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Abstract

Ionizing radiation from natural sources or anthropogenic activity has the potential to cause

oxidative stress or genetic damage in living organisms, through the ionization and excitation

of molecules and the subsequent production of free radicals and reactive oxygen species

(ROS). The present work focuses on radiation-induced biological effects using the zebrafish

(Danio rerio) vertebrate model. Changes in developmental traits and gene expression in

zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38

mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting

through embryogenesis and the early larval stage. The lowest dose rate corresponded to

recommended benchmarks at which adverse effects are not expected to occur in aquatic

ecosystems (2–10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the

38 mGy/h group was significantly lower, while other groups showed no significant difference

compared to controls. The total hatching was significantly lower from controls in the 15

mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The

deformity frequency was significantly increased by prolonged exposure duration at dose

rates� 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf tran-

scriptome) indicate that the radiation induced adverse effects occurred during the earliest

stages of development. A dose-response relationship was found in the numbers of differen-

tially regulated genes in exposure groups compared to controls at a total dose as low as

1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis,

and glutathione mediated detoxification signaling as the most affected pathways in the

lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of

angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing

gene expression data, myc was found to be the most significant upstream regulator, fol-

lowed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as
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most frequent downstream target genes. These genes are associated with various develop-

mental processes. The present findings show that continuous gamma irradiation (� 0.54

mGy/h) during early gastrula causes gene expression changes that are linked to develop-

mental defects in zebrafish embryos.

Introduction

Living organisms are continuously exposed to ionizing radiation from naturally occurring

radionuclides (e.g., radon daughters), cosmic radiation and from various anthropogenic activi-

ties (weapon testing, nuclear fuel reprocessing, nuclear accidents). Ionizing radiation interacts

with matter by excitation and ionization of molecules, thereby producing free radicals and

subsequently reactive oxygen species (ROS) and reactive nitrogen species (RNS) which can

attack cell membranes or break chemical bonds in biological molecules, leading to oxidative

stress or DNA damage [1]. Proliferating cells are specifically sensitive to radiation [2].

It is established that humans and animals are most vulnerable to ionizing radiation during

early life stages such as gametogenesis, embryogenesis and organogenesis [3,4], due to the high

rate of cell division, proliferation and differentiation. Ionizing radiation can affect all organs

and biological systems, and can induce non-cancer effects as well as cancer [5]. Experimental

studies have documented that exposure to ionizing radiation during critical periods of devel-

opment may alter (reprogram) the differentiation signals leading to permanent toxic effects

which can manifest later in life [5,6]. Permanent (irreversible) “developmental programming”

is, among other mechanisms, attributed to epigenetic modification of gene transcription [7,8].

For aquatic organisms exposed to ionizing radiation, dose rates lower than 0.42 mGy/h (corre-

sponding to 10 mGy/d) have been proposed as benchmark levels that are not likely to produce

adverse effects at the population level [9]. Recently, a much lower predicted no effect dose rate

(PNEDR) of 0.01 mGy/h (0.24 mGy/d) has been proposed as a risk assessment screening value

below which one could be confident that exposures would not lead to adverse effects [10]. Pro-

tection criteria is based mostly on data from acute exposure experiments of adult organisms

(IAEA), and the information on effects of ionizing radiation during sensitive life stages such as

the embryonic and early larval development is scarce.

The zebrafish model offers many practical benefits, which may contribute to a better under-

standing of biological effects of radiation in both humans and non-human biota. Age-synchro-

nized and optically transparent zebrafish embryos enable the visualization of major organ

system development within all stages of the embryonic and early larval period. The available

genomic resources in zebrafish, including a fully sequenced genome, have been proven valu-

able for providing various biological insights, including into human diseases [11]. Transcrip-

tome analysis allows registration of changes in gene expression related to various biological

processes and can be used to reveal potential mechanisms of radiotoxicity. The genome of the

zebrafish is roughly half the size of the human genome and in comparison to it, shares about

70% of human gene orthologs and 82% of cancer gene orthologs [12,13].

This study aimed to assess biological effects such as survival, hatching and the occurrence

of deformities in zebrafish exposed to gamma radiation (dose rates 0.4, 3.9, 15, and 38 mGy/h)

and controls during embryogenesis and larval development (2.5 to 96 hpf). In order to

elucidate the changes in gene expression with accompanying functional network analyses,

RNA sequencing of total RNA extracted from irradiated (0.54, 5.4 and 10.9 mGy/h) pooled

embryo samples and controls was performed. The embryos were exposed during 2.5–5.5 hpf,

Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0179259 June 19, 2017 2 / 24

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0179259


corresponding to the blastula period until the onset of the gastrula stage of development

(256-cell stage until approximately 50% epiboly) [14]. This timeframe also includes the zygotic

genome activation (ZGA) and onset of cell specification takes place [15–17]. The early molecu-

lar events initiated by a very low total dose of gamma radiation at 5.5 hpf and analyzed by tran-

scriptomics were shown to be consistent with the observed developmental adversity in later

stages.

Materials and methods

Ethics statement

The research was carried out according to the Norwegian Animal Protection Act (imple-

mented EU Directive 2010/63/EU) and approved on December 12, 2013 by IACUC at Norwe-

gian School of Veterinary Science (since 2014 Norwegian University of Life Sciences, Faculty

of Veterinary Medicine and Biosciences, Oslo, Norway), under approval number FOTS ID

5793.

Zebrafish maintenance and embryo handling

Embryos from the AB wild type strain were obtained from the NMBU zebrafish facility (Nor-

wegian Zebrafish Platform) and maintained according to standard operating procedures. Zeb-

rafish were kept at 28 ± 1˚C on a 14–10 hour light-dark cycle at a density of 5–10 fish/L. The

system water (SW) was prepared from particle and active charcoal filtered reverse osmosis

(RO) deionized tap water, kept sterile by UV irradiation. To generate a conductivity of 500 μS/

cm, general hardness (GH) of 4–5 and pH 7.5 (adjusted with 1M HCl), 155 mg synthetic sea

salt (Instant Ocean, Blacksburg, USA), 53 mg sodium carbonate and 15 mg calcium chloride

(Sigma-Aldrich) was added per liter RO water. Adult fish were fed with Gemma Micro 300

(Skretting, Stavanger, Norway) dry feed twice a day and live artemia (Scanbur, Copenhagen,

Denmark) once a day. Health was monitored by daily inspection, sentinel fish were sent to

ZIRC for pathology every six month and water sent for microbiology analysis (NMBU Vetbio,

Oslo). Adult fish were allowed to mate for 30 min in standard 1 L breeding tanks (Aquatic

Habitats, Apopka, FL). For gamma radiation experiments, embryos were collected immedi-

ately after breeding and individually placed in 2 first rows of replicate 96 well plates (Nunc™,

Thermo-Fisher Scientific, Waltham, Massachusetts, USA) with 200 μl of egg water (temperate

autoclaved system water). A second group of embryos was placed in 2.5 ml tubes (Thermo-

Fisher Scientific, Waltham, Massachusetts, USA) (50 embryos/ tube) with 2 ml egg water.

Embryo irradiation and dosimetry

After collection, embryos were transported to the FIGARO experimental irradiation facility at

NMBU, Ås, Norway (60Co source, activity ~ 420 GBq). For both the toxicity endpoints and

transcriptomic analyses, external gamma irradiation of zebrafish embryos commenced at 2.5

hpf with total doses to water ranging from 1.62 mGy– 3496 mGy during a 3 hour, 43.8 hour

and 92 hour irradiation timespan (Table 1). Dose rates of 0.4, 3.9, 15 and 38 mGy/h were used

for general toxicity analyses, and 0.54, 5.4 and 10.9 mGy/h for the transcriptomic analyses

(Table 1). The experiments for both analyses were performed at separate time intervals. All

exposures included corresponding controls. For the adverse effect observations and RNA-seq,

96-well plates and 2.5 ml tubes, respectively, were positioned at different distances from the

gamma source corresponding to the dose rates to water (DWater) presented in Table 1.

Field dosimetry (air kerma rates measured with an ionization chamber) was traceable to the

Norwegian Secondary Standard Dosimetry Laboratory (Norwegian Radiation Protection
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Authority, NRPA, Oslo, Norway) [18]. Average dose rates to water in the first and second

rows of microplate wells were estimated according to established technical guidelines [19]

and used as a proxy for dose rates to the fish embryos. Controls were placed in the same room,

outside the beam cone and shielded by lead reducing the external (background) dose rate

to� 0.35 μGy/h (Thermo Eberline FHT6020). The irradiation room was thermostatically

heated (28 ± 2˚C), and had a 14–10 hours light-dark cycle (250–320 lx). To minimize variation

in temperature, 2 control groups were used for the transcriptomic analyses.

Sampling procedure and experimental analysis of general toxicity

endpoints

At approximately 48 hpf, half of the 96-well plates were removed from exposure (Table 1,

Group “A”), while the remaining embryos were irradiated until 96 hpf (Table 1, Group “B”),

n� 145/ group. To determine the general toxicity in terms of adverse effects on survival and

hatching, the embryos and larva were manually observed in a stereo microscope (3.5–45x) at

48 and 96 hpf in group “A”, and at 96 hpf in group in “B” (S1 Table). Additionally, the occur-

rence of deformities was observed at 96 hpf in both “A” and “B”. Analysis of endpoints was

performed according to observations guidelines [20]. After observations, the larva used in

this study was euthanized (prior to independent feeding at 120 hpf) using Tricaine (MS-222)

(Sigma-Aldrich) overdose followed by rapid freezing (-70˚C). For RNA extraction, embryos

were sampled at 5.5 hpf (Table 1, Group “C”) in 2.5 ml tubes (n = 50/ sample).

Transcriptome analysis at 5.5 hours post fertilization

RNA sequencing was conducted to compare gene expression profiles between the controls and

the 0.54, 5.4 and 10.9 mGy/h exposed embryos. Total RNA was isolated from embryos exposed

between 2.5 hours and 5.5 hpf with TRIzol Reagent (Invitrogen) and purified with RNeasy

Mini Kit (Qiagen) according to manufactures’ instructions. Briefly, 1 ml TRIzol was added to

each sample consisting of 50 embryos and homogenized using Magnalyser Beads (Roche Diag-

nostics). Isolated RNA was DNase I (Qiagen) treated for 20 min at 25˚C before further purifi-

cation. Each sample was eluted in 50 μl RNase-free water and stored at − 80˚C until required.

RNA purity and yield (A260/A280 > 1.8, A260/A230 > 2, yield> 200 ng/μl) was determined

using NanoDrop-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE) and

quality (RIN> 8.5) was assessed with Agilent 2100 Bioanalyzer (Agilent Technologies, Palo

Alto, CA) using RNA Nano LabChip Kit (Agilent Technologies). None of the samples showed

any signs of degradation or impurities. Photometric parameters and RNA integrity number

(Bioanalyzer; Agilent technologies, USA) determined the quality of RNA sequenced samples.

The RNA was sequenced (Illumina HiSeq 2000) at BGI Tech Solutions Co., Ltd., Hong Kong.

Three single-end libraries (biological replicates), in the 5.4 and 10.9 mGy/h groups and a

duplicate per 0.54 exposure group were sequenced. The bioinformatics analysis pipeline of the

Table 1. Exposure groups and dosimetry. Total doses from measured dose rates during different time periods of exposure. (A): 43.8 hours; (B): 92 hours

and (C): 3 hours.

Developmental traits Dose rate DWater (mGy/h)* 0.4 3.9 15 38

Total dose DWater (mGy) (A) 17.5 171 657 1664

(B) 36.8 359 1380 3496

RNA-seq Dose rate DWater (mGy/h)* 0.54 5.4 10.9

Total dose DWater (mGy) (C) 1.62 16.2 32.7

*Uncertainty (K = 2) for dose rate estimates is ~10% (Bjerke and Hetland, 2014).

https://doi.org/10.1371/journal.pone.0179259.t001
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RNA sequencing data is presented in S1 Fig. Quality assessment of raw reads (49 nt long) and

adapter trimming was performed using Trim Galore! v0.3.7, a wrapper tool around Cutadapt

and FastQC to consistently apply quality and adapter trimming to FastQ files [21,22]. Only

reads with Phred score > 20 were kept. Afterwards, using TopHat v2.0.9 [23] with bowtie1,

reads were mapped to the ZF genome (version Zv9, release 76) downloaded from Ensembl

(http://www.ensembl.org/Danio_rerio/Info/Index). Options -g (maximum multihits number)

was modified from its default value to 1, - -no-coverage-search was allowed, - -library type was

set to “fr-unstranded” and -p (number of threads) was restricted to 4. As for bowtie1 options,

-q (fastq files), -v (report end to end), -k 20 (report up to 20 good alignments), -m 20 (suppress

all alignments if > 20), -S (to use SAM format) were used. BAM files were uploaded into Seq-

monk [24] for visualization of aligned and mapped reads and read counting. Reads were

counted as reads exactly overlapping with exons and the resulting count table was analyzed for

gene expression under edgeR v3.4.2 Bioconductor [25]. The RNA-seq experiment was depos-

ited in SRA database (https://www.ncbi.nlm.nih.gov/) and is publically available under acces-

sion SRP096352.

Quantitative real-time PCR (qPCR) analysis

To verify the RNA-sequencing results, eight differently expressed genes were selected for

qPCR analysis, based on their common differential expression in the exposure groups. The

DNA Sequence information for each gene was retrieved from genebank (http://www.ncbi.

nlm.nih.gov/Genbank). The Primer3Plus software (http://www.bioinformatics.nl/cgi-bin/

primer3plus/primer3plus.cgi/) was used to design primers. These primers were analyzed for

oligo duplex and primer dimers. Amplicons which are shorter than 130 bp and spanned over

different exons were selected (S1 Table). The cDNA was prepared from 1 μg of same total

RNA used for RNA sequencing analyses (n = 3). For cDNA synthesis, Superscript III reverse

transcriptase (Invitrogen, USA) and random hexamer primers were used according to product

specifications. The qPCR was performed on a LightCycler1 96 Real-Time PCR system (Roche,

Mannheim, Germany) using LightCycler1 480 SYBR Green I Master (Roche). Each cDNA

was analyzed in a duplicate and composed of 5 μL mastermix, 2 μL primer mix (5 μM of each

forward and reverse), and 3 μL of each 10× diluted cDNA sample in a total volume of 10 μL.

The cycling parameters were 10 min pre-incubation at 95˚C, followed by 45 cycles of amplifi-

cation at 95˚C for 10 sec, 60˚C for 10 sec and 72˚C for 8 sec, followed by a melting curve from

60˚C to 95˚C. The qPCR assay was performed in three biological replicates. RefFinder analysis

tool (http://fulxie.0fees.us/) [26] was used to find the best candidate reference genes. Analyzed

reference genes were hmbs (hydroxymethylbilane synthase), b-actin (beta-actin) and rps18
(ribosomal protein S18). For all exposure groups, hmbs was found to be the most stable house-

keeping gene. The expression of each target gene transcript was normalized to hmbs and the

fold change was calculated using the ΔΔCT method.

Ingenuity pathway analysis

For predicted networks/pathways and biological function analyses of differently transcribed

genes, IPA software (http://www.ingenuity.com, Ingenuity Systems Inc., Redwood City, CA)

was used. The Core analysis and comparison sub analysis blocks were used to determine the

interaction networks of up- and down-regulated genes, upstream regulators and biological

states (diseases and bio functions) in each and across the three exposure doses. A right-tailed

Fisher’s exact test was used to determine the probability that each biological function is due

to chance alone and the association identified as statistically significant and non-random

(p< 0.05). The results in gene regulation are given as negative logarithms of the p-value
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computed by numbers of genes participating in the process, number of genes from the refer-

ence dataset mapped to the network and the size of the entire network in the Ingenuity knowl-

edge database. The upstream regulator analysis examines how many known targets of each

transcription regulator are present in the dataset, comparing their expression to what is

known from the literature. In the present study, ranking by overlap p-value (cutoff p-

value� 0.001) and filtering for genes, RNAs and proteins in order to predict the most relevant

transcriptional regulators was used. For the predicted activation state of the transcription regu-

lators, a z-score describing the quantity of activated (z-score > 0) or inhibited predictions (z-

score < 0) was calculated. However, this prediction is not available for upstream regulators

with less target genes in the datasets (i.e. in lower dose-rates), and could not be considered to

determine the most likely relevant regulators where the value of the correction for the z-score

was too high (bias> 0.25).

Statistical analyses

After establishing the database for the general toxicity observations, tabulating and checking

for errors in Excel1, data were transferred to Stata (MP/14 for Windows, StatCorp, College

Station, TX). Confidence intervals were calculated using the proportion command for each of

the outcomes survival, hatching and deformities at dose levels and the two exposure durations.

Further logistic regression reported as odds ratios (OR) was used to estimate the effect of the

treatments on hatching, survival and deformities and standard methods were used to check

model fit. If significant, multiple comparisons were conducted using Tukey’s or Dunnett’s

tests (Graphpad Prism 6, La Jolla, USA). Statistical significance was set to p < 0.05.

For analysis of gene expression, the dataset was TMM normalized first (trimmed mean of

M-values, edgeR v3.4.2 Bioconductor, Robinson, McCarthy, and Smyth 2010), followed by

data exploration using the statistical package R v3.0.2 [27]. Data was explored for descriptive

statistics such as: minimum, maximum, 1st quantile, 3rd quantile, median, mean, standard

deviation, also the similarity among samples was determined by correlation analysis and hclust

(ward method) analysis to determine the distance between samples. The statistical analysis of

differentially expressed genes (DEGs) was based on pairwise comparison between treatment

and control RNA-seq samples (biological replicates) with a cut off set to ± 0.40 log2 fold

change (1.3 FC). The FDR (false discovery rate) was set up to a significance of p� 0.05. Venn

diagram (Venny v2.1, Oliveros, (2007–2015)) was used to explore overlapping differential

expressed genes among radiation treatments. For qPCR, obtained mean relative gene expres-

sion values (exposed vs. control) were compared to mean relative gene expression values

for the same genes from RNA-seq and a Pearson’s correlation coefficient was calculated

(p< 0.05) for all three exposure groups (Graphpad Prism 6, La Jolla, USA).

Results

General toxicity

To determine the effects of gamma radiation on the embryonic and larval development, the

survival, hatching rate and deformities were assessed at 48 and 96 hpf. Compared to controls, a

decrease in survival was observed in all exposed groups, albeit only the 38 mGy/h group was

statistically significant, both after a 43.8-hour and 92-hour exposure (Table 2, S2 Table). The

timing of hatching was significantly affected by irradiation, as a premature onset of hatching

in the 0.4 mGy/h group (p< 0.0001) and a delayed onset of hatching in the 38 mGy/h group

(p = 0.0072), respectively, were observed (S2 Table). The total hatching was above 95% in all

exposure groups, however, with significantly lower total hatching in fish exposed to 15 mGy/h

compared to controls (Table 2, S2 Table). The deformity frequency at 96 hpf increased linearly

Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression
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in response to dose for both the 43.8- and 92-hour exposure (linear regression, R2 = 0.93 and

R2 = 0.99, respectively) and was significantly higher than in controls (p < 0.05) in all exposure

groups, except from the 43.8-hour exposure to 0.4 mGy/h and 3.9 mGy/h (Fig 1, Table 2). The

lowest dose rate (0.4 mGy/h) caused significant increase in deformities (p = 0.049) only in the

group exposed for 92 hours (Fig 1, Table 2). The most frequently observed deformities were

retardation in development manifested as failed hatching and absence of pigmentation, irregu-

larities in formation of the head and eyes, as well as a short tail or lack of a tail (S15 Fig). In

summary, a significant dose dependent response was observed for deformities and mortality,

whereas hatching showed a non-monotonic dose-response.

Gene expression analysis

Transcriptional analysis was performed at the gastrula stage 5.5 hpf in order to identify poten-

tial changes to the transcriptional program induced by the gamma exposures. An average of 27

million reads (49 nt long) were obtained in both the treated and control groups. The mapping

statistics showed a high grade of similarity among all samples (S2 Fig, S3 Table). The expres-

sion dataset analysis for replicability and distribution by means of multidimensional scaling

Table 2. Adverse effects. Adverse effects on total hatching, survival and deformities at 96 hpf, reported as Odds Ratios with 95% confidence intervals and

related p-values compared to the base level (OR = 1). The OR describes the risk for occurrence of an adverse effect, given the two variables: dose rate and

duration of exposure to the specified dose-rates. Significance denoted with (*).

Odds ratio (95% CI); p-values compared to base level

Variables Hatching Survival Deformities

Dose rate (mGy/h) Control 1.00 (-) 1.00 (-) 1.00 (-)

0.4 0.40 (0.08–2.10); 0.28 0.65 (0.41–1.04); 0.07 5.00 (1.09–23.0); 0.04*

3.9 0.39 (0.08–2.03); 0.26 0.66 (0.42–1.06); 0.09 8.44 (1.93–37.0); 0.005*

15 0.13 (0.03–0.59); 0.008* 0.75 (0.47–1.20); 0.23 13.43 (3.16–57.0); <0.001*

38 0.26 (0.05–1.24); 0.09 0.46 (0.29–0.73); 0.001* 18.4 (4.37–77.6); <0.001*

Duration of exposure (hours) 43.8 1.00 (-) 1.00 (-) 1.00 (-)

92 0.77 (0.45–1.33); 0.35 0.99 (0.78–1.27); 0.98 1.61 (1.09–2.37); 0.015*

https://doi.org/10.1371/journal.pone.0179259.t002

Fig 1. Deformities. Deformities observed at 96 hpf which occurred after a 43.8- and 92-hour exposure to the

specified dose rates. The exposures had separate controls. Values presented as mean percentage ± 95%

confidence interval (p < 0.05).

https://doi.org/10.1371/journal.pone.0179259.g001
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plot (MDS) showed a clear difference between exposed and their respective controls (S3 Fig).

A total number of ~10000 genes was expressed in all samples, while the number of differen-

tially expressed genes (DEGs) showed a clear dose rate dependency (Fig 2 and S4 Fig and the

full list of DEGs is available in S4 Table).

In the 0.54 mGy/h exposure group, 16 genes were up-regulated (FC from 1.3 to 2.2) and

two genes down-regulated with FC from 1.3 to 1.7 (Fig 2, S4 Table). In the 5.4 mGy/h exposure

group, 129 genes were up-regulated with FCs from 1.3 to 674, while 27 were down-regulated

with FCs from 1.3 to 2 (Fig 2, S4 Table). In the 10.9 mGy/h exposure group 556 DEGs were

split between 454 up-regulated with FCs from 1.3 to 3.2 and 102 down-regulated genes with

FCs of 1.3 to 2.4 (Fig 2, S4 Table). Among the DEGs, two were found to be differentially

expressed in all three exposure groups: pfkfb3 (6-phosphofructo-2-kinase-fructose-2,6-bipho-

sphatase 3) up-regulated in 0.54, but down-regulated in the 5.4 and 10.9 mGy/h; crabp2b (cel-

lular retinoic acid binding protein 2b) which is similarly up-regulated in all exposure groups

(Fig 3A, S4 Table).

Fig 2. Expressed and differentially expressed genes in each exposure. Threshold set to FC ±1.3

FDR < 0.05; down-regulated genes (blue), up-regulated genes (red) and total number of expressed genes

(yellow).

https://doi.org/10.1371/journal.pone.0179259.g002

Fig 3. Venn diagram showing common and unique sets of differentially expressed genes between exposure

treatments. Total number of (A) common genes between 0.54, 5.4 and 10.9 mGy/h after pairwise comparison to controls

(FC ± 1.3, FDR < 0.05); (B) Up-regulated genes; (C) Down-regulated genes.

https://doi.org/10.1371/journal.pone.0179259.g003

Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0179259 June 19, 2017 8 / 24

https://doi.org/10.1371/journal.pone.0179259.g002
https://doi.org/10.1371/journal.pone.0179259.g003
https://doi.org/10.1371/journal.pone.0179259


In addition, five and 54 DEGs were overlapping between the 0.54/10.9 and 5.4/10.9 mGy/h

groups, respectively (Fig 3A). As for the up-regulated DEGs, four genes were overlapping

between the 0.54 and 10.9 mGy/h, while 50 genes were overlapping between the 5.4 and 10.9

mGy/h group (Fig 3B). Furthermore, down-regulated overlapping genes were found (five

genes) only between the 5.4 and 10.9 mGy/h exposure (Fig 3C). The most up-regulated com-

mon gene in the 10.9 mGy/h group, tfa (transferrin-a), was also highly up-regulated in the 5.4

mGy/h group (S4 Table), although the FC values differed between the groups (S4 Fig). In addi-

tion, lipoprotein genes: apoBb (apolipoprotein Bb), apoA1a and apoA1b (apolipoprotein A-Ia/

Ib), and common with the 10.9 mGy/h group, apoA-IV (apolipoprotein A-IV) were amid the

top up-regulated in the 5.4 mGy/h group. The most down-regulated common gene between

5.4 and 10.9 mGy/h was vegfab (vascular endothelial factor Ab (S4 Table). The expression lev-

els for up and down-regulated genes overlapping between the three dose rates are presented in

Fig 4.

Pathway analysis

General pathways analysis. The core analysis IPA software tool was used to find the most

significantly affected biological signaling (canonical) pathways by the DEGs in the three expo-

sure groups. A statistically significant difference between the signaling pathways in the 0.54

mGy/h exposure group compared to the 5.4 and 10.9 mGy/h was found. In the lowest dose

rate, the most affected signaling pathway was retinoic acid receptor activation (RARa), fol-

lowed by RAmediated apoptosis and glutathione mediated detoxification signaling (Fig 5).

Interestingly, compared to the signaling pathways in 0.54 mGy/h, the higher doses demon-

strated some RA pathway activity, but this was below the significance threshold (Fig 5, S11

Fig). In the two higher dose rates, the most significantly affected signaling pathways were eif2
(eukaryotic initiation factor 2) andmTOR (mechanistic target of rapamycin), which were not

affected (p-value> 0.05) in the lowest dose rate group (Fig 5, S12 and S13 Figs).

Toxicological pathways. To identify the top diseases and biological functions of altered

genes in each exposure group, the gene expression data sets were compared between all expo-

sure groups in IPA. The DEGs in the datasets were shown to be involved in gene networks

associated with various embryonic developmental processes and cell functions (Fig 6).

In the 0.54 mGy/h exposure group, gene networks associated with apoptosis and other cell

death mechanisms were active, while gene networks associated with organismal death and pro-

liferation of tumor cell lines (Fig 6) were inhibited. In contrast, in the 5.4 and 10.9 mGy/h

groups, gene networks associated with apoptosis were inhibited and gene networks related to

proliferation of tumor cell lines were active. Similarly to the lower dose rate exposure, the gene

networks related to organismal death in these groups were inhibited. Comparison of expres-

sion of apoptosis genes showed that of total 129 DEGs found in the network, 5 were found in

the 0.54 mGy/h group (all up-regulated), 40 in the 5.4 mGy/h group (34 up- and 6 down-regu-

lated) and 101 in the 10.9 mGy/h (83 up- and 18 down-regulated) (S14 Fig). The one common

and similarly expressed gene between all exposures in the apoptosis network was crabp2b,
while expression levels of 16 common genes between 5.4 and 10.9 mG/h groups differed (S14

Fig). Additionally, networks associated with cell movement, growth, cardiovascular develop-

mental processes and cancer development were significantly activated in the two higher dose

rate exposure groups; albeit more significantly in the highest dose (Fig 6).

Key regulators. A transcription factor enrichment analysis was conducted to identify

upstream regulators of transcriptional networks modulated by ionizing radiation. A total of

159, 632 and 939 transcription regulators in the 0.54, 5.4 and 10.9 mGy/h exposures were iden-

tified, respectively (S5 Table).Myc (v-myc avian myelocytomatosis viral oncogene derived
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Fig 4. Expression levels for up and down-regulated overlapping genes between exposures.

Expression levels in the 0.54, 5.4 and 10.9 mGy/h groups are given in log2 of the fold changes (FC).

https://doi.org/10.1371/journal.pone.0179259.g004
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homolog), TNF (tumor necrosis factor), tp53 (tumor protein p53) and hnf4a (hepatic nuclear

factor 4, alpha) were identified as upstream regulator genes in all exposure groups (S5 Table,

S5–S8 Figs). In the two higher dose rates, TGFb1 (transforming growth factor, beta 1) and

cebpa (CCAAT/enhancer binding protein C/EBP, subunit alpha) were found to be significant

upstream regulators (S5 Table, S9 and S10 Figs).

Validation by quantitative real-time PCR (qPCR)

In order to validate the RNA sequencing results, eight differently expressed genes were selected

for quantitative real-time polymerase chain reaction (qPCR) analyses in the groups exposed to

0.54, 5.4, 10.9 mGy/h and controls. The selected genes and their respective fold changes are

presented in Table 3. The data from real-time qPCR and the RNA-sequencing showed a good

correlation (Pearson’s linear correlation coefficient r = 0.89, p< 0.0001).

Two of the selected genes are common between all three exposure groups (pfkfb3 and

crabp2b). Three are common between 0.54 and 10.9 mGy/h groups (vox, ppp1r15a and shisa2)
and between 5.4 and 10.9 mGy/h (sox2, tfa and eef2b). Only two genes were found to have an

opposite regulation at one of the dose rates; pfkfb3 in the 5.4 mGy/h group was up-regulated,

while shisa2 in the 10.9 mGy/h was down-regulated (Table 3).

Discussion

Previous studies in zebrafish reported underlying molecular mechanisms responsible for

adverse biological effects such as DNA damage [28,29], ROS, oxidative stress, apoptosis,

bystander effects [30–32] and also genetic [32–34] and epigenetic changes [8] following expo-

sure to ionizing radiation. However, most of the genetic responses were studied following

acute exposures.

Fig 5. DEG functional analysis (IPA). Top signaling pathways in canonical pathway comparison between all

exposure groups: 0.54 mGy/h, 5.4 mGy/h and 10.9 mGy/h. The rankings were based on Fisher’s exact test and

high-ranking categories are displayed along in a decreasing order of significance from top. The threshold line

(red) denotes the cut-off for significance (p-value 0.05).

https://doi.org/10.1371/journal.pone.0179259.g005

Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0179259 June 19, 2017 11 / 24

https://doi.org/10.1371/journal.pone.0179259.g005
https://doi.org/10.1371/journal.pone.0179259


Fig 6. The most affected biological function and diseases networks. IPA predictions in comparison

analysis between 0.54 (1) 5.4 (2) and 10.9 mGy/h (3) group. The heat map is based on the activation z-score,

consistent with the particular activation state: “activated” (orange) or “inhibited” (blue). Z-score cut off set

to ± 2.5 (arbitrary).

https://doi.org/10.1371/journal.pone.0179259.g006
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In this study, we focused on potential adverse effects on the embryonic development caused

by low dose and dose rate ionizing radiation. To this end, we investigated the developmental

and toxicological effects of continuous gamma irradiation (doses between 17.5–3496 mGy)

during early blastula (2.5 hpf; 256-cell stage), through to the hatching period (48–72 hpf) and

early larval development, i.e., life stages associated with numerous delicate morphological

changes [35].

To investigate molecular initial events associated to effects of ionizing radiation later in

development, analysis of the gastrula stage 5.5 hpf embryo transcriptome was carried out using

RNA sequencing combined with a functional gene network analysis software.

Adverse effects of radiation in developing embryos

The results from the observations of survival, deformities and total hatching at 96 hpf showed

that radiation caused a significant dose-dependent reduced survival, affected the total hatching

and increased the number of deformities. (Table 2, Fig 1). The exposure dose rates for evaluat-

ing the phenotypic effects used in the present work (0.4, 3.9, 15, and 38 mGy/h) were higher

than the ERICA screening value of 10 μGy/h (0.24 mGy/d) [10]. However, the dose-rates span

the proposed level of 0.42 mGy/h (10 mGy/day), which is considered to be a level below which

there is not likely to be any detrimental effect on aquatic populations (UNSCEAR Report,

1996) and the derived consideration reference levels (DCRL) for fish (~0.42 mGy/h– 40 mGy/

h), at which there are “likely to be some observable adverse effects occurring to individuals”

[36].

The lowest dose rate in the present work at which deformities were observed was 0.4 mGy/

h (total dose 36.8 mGy). The onset of hatching was premature in the 0.4 mGy/h exposure

group (17.5 mGy total dose, Table 1), and significantly delayed in the 38 mGy/h group (1664

mGy total) (S2 Table). The total hatching in these groups was unaffected (Table 2). Interest-

ingly, in a previous study of hatching intervals following X-ray exposure during the blastula

stage, earlier hatching was associated with low dose (25 mGy at 0.43 Gy/min), while higher

doses (250–500 mGy) delayed the onset of hatching [37]. In addition, other studies report that

both low and high doses had an accelerating effect on the hatching interval [28,32]. In the 15

mGy/h group, the total hatching was significantly decreased (Table 2). A similar result was

reported after X-rays exposure to 500 mGy [37], which is close to the total dose (657 mGy) in

the present 15 mGy/h exposure group (Table 1). The survival, although exceeding 82% in all

groups (S2 Table), was significantly lower than control in the 38 mGy/h group (Table 2) after

both 43.8 and 92 hours of exposure. Previously, mortality in zebrafish embryos was reported

only for acute exposures from 1 to 24 hpf (1–10 Gy, X-rays) [38]. Although embryo mortality

Table 3. Real time qPCR verification of RNA sequencing. Results presented as fold change (FC) for eight genes. The (n.a.*) refers to not differentially

expressed, while the fold change was not available for this gene in this group.

Gene ID FC RNA-seq FC RT qPCR

Dose rate (mGy/h) 0.54 5.4 10.9 0.54 5.4 10.9

pfkfb3 1.8 1.3 1.5 1.8 1.4 0.9

crabp2b 1.9 2.1 2.0 2.9 2.3 2.0

vox 1.5 1 1.5 1.6 2.2 0.7

ppp1r15a 1.6 0.8 1.5 1.8 1.3 0.6

shisa2 1.3 1 1.3 1.5 1.9 0.7

sox2 n.a.* 3.3 2.2 3.0 1.6 0.8

tfa n.a.* 93.2 3.2 1.2 40.7 20.7

eef2b 1.1 1.3 1.2 0.6 1.6 1.4

https://doi.org/10.1371/journal.pone.0179259.t003
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from the 43.8 h exposure was observed at 48 hpf, no further increase was observed at 96 hpf

(S2 Table). Collectively, these observations might indicate that the early developmental stages,

prior to the hatching interval, are more sensitive to the effects of ionizing radiation, resulting

in mortality. Other studies have reported no significant differences in embryo viability after

receiving acute ionizing radiation doses ranging from 1–10 Gy [34,39], nor following continu-

ous exposures up to 24 mGy/h (2280 mGy) [32], although the latter induced multiple deformi-

ties. Generally, the adverse effects on embryo development from the continuous exposure in

the present study showed considerable variability in response to lower and higher doses, and

in order to elucidate potential molecular mechanisms behind the observed effects, this variabil-

ity was further studied by transcriptomics.

The 5.5 hours post fertilization embryo transcriptome

The gene expression analysis was performed at the late blastula / early gastrula stage (~ 5.5

hpf), a critical stage of embryogenesis, characterized by intensive cell proliferation and specifi-

cation [17,35]. At this stage the zygotic genome is activated, while the inherited maternal tran-

script (synthesized during oogenesis and stored in the egg) is degraded [15]. Thus, changes in

transcriptome profile can be attributed to radiation effects on the transcriptional program of

the embryo’s own genome. The choice of this stage served two major aims: early toxic effects

and accompanying stress or defense mechanisms would be reflected at the transcriptional

level, and deviation of the transcriptional program at this stage could be indicative or predic-

tive to adverse outcome observed later during embryogenesis. The applied dose rates were

selected to both encompass a toxic effects dose response and to be environmentally relevant.

The RNAseq analysis was thus conducted on low total doses, which consequently should pro-

duce only low level of DNA damage. This strategy enables investigation of more subtle and

less well-described molecular effects of ionizing radiation in addition to genotoxicity. The fact

that significant transcriptional changes could be observed from a 3 hour exposure to total

doses from 1.6 to 33 mGy corroborates the validity of the approach. Moreover, the observed

responses were intelligibly connected to the adverse outcomes observed at the phenotype level.

This correlation is important with respect to the level of dose rates and total doses that would

be required to elicit changes at the molecular level.

The number of similarly and differently expressed genes, as well as overlapping DEGs,

showed a clear dose-response effect in the gamma exposed embryos with the lowest number of

modulated genes in the 0.54 mGy/h group and with an increasing number in the two highest

exposure groups (5.4 and 10.9 mGy/h) (Fig 2). A considerable variation in FC between the 5.4

and 10.9 mGy/h groups was observed (S4 Fig), but a total of 56 DEGs were common in these

exposure groups.

Two genes, pfkfb3 and crabp2b, were found to be differentially expressed in all exposures.

The pfkfb3 gene is involved in regulating the expression of cyclin-dependent kinase 1, which

promotes proliferation and survival in tumor cells [40] by protecting cancer cells against oxi-

dative stress through S-glutathionylation and glucose metabolism switch to the pentose phos-

phate pathway [41,42], and thereby counteracting ionizing radiation generated ROS. The

crabp2b gene is a one of the two zebrafish crabp2 genes orthologous known to encode retinoic

acid (RA) protein family and lipocalin/cytosolic fatty acid binding protein family. Interest-

ingly, the crabp2b was found to be similarly up-regulated (FC ~ 2) in all three irradiation treat-

ments in both the RNA-seq and the qPCR (Table 3, Fig 4). Retinoic acid is the biological active

metabolite of Vitamin A and crabp2 regulates the access of retinoic acid by binding with the

nuclear retinoic acid receptor alpha (RARa) [43] and helps modulating the RA gradient, which

is important for the development of vertebrates, including humans [43,44]. Deficient or excess
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levels of vitamin A have induced malformations in experimental animals and humans, indicat-

ing that the concentration must be kept within a narrow range [45,46]. Furthermore, crabp2b
is associated with regulation of the hindbrain anterior-posterior axis development [47], and is

expressed in structures requiring the retinoic acid during embryonic development, such as the

CNS, dorsal retina, branchial arches, epidermis, otic vesicle and pectoral fins [43]. Considering

the increased number of malformations observed in irradiated fish, it could be hypothesized

that this is in part induced by modification of the crabp2b gene.

Among the common genes modulated by 5.4 and 10.9 mGy/h exposures, the most signifi-

cantly up-regulated gene is tfa (Fig 4). This gene is critical for iron transport and iron regulated

hormone expression [48], and is involved in the immune response to bacterial infection [49].

A decrease in concentration of the transferrin protein was found in blood plasma of radiologi-

cal accident victims compared to blood plasma from non-irradiated individuals, and reported

as a possible mutagenic factor [50]. However, a protective role of the transferrin pathway for

antioxidant repair and sequestering metals was also suggested [51]. Additionally, increased

chromosomal damage combined with increased transferrin was demonstrated in lymphocyte

cultures following exposure to 1 Gy of ionizing radiation, suggesting that transferrin is affected

by radiation [52].

The highly up-regulated apolipoprotein genes in the two higher dose rate exposure groups,

and notably the 5.4 mGy/h group (apoBb, apoA1a, apoA1b and apoA-IV), could point to radia-

tion affecting mechanisms behind the lipid metabolism and transport from yolk cells to the

embryo (S4 Table) [53]. Apolipoprotein genes play a role in reducing fat intake during

embryonic development, as previously shown in zebrafish [53] and humans [54], causing

malnutrition of the embryo, which may have disrupted normal development. In addition, apo-

lipoprotein genes were reported to negatively regulate (apoB) [55], or even inhibit the angio-

genesis (apoA1), in a vegfdown-regulation dependent pathway [56]. Relatedly, among the

common genes modulated by 5.4 and the 10.9 mGy/h treatments, the most significantly

down-regulated gene in both data sets is vegfab (FC 1.6–2), an isoform of the human ortholog

VEGF-A (Fig 4) [57]. At early life stages, this gene mediates differentiation of endothelial

cells and early vascular development and angiogenesis (formation of new blood vessels) [58],

including retinal angiogenesis [59]. In developed individuals, vegf stimulates the angiogenesis

[60], either in a physiological (such as tissue repair processes) or pathological states (such as

tumor growth), and vegf activity has been shown to be stimulated through an intracellular

increase in ROS generated as a result of exposure to ionizing radiation [61]. In an experimental

study of radiation effects in mice, vegf together with eif2 was modulated in bladder tissue [62].

Molecular pathways—Potential mechanisms of radiotoxicity

A transcription factor enrichment analysis was performed to investigate whether gamma

induced pathways or gene networks could be ascribed to master regulators. IPA analyzes of

the datasets identified upstream regulator genes, which were not necessarily significantly

affected, but may play key roles in the regulation of DEGs. The transcription factorsmyc, TNF,

tp53 and hnf4a were found to be in central positions of functional networks of modulated

genes in comparison between the three exposure groups (S5 Table). Additionally, TGFb1 and

cebpa were identified as key regulators at the two higher dose-rates (5.4 and 10.9 mGy/h) (S5

Table).

Myc was found to be one of the top upstream regulators, in all three exposures (S5 Table, S5

Fig) and is implicated in the regulation of various processes in the cell, such as growth and pro-

liferation, migration, differentiation and cell death. Up-regulation of the oncogenesmyc and

mycn is associated with poor outcomes of several cancers, such as aggressive neuroblastoma
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[63], large B cell lymphoma [64], acute myeloid leukemia (AML) [65] and nephroblastoma

(Wilms tumor) [66]. CombinedMyc up-regulation with an altered retinoic acid (RA) pathway

activity worsens the prognosis of such cancers [67]. Furthermore, TNFwas found to regulate

a high number of molecules in the datasets (S5 Table, S6 Fig). This cytokine was previously

shown to be strongly protective at lower ionizing radiation doses for the hematopoietic stem

cell system [68] and via selective destruction of blood vessels in T-cell tumors [69]. Interest-

ingly, the activity of tumor necrosis factor-alpha (TNF-α) in cell lines was found to be antago-

nistic to the activity of TGFb [70]. Another identified upstream regulator, tp53 (S5 Table, S7

Fig), is known to regulate apoptosis in response to DNA damage [71], but was also demon-

strated to be a critical factor for normal development and survival in zebrafish embryos after

exposure to ionizing radiation [72,73]. Tp53was found to decrease, but also to concomitantly

regulate tumor suppressive TGFb responses through Smad2/3 DNA complexes [74]. Although

not differentially expressed in the 0.54 and 5.4 mGy/h datasets, hnf4a is found to be a tran-

scription regulator for a large number of DEGs in all exposure groups (S3 Table, S8 Fig). This

transcription regulator was found to be up-regulated in the blood of patients exposed to ioniz-

ing radiation [75], and in a human tissue model exposed to low dose gamma radiation [76].

Hnf4a regulates the gastrulation [77], the developmental period during which the morphoge-

netic cell movements, along with production of the three primary germ layers (ectoderm,

mesoderm and endoderm) and the embryonic axis (> 5.25 hpf) occur [78]. It is mainly

expressed in the digestive system and in the brain. This data propose hnf4a as a factor involved

in the induction of biological effects of radiation in humans as well as in other vertebrate

species.

An activated predicted upstream regulator in both the 5.4 and 10.9 mGy/h, but not in the

0.54 mGy/h exposure was TGFb1 (S3 Table, S9 Fig). The TGFb1 cytokine regulates a variety of

functions, and is known to be a mediator of the apoptosis, redox homeostasis and bystander

effects in tissues and cells in response to radiation [69,79–81]. In addition, TGFbwas found to

co-regulate angiogenesis in tumors with vegf [82]. IPA also identified cebpa as a regulator gene

among the common DEG in the two higher dose rates (5.4 and 10.9 mGy/h) (S10 Fig). In the

study of B-cell chronic lymphocytic leukemia (B-CLL) patients in the post-Chernobyl period,

similar key regulator genes, gene networks and signaling pathways were altered [83]. Cebpa is

associated with regulation of hematopoiesis, hematopoietic stem cell migration, liver develop-

ment and regulation of transcription [84]. It is predominantly found in mature myeloid cells

and is required for the differentiation of myeloid cells in order to prevent the occurrence of

myeloproliferative diseases [85]. Diseases associated with a down-regulation of cebpa include

acute myeloid leukemia with cebpa somatic mutations [86]. Moreover, other studies have

reported that ionizing radiation caused increased expression of cebpa, which was associated

with a reduction of hematopoietic stem cells and the self-renewal of multipotent hematopoietic

progenitor cells [87]. The similar regulation of these genes in mammals and zebrafish may sug-

gest that similar mechanisms might be behind the molecular changes following exposure to

radiation.

The signaling pathways affected most significantly by the 0.54 mGy/h exposure (RAR acti-

vation, RAmediated apoptosis and glutathione mediated detoxification seem to be consistent

with the described repair mechanisms occurring at low doses. This adaptive response to

low doses of ionizing radiation in biological systems is mainly characterized by antioxidant

mediated detoxification of ROS, more rapid DNA repair, apoptosis signaling and stimulated

immune response [88,89].

In the 5.4 and 10.9 mGy/h treatments, eif2 andmTOR were the most significantly up-

regulated signaling pathways. A significant role of the eif2 signaling pathway is the adaptive

response to stress by regulating the formation of translation initiation complexes, which leads

Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0179259 June 19, 2017 16 / 24

https://doi.org/10.1371/journal.pone.0179259


to reduced recognition of AUG start codons and therefore total translational inhibition and

the induction of apoptosis [90]. ThemTOR (mammalian target of rapamycin) signaling path-

way is centrally involved in cell metabolism, growth, proliferation and survival via regulation

of protein synthesis and mRNA stabilization [91]. Furthermore, it is activated during tumor

formation and modulation of angiogenesis, development of diabetic retinopathy [92] and in

radiation induced apoptosis [93]. A dysregulation ofmTOR was reported to affect the prema-

ture aging of cells and destabilize the cytoskeletal structure after exposure to chronic ionizing

radiation, in addition to changes in the eif2 signaling pathway [94]. The eif2 signaling pathway

was in comparison to the present results found to be down-regulated in the blood of post

Chernobyl leukemia patients [83]. The predicted top diseases and biological functions (IPA),

suggest that the changes in signaling pathways and gene expression in the lower dose-rate

(0.54 mGy/h) are activating gene networks associated with apoptosis and other cell death

mechanisms in the embryos, while inhibiting proliferation of tumor cell lines (Fig 6). In

the higher dose-rate exposure groups (5.4 and 10.9 mGy/h), gene networks involved in cell

death and apoptosis were shown to be inhibited, while cell movement, cardiovascular develop-

ment and tumor development were activated (Fig 6). The predictions from the gene expression

suggest an early response of the developing embryos to continuous ionizing radiation and

would be interesting to address in follow up studies using genetic, epigenetic and mutagenesis

methods.

Conclusion

Continuous exposure to external gamma radiation at environmentally relevant dose-rates

(from 0.4 mGy/h, total dose 17.5 mGy) resulted in severe consequences for the development

and gene expression of zebrafish embryos and larva. Significant mortality compared to con-

trols was observed in the groups exposed to the highest dose rate (38 mGy/h), while increased

number of deformities and differences in the hatching was observed in groups exposed to

lower doses� 0.4 mGy/h (Tables 1 and 2 and S2 Table). Consistent with the observed adverse

effects, the changes in gene transcription could be attributed to cell differentiation and mor-

phological development. The results suggest that active repair mechanisms mediated by anti-

oxidants could be the reason for the lack of phenotypic observable effects in the lower dose.

The higher radiation dose rates instigate, among others, genes and networks involved in cell

cycle control (tp53), translation and cell survival (eif2, mTOR), and disrupted development

and cancer (myc, TGFb1, hnf4a, cebpa), which in sum increase the risk for an adverse effect.

Thus, RNA sequencing enabled identification of molecular initiating events from a 3 hour

gamma radiation exposure to 0.54, 5.4 and 10.9 mGy/h (total dose 1.6 to 33 mGy), which are

consistent with the phenotype level adverse outcomes observed in 96 hpf stage larvae.

Supporting information

S1 Table. Real time qPCR primers.

(XLSX)

S2 Table. Survival and hatching. Survival and hatching after 43.8 and 92 hours exposure to

specified dose rates. Survival at the 43.8 hours exposure did not differ at 48 and 96 hpf. All val-

ues presented as mean percentage ± 95% confidence interval (CI).

(XLSX)

S3 Table. Mapping statistics. Mapping statistics presented separately for each replicate (A)

and each exposure (B) with their respective controls. Approximately 60% of the reads were

mapped to the reference genome. Of the mapped reads, ~ 40% were mapped when allowing
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no mismatch, while ~ 15% of the reads were mapped when� 2 bp mismatches were allowed.

On the other hand, ~ 56% out of the mapped reads were found to represent unique genome

positions, with ~ 1.5% of reads mapping to multiple positions.

(XLSX)

S4 Table. Full DEGs list.

(XLSX)

S5 Table. IPA upstream regulators.

(XLSX)

S1 Fig. Bioinformatic analysis pipeline.

(TIF)

S2 Fig. RNA-seq mapping frequency of reads distribution. Differential expression threshold

is FC ± 1.3. A, B, C and D show the distribution of mapped reads at 0.54, 5.4 and 10.9 mGy/h.

E and F represent the distribution of mapped reads in control groups for the lowest (0.54

mGy/h) and for higher dose rates 5.4 and 10.9 mGy/h, respectively. All libraries were mapped

to the ZF genome (Zv9).

(TIF)

S3 Fig. Multidimensional scaling (MDS) plot of RNA-seq libraries after trimmed mean of

M-values (TMM) normalization. A) Group exposed at 0.54 mGy/h and the control group for

the lowest dose. Two and three biological replicates of the exposed group and controls, respec-

tively, were included in the analysis. B) and C) Groups exposed to 5.4 and 10.9 mGy/h and

controls. Three replicates were included.

(TIF)

S4 Fig. Principal component analysis (PCA) of gene expression data. Analysis was con-

ducted by pairwise comparison of exposed and their respective controls. A) 0.54 mGy/h, B)

5.4 mGy/h and C) 10.9 mGy/h. Expression values were log2 transformed. Black and red dots

represent non-differential and differentially expressed genes respectively (FDR< 0.05) (edgeR

v3.4.2 Bioconductor).

(TIF)

S5 Fig. Myc upstream regulator (IPA).Myc target gene networks and interactions, presented

in a subcellular layout as part of the 10.9 mGy/h group.

(TIF)

S6 Fig. TNF upstream regulator (IPA). TNF target gene networks and interactions, presented

in a subcellular layout as part of the 10.9 mGy/h group.

(TIF)

S7 Fig. Tp53 upstream regulator (IPA). Tp53 target gene networks and interactions, pre-

sented in a subcellular layout as part of the 10.9 mGy/h group.

(TIF)

S8 Fig. Hnf4a upstream regulator (IPA).Hnf4a target gene networks and interactions, pre-

sented in a subcellular layout as part of the 10.9 mGy/h group.

(TIF)

S9 Fig. TGFb1 upstream regulator (IPA). TGFB1 target gene networks and interactions, pre-

sented in a subcellular layout as part of the 10.9 mGy/h group.

(TIF)
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S10 Fig. Cebpa upstream regulator (IPA). Cebpa target gene networks and interactions, pre-

sented in a subcellular layout as part of the 10.9 mGy/h group.

(TIF)

S11 Fig. Gene expression in RARa pathway (IPA).

(TIF)

S12 Fig. Gene expression in eif2 pathway (IPA).

(TIF)

S13 Fig. Gene expression between in mTOR pathway (IPA).

(TIF)

S14 Fig. Gene expression in apoptosis network (IPA).

(TIF)

S15 Fig. Deformities in zebrafish larva exposed to gamma radiation. The observations were

done at 96 hours post fertilization (hpf). A. Control larva showing normal development; B-C.

Larvae exposed to 38 mGy/h for 92 hours (Group “B”), demonstrating general developmental

defects and short-tails.

(TIF)
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