledge of the effects of pollutants on energy metabolism is crucial to understanding how polar 
bears will respond to ongoing habitat loss associated with global warming35. Sea ice decline has been documented 
to result in longer periods of fasting, reduced foraging opportunities, lower body condition, decreased access to 
denning areas and lower survival of cubs36–38. Furthermore, declining sea ice has contributed to increased concen-
trations of lipophilic pollutants in polar bears due to a decrease in body condition39. Impaired lipid metabolism 
caused by pollutant exposure may have significant consequences on polar bear physiology and reproduction35. 
Within the circumpolar habitat of polar bears, the Barents Sea has been experiencing the fastest loss of sea ice 
extent over the past decades40, and polar bears from that area are among the most polluted Arctic wildlife pop-
ulations with respect to OHCs20,41–45. The combination of these two factors may put Barents Sea polar bears at 
especially high risk to multi-stress effects by pollutants and climate change.

The main goal of the present study was to investigate the effects of OHC exposure on energy metabolism in 
Barents Sea polar bears at multiple levels. In addition, we described how energy biomarkers varied according to 
nutritional state (feeding or fasting individuals) and we investigated whether sea ice conditions interact with the 
effects of OHCs on energy metabolism in polar bears. Specifically, we investigated whether the response of energy 
metabolism to pollutant exposure differed when sea ice was less extended and bears were under nutritional stress 
compared to more “seasonally adequate” sea ice conditions39. The biomarkers of energy metabolism included 
targeted analyses (i.e. gene transcription and FA metabolism in adipose tissue, and concentrations of lipid related 
variables in plasma), and non-targeted end-points such as plasma metabolome and lipidome, which are consid-
ered as final downstream products of gene transcription.

Results
Targeted biomarkers of energy metabolism.  We assumed that most females captured in April would 
be in a feeding state whereas most of those captured in September would be in a fasting state. In female polar 
bears, which were in a feeding state, we measured higher expressions of PPARG, PGC1 and FASN transcript levels 
(Table S1) in adipose tissue as compared to fasting bears. Fasting females had increased de novo FA synthesis, 
decreased FA elongation index and higher plasma concentrations of triglycerides (Table S1). Several variables 
related to lipid metabolism remained unchanged between the two metabolic states (feeding or fasting), including 
PNPLA2, LIPE, ADIPOQ, CD36 and FABP4 transcript levels and concentrations of cholesterol and high-density 
lipoprotein (HDL) (Table S1).

The pollutants included in the redundancy analyses (RDA) explained 62% of the variation of the biomarkers 
of energy metabolism, and the RDA model was highly significant based on Monte-Carlo test (1000 replicates, 
RV coefficient = 0.49, p < 0.001). According to their proximity on the RDA plot, some pollutants were summed 
to reduce the number of predictors used in generalized linear mixed models (GLMMs), resulting in nine pol-
lutant predictors (Fig. 1A). Oxychlordane, trans-nonachlor, hexachlorobenzene (HCB), PCB-118 and BDE-153 
were considered individually, whereas the remaining compounds were summed as follows: Σ13PCBs (PCB-99, 
-137, -138, -153, -156, -157, -170, -180, -183, -189, -194, -206 and -209), Σ3 brominated flame retardants (BFRs: 
BDE-47, -100, hexabromocyclododecane), Σ6 perfluoroalkyl carboxylates (PFCAs with carbon chain length of 8 
to 13) and Σ2 perfluoroalkyl sulfonates (PFSAs with 6 and 8 carbons). Pollutant concentrations (mean ng/g wet 
weight ± SD) in polar bear adipose tissue were 2607 ± 2137 for ∑13PCBs, 22.8 ± 15.9 for PCB-118, 62.2 ± 75.9 
for HCB, 460 ± 349 for oxychlordane, 53.0 ± 62.5 for trans-nonachlor, 22.1 ± 13.8 for ∑3BFRs and 3.37 ± 3.08 for 
BDE-153. Plasma concentrations (ng/g wet weight) of ∑2PFSAs and ∑6PFCAs were 264 ± 130 and 81.7 ± 38.0, 
respectively.
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Relationships between biomarkers of energy metabolism and pollutants were consistent between RDA and 
model averaging estimates (Fig. 1A,B, Table 1). To identify the strongest predictors, we focused on the top models 
explaining the variation in biomarkers of energy metabolism (ΔAICc < 2). The three most competitive models 
and model averaged estimates for these models are given in Table 1. Overall, three major groups of pollutants 
explained most of the variation of biomarkers of energy metabolism. Specifically, ΣPCBs, BDE-153 and oxy-
chlordane were the strongest predictors for PPARG, PGC1, FASN, PNPLA2 transcript levels and FA indexes (de 
novo synthesis and elongation). Trans-nonachlor and PCB-118 were the strongest predictors for LIPE, ADIPOQ, 
CD36 and FABP4 transcript levels. ΣPFCAs and ΣPFSAs were among the strongest predictors for SREBP1 tran-
script levels, and, concentrations of cholesterol, HDL and triglycerides (Table 1). Generally, pollutants predicted 
increases of biomarkers of energy metabolism, except for BDE-153, which predicted a decrease of de novo FA 
synthesis (Fig. 1B, Table 1).

Non-targeted biomarkers of energy metabolism: Metabolome and lipidome.  The partial least square 
(PLS) scores for polar bear metabolome significantly clustered according to season (MANOVA, Pillai trace test, 
F = 31.7, p < 0.001, Fig. 2A). The loadings (Figure S2) indicated that glucose and lactate were the main metabolites 
driving seasonal metabolome segregation with higher concentrations of glucose and lactate in feeding (April) com-
pared to fasting (September) females (see Table S1 for estimates and 95% CI according to season). Other metabolites 
that had less influence on the metabolome segregation were not quantifiable due to misalignment of peaks, which may 
have resulted from the presence of plastic polymers in the sampling tubes or heparin in the plasma samples46,47. For the 
lipidome, the PLS scores also clustered according to season (MANOVA, Pillai trace test, F = 53.09, p < 0.001).

Plasma ΣPFCA concentrations predicted a decrease of lactate concentrations, whereas OHCs did not influ-
ence glucose concentrations in plasma (Table 1). A PLS discriminant analysis correlation plot on the lipidome and 
pollutants clustered pollutants mainly into three groups, one containing PCBs, oxychlordane and BFRs, another 
one containing PFASs (Fig. 2B), and the third cluster containing trans-nonachlor, PCB-118 and HCB. The third 
cluster slightly correlated to a lipid with a mass of 866.7 m/z for which it was not possible to assign the mass of 
any specific lipid due to low abundance in Fourier transform ion cyclotron resonance (FTI-CR). A lipid with a 
mass of 797.6 m/z was found to correlate with the PCBs, oxychlordane and BFRs cluster using the time-of-flight 
mass-spectrometry data, which was assigned as the isotope peak of 796.6 using the FT-ICR coupled to mass spec-
trometry (glycerophosphocholine 37:3).

Declining sea ice exacerbates the effects of pollutants on polar bear energy metabolism.  
During the three periods where availability to sea ice was highest (i.e. April and September 2012 and September 
2013), the metabolic responses of female polar bears were not different between females with high versus low 

Figure 1.  Relationships between biomarkers of energy metabolism and pollutants. (A) Redundancy analysis 
(RDA) loading plot (n = 80) and (B) partial residuals and estimate plots obtained from mixed models (n = 111). 
Plasma and fat samples are from Svalbard female polar bears captured during spring (April) and autumn 
(September) 2012 and 2013. For the RDA (A), boxed labels are response variables and unboxed labels are 
predictors. (B) Dots are the partial residuals, the solid line is the parameter estimate and the grey area represents 
its 95% confidence interval derived from mixed models. Pollutant concentrations are in ng/g wet weight, 
transcript levels are in arbitrary units, lipid parameters in mmol/L.
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Response variable Predictor

Three most competitive models Conditional average estimates and 95% CI

df
log 
Likelihood AICc ΔAICc weight Intercept Predictor

PPARG

ΣPCBs 5 −122.16 254.89 0 0.69

−0.69 [−2.68; 1.29]

0.32 [0.18; 0.47]

BDE-153 5 −123.22 257.02 2.13 0.24 0.33 [0.17; 0.48]

Oxychlordane 5 −124.61 259.8 4.92 0.06 0.30 [0.15; 0.45]

PGC1

ΣPCBs 5 −127.19 264.96 0 0.52

−0.38 [−2.21; 1.45]

0.30 [0.15; 0.45]

BDE-153 5 −127.96 266.5 1.54 0.24 0.30 [0.14; 0.47]

Oxychlordane 5 −128.31 267.19 2.23 0.17 0.29 [0.13; 0.45]

FASN

ΣPCBs 5 −151.86 314.29 0 0.52

−0.62 [−2.99; 1.75]

0.37 [0.18; 0.55]

BDE-153 5 −152.34 315.25 0.96 0.32 0.38 [0.19; 0.58]

Oxychlordane 5 −153.07 316.72 2.43 0.15 0.35 [0.16; 0.55]

PNPLA2

Oxychlordane 5 −93.65 197.87 0 0.58

−0.21 [−1.15; 0.74]

0.24 [0.12; 0.36]

ΣPCBs 5 −94.51 199.6 1.73 0.25 0.22 [0.11; 0.34]

Trans-nonachlor 5 −95.45 201.47 3.6 0.1 0.21 [0.09; 0.33]

LIPE

Trans-nonachlor 5 −85.14 180.86 0 0.84

0.29 [−0.14; 0.73]

0.21 [0.10; 0.31]

PCB-118 5 −87.39 185.36 4.5 0.09 0.20 [0.08; 0.33]

Oxychlordane 5 −88.38 187.34 6.48 0.03 0.17 [0.06; 0.28]

ADIPOQ

PCB-118 5 −121.6 253.78 0 0.48

0.25 [−0.51; 1.02]

0.26 [0.09; 0.44]

Trans-nonachlor 5 −122.21 254.98 1.21 0.26 0.22 [0.07; 0.36]

Oxychlordane 5 −123.1 256.76 2.99 0.11 0.20 [0.05; 0.36]

CD36

Trans-nonachlor 5 −133.63 277.83 0 0.5

0.28 [−0.42; 0.98]

0.25 [0.09; 0.41]

PCB-118 5 −133.92 278.42 0.59 0.37 0.29 [0.09; 0.48]

Oxychlordane 5 −136.26 283.1 5.27 0.04 0.18 [0.01; 0.35]

FABP4

PCB-118 5 −144.18 298.92 0 0.52

0.17 [−0.69; 1.04]

0.33 [0.12; 0.55]

Trans-nonachlor 5 −144.57 299.72 0.79 0.35 0.27 [0.09; 0.45]

ΣPFCAs 5 −146.84 304.26 5.34 0.04 0.45 [0.04; 0.86]

SREBP1

ΣPFCAs 5 −92.8 196.17 0 0.44

0.11 [−1.28; 1.50]

0.37 [0.11; 0.64]

Trans-nonachlor 5 −93.19 196.96 0.79 0.29 0.15 [0.04; 0.27]

ΣPFSAs 5 −94.55 199.68 3.51 0.08 0.27 [0.02; 0.52]

de novo synthesis 
index

BDE-153 5 −111.15 233.1 0 0.99

5.35 [4.44; 6.26]

−0.96 [−1.27; −0.65]

ΣPCBs 5 −116.38 243.55 10.45 0.01 −0.89 [−1.24; −0.53]

Oxychlordane 5 −123.81 258.41 25.31 0 −0.74 [−1.16; −0.31]

Elongation index

BDE-153 5 −135 280.78 0 0.98

3.04 [1.84; 4.23]

0.73 [0.32; 1.14]

ΣPCBs 5 −138.86 288.5 7.72 0.02 0.58 [0.12; 1.04]

Oxychlordane 5 −142.02 294.83 14.05 0 0.37 [−0.15; 0.9]

Cholesterols

ΣPFSAs 5 −205.21 420.99 0 0.63

3.27 [−1.17; 7.71]

1.08 [0.40; 1.77]

ΣPFCAs 5 −206.04 422.66 1.67 0.27 1.08 [0.35; 1.82]

BDE-153 5 −207.88 426.33 5.34 0.04 0.38 [0.04; 0.73]

HDL

BDE-153 5 −105.53 221.64 0 0.33

2.32 [1.02; 3.61]

0.15 [0.02; 0.29]

ΣPFCAs 5 −105.99 222.56 0.91 0.21 0.30 [0.02; 0.59]

ΣPFSAs 5 −106.63 223.84 2.2 0.11 0.24 [−0.02; 0.50]

Triglycerides

ΣPFCAs 5 −84.58 179.74 0 0.84

0 [−1.99; 1.98]

0.47 [0.24; 0.70]

BDE-153 5 −86.83 184.23 4.49 0.09 −0.19 [−0.31; −0.08]

ΣPCBs 5 −87.73 186.04 6.3 0.04 −0.17 [−0.28; −0.06]

Glucose

Null model 4 −284.64 577.67 0 0.17

2.58 [−2.17; 0.7]

0.39 [−2.36; 0.77]

PCB-118 5 −284.03 578.64 0.97 0.11 −0.73 [−0.34; 0.98]

ΣPFSAs 5 −284.04 578.66 0.99 0.11 −0.79 [−0.33; 0.89]

Lactate

ΣPFCAs 5 38.71 −66.84 0 0.44

0.41 [−0.03; 0.86]

−0.084 [−0.164; 
−0.004]

ΣPFSAs 5 37.47 −64.37 2.47 0.13 −0.06 [−0.13; 0.02]

Null model 4 36.22 −64.05 2.78 0.11 0.03 [−0.02; 0.07]

Table 1.  Relationships between biomarkers of energy metabolism and pollutant concentrations in female 
polar bears adipose tissue and plasma captured in Svalbard (2012–2013). The three most competitive models 
including the best predictor (ΔAICc = 0), predictors that received strong support (ΔAICc ≤ 2), conditional 
averaged estimates and 95% confidence intervals derived from mixed models are given. Bold values represent 
significant relationships, shaded rows represent the variables and relationships with ΔAICc < 2.
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levels of pollution: a maximum of two biomarkers of energy metabolism out of 16, had significantly different 
responses according to pollutant level (Table 2). In contrast, among bears sampled when access to sea ice was 
really low (April 2013), the response of seven energy metabolism biomarkers were higher in the more pol-
luted females compared to the less polluted ones (Table 2). In addition, when we consider the biomarkers with 
responses close to significance (0.05 < p < 0.10), the response to pollutants of one more biomarker presented 
differences between the high and low pollution groups during periods with good access to sea ice, whereas during 
the period with low access to sea ice, this was observed in four more biomarkers (Table 2).

Discussion
Most biomarkers of energy metabolism in female polar bears varied in a predictable way between seasons. During 
their feeding state in April, the metabolic response of female polar bears resulted in higher expressions of PPARG, 
PGC1 and FASN and higher concentrations of lactate and glucose compared to fasting September females. These 
biomarkers are involved in gluconeogenesis and FA storage, which would logically occur during a feeding state10. 
SREBP1 transcript levels, de novo FA synthesis and triglyceride concentrations were higher whereas FA elon-
gation index was lower in fasting than in feeding female polar bears. The concomitant action of SREBP1 and 
PPARG lead to increased synthesis of FA which are stored as triglycerides in adipocytes and peripheral tissues7,8. 
Therefore, an up-regulation of SREBP1 transcript levels, de novo FA synthesis and triglyceride concentrations in 
fasting bears is surprising. We would have expected this pattern in feeding females (April) when PPARG tran-
script levels were also upregulated and when polar bears are supposed to store lipids. Several parameters related 
to lipid metabolism remained unchanged between feeding and fasting females. This could occur because polar 
bears express some of the measured biomarkers regardless of the metabolic state and have a flexible metabolism 
that enables them to shift from a feeding to a fasting state regardless the season48.

The absence or occurrence of seasonal variations in biomarkers of energy metabolism could also result from 
pollutant exposure. ΣPCBs, BDE-153 and oxychlordane in polar bear adipose tissue predicted an increase of 
PPARG, PGC1, FASN and PNPLA2 transcript levels. These four genes are involved in the accumulation of tri-
glycerides via glucose and FFA utilization6,49,50. Accordingly, a recent in vitro study by Routti et al. (2016) showed 
that pollutants extracted from polar bear tissue increased accumulation of triglycerides in polar bear adipose 
tissue-derived stem cells during adipogenesis. In contrast, a synthetic mixture of pollutants containing only 
PCBs and organochlorine pesticides, did not affect triglyceride accumulation27. The underlying mechanisms for 
positive relationships between PPARG transcript levels and ΣPCBs, BDE-153 and oxychlordane exposure are 
likely related to other processes than direct activation of PPARG by the pollutants. In the in vitro study the most 
abundant POPs in polar bear adipose tissue (PCB-153 and oxychlordane) and a mixture of PCBs, chlorinated 
pesticides and PBDEs reflecting concentrations in polar bear adipose tissue, antagonized polar bear PPARG27. 
However, the in vitro study tested whether pollutants would activate a fusion protein of the yeast GAL4-DBD 
and the PPARG ligand-binding domain27, but in vivo PPARG forms a permissive heterodimer with retinoid X 
receptor (RXR), by which RXR ligands can also activate the PPARG/RXR dimer51,52.

Trans-nonachlor and the dioxin-like (coplanar) PCB-118 predicted an increase of LIPE, ADIPOQ, CD36 and 
FABP4 transcript levels. The resulting proteins of these four genes affect both the activity and transcript level of each 
other. For instance, in mice adipocytes, FABP4 and ADIPOQ, respectively, increase and suppress LIPE catalytic 
activity14,53. Moreover ADIPOQ up-regulates CD36 in human macrophage foam cell formation54. The observed 
relationships are likely to stem from effects involving the aryl hydrocarbon receptor (AhR)55. Dioxin-like PCBs 
(e.g. PCB-118) are AhR agonists56 and long-term activation of AhR induces hepatic accumulation of triglycerides 
in transgenic mice, likely owing to the combined up-regulation of CD36, FA transport proteins and suppression 
of FA oxidation57. Similarly, trans-nonachlor could induce the AhR pathway up-stream or down-stream. Indeed, 
trans-nonachlor gavage in rats induced liver cell hypertrophy and increased hepatic total lipids, triglycerides and 
phospholipids58,59. These pathways have been extensively studied in the liver, but they likely also occur in adipose 
tissue, since AhR is expressed in white adipose tissue of several mammals60. Therefore, we may assume that PCB-118 
and trans-nonachlor could disrupt FA transport, oxidation and insulin utilization via the AhR.

Finally, PFASs were related to SREBP1 transcript levels and biomarkers of energy metabolism in plasma. This 
association could involve a disruption of the hypothalamic-pituitary-thyroid (HPT) axis. As previously mentioned, 
PFASs predicted decreased concentrations of free triiodothyronine (T3) in the present female polar bears31. In humans, 
and in murine and primate models, studies have reported negative associations between thyroid hormones and lipid 
related plasma parameters such as cholesterol, triglycerides and HDL61–63. These studies suggest that a disruption of 
thyroid hormones leads to disrupted levels of plasma lipids. SREBP1 is likely an intermediate for these relationships. 
T3 represses SREBP1 expression in human adipocytes, therefore lower T3 concentrations result in increased SREBP1 
expression64. Further, SREBP1 is involved in the regulation of cholesterol homeostasis and gluconeogenesis65,66. In 
addition, in human dermal fibroblasts, T3 enhances the production of lactate67. Thus, the PFAS-associated decrease of 
thyroid hormones could account for the decrease of lactate we observed in Svalbard polar bears.

In the present study, we focused on the most significant relationships between pollutants and biomarkers of 
energy metabolism (i.e. highest ranked models with pollutants as predictors). Yet we cannot exclude the possi-
bility that other pollutants not measured in this study could contribute to the disruption of energy metabolism 
in polar bears. For instance, suspect/non-target screening in polar bear tissue extracts indicated the presence of 
phthalates, nonylphenol and tonalide27, which are potential enhancers of adipogenesis68,69. Consequently, other 
pathways could also influence the relationships between energy metabolism and pollutants. For example, the 
RXR, the liver X receptor (LXR) in hepatocytes, and the pregnane X receptor (PXR) play a major role in the reg-
ulation of metabolism and are known targets for pollutants in mammals, including polar bears70–72. Furthermore, 
metabolic pathways can be interrupted or modified at several points and alter both expression and activity of 
proteins involved in lipid composition. For example, at the transcriptional level, FASN was positively related 
to ΣPCBs, whereas the FA de novo synthesis index in adipose tissue was negatively related to BDE-153. The 
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relationship between FA de novo synthesis and BDE-153 could result from another pathway involving the “elon-
gation of very long chain FA” (ELOVL6) gene73. The ELOVL6 enzyme controls FA composition in adipose tissue74. 
Consequently, BDE-153, which is positively related to FA elongation index could increase elongase activity, lead-
ing to increased polyunsaturated FAs, some of which can downregulate de novo lipogenesis75,76. Although it is not 
yet possible to establish a true causality chain, our data coupled to recent in vitro studies27,72 suggest that OHCs 
disrupt energy metabolism in free ranging female polar bears (Fig. 3). Studies on other marine mammals have 
also related transcript level changes in lipid metabolism to pollutant exposure77,78.

Although, the metabolome and the lipidome of female polar bears from Svalbard mainly clustered accord-
ing to sampling season, we observed associations between the lipidome and pollutants. These results suggest 
that foraging ecology, which further controls body condition and pollutant exposure, is the main predictor of 
female polar bears’ metabolome and lipidome. In Northern elephant seals (Mirounga angustirostris), lactation 
and post-weaning fasting resulted in blood metabolome variation79. Moreover in female mink (Neovison vison), 
blood metabolome showed a clear clustering according to feeding regimen (restrictive vs. ad libitum feeding80). 
With regard to the assignment relationships between pollutants and the lipidome, these are tentative results, and 
should be followed up by detailed lipid characterization by MS/MS shotgun lipidomic methods81,82. Nevertheless, 
our results suggest that at the lipidome level, PCB, oxychlordane and BFRs could interact with the glycerophos-
phocholine pathway synthesis.

The consequences of associations between pollutants and parameters related to energy metabolism are for 
now unknown, but decreased de novo FA synthesis in polar bears with high pollutant exposure suggests that these 
individuals might be unable to convert excess carbohydrates to FAs. In addition, an excess of cholesterol synthesis 
related to PFAS may have subsequent effects on reproduction and health, since cholesterol is the precursor to all 
steroid hormones such as progesterone, testosterone, estradiol and glucocorticoids83–85. Consequently, a disrup-
tion of cholesterogenesis could influence much more than lipid metabolism and can be a starting point to steroid 
hormone disruption in polar bears86 and contribute to a number of metabolic diseases87.

In the current context of climate change, a reduction in sea ice extent may increase the energy that polar bears 
allocate to hunting (e.g. swimming longer distances or occupying larger home ranges); a finely tuned use of lipid 
stores is therefore required in an unpredictable environment. Combined effects of pollutants and climate change 
have been considered as a worst-case scenario to Arctic wildlife88. Here, we show that the response of energy 
metabolism to pollutants are more contrasted between more and less polluted females during periods with little 
sea ice39. Although sample size was low when splitting the dataset into eight classes, our results suggest that com-
bining stressful environmental conditions to high concentrations of pollutants may act additively or synergisti-
cally to disrupt energy metabolism in polar bears. This study highlights the consequences of two anthropogenic 
threats to Arctic wildlife that need to be better understood and identified in order to preserve Arctic wildlife. 
Further studies are needed to reveal consequences of a disrupted energy metabolism in polar bears on fitness.

Methods
Field sampling.  A detailed description of fieldwork, sample collection, storage, breeding status and geo-
graphical habitat categorization are given in the supporting information. Briefly, 112 adult female polar bears 
(estimated age 4–28 years) from the Barents Sea subpopulation were captured non-selectively in Svalbard during 

Figure 2.  Polar bear metabolome and lipidome. (A) Three dimension representation of female polar bears 
metabolome according to season (n = 111) characterized by low molecular weight metabolites. The three 
axes are obtained from partial least squares scores. (B) Female polar bear lipidome in relation pollutants. The 
lipidome is characterized by lipid fingerprinting determined in female polar bear plasma (n = 101). The figure 
represents lipids exact mass (m/z) in pink and pollutants in blue. Bears were sampled at Svalbard, Norway 
during spring (April: green dots in A) and autumn (September: orange dots in A) 2012 and 2013.
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two seasons, spring (April) and autumn (September) 2012 and 2013. The bears were immobilized by remote 
injection and blood samples and adipose tissue biopsies were collected from each bear.

Fieldwork was carried out in accordance with relevant guidelines and regulations from the Governor of 
Svalbard and was approved by the Norwegian national animal research authority (FOTS).

Gene description and transcript level analysis by relative quantitative real-time PCR 
(qPCR).  The studied genes in adipose tissue included PPARG, PGC1, FASN, PNPLA2, LIPE, ADIPOQ, CD36, 
FABP4 and SREBP1. Total RNA was extracted from adipose tissue samples in the 112 polar bear samples using 
RNeasy Lipid Tissue Mini kit (QIAGEN, Oslo Norway) and cDNA produced from 1 μg RNA using qScript cDNA 
Synthesis Kit (Quanta Biosciences, Massachusetts, US). Quantitative real-time PCR was performed using SYBR 
Green I Master on a LightCycler® 480 (Roche, Basel, Switzerland). Detailed information on cycling conditions, 
establishment of standard curves, amplification efficiency and specificity is found in the supporting information 
(Table S2, Figure S1). Specific amplification of target and reference genes was confirmed by evaluation of melting 
curves and by agarose gel electrophoresis (Supporting information). Gene transcript levels were analyzed at the 
University of Bergen (UiB, Bergen, Norway).

Determination of FAs from adipose tissue and FA indexes.  Proportional mass data for 33 FAs were 
derived from 83 of the 112 polar bear samples, following methods described in the supporting information. 
We calculated two ratios between individual FAs as proxies of 1) FA de novo synthesis, which provides infor-
mation on the conversion of excess carbohydrates to FAs and triacylglycerol89 and 2) FA elongation which pro-
vides information on the elongation of saturated and monounsaturated FA into very long chain FAs90. The ratios 
between individual FAs were calculated as follows: FA de novo synthesis (16:0/18:2n − 6)89 and FA elongation 
index ((18:0 + 18:1n − 9)/16:0)73,90. FA analysis was conducted at York University (Toronto, ON, Canada) and 
Dalhousie University (Halifax, NS, Canada).

Lipid parameters determination in plasma.  Plasma cholesterol, triglyceride and HDL concen-
trations (n = 111, mmol/L) were determined using a “dry” clinical-chemical analyzer, Reflotron® (Model IV, 
Boehringer-Mannheim GmhB, Mannheim, Germany) at the Norwegian University of Science and Technology 
(NTNU, Trondheim, Norway). Methods are detailed in the supporting information.

Metabolome and lipidome.  In plasma samples, polar metabolites (n = 111) and lipids (n = 101), were 
separated as detailed in the supporting information. The detected metabolite features, including ion source frag-
ments, adducts and isotopic ions, are defined by a unique combination of m/z and retention time value91. The 
metabolome (low molecular weight polar metabolites) was characterized by nuclear magnetic resonance spec-
troscopy. The lipidome was characterized by fingerprints obtained from flow injection time-of-flight mass spec-
trometry with electrospray ionization. The most important polar metabolites that were affected by environmental 

Pollutant concentrations: High vs low

April 2012, 
n = 33

September 
2012, n = 24

April 2013 
(Stressful), n = 29

September 
2013, n = 26

Transcript levels

PPARGa High = Low High = Low High > Low* High = Low

PGC1a High = Low High = Low High > Low* High = Low

FASNa High = Low High > Low• High > Low• High = Low

PNPLA2a High = Low High = Low High > Low* High = Low

LIPEb High = Low High = Low High > Low* High = Low

ADIPOQb High > Low• High = Low High > Low• High = Low

CD36b High = Low High = Low High > Low* High = Low

FABP4b High = Low High = Low High = Low High = Low

SREBP1c High > Low* High > Low* High = Low High = Low

FA indexes
de novo 
synthesise High < Low* High = Low High < Low• High < Low*

Elongatione High = Low High = Low High > Low• High = Low

Plasma parameters

Cholesterold High = Low High = Low High > Low* High = Low

HDLc High = Low High = Low High > Low* High = Low

Triglyceridesc High = Low High > Low* High = Low High = Low

Lactatec High = Low High = Low High = Low High < Low*

Table 2.  Combined effects of sea ice and pollutants on energy metabolism. Energy metabolism response to 
High or Low pollutant concentrations during stressful (spring 2013) and non-stressful (spring and autumn 
2012, autumn 2013) sampling periods. We used spring 2013 as a reference “stressful period”. For each group 
of pollutant (best predictor according to AICc), the data set was split into two classes separated by the median 
pollutant concentration, resulting in one high and one low polluted group for each individual or group of 
pollutants. “High” refers to more polluted females with pollutant and “Low” to less polluted females. Pollutants 
used for high - low classification: aΣ(13PCBs, oxychlordane), bΣ(PCB-118, trans-nonachlor), cΣ6PFCA, 
dΣ2PFSA, eBDE-153. *p < 0.05, •p < 0.10.



www.nature.com/scientificreports/

8Scientific RePorTS | 7: 16487  | DOI:10.1038/s41598-017-16820-5

and/or physiological factors were quantified by integration against trimethyl-silyl-propionate in MestreNova 8.1 
(MestreLab Research S.L) and lipids were quantified by their exact mass (m/z) via Fourier transform ion cyclo-
tron resonance. Metabolome and lipidome were measured at SINTEF (Trondheim, Norway).

Pollutant determination in plasma and fat.  OHCs were determined at the Norwegian University of Life 
Science (NMBU, Oslo, Norway). Concentrations of lipophilic pollutants (ng/g wet weight) such as PCBs, OCPs 
and BFRs were determined in adipose tissue (n = 111), whereas non-lipophilic pollutants such as perfluoroalkyl 
substances (PFASs) were determined in plasma (n = 112). Methods and limits of detection (LOD) have been 
reported elsewhere39,92. The compounds used for statistical analyses were those that were above the LOD in more 
than 90% of the samples. In adipose tissue, this was the case for: 14 PCBs (CB-99, -118, -137, -138, -153, -156, 
-157, -170, -180, -183, -189, -194, -206 and -209), oxychlordane, trans-nonachlor, HCB, and four BFRs (BDE-47, 
-100, -153, hexabromocyclododecane). In plasma, the concentrations of the following compounds were detected 
in >90% of the samples: six PFCAs with 8 to13 carbons (perfluorooctanoate, perfluorononanoate, perfluorode-
canoate, perfluoroundecanoate, perfluorododecanoate and perfluorotridecanoate) and two PFSAs with 6 and 8 
carbons (perfluorohexane sulfonate and perfluorooctane sulfonate). If a compound had one or more value below 
LOD we generated random numbers (“runif ” function in the software R-3.2.5) ranging between the LOD value 
and ½ LOD. The pollutant levels and variations according to season, body condition diet and breeding status have 
already been discussed in previous studies39,92.

Combined effects of pollutants and sea ice conditions.  During the four sampling periods of this 
study (April 2012, September 2012, April 2013 and September 2013), April 2013 was considered as a “stressful 
period” due to the severely poor sea ice conditions during the previous winter39. During winter/spring 2013, 
Svalbard was mostly ice-free and sea ice concentrations rarely exceeded 12.5%, as opposed to during winter/
spring 2012 when sea ice concentrations varied from 25% to more than 50%93. Furthermore, the abundance of 
preferred sea ice habitat available to polar bears was low during the months preceding the sampling period in 
April 2013 compared to the months preceding the other sampling periods92. As compared to the other 3 capture 
periods, in April 2013 a larger proportion of female polar bears were under nutritional stress as suggested by 
lower body condition, larger proportion of fasting females (higher urea to creatinine ratio) and higher δ15N val-
ues, suggesting that females were catabolizing their protein pool, thus under nutritional stress39,92.

Data availability and statistical analyses.  All data are made available on the Norwegian Polar Institute 
data repository (data.npolar.no). Statistical analyses were performed using R 3-2.594. First, we investigated the 
effects of metabolic state (i.e. if the bears were fasting versus feeding) on biomarkers of energy metabolism. To 
do so, we considered season as a proxy of metabolic state and assumed that most females captured in April were 
feeding whereas most females captured in September were fasting92. We then tested the effect of season on bio-
markers of energy metabolism by using GLMM (R package nlme version 3.1–12195) with female identity as a 
random factor.

The best predictors of the concentrations of lipophilic and proteinophilic pollutants in the polar bears used 
in this study were previously determined to be body condition and diet, respectively, which are both related to 
season31,39,92,96. We tested the effects of age, body condition index (BCI), body mass and diet proxies (nitrogen 
and carbon stable isotope values in red blood cells) on energy metabolism biomarkers (Table S3). All energy 

Figure 3.  Schematized functions of the genes of interest and summary of the relationships between pollutants 
and biomarkers of energy metabolism in (A) a white adipocyte and (B) plasma. For a detailed description of 
lipid metabolism in white adipocyte see Sethi and Vidal-Puig (2007)106.
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biomarkers were either predicted by BCI, body mass or diet proxies (Table S3) and as previously mentioned 
BCI, body mass and diet proxies are all confounded with season31,39,92,96. To remove the possible confounding 
effect of season and test the effect of pollutants on metabolism biomarkers, we used GLMMs with pollutant 
concentrations as fixed factors, and, female identity and season as random factors. Prior to this, we performed a 
RDA97,98 to visualize the potential relationships between pollutants and biomarkers, and the pollutants were then 
grouped according to their proximity in the RDA loading plot. Then, for each response variable we built ten can-
didate models that included all the pollutants, individually or summed and the null model. We used conditional 
model averaging to make inferences from all the GLMMs. To rank the models we used an information-theoretic 
approach99 based on Akaike’s information criterion corrected for small sample size (AICc, R package MuMIn)100. 
The number of parameters (K), the difference in AICc values between the “best” model and the model at hand 
(ΔAICc) and a normalized weight of evidence in favor of the specific model, relative to the whole set of candi-
date models, derived by e(−0.5(ΔAICc)) (AICc weights) were calculated. We calculated averaged estimates for all 
predictor variables in the candidate model list, weighted using the AICc weights99,101. We obtained conditional 
parameter-averaged estimates (β) and 95% confidence intervals (CIs) for the predictors (individual or summed 
pollutants) included in the most competitive models (Table 1). We used 95% CI of the model averaged estimates 
to determine if parameters were significantly different from 0 at the 5% level. To determine if season could pre-
dict metabolome and lipidome raw data, we used PLS and MANOVA. Further, we studied relationships between 
the lipidome and pollutant concentrations. Using the mixOmics library in R102 a sparse PLS103,104 with multi-Y 
response was conducted with pollutant concentrations as response variables and the lipidome as predictor var-
iables. Keeping 29 response and predictor variables, correlations between lipids and pollutants were observed.

Finally, to test for possible combined effects of sea ice conditions and internal pollutant levels on energy 
metabolism, we checked if the response of biomarkers of energy metabolism to pollutant concentrations differed 
between sampling periods qualified as “normal” such as April 2012, September 2012 and September 2013 or 
“stressful” (April 2013). We selected the pollutants that mostly influenced the biomarkers of energy metabolism 
(see Table 1). For each group of pollutant (best predictor according to AICc), the data set was split into two classes 
separated by the median pollutant concentration, resulting in one high and one low polluted group for each indi-
vidual or group of pollutants. Due to variation in the internal concentrations of various pollutants in the bears, 
the individual bears were not necessarily the same in each group, according to the pollutant considered. Then, we 
compared the responses (concentrations, transcript levels) of biomarkers of energy metabolism between more 
and less polluted females for each period (spring 2012, autumn 2012, spring 2013 and autumn 2013). We used 
least square means (LSMs) comparisons to check whether the metabolic response of female polar bears from the 
more or less polluted groups differed for each sampling period. In unbalanced factorial experiments, LSMs for 
each factor mimic the main-effects means, but are adjusted for imbalance105.
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