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ABSTRACT

Metabolic disorders are disturbances to one or more 
of the metabolic processes in dairy cattle. Dysfunc-
tion of any of these processes is associated with the 
manifestation of metabolic diseases or disorders. In 
this review, data recording, incidences, genetic pa-
rameters, predictors, and status of genetic evaluations 
were examined for (1) ketosis, (2) displaced abomasum, 
(3) milk fever, and (4) tetany, as these are the most 
prevalent metabolic diseases where published genetic 
parameters are available. The reported incidences of 
clinical cases of metabolic disorders are generally low 
(less than 10% of cows are recorded as having a meta-
bolic disease per herd per year or parity/lactation). 
Heritability estimates are also low and are typically 
less than 5%. Genetic correlations between metabolic 
traits are mainly positive, indicating that selection to 
improve one of these diseases is likely to have a posi-
tive effect on the others. Furthermore, there may also 
be opportunities to select for general disease resistance 
in terms of metabolic stability. Although there is in-
consistency in published genetic correlation estimates 
between milk yield and metabolic traits, selection for 
milk yield may be expected to lead to a deterioration in 
metabolic disorders. Under-recording and difficulty in 

diagnosing subclinical cases are among the reasons why 
interest is growing in using easily measurable predictors 
of metabolic diseases, either recorded on-farm by using 
sensors and milk tests or off-farm using data collected 
from routine milk recording. Some countries have al-
ready initiated genetic evaluations of metabolic disease 
traits and currently most of these use clinical observa-
tions of disease. However, there are opportunities to 
use clinical diseases in addition to predictor traits and 
genomic information to strengthen genetic evaluations 
for metabolic health in the future.
Key words: metabolic disease, ketosis, displaced 
abomasum, milk fever

INTRODUCTION

In dairy cattle management, data recording, and 
genetic evaluation, interest has been growing in reduc-
ing the manifestation of dairy production diseases to 
improve animal welfare, production efficiency, and farm 
profitability. The image of the dairy industry is also 
of great importance, as consumer awareness and inter-
est in animal welfare and consequent societal effects 
have become more prominent (Boichard and Brochard, 
2012). Common dairy cattle health disorders, such 
as mastitis and lameness-causing claw diseases, have 
received a large amount of attention, as the relative 
economic effect of these diseases is substantial (e.g., 
Kelton et al., 1998; Cha et al., 2010, 2011). In com-
parison, the literature pertaining to selection and data 
recording focusing on metabolic diseases has received 
less attention, but is nevertheless an important issue for 
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breeding goals today and in the future (Boichard and 
Brochard, 2012).

Metabolic disorders are disturbances to one or more of 
the metabolic processes. Metabolic processes are the re-
lease and conversion of metabolites that are either used 
in production processes or excreted as waste (Ametaj 
et al., 2010). Dysfunction, or physiological imbalance, 
of any of these processes are associated with the mani-
festation of metabolic diseases or disorders (Ingvartsen 
and Friggens, 2005). In a veterinary context, the terms 
diseases and disorders can be used interchangeably. In 
total, 72 metabolic conditions (mostly causal, some 
descriptive diagnoses) have been considered in the 
central health key included in the recommendations 
for recording health disorders in dairy cattle of the In-
ternational Committee for Animal Recording (ICAR; 
http://www.icar.org/index.php/publications-technical-
materials/recording-guidelines/, Section 7, appendix). 
As the occurrence of many of these diseases is likely to 
be too low for genetic parameter estimation, the focus 
of this review will be on the most prevalent diseases, 
in clinical or subclinical form, in addition to those for 
which potential indicator traits have already been re-
ported: (1) ketosis, (2) displaced abomasum, (3) milk 
fever, and (4) tetany.

There are multiple and complex associations between 
metabolic diseases and other diseases, affecting, for ex-
ample, feet and legs and reproductive function (Curtis 
et al., 1985). Intermediate traits, such as energy bal-
ance, could be defined to capture such relationships 
(e.g., Suthar et al., 2013). However, secondary condi-
tions and feeding and management interventions will 
not be included in this review. Our focus is on data 
recording and subsequent use of these data for genetic 
parameter estimation and genetic evaluation.

Intense selection for production has led to a reliance 
on body reserves to support early lactation. Conse-
quently, the commencement of lactation and some of 
the remainder of lactation are often in negative energy 
balance. This leads to an imbalance in hormones and 
metabolites giving rise to metabolic diseases (White, 
2015). Dysfunction or imbalance in metabolic processes 
leads to disease, so it is not surprising that genetic 
correlations between many dairy cow production dis-
eases and milk production traits are mostly unfavorable 
(e.g., Uribe et al., 1995; Pryce et al., 1997; Van Dorp 
et al., 1998; Zwald et al., 2004b; Koeck et al., 2013). 
Usable genetic variation in metabolic stability implies 
that breeding should be considered as a way to achieve 
improvements.

In 1988, the first major review of data recording op-
portunities and consequently breeding strategies to im-
prove production diseases was published (Emanuelson, 

1988). Since then, several countries have implemented 
routine genetic evaluations for health traits using pre-
dominantly producer-recorded data (Egger-Danner et 
al., 2015). Disease resistance breeding values are also 
available commercially from several breeding compa-
nies and commercial genotyping service providers. Ad-
ditionally, a large amount of effort has gone into genetic 
analysis of subclinical disease, measured either in blood, 
which is often the gold standard for diagnosis of sub-
clinical diseases, or alternatively, using other predictors 
from automated systems (e.g., based on routine milk 
analysis, on-farm sensors, or both). This is especially 
valuable if the predictor can be measured objectively 
and in a repeated manner, as it reduces the risk of bias 
and generally means that the genetic variation is easier 
to disentangle from residual variation. Furthermore, 
genomic selection has become a powerful enabling tool 
for generating breeding values where the data are only 
collected in a relatively small population of genotyped 
individuals, but the prediction equations are available 
for entire genotyped populations (Egger-Danner et al., 
2015). Therefore, several new strategies could be used 
for the genetic improvement of metabolic diseases.

The aims of this review were to describe (1) large-
scale (national) data recording for metabolic diseases; 
(2) incidences of metabolic diseases from large (nation-
al) data sets; (3) issues associated with the quality of 
data recording; (4) heritability estimates of metabolic 
diseases; (5) genetic correlations with other traits; (6) 
overview of genetic evaluations for metabolic diseases 
(by country of selected countries); and (7) alternative 
measures and assays that can be used as predictors of 
metabolic diseases.

NATIONAL DATA RECORDING OF DIRECT 
METABOLIC DISEASE TRAITS

Consistent standards for the definition of metabolic 
diseases are a prerequisite in any program designed to 
quantify and monitor incidences, develop management 
practices, and estimate breeding values (Kelton et al., 
1998). The first necessity is defining the disease and the 
basis of its clinical and subclinical diagnosis (Table 1), 
and second, provided the disease is measured consis-
tently, assessing the frequency of the disease. This can 
either be the incidence (rate of new cases per unit of 
time), or prevalence, which is the proportion of animals 
affected at a single point in time (ICAR, 2014).

Recording programs differ between countries, due to 
many factors such as the reporting requirements of the 
country (e.g., drug usage audits) and the detail of re-
cording in farm (herd management) software programs. 
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The health data collected may also be collected by a 
variety of people including veterinarians, producers, 
para-professionals (e.g., hoof trimmer, nutritionist), or 
others.

In the Nordic countries, recording of health event 
in connecting with treatments by veterinarians have 
been routine since the 1970s (Heringstad and Østerås, 
2013), and several direct health traits have since then 
been included in their routine genetic evaluations. In 
2006, Austria began to develop a large-scale monitoring 
system based on veterinary diagnoses of health events 
(Schwarzenbacher et al., 2010; Egger-Danner et al., 
2012a). Since the 2000s, France has instructed all live-
stock farmers to maintain an up-to-date farm register 
including animal health related interventions, which 
has enabled incorporating clinical mastitis into routine 
French genetic evaluations in 2010 (Govignon-Gio et 
al., 2012). A similar, mandatory farm register, including 
animal-health-related interventions for livestock farm-
ers, will start in Belgium in 2016. In the southern part 
of Belgium, this will be co-organized by the regional 
breeding association, which will facilitate incorporation 
of novel traits into future genetic evaluations. In 2011, 
the United Kingdom began to develop a centralized 
recording system for cattle health and welfare, but data 
from this system have yet to be incorporated into rou-
tine evaluations despite extensive data capture on some 
farms. In Canada since 2007, producers record 8 dis-
eases voluntarily (Canadian Dairy Network, 2007) and 
mastitis resistance has been included in genetic evalua-
tions since 2014 (Jamrozik et al., 2013). Australia and 
the United States are in the research and development 
process of utilizing producer-recorded health data for 
genetic evaluations. The heterogeneity of data record-
ing across countries and even farms is likely to affect 
the incidence reported by each country.

For countries that do not have established health re-
cording systems, the best practice recommendations for 
data collection and trait definition, as well as the use 
of health data for genetic evaluations, are provided by 
ICAR (2014). The ICAR recording guidelines outline 
a comprehensive key of diagnoses with approximately 
1,000 input options. The hierarchical structure allows a 
demand-driven subset of the diagnosis codes to be used, 
for example, with producer-recorded data or for para-
professional and expert groups (e.g., hoof trimmers, 
nutritionists). Diseases can also be classified based on 
whether they occur once in an animal’s lifetime, once 
per lactation, or repeatedly throughout an animal’s 
lifetime. Documentation of metabolic disorders can be 
performed with varied levels of detail, while harmoniza-
tion and standardization ensure suitability of data for 
joint analyses.

CHARACTERISTICS AND INCIDENCES  
OF METABOLIC DISEASES

Many papers have been published on disease inci-
dences, including several reviews. For example, the 
study of Kelton et al. (1998) reviewed over 300 papers 
published from 1970 to 1996. In summary, the median 
incidences (per cow and year) of metabolic diseases re-
ported in their study were 6.5% for milk fever, 8.6% for 
retained placenta, 10.1% for metritis, 4.8% for ketosis, 
and 1.7% for left displaced abomasum. However, large 
ranges in the incidences were reported.

For the current review, incidences were calculated 
from papers that studied metabolic diseases and were 
published between 1996 and 2015 (i.e., since the study 
of Kelton et al., 1998). The criteria for selecting these 
papers were that the incidences reported were from 
analyses that included at least 50 herds and 500 cows. 
These criteria were most likely fulfilled by surveys of 
national incidences and papers that included genetic 
parameter estimates.

Ketosis

Clinical cases of ketosis are diagnosed using findings 
indicative of the disease (Table 1), such as sweet-smell-
ing breath (caused by exhalation of ketone bodies), and 
may also result in reduced appetite and depression of 
intake, reduced milk yield, changes in behavior, and 
in cases of prolonged energy deficit, weight loss. The 
costs associated with ketosis include ketosis treatment, 
increased risk of other diseases, risk of poorer reproduc-
tive performance, and higher risk of culling in early 
lactation (Gordon et al., 2013).

Both subclinical and clinical ketosis are character-
ized by the accumulation of ketone bodies that can be 
measured in blood (ketonemia), urine (ketonuria), milk 
(ketolactia), and other body fluids (Geishauser et al., 
1998). Ketone bodies are important for energy produc-
tion and are synthesized in the liver from acetyl-coA 
(Jorritsma et al., 1998). The major ketone bodies are 
BHB, acetoacetate, and acetone. Subclinical cases can-
not, by definition, be observed but only diagnosed using 
measurements in blood, milk, lymph, and urine (Ha-
mann and Krömker, 1997). In the literature, subclinical 
ketosis has been defined as when cows have at least one 
blood BHB test of (1) >1.2 mmol/L (Geishauser et al., 
1998; Jorritsma et al., 1998; McArt et al., 2012), (2) 
nonesterified fatty acid (NEFA) concentration >0.4 
mM prepartum, or (3) NEFA concentration >1.0 mM 
(Raboisson et al., 2014).

Ketosis is one of the most frequent diseases in dairy 
cattle that is reported (Koeck et al., 2014). The num-
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ber of large studies conducted on ketosis reflects this. 
Based on 18 studies that met the criteria described 
at the start of this section, the median incidence of 
ketosis was 3.3% with a range from 0.24% in first par-
ity (Kadarmideen et al., 2000) up to 17.2% in third 
parity (Heringstad et al., 2005; Figure 1). These studies 
were conducted in many countries including Canada 
(Neuenschwander et al., 2012; Koeck et al., 2013), 
Nordic countries (Rajala-Schultz et al., 1999; Hering-
stad et al., 2005; Østerås et al., 2007; Espetvedt et al., 
2012), Western and Central Europe (Egger-Danner et 
al., 2012a; Berge and Vertenten, 2014), and the United 
States (Zwald et al., 2004a; Cole et al., 2006; Appu-
hamy et al., 2009; Parker Gaddis et al., 2012; Richert et 
al., 2013). The median incidence calculated here (3.3%) 
is lower than the median incidence of 4.8% reported by 
Kelton et al. (1998). This could be because the criteria 
used to select studies differed (ours deliberately focused 
on studies that were likely to be national studies, i.e., 
large numbers of herds).

By breed, the median incidence of ketosis from studies 
primarily using Holstein was 3.15% based on 11 studies 
across several countries. In comparison, only 2 studies 
met the selection criteria we applied using Norwegian 
Red cattle. Here the median incidence rate was 10.25%. 
The higher incidence is likely to be linked to the record-
ing programs in place in Norway (higher proportion of 
documented subclinical cases), rather than indicating 
truly higher incidences of clinical disease. One study 
each (Rajala-Schultz et al., 1999; Egger-Danner et al., 
2012a) was available for Ayrshire and Fleckvieh breeds 
with ketosis incidences of 3.3 and 0.61%, respectively. 
The observed differences between breeds may be partly 
due to differences in the number of studies available, 
with differences in study populations (e.g., use of 
first lactation only vs. inclusion of older cows), trait 
definitions (e.g., diagnostics, time periods included), 

completeness of recording, and so on. In several stud-
ies involving multiple breeds, no significant differences 
between the breeds were found (e.g., Fourichon et al., 
2001; Richert et al., 2013; Berge and Vertenten, 2014).

It is likely that most of the incidence reports above 
estimated the incidence of clinical cases of ketosis, and 
information on subclinical cases was mostly missing. 
Subclinical ketosis has been reported to occur much 
more frequently than clinical ketosis, but is obviously 
more difficult to detect. Ingvartsen (2006) has reported 
an incidence of subclinical ketosis up to 34%. Suthar 
et al. (2013) reported the prevalence of subclinical ke-
tosis to be equal to 21.8%, with considerable variation 
between 10 different countries (range from 11.2% in 
Turkey and up to 36.6% in Italy).

Displaced Abomasum

Displaced abomasum is a metabolic disease that often 
arises peripartum because of stretching of the abomasal 
attachments during pregnancy and the increased space 
in the abdominal cavity after calving. Displacement to 
the left occurs more commonly than displacement to 
the right, so most figures referring to displaced aboma-
sum are most likely to be for left displaced abomasum. 
Increased filling with gas that comes along with the 
displacement allows diagnosis by auscultation: a typi-
cal ping is heard using a stethoscope after thumping 
the side of the cow. Displaced abomasum is considered 
to have higher data quality due to the unambiguous 
diagnosis and the need for timely veterinary interven-
tion (Zwald et al., 2004a). Displaced abomasum is 
phenotypically associated with reduced appetite, and 
in the long term decreased BW, poor reproductive per-
formance, and increased culling (Raizman and Santos, 
2002). A depletion in vitamin E often precedes clinical 
diagnosis (Hasanpour et al., 2011; Qu et al., 2013).

Table 1. Clinical signs and indications of subclinical cases of the main metabolic diseases included in this study

Disease  Basis of clinical diagnosis  
Basis of subclinical  
diagnosis

Ketosis Sweet smelling breath (from ketone bodies). Loss of appetite, changes in 
behavior (Hamann and Krömker, 1997).

Ketone bodies present in 
blood, milk, lymph, and urine

Displaced abomasum The abomasum first fills with gas, then displaces often with torsion, 
leading to increased gas accumulation. Diagnosis can be made through 
hearing a ping using a stethoscope after thumping the side of the cow. 
Other signs: loss of appetite, drop in milk yield, reduced rumination, 
diarrhea.

 

Milk fever (hypocalcemia) In early stages cows appear unsteady when standing or walking. This 
leads to recumbency. Lower than normal body temperature. If untreated 
with calcium, can lead to death.

Serum calcium <2.0 mM 
(Reinhardt et al., 2011)

Tetany (hypomagnesemia) Convulsions and muscle spasms as a result of low levels of magnesium. 
Sudden death.

Low plasma magnesium levels 
(e.g., between 0.4 and 0.8 
mmol/L; Schonewille, 2013)
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Incidence reports from 12 large studies were used to 
calculate a median reported incidence of approximately 
2.71%. This is higher than the incidence reported by 
Kelton et al. (1998). Studies were conducted in many 
different countries including Canada (Neuenschwander 
et al., 2012; Koeck et al., 2013), Western Europe (Fou-
richon et al., 2001; Wolf, 2001; Hamann et al., 2004), 
Scandinavia (Ingvartsen, 2006), and the United States 
(Cameron et al., 1998; Zwald et al., 2004a; Cole et 
al., 2006; Appuhamy et al., 2009; Parker Gaddis et 
al., 2012). All of these studies either used solely Hol-
stein, or primarily Holstein, cattle. This may reflect 
the prominence of displaced abomasum among high-
producing cows, especially Holsteins (Van Winden and 
Kuiper, 2003). The incidence of displaced abomasum in 
Norway, reported by Østerås et al. (2007), was below 
0.28%; note that this figure also included colic and gas-
trointestinal disorders.

Milk Fever or Hypocalcemia

Milk fever or hypocalcemia arises when homeostatic 
mechanisms fail to maintain normal blood calcium 
concentrations (Chamberlin et al., 2013). Milk fever 
is characterized by partial to complete paralysis, or 
“downer cows,” typically occurring close to calving. It 
is therefore also termed “parturient paresis.” Subclini-
cal milk fever is diagnosed by decreased serum calcium 
(<2.0 mM; Reinhardt et al., 2011). Although milk fever 
is considered easily treatable, it is a risk factor for other 
peripartum diseases and increased culling (Reinhardt et 
al., 2011). Furthermore, some cases do not respond to 
treatment. Older cows and over-conditioned cows have 
been found to be at greater risk for experiencing milk 
fever (DeGaris and Lean, 2008), whereas primiparous 
cows are much less likely to have low blood calcium 
levels near calving (Oetzel, 2004).

Figure 1. Reported incidences as percent per cow per year; median shown as vertical line and interquartile range as box, and range as whis-
kers of the following metabolic diseases: ketosis, displaced abomasum, milk fever, and tetany. Median incidence reported by Kelton et al. (1998) 
indicated using an asterisk. Note, only 2 studies were available for tetany, shown as black dots. Color version available online.
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The average incidence of milk fever was calculated 
from 16 studies conducted throughout North American 
and Europe. The median incidence of milk fever was 
2.82%, which is lower than the average incidence of 
6.5% reported by Kelton et al. (1998). Again, this is 
likely to be because we focused on larger (mainly na-
tional) studies, and in field studies, it is often difficult 
to ensure that the diagnoses of fatal cases are com-
pletely reported. By breed, 9 studies that used primar-
ily Holstein cattle had a median incidence of 2.9%. It is 
difficult to tell whether there is variation in incidence 
between breeds, as the studies tend to be confounded by 
country. For example, 2 studies of Norwegian Red dairy 
cattle reported a median incidence of 4.5%, whereas 
a study using Finnish Ayrshire cattle had a reported 
incidence of 5.7% (Rajala-Schultz et al., 1999). Two 
studies using primarily Fleckvieh cattle resulted in a 
median reported incidence of 2.73% (Frei et al., 1997; 
Egger-Danner et al., 2012a). Milk fever is more com-
mon among older cows, so reported incidences depend 
on whether all cows were included, or if only the first 
lactation(s) were used. When compared with clinical 
milk fever, the incidence of subclinical milk fever is esti-
mated to be much higher, and associated costs may be 
higher as well (Oetzel, 2004). Despite being at low risk 
for clinical milk fever, prevalence of subclinical milk 
fever was estimated to be 25% in first lactation cows. 
Throughout later lactations, prevalence of subclinical 
milk fever was as high as 54% in fifth lactation cows 
(Reinhardt et al., 2011).

Tetany

Tetany, or hypomagnesemia, occurs when animals 
have insufficient amounts of magnesium utilizable for 
maintaining regular muscle function. It is a known risk 
factor for milk fever as magnesium levels are closely 
tied to the cow’s ability to maintain calcium homeosta-
sis (Goff, 2008). Clinical signs of tetany include changes 
in behavior, muscle spasms, convulsions, and paralysis 
(Table 1). Østerås et al. (2007) estimated the mean cow 
rate of tetany from 1989 through 2005 in Norwegian 
dairy cattle to be 0.19%, whereas in UK Holsteins the 
mean incidence was 0.04% (Kadarmideen et al., 2000). 
The overall mean cow rate of tetany between these 
years was 0.19%, with the rates being 0.18 and 0.15% 
in the 5-yr spans of 2000 and 2005, respectively.

Other Metabolic Diseases

Numerous other metabolic diseases can affect dairy 
cattle, such as fatty liver syndrome (as results of pro-
longed energy deficit), anemia (iron deficiency), and 

other mineral and vitamin deficiencies. Few large-
scale studies have calculated the incidence of these 
other metabolic diseases. There could be a multitude 
of reasons for this, including very low incidence rates 
and difficulty of assessing and recording. For example, 
the main method of diagnosis for fatty liver is by liver 
biopsy or laparoscopy, making collection of incidence 
data difficult (Bobe et al., 2004).

Some studies have estimated the incidence of meta-
bolic diseases grouped into a single trait. In a study 
conducted in Scandinavia, hypomagnesemia, displaced 
abomasum, and any other diagnoses in the national sys-
tem considered to be metabolic were grouped together. 
The incidence rate of these events was estimated to be 
1.7% in Denmark and Finland, 1.2% in Norway, and 
1.5% in Sweden (Espetvedt et al., 2012).

ADEQUACY OF PHENOTYPIC DATA RECORDING: 
UNDER-REPORTING ISSUE

Although the interest in reliable health data record-
ing has increased, many farm (herd management) 
computer systems still do not ensure that data capture 
for health traits is consistent and accurate. Therefore, 
it seems plausible that the incidence of some diseases 
is heavily dependent on the systems used and may on 
the large scale be underestimated, while others may be 
over-reported. On an individual basis, if the producer 
does not find an easy way to record data electronically, 
(s)he will not do it, or only do so sporadically. If report-
ing of antibiotic and other veterinary medical treatment 
is mandatory and required for farm audits, it is likely 
that severe cases of disease that have been treated are 
recorded. However, for the most severe and fatal cases, 
incomplete diagnosis information may be an issue that 
could be addressed by additional consideration of (usu-
ally less specifically recorded) culling reasons.

Under-reporting by producers may reflect a multi-
tude of other influences including, but not limited to, 
current workload on the farm or differences in producer 
interpretation of symptoms (ICAR, 2014). It becomes 
a challenge to differentiate between herds that under-
report a specific disease versus herds that truly have 
very low incidence rates of a disease (Egger-Danner 
et al., 2012a). Data validation studies conducted on 
health data have revealed indications of some degree 
of under-reporting (Parker Gaddis et al., 2012; Miglior 
et al., 2013). Other studies have shown that under-
reporting may make it difficult to calculate meaningful 
differences between countries in disease occurrence. For 
example, Espetvedt et al. (2012) compared the national 
databases of the 4 Nordic countries (Denmark, Finland, 
Norway, and Sweden) to farmer-observed completeness 
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and veterinary-observed completeness for milk fever and 
ketosis. For milk fever the farmer completeness ranged 
between 67 and 79% and for veterinary completeness 
the range was between 71 and 88%, with similar results 
for ketosis. A recent survey of 468 farm data sets in 
the United Kingdom, accumulated from herds believed 
to be good data recorders by their veterinarians, sug-
gested that only a very small proportion (in the region 
of 2%) adequately recorded metabolic diseases such as 
milk fever (Hudson, 2015).

For metabolic events specifically, many are subclinical 
by nature and as such likely undetected to large propor-
tions. It was postulated that these diseases require, or 
at least receive less veterinary intervention, thus lead-
ing to underestimation of the incidence and prevalence 
in systems relying on veterinary data (Schwarzenbacher 
et al., 2010). Despite concerns of under-recording, 
most calculated incidences from large field studies are 
similar to those from well-designed epidemiological 
studies (e.g., Parker Gaddis et al., 2012). Furthermore, 
variation in recording practices across regions, herds, 
and also over time (e.g., in connection with personnel 
changes) may interfere with the suitability of field-
recorded health data as the basis of large-scale routine 
monitoring systems (Østeras et al., 2007).

Under-reporting is contentious, especially when the 
aim of the study is to accurately estimate the incidence 
of disease, but is difficult to avoid when recording re-
quires extra effort, which is likely to be case for almost 
all dairy farms. In this study, we deliberately focused 
on large studies, many of which were national. This is 
likely to be the main reason why the reported incidenc-
es of metabolic diseases were mostly lower than in the 
study of Kelton et al. (1998). From an animal breeding 
perspective, although it is preferable to have complete 
data sets of disease incidences, even data sets where 
only disease that was treated with drugs are recorded 
are still usable, as it would mean that breeding values 
would enable selection against severe cases of disease. 
Miglior et al. (2013) examined the effect of 5 differ-
ent data validation methods applied to mastitis data 
in the Canadian health recording system. They found 
that the number of usable herds and number of records 
increased with less stringent data validation, but the 
frequency and heritability of mastitis decreased. None-
theless, Pearson correlations greater than 0.95 were 
found between sire breeding values calculated with 
data from the different validation scenarios (Miglior et 
al., 2013).

Ultimately, completeness of data may depend on the 
reason for its collection, whether it be for management, 
epidemiological research, welfare assessment, or genetic 
improvement (Espetvedt et al., 2012). It is important 
to minimize the risk of reporting bias and systematic 

lack of disease information to provide unbiased predic-
tions of the genetic liability to disease.

HERITABILITY ESTIMATES OF CLINICAL CASES  
OF METABOLIC DISEASES

Heritability estimates for clinical cases of ketosis, 
displaced abomasum, milk fever, and tetany are gener-
ally low (Table 2). Heritabilities based on linear models 
ranged from 0.01 to 0.39 for ketosis, 0.00 to 0.08 for dis-
placed abomasum, 0.01 to 0.08 for milk fever, and 0.004 
for tetany (Table 2). Based on threshold methodology, 
respective heritability estimates were 0.02 to 0.16, 0.12 
to 0.35, 0.07 to 0.18, and 0.02. For displaced abomasum, 
estimates were mainly from Holstein cows, as Holsteins 
are considered more susceptible to displaced abomasum 
than other breeds (Doll et al., 2009). Recently, Ederer 
(2014) reported a heritability of near zero for displaced 
abomasum in Austrian Fleckvieh cows, which was ex-
pected, given the low frequency of the disease (0.02%) 
in this breed.

Heritability estimates of farmer observed data were 
comparable to estimates based on veterinarian treat-
ments (Table 2). For other metabolic diseases, such as 
fatty liver, no heritability estimates were available in 
the literature. Even though heritability estimates of 
metabolic diseases are low, evidence still shows that 
selection to improve low heritability traits can be ef-
fective. For example, the incidence of milk fever of the 
top and bottom 10 bulls in Canada for milk fever and 
ketosis breeding values differ in actual daughter inci-
dence by 11% (Figure 2) and 16.5%, respectively. For 
Austria, the difference between the top and bottom 10 
bulls for daughter incidence of milk fever was around 
10% (Figure 2).

GENETIC CORRELATIONS WITH OTHER TRAITS

Milk Production Traits

Studies on genetic correlations between metabolic 
diseases and milk production traits are scarce, but 
several older studies have reported these correlations. 
Genetic correlations between yield traits and ketosis, 
milk fever and displaced abomasum (Figure 3) varied 
between studies and ranged from −0.49 to 0.65 using 
linear models and −0.67 to 0.77 using threshold models. 
Only a few studies (Thompson, 1984; Tveit et al., 1991; 
Pryce et al., 1997; Kadarmideen et al., 2000) provided 
standard errors for their estimates, which ranged from 
0.06 to 0.20. For protein and fat yield, only 2 and 3 
studies, respectively, had figures for each of the meta-
bolic diseases displaced abomasum, ketosis, and milk 
fever. The limited number of studies, large standard 
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errors, and large ranges of correlation estimates make 
it difficult to draw general conclusions regarding the re-
lationship between fat and protein yield and metabolic 
disease traits.

For genetic correlations of metabolic diseases with 
milk yield there were a few more studies. The means 
of the correlation estimates were close to zero for dis-
placed abomasum and unfavorable for ketosis and milk 
fever (with large confidence intervals). Two of the stud-
ies reported very high unfavorable genetic correlations 
between milk yield and ketosis of 0.65 for Norwegian 
Red (Simianer et al., 1991) and 0.77 for Holstein Frie-
sians (Uribe et al., 1995). In the same study, a strongly 
negative genetic correlation between milk fever and 
milk yield (−0.67) was reported (Uribe et al., 1995).

In the literature assessed, there is a lack of consis-
tency in genetic correlation estimates between meta-
bolic diseases and yield. One of the issues could be data 
set size, and therefore the correlations could be subject 
to sampling errors. Another issue is that some of the 
diseases have very low frequency. Consequently, there 

Figure 2. Clinical disease incidences of milk fever in the top 10 
and bottom 10 bulls for national genetic evaluations for milk fever in 
Austria (Fleckvieh) and Canada (Holsteins). Color version available 
online.

Figure 3. Genetic correlation estimate medians (vertical line), interquartile range (box), and range (whiskers) of genetic correlations with 
milk, fat, and protein yields of the following metabolic diseases: displaced abomasum, milk fever, and ketosis. Source: Tveit et al. (1991), Uribe 
et al. (1995), Pryce et al. (1997), Kadarmideen et al. (2000), Zwald et al. (2004b), Koeck et al. (2013), Parker Gaddis et al. (2014).
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is a need to estimate these correlations in much larger 
data sets to understand the consequences of selection 
practices that focus, or place a heavier weight, on milk 
production traits.

An alternative to estimating population level genetic 
correlations is to use data from selection line experi-
ments where detailed metabolite and hormone levels 
have been measured. The advantage of this strategy 
is that pathways underpinning the effect of selection 
can be elucidated. For example, in their comprehensive 
review of selection experiments, Veerkamp et al. (2003) 
concluded that selection for yield has changed energy 
partitioning rules due to effects on the GH/IGF1 axis, 
confirmed by the observation that NEFA and BHB 
concentrations and growth hormone secretion are all 
generally higher in high genetic merit cows, whereas 
glucose levels tend to be lower.

Genetic Correlations of Metabolic Diseases  
with Other Diseases

Genetic correlations of metabolic diseases with other 
diseases were mostly positive (Table 3). The strongest 
genetic correlations were found between ketosis and 
displaced abomasum, with estimates ranging from 0.45 
to 0.66, so selection to improve one of these traits will 
lead to favorable correlated responses in the other trait. 
Genetic correlations between the other traits ranged 
from −0.21 to 0.64.

Results from a selection experiment with Norwegian 
Red cows confirm that correlations between diseases 
are generally positive (Heringstad et al., 2007). The 
authors showed that selection against mastitis leads to 
favorable correlated selection responses in other dis-
eases, such as ketosis and retained placenta (Heringstad 
et al., 2007), thus indicating the existence of a general 
robustness or reduced liability to disease. Furthermore, 
in a study by De La Paz (2008), it was found that cows 
with both high antibody and cell-mediated immune 
response have a decreased risk of disease occurrence 
for several diseases, including mastitis, ketosis, metritis, 
and retained placenta, compared with cows identified 
as low responders.

GENETIC AND GENOMIC EVALUATIONS  
AND PREDICTION

Genetic Evaluations

Some countries already estimate and publish breed-
ing values for metabolic disease traits (Table 4), and 
current research efforts make it likely that more genetic 
evaluations for metabolic health traits will become avail-
able in the (near) future. Of the countries that already T
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have official genetic evaluations for metabolic diseases 
described in Table 4, only Norway includes metabolic 
disease traits (ketosis and milk fever) in their index of 
overall genetic merit, as part of the “other diseases” 
complex. However, Denmark, Finland, and Sweden also 
publish breeding values for metabolic diseases (http://
www.nordicebv.info/wp-content/uploads/2015/05/
Genetic-Evaluation-of-Other-Diseases.pdf).

The first step in genetic and genomic analysis is data 
preparation including plausibility checks to ensure data 
validity. Examples of general plausibility checks include 
ensuring the date of an event refers to a living animal, 
that the animal was registered to the farm submitting 
the data at the time of the event, and that a particular 
health event is only recorded once per animal per day 
(ICAR, 2014). Further consideration may be necessary 
to determine the time span required for 2 recordings of 
the same event to be considered separate incidences. 
Additional constraints can be implemented to ensure 
continual recording of diseases. Several countries with 
ongoing collection and evaluation of health data man-
date a minimum number of diagnoses per herd and 
year (e.g., Denmark: 0.3 diagnoses; Austria: 0.1 first 
diagnoses; ICAR, 2014).

Once data have been thoroughly edited and vali-
dated, several different methods of analysis are avail-
able from which to select. From Table 2 it can be seen 
that most studies can be divided by use of either linear 
or threshold model. Due to the binary nature of most 
metabolic disease traits, a nonlinear threshold model 
is theoretically more appropriate because the assump-
tions of a linear model are not met by binary data 
(Gianola, 1982). For a threshold model, one can then 
select to use either a logit or probit link. Several stud-
ies using mastitis have found that linear models per-
form equally well and are comparable to results from 
threshold models (e.g., Carlén et al., 2006; Koeck et 
al., 2010). For genetic analysis, one must also decide 
how to model relationship among animals using either 

a sire or animal model. If using a threshold model, use 
of an animal model may not always be possible due to 
extreme category problems (Hoeschele and Tier, 1995). 
Reliabilities estimated using threshold models also tend 
to be inflated, which results in evaluations appearing to 
be better than reality.

Cross-sectional models designate cows as either hav-
ing at least one incidence of the trait of interest or 
having no incidences. Multiple incidences throughout 
a cow’s lactation are not considered, and by doing 
this, some information is lost. Alternatively, multiple 
incidences of a disease could be analyzed in ordinal, 
censored, or longitudinal threshold models (Chang et 
al., 2004, 2006; Heringstad et al., 2003, 2006). Cows 
that are culled during lactation can also be included 
in survival models that allows for censoring as opposed 
to being disregarded. Using mastitis data, Carlén et al. 
(2005) found benefits in using a survival model com-
pared with a linear model, especially in later lactations. 
Using simulated mastitis data, however, little difference 
was found when comparing linear, threshold, and sur-
vival models (Carlén et al., 2006).

Structural-equation models (Gianola and Sorensen, 
2004; Wu et al., 2010) make it possible to take a causal 
relationship between phenotypes into account. Recur-
sive models have, for example, been applied to infer 
relationship between health and fertility in cattle (Her-
ingstad et al., 2009) and might be relevant for analyz-
ing metabolic diseases where occurrence of one disease 
may cause other disease problems.

Genomic Prediction

One of the revolutionary aspects of genomic selection 
is the possibility of moving from using national data 
to well-recorded herds that are genotyped and have 
more detailed phenotypes and that can be used to form 
genomic predictions (Boichard and Brochard, 2012; 
Egger-Danner et al., 2015). Dedicated genomic refer-

Table 4. Status of genetic evaluations for metabolic diseases from selected countries1

Country  Ketosis  
Milk  
fever  

Left displaced  
abomasum  Tetany

Australia R&D R&D R&D R&D
Austria (+ Germany): Fleckvieh, Brown Swiss R&D Eval
Belgium (Walloon region) R&D
Canada Pre R&D Pre —
Germany (+ Austria): Holstein Pre Pre Pre —
Norway Eval Eval — —
United Kingdom Res
United States R&D R&D R&D —
1R&D = research underway; Pre = preliminary evaluations (including project internal evaluations); Eval = 
official evaluations.
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ence populations of females are especially cost-effective 
for traits that are expensive to measure (Gonzalez-
Recio et al., 2014; Chesnais et al., 2016). However, for 
cheaper phenotypes, for example, those obtained from 
mid-infrared analysis (MIR) data or clinical diseases, 
much larger data sets can be assembled using nation-
ally recorded data (Chesnais et al., 2016). This means 
that phenotypes used in genomic selection could be 
calculated for genotyped sires based on their progenies’ 
phenotypes. Another attractive aspect of genomic 
selection is that information from DNA can be used 
to increase the reliability calculated from progeny or 
parent-average information, greater gains compared 
with conventional breeding values are expected for 
genotyped bulls without daughters.

To date, limited attempts have been made to calculate 
genomic predictions for health disorders; countries that 
include genomic information in their genetic prediction 
of health disorders include Canada, France, and the 
Nordic countries. Other countries, such as the United 
States, are in the research phase, but have found that 
genomic information improves the accuracy of predic-
tion. Using one-step methods for genomic prediction, 
Parker Gaddis et al. (2014) calculated that blended ge-
nomic and pedigree information for unproven sires (i.e., 
with no progeny) resulted in reliabilities of genomic 
prediction of 0.35 and 0.38 for ketosis and displaced 
abomasum, respectively, which was an increase of 0.17 
and 0.16 compared with parent average only informa-
tion. Su et al. (2012) estimated genomic reliability of 
Nordic Red Cattle equal to approximately 0.32 for 
“other diseases,” which included both reproductive and 
metabolic diseases.

Selection Responses

An important step in evaluating the effect of meta-
bolic health traits in breeding programs is to quantify 
the amount of change that is achievable through selec-
tion. Selection index theory can be used to calculate 
selection responses, or correlated responses, to indices 
that consider health traits either directly or indirectly 
(Hazel, 1943). This is a better way of assessing the ef-
fect of selection than percentage emphasis of traits in a 
selection index because the correlations between traits 
are taken into account properly.

Studies of responses to selection in metabolic health 
traits are currently quite sparse and are hampered by 
low reliabilities often associated with low heritability 
traits with sparse amounts of data available. Therefore, 
based on economics alone, the responses achievable are 
likely to be modest, so it will take a long time for large 
direct effects on health traits to be made through genet-

ics. However, selection for longevity and other health 
traits should result in positive selection responses in 
correlated health traits that do not have breeding val-
ues calculated (i.e., they are partially correlated; Pfei-
ffer et al., 2015). For example, Heringstad et al. (2005) 
and Heringstad et al. (2007) reported favorable genetic 
trends for ketosis in Norwegian Red Cattle, which they 
concluded was likely to be a correlated response to se-
lection for mastitis resistance.

Longevity is a complex fitness trait that includes 
health, fertility, conformation, and calving performance 
(Essl, 1998) and breeding values for this trait are wide-
ly available (e.g., they are calculated and exchanged 
internationally by over 20 countries; http://www.inter-
bull.org/ib/maceev_archive; accessed December 2015). 
Because longevity is a summary trait, improvements 
in many health traits are likely to have already oc-
curred as correlated responses to selection for current 
local breeding objectives as a consequence of evaluating 
longevity. The economic value for longevity is generally 
derived from the benefit of cows lasting longer in a herd 
(Essl, 1998), while all other traits are held constant 
and therefore benefits for those traits in the longevity 
complex are only accounted for in relation to culling. 
Selecting for health traits directly is likely to be op-
timal as all the direct benefits can be accounted for 
(Egger-Danner et al., 2012b); however, double-counting 
with longevity in the breeding objective also needs to 
be considered.

Finally, interest is growing in developing future se-
lection indices to include nonmarket values that take 
into consideration consumer preferences (e.g., increased 
animal welfare) permitting the construction of optimal 
selection objectives (Nielsen et al., 2005), which will 
lead to increases in the response to selection in health 
traits. A further development is including farmer desires 
in breeding objectives (Martin-Collado et al., 2015), 
which provides an additional mechanism for greater 
responses in welfare traits than the economic drivers.

ALTERNATIVE WAYS OF PREDICTING  
METABOLIC DISEASES

Another way to increase the accuracy of estimated 
breeding values and provide a mechanism for better se-
lection responses for metabolic diseases is to use infor-
mation from correlated traits, or subclinical diagnoses. 
In this section we will focus on traits that are easy to 
record either on-farm by using sensors and milk tests, 
or off-farm during routine milk recording. Using data 
obtained from milk samples has become a popular ap-
proach, probably because it is easy and relatively cheap 
to obtain samples, although the assays themselves could 
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be expensive. There are also over 300 constituents in 
milk and some changes in these could be associated 
with subclinical disease (Hamann and Krömker, 1997).

On-Farm Predictors

Currently there is an impetus to move toward devel-
oping tools that use advanced sensors that work in close 
proximity to the animals, where changes can be used to 
modify management and become an integral part of pre-
cision farming (Gengler et al., 2013). New management 
systems, such as Herd Navigator (Lattec I/S, Hillerød, 
Denmark), have been designed to combine data from 
every milking with sensor-based measurements of milk 
and background information on disease occurrence and 
calving events to aid in the detection of health, fertility, 
and metabolic status (Bjerre-Harpøth et al., 2012). Al-
though Herd Navigator is among the first sophisticated 
management systems to combine data from multiple 
sources to predict disease risk (among other things), it 
is likely to that this area will grow in the future as fully 
computerized farms become more commonplace. For 
the geneticist, under the hypothesis that this data can 
be transferred to centralized databases, this will lead to 
a more complete set of phenotypes.

Examples of predictors of diseases obtained from 
sensors include milk electrical conductivity, milk color, 
acceleration, rumen pH, and automated condition 
scoring systems. A sensor system includes the device 
itself and interpretation software. Rutten et al. (2013) 
reviewed 126 publications comparing 139 systems and 
compared them for the following: “(I) techniques that 
measure something about the cow (e.g., activity); (II) 
interpretations that summarize changes in the sensor 
data (e.g., increase in activity) to produce information 
about the cow’s status (e.g., estrus); (III) integration of 
information where sensor information is supplemented 
with other information (e.g., economic information) 
to produce advice (e.g., whether to inseminate a cow 
or not); and (IV) the farmer makes a decision or the 
sensor system makes the decision autonomously (e.g., 
the inseminator is called).” Of the studies, 16% related 
to the detection of metabolic diseases. These papers 
examined the rumen pH (6 studies), percentage of milk-
fat (1 study), level of ketone bodies in milk (3 studies), 
and walking activity (2 studies). Rutten et al. (2013) 
concluded that the detection of metabolic diseases us-
ing sensors was poor and questioned their (current) role 
in early detection, as most of the studies focused on 
whether a correlation exists between the cow measure-
ment and sensor output. In addition to measurements 
obtained from sensors, on-farm milk tests could be also 
useful in the diagnosis of metabolic disease, especially 
ketosis. A variety of semiquantitative cow-side milk 

ketone tests exists and some of them have been demon-
strated as useful tools for use in a routine monitoring 
program to detect subclinical ketosis (Geishauser et al., 
2000). Most of them are designed to be used at the time 
of milking (Geishauser et al., 1998).

Nevertheless, for diseases that are difficult to diag-
nose, or where many cases are subclinical, improve-
ments in sensor detection and tools for diagnosis are 
likely to become important. For this reason, we have 
focused on ketosis and energy balance as these are all 
ideal candidates for sensors. While energy balance is 
not actually a metabolic disease, metabolic disorders 
often arise from a negative energy balance state. Other 
diseases, such as milk fever, tetany, and left displaced 
abomasum are relatively easy to diagnose.

There may be opportunities to use other novel indi-
cators. One example is using rumination monitoring 
systems to detect disease, as early results show that 
these can be used to diagnose health disorders before 
farm personnel (Stangaferro et al., 2015a,b). The num-
ber of mean days between clinical sign of disease to the 
day the disease was flagged by the rumination system 
was −3 d for displaced abomasum, −1.6 d for ketosis, 
−0.5 d for indigestion, −0.8 d for metritis, and −0.8 d 
for mastitis (Stangaferro et al., 2015a). Stangaferro et 
al. (2015b) also compared prepartum rumination pat-
terns from −7 d to calving that for cows that developed 
health disorders to those cows that did not up to 30 
DIM. Rumination time was reduced in cows that suffer 
from metabolic and digestive diseases (displaced ab-
omasum, ketosis, and indigestion) and metritis, but not 
in cows with retained placenta or mastitis. Therefore, 
information from rumination patterns could become 
important as early predictors of metabolic disease. The 
value of this data from a genetic selection perspective 
is still to be quantified.

Mid-Infrared Analysis

One of the most promising ways of evaluating sub-
clinical disease is the MIR of milk samples. In addi-
tion to the traditional traits (i.e., fat, protein, casein, 
lactose and urea contents), MIR analysis of milk has 
been used to predict other milk characteristics such as 
fatty acid composition, milk protein composition, milk 
coagulation properties, milk acidity, mineral composi-
tion, and ketone bodies (De Marchi et al., 2014). For 
some of these traits such as ketone bodies, the accuracy 
of prediction is not high enough to use MIR predicted 
values as reference values. However, the accuracy is suf-
ficient for a rough screening to distinguish cows with 
high or low values. Hence, MIR may be an opportunity 
to massively increase the number of phenotypic records 
available for subclinical diseases, as MIR is used in 
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standard milk analysis undertaken by milk recording 
organizations.

Indicators of Ketosis

As subclinical ketosis occurs much more often 
than clinical ketosis (Ingvartsen, 2006), information 
on subclinical cases would also be useful for genetic 
evaluations. Generally, the gold standard diagnosis of 
ketosis is based on the concentration of BHB in blood. 
However, blood sampling is not easily implemented on 
a routine basis and might be expensive for farmers.

Several authors have explored the possibility of pre-
dicting ketosis using data collected routinely through 
milk recording; for example, Vanholder et al. (2015) 
predicted that the risk of ketosis was higher when the 
previous lactation was extended. Phenotypes derived di-
rectly from milk production data, such as fat-to-protein 
ratio and milk fatty acid profiles in predicting ketosis, 
are promising (van Knegsel et al., 2010); however, there 
may be value in phenotypes more closely associated 
with ketosis, such as BHB and acetone in milk.

Recent studies have investigated the value of MIR 
to predict ketone bodies in milk as biomarkers of ke-
tosis for both management and genetic purposes. The 
potential to predict acetone and BHB contents using 
MIR has been tested by several authors (Hansen, 1999; 
Heuer et al., 2001; de Roos et al., 2007; Grelet et al., 
2016). All these authors concluded that MIR predicted 
ketone bodies adequately and that MIR might be useful 
for screening purposes (healthy cows vs. cows at risk 
of ketosis). However, the accuracy of predictive models 
that include only MIR predictions of acetone and BHB 
appears to be insufficient to achieve an acceptable di-
agnosis of ketosis at the individual level (de Roos et al., 
2007; van der Drift et al., 2012). In fact, it appears likely 
that more complex models are required to adequately 
model ketosis (Gengler et al., 2016). For example, van 
der Drift et al. (2012) presented diagnostic models for 
the detection of ketosis in early lactation that consist 
of MIR-predicted acetone and BHB contents in milk 
in addition to test-day information such as parity, 
season, and fat-to-protein ratio. Moreover, Gengler et 
al. (2016) suggested that the relationship between milk 
composition and ketosis could be nonlinear and pro-
posed using decision trees that incorporate MIR predic-
tions of acetone, BHB, and citrate. Finally, Grelet et al. 
(2016) proposed predicting the risk of ketosis directly 
using MIR; the authors concluded that the accuracy of 
predicting the risk of ketosis was 85% when assessed 
using circulating levels of BHB and NEFA. Currently, 
although MIR appears to be promising as a screening 
tool for ketosis, it may not be sufficiently accurate for 

management decisions at an individual animal level, 
but possibly useful at a herd level. Finally, although the 
results of many of the published studies are promising, 
most of them were based on relatively small data sets 
and the replication of results across multiple manage-
ment and feeding systems is still required.

Most studies that have investigated genetic associa-
tions between indicators of clinical ketosis have used 
measurements of BHB. Based on data from Canadian 
Holsteins, milk BHB at the first test-day was moder-
ately genetically correlated with clinical ketosis, with 
estimates ranging from 0.37 to 0.75 (Koeck et al., 
2014, 2015; Jamrozik et al., 2016). It seems likely that 
information from different sources could be used for 
genetic prediction in a multi-trait evaluation setting. 
For example, BHB from MIR could be used as one 
trait and clinical cases of ketosis used as another trait. 
Additionally, fat-to-protein ratio and other energy bal-
ance traits could be used as additional phenotypes in 
a multi-trait model. It is also possible that by making 
genetic improvement in one trait, correlated responses 
(improvements) in other metabolic diseases could 
be achieved, although this is yet to be tested. Data 
from Geishauser et al. (1997) showed that aspartate 
transaminase activity and BHB concentration in blood 
might be useful as predictors of subsequent displaced 
abomasum diagnosis.

Energy Balance

Many of the metabolic diseases are associated with 
cows experiencing negative energy balance, especially 
in early lactation. Genetically improving energy sta-
tus in early lactation may assist in reducing metabolic 
diseases. However, calculating energy balance is not 
straightforward and can only be accurately assessed us-
ing calorimeter chambers (Berry et al., 2013), although 
it is more generally calculated as energy input minus 
energy output using measurements of feed energy intake 
and expenditure (Banos et al., 2005; Friggens et al., 
2007). Several easier predictors of energy balance have 
been proposed, including BCS change (Roche et al., 
2009) and fat-to-protein ratio (Friggens et al., 2007).

Body condition score is a subjective measure to de-
termine the body reserves of an animal and it decreases 
as body reserves are mobilized to compensate negative 
energy balance. However, the advent of automated 
weighing and promising results in semi-automating 
body condition scoring (Bewley et al., 2008) make the 
use of longitudinal records across lactation a practical 
novel strategy to calculate energy balance (Thorup et 
al., 2012). In US Holstein cows, higher BCS was geneti-
cally correlated with less disease incidence for displaced 
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abomasum (rg = −0.48) and metabolic and digestive 
diseases (rg = −0.64; Dechow et al., 2004). Similarly, 
Frigo et al. (2010) found that heavier BW and less BW 
change were correlated with fewer cases of ketosis and 
metabolic diseases. Loker et al. (2012) applied random 
regression models to investigate genetic relationships 
between BCS and metabolic disease throughout lacta-
tion. The average daily genetic correlation between 
BCS and metabolic disease was −0.44, and was consis-
tent throughout the lactation.

Fat-to-protein ratio has been suggested as an ap-
propriate indicator of energy balance (Buttchereit 
et al., 2011) and may subsequently be related to the 
metabolic status of an animal. A high fat-to-protein 
ratio in early lactation indicates low or negative energy 
balance, the combined result of elevated fat percentage 
and decreased protein percentage. Thus, fat-to-protein 
ratio is negatively correlated with energy balance in 
early lactation, as shown by Buttchereit et al. (2011). 
These authors found the highest genetic correlations 
between fat-to-protein ratio and energy balance in the 
beginning of lactation (rg = −0.62 at 15 DIM) and 
correlations decreased toward zero at the end of the 
data recording period at 180 DIM. Estimates of genetic 
correlations between fat-to-protein ratio and metabolic 
diseases and the data to calculate it are both scarce 
and consequently the errors associated with estimates 
are large. For example, Buttchereit et al. (2012) found 
a genetic correlation of 0.63 ± 0.91 between metabolic 
diseases and fat-to-protein ratio in early lactation based 
on data from a research farm. In Canadian Holsteins, 
fat-to-protein ratio at the first test-day was found to be 
moderately genetically correlated with clinical ketosis 
(rg = 0.30) and displaced abomasum (rg = 0.26) (Koeck 
et al., 2013). Recently, Ederer (2014) reported positive 
genetic correlations of 0.38 between fat-to-protein ratio 
at the first test-day and ketosis and 0.18 between fat-
to-protein ratio at the first test-day and milk fever.

As with metabolic disease biomarkers, evidence is 
growing that MIR can also be used to predict energy 
balance (McParland et al., 2014), which can be ex-
plained because catabolism of stored adipose reserves 
during BCS change results in an increase in C18 fatty 
acid concentration in milk (Berry et al., 2013). Already 
several papers clearly show that MIR can be used to 
predict the concentration of several fatty acids (Soyeurt 
et al., 2006; De Marchi et al., 2014) and might therefore 
mirror body condition score changes.

CONCLUSIONS

There is genetic variation in metabolic disease traits, 
which makes direct selection to reduce the incidence 

of these traits possible. Indirect selection responses 
may have already occurred for some countries as a 
consequence of including longevity and health traits 
in breeding objectives with enough selection pressure. 
Only diseases with a high incidence have been included 
in genetic parameter estimation studies to date because 
a large number of affected animals are required for ac-
curate estimation. Furthermore, the effect of selection 
to improve a trait with low incidence is unlikely to be 
worthwhile. Genetic evaluations are already calculated 
for some metabolic diseases in a few countries. Based 
on current research activities, it is likely that breeding 
values will be published for many others within the 
next decade. There is potential to use information from 
other sources to increase the accuracy of prediction for 
example, with considerable research interest in using 
spectral data (MIR) to predict metabolic disease and 
energy balance. Predictors that are on-farm or in the 
laboratory may be particularly useful in characterizing 
subclinical cases, especially where the disease is difficult 
to characterize. Genetic strategies to reduce metabolic 
disease in general may be especially useful goals for 
future research.
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