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European grayling (Thymallus thymallus) is a popular recreational fish that may be lifted 
out of the water to facilitate hook removal or for admiration. To evaluate the effects of 
air exposure and angling-induced exhaustive exercise on released grayling condition, we 
assessed blood physiology and reflexes of grayling after angling and air exposure in the 
subarctic River Lakselva (Norway) at midsummer temperatures (i.e., 17–18 °C). Blood 
samples were drawn 30 min after angling and analyzed for lactate anions, glucose, sodium 
ions, and pH. Reflex impairment was determined with orientation and tail grab reflex 
action assessments immediately after landing, after air exposure, and after 30 min holding. 
Blood physiology did not indicate an exacerbating effect of air exposure relative to just 
angling-induced exercise, but significant and prolonged reflex impairment was associated 
with the 120 s air exposure interval. Anglers must take care to minimize air exposure to 
adhere to best handling practices.

Introduction

Recreational fisheries are components of local 
economies and natural resource conservation 
efforts in regions throughout the world (Cowx 
2002, Arlinghaus and Cooke 2008, Cooke et al. 
2015). Whereas recreational fishers may choose 
to harvest fish, many anglers practice catch-
and-release. Catch-and-release is a minimally 
consumptive form of recreational angling that is 

practiced either voluntarily or via legal regula-
tion (Arlinghaus et al. 2007). The operational 
assumption of catch-and-release is that fish are 
released in good condition and will return to 
the common population with negligible effects 
on lifetime fitness (Barnhart 1989, Cooke and 
Schramm 2007). However, many studies have 
demonstrated that catch-and-release can have 
both lethal and sublethal consequences for fish 
that are captured (reviewed in Muoneke and 
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Childress 1994, Bartholomew and Bohnsack 
2005, Arlinghaus et al. 2007). This has inspired 
research into the components of recreational 
fisheries that contribute to mortality of caught 
and released fish in an effort to identify best 
angling and handling practices. That body of 
work has revealed that mortalities can be attrib-
uted to physical damage from hooking injuries 
or to physiological alterations associated with 
stress (Arlinghaus et al. 2007, Cooke and Sch-
ramm 2007).

The magnitude of the physiological alteration 
associated with angling can affect the recov-
ery from exercise, with longer recovery times 
decreasing the likelihood of survival. Stress asso-
ciated with angling is exacerbated by factors such 
as water temperature, playing time, fish size, or 
air exposure duration (Ferguson and Tufts 1992, 
Meka and McCormick 2005, Gingerich et al. 
2007, Arlinghaus et al. 2007). Inducing hypoxia 
by lifting fish out of the water for hook removal or 
admiration (i.e., photography, weighing) is stress-
ful for fish (Ferguson and Tufts 1992, Schreer et 
al. 2005, Gingerich et al. 2007). Anaerobic cell 
respiration during air exposure produces lactic 
acid in white muscle, which is broken down to 
lactate ion [lac–] and a free metabolic proton [H+], 
the latter contributing to intracellular acidosis, 
which is a primary factor influencing mortality of 
exercised fish (Wood et al. 1983). In addition, the 
oxidation of lactate to restore glycogen reserves 
is costly and time-consuming (Wood 1991, Jain 
and Farrell 2003), meaning that high [lac–] asso-
ciated with extended anaerobiosis from exercise 
or air exposure can indicate the degree of depar-
ture from homeostasis and can thus be inversely 
related to the likelihood of recovery. The primary 
stress response initiated by both exercise and 
air exposure involves the release of catechola-
mines epinephrine and norepinephrine as well 
as cortisol, the primary glucocorticoid in fish 
(McCormick and Macleod 1925, Mazeaud et al. 
1977, Mazeaud and Mazeaud 1981, McDonald 
and Milligan 1997, Barton 2002). During stress 
or exercise, freshwater fish lose sodium [Na+] 
across the gill lamellae because of increased 
gill permeability caused by catecholamine action 
(Mazeaud et al. 1977, Mazeaud and Mazeaud 
1981, McDonald and Milligan 1997), although 
this may take several hours to manifest (Carey 

and McCormick 1998). Immediately after exer-
cise, [Na+] is expected to increase in the blood, 
moving out of muscle cells when [lac–] accumu-
lates (Wood et al. 1983). As part of the secondary 
stress response, glucose [glu] is produced from 
hepatic glycogen (Barton 2002, Mazeaud and 
Mazeaud 1977, McDonald and Milligan 1992, 
Mommsen et al. 1999), increasing in the blood 
between five minutes (Wydoski et al. 1976) and 
one hour (Carey and McCormick 1998, Ristori 
and Laurent 1985) after induction of stress. In 
spite of the documented responses by fish to air 
exposure, some anglers lift fish out of the water 
after recreational angling events, even when they 
intend to practice catch-and-release. Yet, recrea-
tional fishing guidelines rarely provide science-
based air exposure recommendations that anglers 
can adopt, making it relevant to identify and test 
air exposure intervals that could be useful from 
a management perspective (Pelletier et al. 2007, 
Cook et al. 2015).

European grayling (Thymallus thymallus) is 
native throughout Europe and is popular among 
recreational anglers (Swatidpong et al. 2010). 
Grayling populations in many countries are 
declining due to habitat alterations, eutrophica-
tion, climate change, pollution, and overfishing 
(Northcote 1995, Persat 1996, Uiblein et al. 2001, 
Gum et al. 2003, 2005, Duftner et al. 2005). 
Anglers that release grayling often do so after 
handling and photographing them in air with 
the characteristic dorsal fin extended, meaning 
that many of these fish undergo air exposure 
prior to release. We measured the effects of air 
exposure on European grayling after exhaustive 
exercise using blood-based physiological met-
rics and reflex impairment observations. Blood 
physiology metrics of interest were blood pH as a 
measurement of intracellular acidosis (Wood et al. 
1983), lactate anion concentration as a measure-
ment of white muscle exhaustion and anaerobiosis 
(Dobson and Hochachka 1987, Wood 1991, Kief-
fer 2000), glucose concentration as an index of the 
secondary stress response (Mommsen et al. 1999, 
Barton 2002), and sodium ion concentration as 
a measure of osmoregulatory disruption (Wood 
and Randall 1973). Reflex impairment indices 
are useful for assessing post-capture condition of 
fish (e.g., Campbell et al. 2010) and have been 
validated for other salmoniformes (e.g., Raby et 
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al. 2012) as a whole-organism metric for assess-
ing the post-capture status of fish. Impairment 
of reflex actions is a physical manifestation of 
capture stress that can be used to rapidly and 
accessibly evaluate the pre-release status of fish 
after fisheries encounters (Davis 2010); however, 
such tests have not previously been applied to 
grayling. In combination, the blood physiology 
and reflex impairment assessments provided an 
integrated evaluation of the effects of air exposure 
on exhaustive angling of grayling.

Methods

The study was conducted in the Lakselva water-
shed in Porsanger County, Finnmark, Norway, 
which is located near the town of Lakselv 
(70.0511°N, 24.9717°E). Surface water tempera-
tures at angling locations on days samples were 
collected (5, 6, 7 and 25 August 2014) fluctu-
ated between 17 and 18 °C. European grayling 
were captured using recreational 3–4 weight 
fly gear with floating lines, barbless J-hooks 
(sizes 10–16), and 6 lb fluorocarbon tippet. All 
grayling were handled in a rubberized knotless 
landing net. One treatment group was angled 
relatively rapidly (< 2 min) and blood sam-
pled immediately to generate values of baseline 
blood physiology (Pankhurst 2011, Cooke et al. 
2013). Other grayling were angled to exhaustion 
then assigned to one of three air exposure treat-
ment groups developed to test the physiological 
alterations associated with post-capture angler 
behaviour scenarios, receiving 0, 10, or 120 s of 
air exposure to simulate time taken by anglers 
to photograph, measure, or otherwise observe 
the fish. Fish were held in the landing net in 
the water (for unhooking, reflex assessment) 
or out of the water (for air exposure). After air 
exposure, grayling were transferred to cylindri-
cal black hypalon bags with mesh ends to allow 
water flow. The fish bags were placed in the river 
(see for example Donaldson et al. 2013) at areas 
where water velocity was sufficient (~20 cm s–1) 
to ensure adequate oxygenation.

To assess physiological alterations associ-
ated with air exposure, grayling in the treatment 
groups were held for 30 min in recovery bags 
instead of being sampled immediately because 

the stress response takes time to manifest (Barton 
2002, Pankhurst 2011, Cooke et al. 2013). The 
blood samples (< 1 ml) were drawn with Braun 
Omniflex®-F sterile 1 ml syringes with heparin-
ized Braun Sterican® 0.60 ¥ 60 mm hypodermic 
needles via venipuncture at the caudal pedun-
cle. After being held on ice (Clark et al. 2011), 
blood was analyzed for pH as well as [lac–], 
[glu], and [Na+] with an Alere Epoc reader and a 
host mobile computer (Waltham, Massachusetts, 
USA), which is a portable point-of-care blood 
analysis unit that uses a BGEM test card (epoc 
BGEM CT-1004-00-00) for blood analysis. All 
pH values were corrected to temperature as in 
Ashwood et al. (1983). Presence of reflexes 
was assessed by manually performing tail grab 
and testing orientation by rolling the fish into a 
supine position in the water. Reflex tests were 
conducted in the water and at three occasions 
for each fish: immediately after capture, after 
air exposure treatment, and after 30 min hold-
ing beginning after treatment. We found that fish 
with impaired tail grab always had impaired ori-
entation and therefore we combined the two into 
a single reflex impairment response variable. For 
grayling in the 0 s air exposure treatment, there 
was no assessment of reflexes after air exposure.

Data analysis

Analysis of variance (ANOVA) was used to 
compare fish sizes and fight times among treat-
ment groups. ANOVA was also used to test 
whether blood-based physiological parameters 
pH, [lac–], [glu], and [Na+] differed across treat-
ment groups. Normality of residuals for ANOVA 
models was assessed with the Shapiro-Wilk test 
and homogeneity of variance was assessed with 
Bartlett’s test at α = 0.05. A square-root transfor-
mation was applied to lactate values in order to 
maintain normality and homogeneity of variance 
of the residuals. Inclusion of fork length was 
considered for all models but dropped if not sig-
nificant. The Tukey-Kramer HSD post-hoc t-test 
was performed on the final models to compare 
physiological values among treatment groups 
using the multcomp package (Hothorn et al. 
2008) in the free open-source software package 
R (R Core Team 2014).
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Reflex impairment tests were conducted at 
three time points and therefore we had a repeated 
measures design necessitating the inclusion of 
fish ID as a random effect. Because reflex assess-
ment results were recorded as either impaired 
or not impaired, we used logistic mixed effects 
models with logit link functions as implemented 
by the R package glmmML (Broström 2013). 
These models were used to determine how reflex 
impairment is influenced by fish length, air expo-
sure treatment group, and assessment point (i.e., 
after angling, after air exposure, after 30 min). 
Because all fish were assessed after capture, 
which was prior to air exposure treatment assign-
ment, we assume that these assessments were 
independent of the treatment, but it is possible 
that the later assessments would interact with the 
different treatments to have a combined effect on 
reflex impairment. This complex change in rela-
tionship between treatment and assessment type 
required a unique arrangement of the data when 
fitting the logistic models. We created five indi-
cator variables for inclusion within the models: 
data collected for the 0 s treatment and assessed 
after holding, and for each of the 10 s and 120 s 
treatment groups paired with each of the assess-
ments after treatment and after holding. With this 
arrangement, we interpreted the intercept of the 
model as the effect that angling (i.e., first reflex 
assessment) had on reflex impairment because 
when all indicator variables were equal to zero, 
the data corresponded to fish assessed after cap-
ture. With the fish length and random effect vari-
ables, the full model constituted seven variables, 
plus an intercept. We then eliminated different 
combinations of variables from this full model 
and used Likelihood Ratio Tests (LRT) between 
the full and reduced models to infer the effects of 
air exposure on reflex impairment. All data are 
presented as mean ± 1 SD.

Results

Fifty-two grayling captured for this study by two 
anglers were divided into four groups of 13. 
Grayling were 32 ± 4 cm and were played for 104 
± 51 s. Fight duration and fork length were not 
significantly different among the treatment groups 
(ANOVA: F3,48 = 1.53, p = 0.22; F3,48 = 0.86, p = 

0.47). None of the grayling died during handling.
Blood pH differed between baseline and treat-

ment groups (ANOVA: F3,48 = 13.14, p < 0.01) and 
decreased with fork length (ANOVA: F3,48 = 6.42, 
p = 0.02). Multiple comparisons of air exposure 
treatments indicated that whereas all treatment 
values were significantly different from baseline, 
none of the air exposure treatment groups had 
significantly different values from one another 
(Fig. 1). Similarly, plasma concentrations of [glu] 
and [lac–] differed among treatments (ANOVA: 
F3,48 = 5.50, p < 0.01; F3,48 = 104.3, p < 0.01), but 
this was driven by low baseline values and none 
of the air exposure treatment groups resulted in 
significantly different values (Fig. 1). [Na+] dif-
fered across treatments (ANOVA: F3,47 = 3.66, p = 
0.02; Fig. 1), specifically [Na+] was higher for 120 
s air exposure treatment than baseline (Tukey-
Kramer HSD: t = 2.70, p = 0.046). Fork length 
was also a significant factor contributing to vari-
ation in [Na+] (ANOVA: F1,47 = 8.48, p < 0.01), 
with longer grayling tending to have higher [Na+].

In all three treatment groups there were 
four grayling (proportion = 0.31) with impaired 
reflexes immediately after angling (Fig. 2). We 
fitted a total of five mixed effects models to the 
reflex impairment data and compared them using 
LRTs to test for significant factors (Table 1). 
Positive coefficients in models suggest that the 
corresponding variables increase the probabil-
ity of impairment, whereas negative coefficients 
suggest a decrease. Reducing the full model by 
removing indicator variables and assessing the 
reduction with LRTs allowed us to make infer-
ences on the significance of the main effects. 
The first reduced model (R1) tested whether air 
exposure was a significant impairment factor by 
eliminating all indicator variables correspond-
ing to “after treatment” (10/AT and 120/AT) and 
incorporating only the “after recovery” indica-
tor variables (0/AR, 10/AR, and 120/AR). R1 
was significantly different from the full model 
(p < 0.05), suggesting that air exposure signifi-
cantly impacted reflex impairment. The second 
reduced model, R2, tested the effect of 30 min on 
reflex recovery by replacing the “after recovery” 
indicator variables (0/AR, 10/AR, and 120/AR) 
variables with a composite indicator variable 
(Ψ; Table 1) equal to their sum for each fish. 
We also found R2 to be significantly different 
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Fig. 1. Mean ± 1 SD blood 
parameters measured for 
European grayling (Thy-
mallus thymallus) from 
a baseline group (blood 
sampled immediately 
after angling) and three 
air exposure treatment 
groups (i.e., air exposure 
intervals of 0 s, 10 s, 
120 s). Glucose, lac-
tate, and sodium values 
were measured in mmol/l 
whereas pH was meas-
ured logarithmically (i.e., 
0–14). Sodium values 
were divided by 10 to fit 
the scale of the figure. 
According to the Tukey-
Kramer HSD post-hoc 
test, baseline values are 
different from treatment 
values for glucose, lactate 
and pH.

Fig. 2. Proportion of European grayling exhibiting reflex 
impairment after angling and exposure to one of three 
air exposure intervals. Reflexes were tested at three 
different time points: immediately after landing, after 
administration of the air exposure treatment (0, 10 or 
120 s), and after 30 min holding in a flow-through sub-
merged holding chamber.

from the full model, suggesting that fish from 
different air exposure treatment groups had dif-
ferent degrees of recovery after 30 min, attrib-
utable to differences in air exposure duration. 
The third reduced model, R3, included only the 
intercept, 0/AR, 10/AR, and 120/AT. We found 
a non-significant difference, suggesting that one 
or more of these variables could be deleted 
from this model; however, eliminating 120/AT 
or 0/AR produced highly significant LRTs, so 
these variables were included. Moreover, elimi-
nation of 10/AR generated weak evidence that 
the model was too reduced (model R4; Table 2; 
p = 0.10) so we chose R3 as the best model. This 
final model suggests that 0 s air exposure greatly 
reduced the likelihood of reflex impairment, and 
that 10 s air exposure did not have a significant 
effect on reflex impairment. However, 120 s air 
exposure significantly increased the likelihood 
of reflex impairment. In addition, 120 s air expo-
sure resulted in prolonged reflex impairment 
given that recovery was incomplete after 30 min.

Discussion

A brief air exposure interval of 10 s could be an 
acceptable upper threshold for anglers participat-

ing in recreational grayling fisheries. Few studies 
have previously studied the effects of brief air 
exposure intervals on fish in recreational fisher-
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ies, instead focusing on longer intervals (≥ 30 s). 
Yet, brief intervals are the most relevant to stake-
holders because anglers and managers need to 
strike an appropriate compromise with respect 
to best handling practices (Cook et al. 2015). 
This is also one of the first studies to evaluate 
changes in reflex impairment of individual fish 
at different time points, allowing us to evaluate 
impairment and revival of fish exposed to the 
experimental stressors.

The degree of exhaustion and stress should 
increase the longer the individual is exposed 
to the stressor (e.g., fight time or air exposure 
interval; Gustaveson et al. 1991, Ferguson and 
Tufts 1992, Arends et al. 1999), theoretically 
until it plateaus at a maximum. Longer air expo-
sure intervals in this study were anticipated to 
increase the magnitude of the secondary stress 
response of European grayling (e.g., Ferguson 
and Tufts 1992), but such a pattern was not 
observed. Indeed, grayling did not have differ-
ent values of circulating [glu], [lac–], [Na+], or 
blood pH among air exposure treatment groups. 
Only after 120 s air exposure did [Na+] differ 
significantly from baseline values. Thorstad et 
al. (2003) identified an increase in plasma [Na+] 
of Atlantic salmon (Salmo salar) after angling, 
and postulated that it may have been related to 
size differences among treatment groups. Cor-
respondingly, we identified size as a significant 
factor influencing [Na+] in our model. However, 
increased [Na+] may actually be attributable to 
[lac–] production during extended anaerobiosis 
caused by air exposure, which creates an osmotic 
gradient in the blood (Wood et al. 1983). In our 

study, higher [Na+] in the 120 s air exposed gray-
ling relative to baseline was the only indication 
that long air exposure increased physiological 
stress relative to angling without air exposure.

Long air exposure after exercise (120 s) 
significantly increased the probability of reflex 
impairment whereas the brief air exposure inter-
val (10 s) did not when compared to fish that 
did not receive air exposure. Furthermore, gray-
ling air exposed for 120 s did not fully recover 
reflexes, whereas those exposed for 0 or 10 s 
recovered reflexes to a greater extent. Lack of 
response to tail grab can be influenced by muscu-
lar inhibition resulting from exhaustion of white 
muscle (Raby et al. 2012) used for burst-type 
exercise and fuelled by ATP, phosphocreatine, 
and glycogen (Milligan and Wood 1986, Dobson 
and Hochachka 1987, Wood 1991, Milligan 
1996, Kieffer 2000). Intramuscular fuels were not 
measured and therefore exhaustion of ATP, gly-
cogen, or phosphocreatine may have explained 
the reflex impairment observations better than 
the metabolic end products of the secondary 
stress response that we measured (Kieffer 2000). 
Impairment of the orientation reflex is more 
related to cognitive impairment resulting from 
insufficient oxygen delivery to the brain (Raby et 
al. 2015) and has been determined to represent a 
further departure from homeostasis that is more 
predictive of post-release mortality than loss of 
the tail-grab response (Raby et al. 2015).

Reflex impairment is an ecologically relevant 
metric for evaluating the impacts of stressors 
such as fisheries interactions, in part because ina-
bility to recover can increase instances of post-

Table 1. The coefficients and LRT p values for the five mixed effects models fitted to the reflex impairment data 
(see Methods for explanation of indicator variables). p values are for likelihood ratio tests comparing the full model 
to the reduced models. Reduced models that are significantly different from the full model (α = 0.05) indicate that 
removing terms has an effect on model performance. The best reduced model, R3, is therefore not significantly 
different from the full model and indicates which indicator variables are important to the model (see Results for 
interpretation). AR = after 30 min recovery, AT = after air exposure, FL = fork length, Ψ is an indicator variable that 
corresponds to summing the 0/AR, 10/AR, and 120/AR variables for each fish.

Model	 Intercept	 FL	 0/AR	 10/AT	 10/AR	 120/AT	 120/AR	 Ψ	 p

Full	 –5.49	 0.14	 –14.73	 0.52	 –2.12	 15.37	 –0.12	 –	 –
R1	 –4.71	 0.14	 –10.84	 –	 –2.51	 –	 –1.03	 –	 < 0.001
R2	 –5.55	 0.14	 –	 0.53	 –	 13.49	 –	 –1.30	 < 0.05 0
R3	 –0.98	 –	 –10.39	 –	 –2.23	 12.08	 –	 –	 0.41
R4	 –1.11		  0–9.49	 –	 –	 11.62	 –	 –	 0.10
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release predation (Raby et al. 2014). The waters 
where we angled grayling were also home to 
large predatory northern pike (Esox lucius), and 
previous studies have identified increased pre-
dation of released fishes associated with reflex 
impairment resulting from fisheries interactions, 
including increasing reflex impairment with 
longer air exposure intervals (e.g., Danylchuk et 
al. 2007, Cooke et al. 2014). Releasing fish with 
impaired reflexes may increase mortality rates, 
particularly in areas with high predator density. 
Given our results, a more integrated study that 
incorporates tracking (e.g., with biotelemetry) 
of reflex impaired fish released by anglers would 
be necessary to evaluate the extent to which 
reflex impairment, post-release mortality, and 
post-release predation influence survival in rec-
reational grayling fisheries.

All grayling were played, netted, handled, 
and recovered in a similar manner to ensure that 
these factors were standardized. Grayling were 
air exposed in nets rather than by hand in an 
effort to minimize epithelial damage and stress 
associated with handling. However, we observed 
fish struggling within the nets, behaviour that can 
also lead to abrasion and increased stress much 
the same way that handling does (e.g., Barthel et 
al. 2003, Colotelo and Cooke 2011), while also 
increasing the degree of muscular exhaustion 
and anaerobiosis relative to calm fish (e.g., van 
Raaij et al. 1996, Brownscombe et al. 2013). 
Holding fish prior to sampling is a challenge 
when using physiological metrics in the field 
because it can confound findings (Langkilde and 
Shine 2006, Cooke et al. 2013), which is why 
we opted for recovery bags for holding the fish. 
Nonetheless, it is possible that recovery bags 
may have increased stress and could explain why 
no significant differences were observed among 
air exposure treatment groups in terms of lactate, 
pH, and glucose (Gustaveson et al. 1991).

Conclusion

Even in the absence of notable increases in phys-
iological stress detectable in blood, increased 
reflex impairment associated with protracted 
air exposure justifies elimination or consider-
able reduction of air exposure to short intervals 

(< 10 s) by anglers targeting European grayling 
at summer water temperatures. Fishery sustain-
ability concerns have led to consideration of 
some catch-and-release management policies 
for maintaining grayling populations (e.g., Aas 
et al. 2000). However, little if any research 
has previously been conducted to determine the 
effects of recreational angling on grayling, even 
though other species in the order Salmoniformes 
(e.g., rainbow trout, Atlantic salmon, sockeye 
salmon) have received considerable attention 
from recreational fisheries researchers (Cooke 
and Suski 2005). Because limited data have pre-
viously been collected to quantify the response 
of European grayling to angling, the actual value 
of catch-and-release for conservation of this 
species is not fully understood. Therefore, the 
results of this study are particularly relevant 
for grayling conservation initiatives. Our find-
ing that air exposure can increase probability of 
reflex impairment is pertinent to grayling fisher-
ies given that released grayling are often held out 
of the water by anglers for photographs or gen-
eral admiration. Further research efforts directed 
at identifying thresholds for air exposure with a 
specific emphasis on short air exposure intervals 
will be useful for generating best practice recom-
mendations that anglers can use to maintain the 
welfare status of fish in recreational fisheries.
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