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Abstract 

The apo-form of the 23.3 kDa catalytic domain of the AA9 family lytic polysaccharide monooxygenase 

NcLPMO9C from Neurospora crassa has been isotopically labeled and recombinantly expressed in Pichia 

pastoris. In this paper, we report the 1H, 13C, and 15N chemical shift assignments of this LPMO. 
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Biological context 

Lignocellulosic biomass is primarily composed of cellulose, hemicellulose and lignin. Cellulose forms crystalline 

structures that make the polysaccharide resistant to enzymatic hydrolysis. The formation of co-polymeric 

structures with hemicelluloses such as xylan, glucomannan or xyloglucan may create additional barriers for 

enzymatic conversion. Biomass recalcitrance is a challenge for biomass conversion and the utilization of cellulose 

in biorefineries. Enzymatic biomass conversion normally requires several enzymes, including hydrolases and the 

recently discovered lytic polysaccharide monooxygenases (LPMOs). LPMOs comprise four families of 

carbohydrate-active enzymes (AA9, AA10, AA11 and AA13) (Levasseur et al. 2013; Hemsworth et al. 2014; Lo 

Leggio et al. 2015; Beeson et al. 2015; Hemsworth et al. 2015) that catalyze oxidative cleavage (Vaaje-Kolstad 

et al. 2010; Quinlan et al. 2011; Phillips et al. 2011; Kim et al. 2014). LPMOs boost the activity of the hydrolytic 

polysaccharide degrading enzymes and are thus of great importance for efficient biomass conversion.  

Previous NMR investigations of LPMOs have been carried out solely on chitin-active members of the bacterial 

AA10 family (Aachmann et al. 2011; Aachmann et al. 2012; Courtade et al. 2014), whereas studies on the solution 

structures of the industrially more important fungal LPMOs in family AA9 are lacking. Here, we have focused on 

NcLPMO9C, a C4-oxidizing AA9 LPMO from Neurospora crassa that has been shown to cleave β-1,4 glycosidic 

bonds in cellulose, cellulose oligomers and hemicellulose β-glucans such as xyloglucans (Kittl et al. 2012; Isaksen 

et al. 2013; Agger et al. 2014). The X-ray diffraction structure (PDB ID: 4D7U) of this protein has been published 

recently (Borisova et al. 2015). The structure displays the typical LPMO core composed of two β-sheets (one 3-

stranded and one 4-stranded) that form a β-sandwich fold from which several loops protrude. The copper ion (a 

necessary cofactor for all LPMOs) is coordinated by the N-terminal histidine (His1), its side-chain (Nδ1) and the 

side-chain (Nε2) of His83. The hydroxyl group of a characteristic tyrosine, Tyr166, further shapes the copper-site 

by occupying one of the axial coordination positions. This copper coordination site is located in the center of a 
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flat surface, which is the putative substrate-binding site (Vaaje-Kolstad et al. 2005; Vaaje-Kolstad et al. 2010; 

Quinlan et al. 2011; Aachmann et al. 2012; Hemsworth et al. 2013). 

The unique ability of NcLPMO9C to act on soluble substrates makes it an attractive candidate to investigate 

substrate-binding of LPMOs in solution using NMR spectroscopy. The NMR assignment data presented here will 

allow future structural and functional studies on the apo-form of this LPMO. 

 

Methods and experiments 

The NMR assignment was performed on the apo-form of the recombinantly expressed catalytic domain of 

NcLPMO9C (also known as NCU02916). Cloning was performed as described previously (Borisova et al. 2015). 

The production of the isotopically labeled catalytic domain of NcLPMO9C was based on the protocol published 

by Pickford and O’Leary (Pickford and O’Leary 2004) for shake-flask cultures, with some modifications. In 

specific, the Pichia culture medium used in this study was 13C, 15N-labelled buffered minimal glucose medium 

(13C, 15N-BMD), composed of 0.34% (w/v) yeast nitrogen base (YNB) without amino acids or ammonium sulfate 

(Becton, Dickinson & Company, Sparks, MD 21152, USA), 4×10-5% (w/v) biotin (Sigma-Aldrich, St. Louis, MO, 

USA), 1% (w/v) 15N-labeled ammonium sulfate (Cambridge Isotope Laboratories, Tewksbury, MA, USA) and 

0.5% (w/v) 13C-labeled glucose (Cambridge Isotope Laboratories, Tewksbury, MA, USA) in 100 mM potassium 

phosphate buffer pH 6.0. After inoculation with single P. pastoris colonies, the culture was incubated with shaking 

(180 rpm) at 28oC for 44 h. For the isolation of the isotopically labelled protein, the culture supernatant was 

recovered by centrifugation followed by sequential filtering through 0.45 μM and 0.22 μM polyethersulfone (PES) 

filters (Millipore, Billerica, MA, USA). A Vivaflow 200 tangential cross-flow protein concentrator (MWCO 5 

kDa, Sartorius Stedim Biotech GmbH, Germany) was used to concentrate the supernatant and exchange buffer to 

50 mM MES pH 6.5, 150 mM NaCl. The concentrated sample was loaded onto two Superdex 75 gel filtration 

columns (GE Healthcare Bio-Sciences, AB, Sweden), connected in series.  

In order to obtain the apo-form of the protein, the sample was incubated in a 50 mM MES buffer pH 6.5 and 

150mM NaCl containing 8 mM EDTA for 45 minutes at room temperature. Subsequently, the buffer was changed 

to 25 mM sodium phosphate buffer pH 5.5 and 10 mM NaCl in 90% H2O/10% D2O, using a Vivaspin 6 protein 

spin concentrators (MWCO 5 kDa, Sartorius Stedim Biotech GmbH, Germany). The protein concentration was 

determined by measuring the A280 of the protein solution using a NanoDrop ND-1000 spectrophotometer (Thermo 

Fisher Scientific, Waltham, MA, USA) and deducing the protein concentration based on the theoretical extinction 

coefficient (calculated using the ProtParam tool; http://web.expasy.org/tools/protparam/) (Gasteiger et al. 2005). 

The final samples contained 0.1-0.2 mM apo-NcLPMO9C. 

The NMR spectra were recorded at 25oC on a Bruker Avance III 600 MHz spectrometer equipped with a 5 mm 

Z-gradient CP-TCI (H/C/N) cryoprobe or a 5 mm Z-gradient Prodigy TCI (H/C/N) cryoprobe at the NT-NMR-

Center/Norwegian NMR Platform in Trondheim, Norway and at the Department of Chemistry and Biosciences, 

Aalborg University, Aalborg, Denmark, respectively. 1H shifts were referenced internally to HDO, while 13C and 
15N chemical shifts were referenced indirectly to HDO, based on the absolute frequency ratios (Zhang et al. 2003). 

Sequence-specific backbone and side-chain assignments of NcLPMO9C were accomplished using 15N-HSQC, 
13C-aliphatic HSQC, 13C-aromatic HSQC, HNCO, HN(CA)CO, HNCA, CBCANH, CBCA(CO)NH, 

HBHA(CBCACO)NH, (H)CCH-TOCSY, H(C)CH-TOCSY, (HB)CB(CGCD)HD, CACO, CON, 15N-edited 

NOESY-HSQC, and 13C-edited aliphatic and aromatic NOESY-HSQC spectra. The NMR data were recorded and 

processed with Bruker TopSpin version 3.2/3.5 and spectral analysis was performed using CARA version 1.5.5 

(Keller 2004). Secondary structure elements were analyzed using the web-based version of the TALOS-N 

software (http://spin.niddk.nih.gov/bax/software/TALOS-N/) (Shen and Bax 2013) using the N, C’, HN, Cα, Cβ, 

Hα and Hβ chemical shifts.  
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Assignment and data deposition 

We report here the assignment of the backbone and side-chain resonances of NcLPMO9C. The 15N-HSQC 

spectrum of NcLPMO9C, together with the assignment of the resonances is shown in Fig. 1. The backbone and 

side-chain assignments are essentially complete (HN, Hα, N, Cα, C’ > 98%; H and C side-chains > 90%). Because 

of fast-exchange, the amide group of His1 could not be found, whereas other nuclei of this residue (Cα/Hα, C’, 

Cε1/Hε1) were assigned. Exchangeable side-chain protons were not assigned, nor were the amide side-chain 

protons of Asn and Gln. For the aromatic side-chains, assignment of the side-chain Cε1/Hε1 and Cδ2/Hδ2 histidine 

pairs was prioritized and successful, whereas other aromatic side-chains were not assigned. The chemical shift 

data has been deposited in the Biological Magnetic Resonance Data Bank (BMRB) under the accession number 

26717. 

Analysis of the secondary structure elements of NcLPMO9C indicated the presence of one α-helix (in the so-

called LS loop) and 7-8 β-strands. The length and position of these secondary structure elements was in excellent 

agreement with those observed in the X-ray crystal diffraction structure of NcLPMO9C. 
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Fig. 1 1H, 15N HSQC spectrum of 13C, 15N-labeled apo-NcLPMO9C (0.2 mM) from N. crassa in (90:10) H2O:D2O 

at pH 5.5, 298 K. Residue types and numbers are indicated. 
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