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Abstract

We study piecewise synergetic systems originating from Biochemical Systems Theory. In the first
part of the paper, the emphasis is put on practical calculations with such systems. We consider four
examples: calculation of trajectories and steady states, solution of an optimization problem and a method
of estimation of parameters (kinetic orders), all examples being biologically motivated. In the second
part of the paper, we study convergence of solutions, in particularly, steady states, of a sequence of
piecewise synergetic systems approximating an arbitrary compartment model. This convergence analysis
is then applied to the optimization problem and the method of estimating sensitivities (kinetic orders)
in a generic compartment model. In this paper we put forward arguments for the importance of the
theoretical and numerical analysis of piecewise synergetic systems.

Keywords: Piecewise approximations, steady states, optimization, parameter estimation, uniform con-
vergence.
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1 Introduction

The (local) sensitivity of a function V = V (x1, ..., xn+m) > 0 with respect to changes in the variable xj at a
point P (x1, ..., xn+m) is defined as

fj(P ) =

(
∂V

∂xj

xj
V

)
P

. (1)

Sensitivities play an important role in applications. For instance, they measure the local response of an
enzyme, or any chemical reaction, to changes in its environment and are therefore called kinetic orders
which are important characteristics of networks in Biochemical Systems Theory (BST). In Metabolic Control
Analysis these quantities are known as elasticities.

If fj(P ) = const (j = 1, ..., n+m) in an open subset of Rn+m, then V becomes a power function in this

subset of the form α
n+m∏
j=1

x
gj
j where α > 0 and gj are constants.

1The work of the first author was partially supported by a EEA grant coordinated by Universidad Complutense de Madrid,
Spain, and by the grant #239070 of the Norwegian Research Council.
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However, for many typical nonlinear functions V arisen in applications, sensitivities may vary within Ω.
Approximating sensitivities by piecewise constant functions, which is one of the ways to simplify modeling,
yields a piecewise power function V .

In this paper we study differential equations with right-hand sides containing differences of piecewise
power functions. Such systems are sometimes called piecewise synergetic systems (shortly, piecewise S-
systems). They constitute an important subclass of the so-called ”compartment models” which are studied
in Section 3.

The paper is divided in two main parts: Section 2 and Section 3. In the first part, we demonstrate why
piecewise S-systems can be suitable for practical calculations. This part being of more applied character,
contains four subsections. In the subsection 2.1 we offer a formal definition of a piecewise S-system and
illustrate the dynamics of such systems by some examples. The subsection 2.2 explains how steady states of
an arbitrary piecewise S-system can be calculated in a constructive way. In the next subsection 2.3 we solve
a special optimization problem arisen in BST, while the last subsection 2.4 describes an iterative method of
estimation of the sensitivities of a piecewise S-system.

Section 3 is more theoretical, and its aim is to interpret piecewise S-systems as approximations of general
compartment models, i.e. systems of ordinary differential equations where the right-hand sides are the
difference of two arbitrary positive functions. Convergence of approximations is treated in the subsection
3.1. Here we use the theory of differential inclusions to justify convergence of solutions, while convergence
of steady states relies, in addition, upon the implicit function theorem. The subsection 3.2 deals with the
biologically important optimization problem from Section 2 extended to general compartment models. The
problem of estimation of sensitivities via approximation by piecewise S-systems is also briefly addressed in
this subsection.

Finally, in the concluding section 4 we summarize our results and discuss some open problems.

2 Calculations with piecewise S-systems

2.1 Piecewise S-systems: definitions and examples

A general S-system, studied in BST, is defined as follows [14], [15], [24], [25]:

ẋi = αi

n+m∏
j=1

x
gij
j − βi

n+m∏
j=1

x
hij

j , i = 1, ..., n. (2)

Here the index i (i = 1, ..., n) refers to the n internal metabolites xi ≥ 0 which are dependent variables,
while the higher indices (n + 1, ..., n + m) refer to the control (or independent) variables. The parameters
αi > 0, βi > 0, gij , and hij are constants. From the definition, it follows that the functions in (2) are power
functions called production and degradation terms, respectively. Both have constant sensitivities, which are
given by the exponents gij , hij , respectively. In BST, mathematical analysis based on S-systems is usually
called ‘Power-Law Formalism’ (see e.g. the above references and, in addition, [2], [18], [19], [20]).

With no control variables, the S-system (2) becomes

ẋi = αi

n∏
j=1

x
gij
j − βi

n∏
j=1

x
hij

j , i = 1, ..., n. (3)

S-systems are very advantageous in many biological and non-biological applications, as the systems’ form
considerably simplifies mathematical and numerical analysis. For instance, calculation of steady states for
the S-systems is a linear problem (see [25] and the subsection 2.2).

However, in many biological models the sensitivities are not constant: several examples can be e.g.
found in [11]. In such a case, mathematical analysis of biological systems may be quite difficult. On the
other hand, there exists a well-elaborated tradition in theoretical biology to model real-life processes by
means of step functions (see e.g. [7] and references therein). This assumption, which gives a piecewise
continuous structure of the model, may considerably simplify the analysis of complex systems. Another
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convention in mathematical biology says that any reasonable modeling paradigm should take into account
biologically relevant characteristics. To sum up, piecewise approximations of sensitivities both preserves
important biological structures and, as we will see below, makes mathematical analysis of complex systems
more constructive.

In the case of piecewise constant sensitivities one gets the set Ω divided into finitely many subsets where
the sensitivities become constants. This produces a family of S-systems, or in other words, a piecewise S-
system. This is a new kind of generic representations of biochemical systems, which was suggested in ([17]),
see also [3], which may be called ‘Piecewise Power-Law Formalism’ [10], [11].

Below we describe the notion of a piecewise S-system more precisely.
Let Ω be an open subset of the set Rn+m

+ which contains vectors with positive components. Let {Ωk}Nk=1 be
a finite collection of open, non-empty subsets of Ω satisfying the property Ωk∩Ωl = ∅ for every k, l = 1, ..., N ,

k 6= l such that the closures Ω̄k of Ωk cover Ω:
N⋃
k=1

Ω̄k ⊃ Ω. We will say in this case that {Ωk}Nk=1 constitutes

an open partition of Ω.
A piecewise S-system is now defined as follows:

ẋi = αki

n+m∏
j=1

x
gkij
j − β

k
i

n+m∏
j=1

x
hk
ij

j (x ∈ Ωk, k = 1, ..., N, i = 1, ..., n+m). (4)

In the case of no control variables (m = 0) this system reads

ẋi = αki

n∏
j=1

x
gkij
j − β

k
i

n∏
j=1

x
hk
ij

j (x ∈ Ωk, k = 1, ..., N, i = 1, ..., n). (5)

The systems with no control variables will be used in the parameter estimation algorithm, see the sub-
sections 2.4 and 3.2.

One important example of partitions is described below.
Let ∆ be an open polyhedral [4], [10] subset of the set Rn+m and {∆k}Nk=1 ⊂ ∆ be disjoint (open and

polyhedral) sets given by

∆k = {y ∈ ∆ : dk0j +

n+m∑
i=1

dkijyi < 0} (k = 1, ..., N) (6)

for some constants dkij . Assume further that
N⋃
k=1

∆̄k ⊃ ∆. If we now apply the exponential mapping

x = exp(y), then the polyhedral partition {∆k}Nk=1 will be transformed into an open partition of the open
set Ω = exp(∆), given by the nonlinear surfaces

Ωk = {x ∈ Ω : dk0j +

n+m∑
i=1

dkij log xi < 0} (k = 1, ..., N). (7)

The dynamics of (4) inside each subset Ωk is well-defined, while the trajectories’ behavior close to the
subsets’ boundaries may become quite irregular due to the discontinuities of the right-hand sides in (4).
Making use of the terminology introduced in [12], we say that a piece of the common boundary between two
adjacent subsets is a wall. Then there essentially exist three types of walls: transparent, when trajectories
cross the wall, black, when trajectories hit the wall from both sides, and white, when trajectories depart from
the wall on both sides.

Below we provide an example illustrating different kinds of the dynamics of a piecewise S-system.
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Example 1. Let
ẋ1 = 1− 4x1 ẋ1 = 3− 2x1

ẋ2 = 0.5− 2x2, ẋ2 = 2− x2,
if x ∈ Ω1, if x ∈ Ω2,

ẋ1 = 0.5− x1 ẋ1 = 2− x1

ẋ2 = 1− 2x2, ẋ2 = 1− 2x2,
if x ∈ Ω3, if x ∈ Ω4,

(8)

Ω1 = {(x1, x2)| x1 ∈ (0; 1), x2 ∈ (0; 1)}, Ω2 = {(x1, x2)| x1 ∈ (1; 2), x2 ∈ (0; 1)}, Ω3 = {(x1, x2)| x1 ∈
(1; 2), x2 ∈ (1; 2)}, Ω4 = {(x1, x2)| x1 ∈ (0; 1), x2 ∈ (1; 2)}.

Some trajectories of the system are depicted in Fig. 1.

Figure 1: Trajectories of the piecewise S-system (8). The sub-domains are Ω1 = {(x1, x2)| x1 ∈ (0; 1), x2 ∈ (0; 1)},
Ω2 = {(x1, x2)| x1 ∈ (1; 2), x2 ∈ (0; 1)}, Ω3 = {(x1, x2)| x1 ∈ (1; 2), x2 ∈ (1; 2)}, Ω4 = {(x1, x2)| x1 ∈ (0; 1), x2 ∈ (1; 2)};
walls are Γ1,2 = {(x1, x2)| x1 = 1, x2 ∈ (0; 1)} (white), Γ1,4 = {(x1, x2)| x1 ∈ (0; 1), x2 = 1} (transparent), Γ2,3 =
{(x1, x2)| x1 ∈ (1; 2), x2 = 1} and Γ3,4 = {(x1, x2)| x1 = 1, x2 ∈ (1; 2)} (black).

The solutions inside the boundaries are not a priori defined. However, if a piecewise system is meant to
be an approximation to a regular, i.e. smooth, system, then this problem must be addressed (see [13], [22]).
One way, which is considered in the subsection 3.1, is to convert a discontinuous system to a differential
inclusion.

2.2 Steady states of piecewise S-systems

It is easy to calculate steady states of an S-system (see e.g. [25]). Indeed, the logarithmic transform of the
steady state equations related to (2) yields the following linear system with respect to y = log x:

logαi +

n+m∑
j=1

gijyj = log βi +

n+m∑
j=1

hijyj , i = 1, ..., n, (9)

or in the matrix form
Ay = By0 + b, (10)

where
A = (gij − hij)1≤i,j≤n B = (hij − gij)1≤i≤n, n+1≤j≤n+m,

y = (y1, ..., yn), y0 = (yn+1, ..., yn), b = (log βi − logαi)1≤i≤n.
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If the matrix A is invertible, then the system (10) has a unique solution y∗ = A−1By0 + A−1b which
depends on the vector y0 of the control variables.

Going back to the original domain Ω one can perform a local stability analysis of the steady states
x∗ = exp(y∗) in an efficient way [25].

It is also easy to calculate steady states of a piecewise S-system.
Setting x = (x1, ..., xn) we consider a partition {Ωk}Nk=1 and the piecewise S-system (4) associated with

this partition.
Using (9) for each of the subsets we obtain

logαki +

n+m∑
j=1

gkijyj=log βki +

n+m∑
j=1

hkijyj (y ∈ ∆k, k = 1, ..., N, i = 1, ..., n), (11)

where y = (y1, ..., yn). In the matrix form this system becomes

Aky = Bky0 + bk, y ∈ ∆k, k = 1, ..., N, (12)

where
Ak = (gkij − hkij)1≤i,j≤n, B

k = (hkij − gkij)1≤i≤n,n+1≤j≤n+m,

y = (y1, ..., yn), y0 = (yn+1, ..., yn+m), bk = (log βki − logαki )1≤i≤n.

Assuming all the matrices Ak to be invertible, we arrive at unique solutions

yk∗ = (Ak)−1Bky0 + (Ak)−1bk,

which depend on the vector Y0 of the control variables. This also gives xk∗ = exp(yk∗) for each k = 1, ..., N .
The point xk∗ for some k = 1, ..., N is a steady state of the piecewise S-system (4) if and only if the

following constraint is satisfied:

yk∗ ∈ ∆k or, equivalently, xk∗ ∈ Ωk. (13)

This may not be the case, in general.
Example 2. Let us consider the system

ẋ1 = x2
1 − 2x3

1,
ẋ2 = 3x2

1x2 − x1x
2
2,

if x ∈ Ω1, Ω1 = {(x1, x2)| x1 − x2 < 0}.
and
ẋ1 = 2x1x

2
2 − x2

1x
4
2,

ẋ2 = 4x2 − 2x2
2,

if x ∈ Ω2, Ω2 = {(x1, x2)| x2 − x1 < 0};

(14)

We denote ∆1 = {(y1, y2)| y1 − y2 < 0} and ∆2 = {(y1, y2)| y2 − y1 < 0}. Using (9) we find that
y1∗(log 0.5, log 1.5) ∈ ∆1, while y2∗(log 0.5, log 2) /∈ ∆2. Thus, only x1∗ is a steady state of the system (14).

As steady states may depend on external control parameters, the constraints may be violated when a
steady state crosses the boundary between two sub-domains. A steady state may a) stay in a sub-domain;
b) travel through the boundary; c) disappear.
Example 3. Let

ẋ1 = x2x3 − 2x2
3,

ẋ2 = x1x
2
3 − x2

1x3,
if x ∈ Ω1, Ω1 = {(x1, x2, x3)| x1 − x2 < 0, x3 ∈ R};
and
ẋ1 = x2

1x2x3 − x2
2x

2
3,

ẋ2 = x2x3 − x1x
2
3,

if x ∈ Ω2, Ω2 = {(x1, x2, x3)| x2 − x1 < 0, x3 ∈ R},

(15)
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where x3 ∈ R is a control variable.
For x1−x2 < 0 (resp. x1−x2 > 0) the trajectories travel towards x1∗(x3, 2x3, x3) (resp. x2∗(x2

3, x
3
3, x3)).

Thus, x1∗ ∈ Ω1 and x2∗ ∈ Ω2 for 0 < x3 < 1; x1∗ ∈ Ω1 and x2∗ ∈ Ω1 for x3 > 1; x1∗ ∈ Ω1, while x2∗ ∈ Γ for
x3 = 1, where Γ = {(x1, x2, x3) ∈ Ω| x1 − x2 = 0, x3 ∈ R+ \ {0}} is the wall between the sub-domains Ω1

and Ω2. It is easy to check that the steady state x1∗ stays in the sub-domain Ω1, while x2∗ travels through
the boundary and disappears when x3 = 1.

2.3 Piecewise S-systems in optimization problems

The following system appears in BST if one applies Law of Generalized Mass Action (see e.g. [9]):

ẋi =

p∑
r=1

µirVr(x1, ..., xn+m), i = 1, ..., n, (16)

where the power functions Vr(x1, ..., xn+m) describe the rates of process r, while µir is a stoichiometric factor
that stands for the number of molecules of xi produced, i.e. µir = 1, 2, . . . or µir = −1,−2, . . ..

In [9] the following optimization problem, related to steady states of (16), was introduced and analyzed:

U(Vr, γr, xj)→ min
subject to

∑p
r=1 µirVr(x1, .., xn+m) = 0, i = 1, ..., n,

Vr(x1, x2, ..., xn+m) = γr
n+m∏
j=1

x
frj
j ,

vr, γr, xj ∈ R+.

(17)

Here U : Rp+×R
p
+×Rn+ → R is the objective function which should be minimized under the above constraints

describing the feasible set of the optimization problem.
The set of steady states in (16), which depends on the control variables xn+1, ..., xn+m and which is the set

where the objective function should be minimized, is in general non-convex, making the analysis complicated.
A special optimization method to overcome this difficulty was suggested in [9]. The method utilizes and
refines global optimization techniques described e.g. in [8]. In [21] this method was applied to specific
models. Roughly, the idea of the method consists in finding the global minimum for convexifed optimization
problems and subsequent iterative removing of unfeasible minima by imposing additional, integer-valued
constraints.

Below we present the solution of this optimization problem for a piecewise S-system, where we, in
addition, assume that the partition of ∆ is polyhedral, i.e. is defined by (6). The general case will be
analyzed in the next section.

The optimization problem we study in this subsection is formulated as follows:

U(x)→ min

subject to logαki +
n+m∑
j=1

gkij log xj=log βki +
n+m∑
j=1

hkij log xj (i = 1, ..., n)

when x ∈ Ωs, k = 1, ..., N,
x = (x1, , .., xn+m),

(18)

where U : Rn+m
+ → R is the objective function.

Using the logarithmic transformation yj = log xj we get from (18) the following piecewise linear opti-
mization problem:

U(y1, ..., ym+n)→ min
subject to

logαki +
n+m∑
j=1

gkijyj=log βki +
n+m∑
j=1

hkijyj (y ∈ ∆k, k = 1, ..., N, i = 1, ..., n)

and asj0 +
n∑
k=1

asjkyk ≤ 0,

(19)
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or in the matrix form

U(Y, Y0)→ min
subject to AkY = BkY0 + bk and (Y, Y0) ∈ ∆k, k = 1, ..., N,

Y = (y1, , .., yn), Y0 = (yn+1, , .., yn+m),
(20)

where U(y1, ..., yn) = U(exp(y1), exp(yn+m)), and the matrices Ak, Bk and the vectors bk are defined in (12).
We see that the optimization problem (18) becomes piecewise linear in ∆.
If the matrices Ak are invertible (which simply means the uniqueness of a steady state for each value of the

control variables), then the linear system can be resolved with respect to y1, ..., yn. Inserting this expression
into the objective function removes the number of variables and the constraints, and the optimization problem
becomes

U((Ak)−1BkY0 + (Ak)−1bk, Y0)→ min
subject to Y = ((Ak)−1BkY0 + (Ak)−1bk, Y0) ∈ ∆k, k = 1, ..., N,

Y0 = (yn+1, , .., yn+m).
(21)

Thus, this optimization problem is convex within each polyhedral (i.e. also convex) subset ∆k, and
the steady states can be easily calculated using the formulas from the subsection 3.2. The global minima
can be then obtained by comparing the local minima within each subset, so that the calculations become
straightforward and no additional convexification technique is needed.

As we will show in the next section, this algorithm is generic, i.e. can be applied - through approximations
by piecewise S-systems - to an arbitrary compartment model (see Section 3).

2.4 Parameter estimation by the alternating regression method

In this subsection we consider a practically important problem of estimating sensitivities (kinetic orders) of
the piecewise S-system (5). One of the methods, which is called Alternating Regression (AR) and which
works particularly well for S-systems (2), was introduced in [1]. In this paper we apply this method to
piecewise S-systems (5) with no control parameters.

The advantage of AR is its linear character at each step, i.e. it is solely based on the linear regression.
Another nice feature is that the algorithm works separately for each number i (”decoupling”). On the other
hand, convergence of the AR iterations is a complicated issue and it is beyond the scope of the present paper.
For some problems arising when justifying the convergence in the case of plain S-systems see e.g. [1] and
[23].

We assume that each metabolite xi was observed at times t1, t2, ..., tM giving a set of values
{xi(t1), xi(t2), ..., xi(tM )}, i = 1, ..., n. We also assume that we can measure or compute the slopes
δxi(tl) = ẋi(tl), l = 1, ...,M , i = 1, ..., n.

Given these time series, we want to estimate the sensitivities of the system (5).
The partition {Ωk}Nk=1 of Ω induces the partition {tk1 , tk2 , ..., tkMk}Nk=1 of the time series t1, t2, ..., tM .
Let

Xk =



1 log x1(tk1) . . . log xn(tk1)
1 log x1(tk2) . . . log xn(tk2)
...

...
. . .

...
1 log x1(tkl ) . . . log xn(tkl )
...

...
. . .

...
1 log x1(tkMk) . . . log xn(tkMk)


.

We compute the matrices
Ck = ((Xk)TXk)−1(Xk)T , k = 1, ..., N. (22)

The iteration procedure is described below.
Step 1. Assume that the parameters {βki , hki1, ..., hkin, i = 1, ..., n}Nk=1 of the degradation term are

available. Compute the parameters {αki , gki1, ..., gkin, i = 1, ..., n}Nk=1 of the production term.
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To do that, we rewrite system (5) as

αki

n∏
j=1

x
gkij
j (tkl ) = βki

n∏
j=1

x
hk
ij

j (tkl ) + δxi(t
k
l ), l = 1, ...,Mk,

and perform the logarithmic transformation

logαki +

n∑
j=1

gkij log xj(t
k
l ) = log

(
βki

n∏
j=1

x
hk
ij

j (tkl ) + δxi(t
k
l )
)
, l = 1, ...,Mk.

Substituting the values for the parameters βki , h
k
i1, ..., h

k
in and δxi(t

k
l ), l = 1, ...,Mk, i = 1, ..., n we

compute the Mk-dimensional vector Dk
i = log

(
βki
∏n
j=1 x

hk
ij

j (tkl ) + δxi(t
k
l )
)T

and estimate the regression
coefficients of the linear regression by

Gki = Ck ·Dk
i ,

where Ck is given by (22), Gki =
(

logαki , g
k
i1, ..., g

k
in

)T
, i = 1, ..., n, k = 1, ..., N . Thus, we obtain the set

{αki , gki1, ..., gkin, i = 1, ..., n}Nk=1.
Step 2. Assume that the production term parameters {αki , gki1, ..., gkin, i = 1, ..., n}Nk=1 are available.

Compute the parameters {βki , hki1, ..., hkin, i = 1, ..., n}Nk=1 of the degradation term.
We rewrite system (5) as

βki

n∏
j=1

x
hk
ij

j (tkl ) = αki

n∏
j=1

x
gkij
j (tkl )− δxi(tkl ), l = 1, ...,Mk,

and perform again the logarithmic transformation

log βki +

n∑
j=1

hkij log xj(t
k
l ) = log(αki

n∏
j=1

x
gkij
j (tkl )− δxi(tkl )), l = 1, ...,Mk.

Using the values for the parameters αki , g
k
i1, ..., g

k
in and δxi(t

k
l ), l = 1, ...,Mk, i = 1, ..., n we compute

the Mk-dimensional vector P ki = log
(
αki
∏n
j=1 x

gkij
j (tkl )− δxi(tkl )

)T
and find the regression coefficients of the

linear regression from
Hk
i = Ck · P ki ,

where Ck is given by (22), Hk
i =

(
log βki , h

k
i1, ..., h

k
in

)T
, i = 1, ..., n, k = 1, ..., N . By this, we obtain the set

{βki , hki1, ..., hkin, i = 1, ..., n}Nk=1.
The algorithm starts with an initial guess on the sensitivities of the degradation term. One can use the

same set {β(0)
i , h

(0)
i1 , ..., h

(0)
in }ni=1 for the entire domain Ω or, alternatively, if there is any information on the

model’s structure, different sets of initial sensitivities can be chosen for the subsets Ωk, k = 1, ..., N . Steps 1
and 2 are then repeated successively in every Ωk, k = 1, ..., N , until a solution is found or some termination

criterion is satisfied. Thus, we obtain the sequences of values {αk(ν)
i , β

k(ν)
i , g

k(ν)
i1 , ..., g

k(ν)
in , h

k(ν)
i1 , ..., h

k(ν)
in , i =

1, ..., n}Nk=1, ν = 0, 1, 2, ..., which upon convergence give us the unknown sensitivities of the piecewise S-
system (5).

In the subsection 3.2, we combine this procedure with approximation by piecewise S-systems, thus making
Alternating Regression generic.

3 Piecewise S-systems as approximations of general compartment
models

A compartment model has the following form:

ẋi = Vi
+(x1, ..., xn+m)− Vi−(x1, ..., xn+m), i = 1, ..., n, (23)
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where the influx/efflux function V ± accounts for the rate of a production and degradation of the quantity
xi, respectively, and xj (j = n+ 1, ..., n+m) represent control parameters.

For instance, in a general metabolic network used in BST one has n internal metabolites xi ≥ 0 (i =
1, ..., n), while the other variables represent external metabolites (see e.g. [14], [15], [16], [24], [25]).

In this section we regard piecewise S-systems as approximations of the nonlinear system (23). The
aim is to answer the question which is often ignored in applied analysis: Why should a sufficiently good
approximation mimic the properties of the approximated model? We study the calculation algorithms for
piecewise S-systems from the first part of the paper and show that, under some assumptions, the targets of
these algorithms in the limit indeed coincide with the respective targets of the approximated system. This
justifies a generic method of analysis of compartment models, which combines universality of approximations
by piecewise S-systems with the algorithmic simplicity of calculations with these systems.

Below we always assume that Ω is an open subset of Rn+m
+ such that its closure Ω̄ is a compact subset

of Rn+m
+ \ {0̄}. We also let {ΩkN}Nk=1 be an open partition of Ω for any natural N , so that

N⋃
k=1

Ω̄k = Ω̄,

Ωk ∩ Ωl = ∅ if k 6= l. Finally, we put δN = max
1≤k≤N

diam(ΩkN ).

3.1 Convergence of solutions of piecewise S-systems

Let vk+
iN (x) = αkiN

n+m∏
j=1

x
gkijN
j , and vk−iN (x) = βkiN

n+m∏
j=1

x
hk
ijN

j , k = 1, ..., N . We also put V +
iN = vk+

iN and

V −iN = vk−iN for x ∈ ΩkN .
The approximating S-systems become

ẋi = V +
iN (x1, ..., xn+m)− V −iN (x1, ..., xn+m), x ∈ Ω, i = 1, ..., n+m. (24)

The sensitivities (1) of the jth variable of ith influx and the ith efflux of the systems (23) and (24) at a point
P ∈ Ω will be denoted as f+

ij (P ), f−ij (P ) and f+
ijN (P ), f−ijN (P ), respectively. The results will be formulated

in terms of the sensitivities of the two systems.
The first theorem of this subsection ensures uniform convergence of the right-hand sides.

Theorem 1 Let the functions V ±i (x) (x ∈ Ω̄) i = 1, ..., n + m be of the C1-type (i.e. differentiable in
Ω with the continuous in Ω̄ partial derivatives). Let the sequence of partitions {ΩkN}Nk=1 of Ω have the
property δN → 0 (N → ∞). Assume that for any i = 1, ..., n + m and k = 1, ..., N there exist points
rk+
iN , q

k+
iN , r

k−
iN , q

k−
iN ∈ ΩkN such that the following is satisfied

V +
i (rk+

iN ) = v+
iN (rk+

iN ), V −i (rk−iN ) = v−iN (rk−iN ),

f+
ij (qk+

iN ) = f+
ijN (qk+

iN ); f−ij (qk−iN ) = f−ijN (qk−iN )
(25)

for all N ∈ N, i = 1, ..., n, j = 1, ...n+m. Then for any ε > 0 there exists a number N0 such that

sup
x∈ΩiN , i=1,...,N

|V ±iN (x)− V ±i (x)| < ε

for all N ≥ N0.

Proof.
We check the uniform convergence for a fixed scalar function V = V ±i . We denote the associated sequence

of approximations by VN , so that VN = vkN on ΩkN .
Let ∆ ⊂ Rn+m be the image of Ω under the logarithmic transformation y = log x and {∆k

N}Nk=1 be the

induced open partition of ∆. Thus, ∆k
N ∩∆l

N = ∅ for every k 6= l, k, l = 1, ..., N and
N⋃
k=1

∆̄k
N = ∆̄.

We set also Ψ(y) = log V (x), ΨN (y) = log VN (x) and ψkN (y) = log vkN (x), y = log x, αkN = vkN (1, ..., 1),
ckN = logαkN .
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The logarithmic images of the points from (25), corresponding to the chosen function V = V ±i , will
be denoted by RkN and QkN , respectively. According to the assumptions of the theorem we may write
Ψ(RkN ) = ψkN (RkN ) for the respective points and fkjN ≡ fj(q

k
N ) = fjN (qkN ) for the respective kinetics orders

f(P ) and fN (P ) of the functions V and VN .

By construction we obtain ψkN (y) = ckN +
n∑
j=1

fkjNyj , where ckN = logαkN , which therefore becomes a

piecewise linear approximation of the function Ψ(y) on ∆̄.
For y ∈ ∆k

N we have ψkN (y) = ∇ψkN (QkN )(y − RkN ) + Ψ(RkN ), where RkN , Q
k
N ∈ ∆k

N . The mean value
theorem yields also Ψ(y)−Ψ(RkN ) = ∇Ψ(R0)(y −RkN ), where R0(y) ∈ ∆k

N may depend on y. Thus,

|ΨN (y)−Ψ(y)| = |∇ψkN (QkN )−∇Ψ(R0)| · |y −RkN |.

As the function ∇Ψ is continuous on ∆̄, it is also uniformly continuous there. This and the fact that the
maximum of the diameters of the sub-domains δkN tend to 0 as N tends to ∞ (because δN → 0 as N →∞)
yield that for sufficiently large N |Ψk

N (y) − Ψ(y)| < ε on ∆k
N for any k = 1, .., N , which together with the

continuity of the exponential transformation proves the theorem. �

Our next aim is to study convergence of solutions, in particular, steady states. We first have to define
solutions of the approximating piecewise S-systems.

Following [10], we use the theory of differential inclusions to define continuous, everywhere defined ap-
proximating solutions. The price we have to pay is non-uniqueness of these solutions outside the partition
sets Ω.

Assume that a point x ∈ Ω is contained in the closures of the subsets ΩklN , where l runs over some set L,
but not in the closures of the subsets ΩkN (k 6= kl, l ∈ L). Let fN (x, l) be the right-hand side of the piecewise

S-system (24) for x ∈ ΩklN (l ∈ L) and define FN (x) to be the least convex set containing all vectors fN (x, l)
(l ∈ L), i.e. FN (x) = co{fN (x, l) | l ∈ L}. Consider the following differential inclusion:

ẋi ∈ FiN (x1, ..., xn+m), i = 1, ..., n. (26)

A solution of (26) on an interval [a, b] is an absolutely continuous function x(t) which satisfies (26) almost
everywhere on [a, b]. According to [5], the initial value problem x(a) = x0 ∈ Ω for (26) has a local solution
continuously depending on the control variables (i.e. parameters). However, this solution is, in general, not
unique. If x(t), t ∈ I, I is an open sub-interval of [a, b], belongs to some ΩkN , then by definition x(t) is
a conventional solution of the kth S-system in (24). In the black walls (attracting discontinuity sets) the
solution is now well-defined.

In particular, constant solutions of (26) are by definition steady states of (24). This uncovers, for instance,
‘hidden’ steady states of these S-systems, which in the limit may converge to a proper steady state of the
original system (23).

The n×n-matrix J(P ) in the theorem below contains the differences f+
ij (P )−f−ij (P ) as its entries, where

f±ij (P ) =
(
∂V ±

i

∂xj

xj

V ±
i

)
P

, 1 ≤ i, j ≤ n are the kinetic orders of the functions V ±i , respectively. We call a steady

state x∗ of the system (23) nondegenerate if det J(x∗) 6= 0.

Theorem 2 Let all the assumptions of Theorem 1 be fulfilled and xN ∈ Ω, xN → x0 ∈ Ω as N → ∞.
Then any sequence of parametrized solutions xjN (t, xn+1, ..., xn+m) (t ∈ [a, b], j = 1, ...n) to the inclu-
sions (26) satisfying xjN (a, xn+1, ..., xn+m) = xjN (j = 1, ...n) contains a subsequence which uniformly on
[a, b] converges to the parametrized solution xj(t, xn+1, ..., xn+m) (t ∈ [a, b], j = 1, ...n) of (23) satisfying
xj(a, xn+1, ..., xn+m) = xj0 (j = 1, ...n). In particular, any convergent sequence of steady states x∗N to (26)
converges to a steady state x∗.

Conversely, if a steady state x∗ of the system (23) is nondegenerate and the partition is chosen in such
a way that for any natural N the point x∗ belongs to some ΩkN , then there exists a sequence x∗N of steady
states of the system (24), which converges to x∗ as N →∞.

Proof. According to [5], the set {xjN (t, xn+1, ..., xn+m) | N ∈ N} is compact in the topology of the uniform
convergence on [a, b], so that the sequence contains a uniformly convergence subsequence that approaches the
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solution of the limit system (23) satisfying the required initial condition. If the solution of the limit system
is unique, then possibly different approximations will give the same limit solution, so that non-uniqueness
of the Filippov solutions would not be a big problem. We notice also that uniqueness of the approximating
solutions holds automatically inside any ΩkN .

To prove the second statement, let us, first of all, observe that the nondegeneracy assumption of Theorem
2 implies invertibility of the matrices Ak defined in (12). Thus, we can apply the implicit function theorem
for systems (24) which are sufficiently close to the given one. This ensures the existence and uniqueness of
approximating steady states inside any ΩkN . �

Remark 1. Theorem 2 remains valid if we replace the assumptions of Theorem 1 with its conclusion. The
latter is, for instance, satisfied if the C1-convergence of the approximating right-hand sides is known (see
also Theorem 4 for a detailed description of this alternative assumption).

3.2 Convergence in the optimization problem and the alternating regression

Consider the following nonlinear optimal control problem for the system (23) which generalizes the problem
(17):

U(x)→ min
subject to V +

i (x1, ..., xn+m)− V −i (x1, ..., xn+m) = 0, i = 1, ..., n,
xj ∈ R+.

(27)

Here U : Rn+m
+ → R is a given objective function.

The approximating problems will be defined as in (20) for the sequence of the partitions ∆N :

U(Y, Y0)→ min
subject to AkNY = BkNY0 + bkN and (Y, Y0) ∈ ∆k

N , k = 1, ..., N,
Y = (y1, ..., yn), Y0 = (yn+1, ..., yn+m).

(28)

Clearly, the exponential transformation of the feasibility set for this problem gives the set of steady states
for the piecewise S-system (24).

Recall that a steady state x∗ for (23) is said to be nondegenerate if det J(x∗) 6= 0, where J(P ) is defined
right before the theorem 2.

Theorem 3 Let all the assumptions of the theorem 1 be fulfilled, the objective function U be continuous in

Ω̄ and the affine optimization problems (28) have the solutions y∗N ∈
N⋃
j=1

∆k
N for any N ∈ N.

If, in addition, all steady states for (23) are nondegenerate and the partitions ΩN are chosen in such
a way that for any N ∈ N these steady states belong to some ΩkN , then any converging subsequence of the
compact sequence x∗N = exp(y∗N ) has a limit x∗ which is a solution of the optimization problem (27).

Conversely, if x∗ is a unique solution to the problem (27), this solution is nondegenerate, and the partition
ΩN is chosen in such a way that for any N ∈ N the point x∗ belongs to some ΩkN , then there exists a sequence
y∗N of the solutions of the approximating problems (28), for which the sequence x∗N = exp(y∗N ) converges to
x∗ as N →∞.

Proof. Using the theorem 1 we observe that the sequence x∗N = exp(y∗N ) from the first part of the theorem
indeed is always compact and its limit is a steady state for the system (23). If all steady states for this
system are nondegenerate, then for any of it, say x̃∗, there exists a sequence of steady states x̃∗N of the
approximating piecewise S-systems that converges to x̃∗. Therefore,

U(x∗) = lim
N→∞

U(x∗N ) ≤ lim
N→∞

U(x̃∗N ) = U(x̃∗),

which proves that x∗ is the solution to the problem (27).
On the other hand, assume that x∗ is a unique solution to the problem (27) and it is nondegenerate.

Assume further that x̃∗N is a sequence of steady states of the approximating piecewise S-systems (24) that
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converges to x∗. If now y∗N ∈
N⋃
j=1

∆k
N are solutions to the approximating problems (28) and x∗N = exp(y∗N ),

then we have
U(x∗) = lim

k→∞
U(x̃∗Nk

) ≥ lim
k→∞

U(x∗Nk
) = U(x̃∗),

where xNk
is a convergent subsequence of the compact sequence xN , which tends to x̃∗. By uniqueness of

x∗, we therefore get x∗ = x̃∗, and the theorem is proved. �

Now we revisit the parameter estimation method studied in the subsection 2.4, applying it to the generic
compartment model (23). As it is put in the review paper [2], ‘the estimation problem is almost always com-
plicated and continues to be the bottleneck of biomathematical modeling’. As S-systems are better studied
in this respect than many other systems, the idea to represent a complicated nonlinear biomathematical
model as a piecewise S-system may be fruitful.

Below we demonstrate how this algorithm indeed can be adapted for (23), at least under the assumption
that m = 0, i.e. that the control variables are absent. Then the system becomes

ẋi = V +
i (x1, ..., xn)− V −i (x1, ..., xn), i = 1, ..., n (29)

where x = (x1, ..., xn)T , V +
i , V

−
i : Rn+ → R+ \ {0}.

The aim is to estimate the sensitivities of the influx end efflux functions V ±i . The following result follows
directly from the previous convergence theorems:

Theorem 4 Let the functions V ±i (i = 1, ..., n) be C1 in Ω, C in Ω̄ and V ±i (x1, ..., xn) ≥ µ > 0 for all
(x1, ..., xn) ∈ Ω. Assume that the sequence of open partitions {ΩkN}Nk=1 of Ω have the property δN → 0
(N →∞). Assume further that for any ε > 0 there exists a number N0 such that

sup
x∈ΩiN , i=1,...,N

|V ±iN (x)− V ±i (x)|+
n∑
j=1

∣∣∣∣∂V ±iN (x)

∂xj
− ∂V ±i (x)

∂xj

∣∣∣∣
 < ε

for all N ≥ N0. Finally, we suppose that the AR method from the subsection 2.4 converges for all sufficiently

large natural N and at least one initial guess on sensitivities. Then for all x ∈
∞⋃
i=1

Ωi and any ε > 0 there

is a natural number K and an initial guess on sensitivities such that after finitely many iterations the AR
method gives an ε-approximation to all sensitivities of the influx and efflux functions V ±i of System (29) at
the point x. �

4 Summary and discussions

In this paper we studied some properties of piecewise S-systems. The aim was two-fold: 1) to show efficiency
and simplicity of practical calculations with such systems and 2) to justify the method of approximation of
general compartment models by piecewise S-systems. All approximations used in this paper are designed in
terms of sensitivities (kinetic orders), which is crucial for many applications in Biochemical Systems Theory
and other fields.

The following results can be highlighted:
1. Proof of convergence of properly defined solutions and steady states of piecewise S-systems approxi-

mating compartment model systems.
2. Justification of a novel method of estimation of sensitivities in a general compartment model, which

is based on alternating regression and piecewise power-law approximations.
3. An alternative, essentially linear, approach to an optimal control problem arisen in Biochemical

Systems Theory, which is based on approximation by piecewise S-systems.
To our opinion, theoretical and applied analysis of piecewise S-systems should be continued. For instance,

one may address the following open problems:
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1. Is it possible to describe solutions and steady states of piecewise S-systems in their discontinuity sets
using the singular perturbation analysis, rather than differential inclusions. This approach, which is more
constructive and usually gives uniqueness of solutions, is suggested in the paper [13] for the case of genetic
models and shown to work for some other nonlinear systems in the paper [22].

2. To what extent is it possible to relax the assumption of Theorem 1 requiring that the diameters of the
partition subsets (i.e. the mesh of the partition) tend to zero? The problem is of interest in connection with
the linear regression algorithm which is based on automated partitioning and which was introduced in [4],
adapted for BST in [10] and studied mathematically in [11]. As the mesh of the partitions in this algorithm
may not necessarily approach zero (this depends heavily on the shape of the functions in the right-hand
side), our results do not cover this case.

3. What conditions would ensure the possibility to study asymptotic properties of the general compart-
ment model (23) via its approximations by piecewise S-systems?

4. What modifications are required in the algorithm described in the subsection 2.4 if the matrices
Ck = (Xk)T (Xk) become singular or almost singular? This effect, known as multicollinearity, might cause
serious numerical problems and should be definitely treated properly, for instance, by applying the partial
least-squares regression. A careful analysis of this situation was, however, beyond the scope of the present
paper.
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