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Abstract

According to the Norwegian Diversity Act, practitioners of restoration in Norway

are instructed to use seed mixtures of local provenance. However, there are no

guidelines for how local seed should be selected. In this study, we use genetic

variation in a set of alpine species (Agrostis mertensii, Avenella flexuosa, Carex

bigelowii, Festuca ovina, Poa alpina and Scorzoneroides autumnalis) to define seed

transfer zones to reduce confusion about the definition of ‘local seeds’. The spe-

cies selected for the study are common in all parts of Norway and suitable for

commercial seed production. The sampling covered the entire alpine region (7–
20 populations per species, 3–15 individuals per population). We characterised

genetic diversity using amplified fragment length polymorphisms. We identified

different spatial genetic diversity structures in the species, most likely related to

differences in reproductive strategies, phylogeographic factors and geographic

distribution. Based on results from all species, we suggest four general seed trans-

fer zones for alpine Norway. This is likely more conservative than needed for all

species, given that no species show more than two genetic groups. Even so, the

approach is practical as four seed mixtures will serve the need for restoration of

vegetation in alpine regions in Norway.

Introduction

In many cases, natural succession is sufficient to restore an

area to its original state after anthropogenic disturbance

(e.g. Prach and Pysek 2001). However, in areas where suc-

cession is slow and risk of erosion is high, there is a danger

of reinvasion of non-native species or for aesthetical and

technical reasons seeding to restore vegetation may be nec-

essary. Seeds of local provenance are widely recommended

for restoration projects for reasons that include avoiding

genetic contamination of local populations, increasing

restoration success through better seedling establishment,

survival and growth of locally adapted plant material and

to avoid outbreeding depression (reviewed in Broadhurst

et al. 2008). There is, however, no general agreement on

what local means simply because it will vary with species,

goals and technicality of each individual restoration project

(Linhart and Grant 1996; McKay et al. 2005; Perring et al.

2015).

Ecosystems at high latitudes and altitudes are especially

vulnerable to human interference. Due to short growing

seasons, low temperatures and often dry and nutrient-poor

soils, the natural process of revegetation may take decades

(Krautzer et al. 2012). Consequently, erosion may often

exceed damaging effects of the initial anthropogenic distur-

bances (Vasil’evskaya et al. 2006). Several assessments of

revegetation indicate that the vegetation cover needs to

exceed 70–80% to reduce soil erosion to an acceptable

degree in these habitats (Markart et al. 1997; Tasser et al.

1999; Peratoner 2003), and establishment of such a vegeta-

tion cover within reasonable time is crucial. Because natu-

ral revegetation processes are so slow, human intervention

is necessary to avoid erosion (e.g. Krautzer et al. 2012). In

Norway, approximately 30% of the mainland is above or
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north of the climatic forest line (www.biodiversity.no);

thus restoration of vegetation by seeding is often necessary.

The Norwegian flora is shaped by three main gradients:

the latitudinal, the altitudinal and the oceanity gradients. In

combination with the complex topography, these gradients

create vegetation zones which are mosaic-like in distribu-

tion (Fig. 1). The flora is relatively young, as the area was

covered by the Weichselian ice sheath until 11 k years ago

(P�asse and Andersson 2005). The flora has low biodiversity

with only 3000 species (Elven 2005) and contains few ende-

misms (Borgen 1987). Most species are in the outskirts of

their distribution ranges (Hult�en and Fries 1986). Studies

of phylogeography of Norwegian species suggest little or no

genetic structure in neutral markers, reflecting the young

history and isolation of the Norwegian flora (Sch€onswetter

et al. 2003, 2008; Fjellheim and Rognli 2005; Alsos et al.

2007; Gaudeul et al. 2007; Elameen et al. 2008b; Vik et al.

2010; Westergaard et al. 2010, 2011; Bjørgaas 2011).

Restoration projects in Norway must follow the legal

framework set by the Norwegian Nature Diversity Act of

2009 (https://lovdata.no/dokument/NL/lov/2009-06-19-

100?q=naturmangfoldloven. Associated regulations from

2015: https://lovdata.no/dokument/SF/forskrift/2015-06-

19-716). The aim of the law is to preserve nature as it is,

even down to maintaining genetic integrity on a population

level. Following this, there is a legal demand for material of

local provenance. However, there are no guidelines for

what local means, and practitioners and users are asking

for clarifications.

Different strategies for the definition of seed transfer

zones

To approach the demand for local seeds, we may restrict

plant translocation to seed transfer zones within which

plant materials can be moved freely with minimal loss of

Figure 1 Vegetation zones (left), sections (middle) and zone sections (right) in Norway, reflecting our main gradients, the latitudinal and altitudinal

gradients (left), the oceanity gradient (middle) and the combination of these (right). The zones are the nemoral (red), the boreo-nemoral (orange),

the boreal (yellow, bright green, green) and the alpine (blue). The sections are categorised from highly oceanic (dark blue) to mildly continental

(white). The figure is taken from Moen (1998) with a few modifications by Halvorsen et al. (2009).
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biodiversity and local adaptation (Knapp and Rice 1994;

Jones 2003; McKay et al. 2005; Vander Mijnsbrugge et al.

2010; Miller et al. 2011). Many authors have proposed

methods to define them for different kinds of species and

at different scales, resulting in several distinctive delin-

eation strategies (Mahalovich and McArthur 2004; McKay

et al. 2005; Vander Mijnsbrugge et al. 2005). The different

strategies are not mutually exclusive and may well be com-

bined to cover several aspects of revegetation.

One of the strategies is the ecoregional approach. Drawn

on topographic, climatic or edaphic data for zones of eco-

logical similarity, the zones encompass geographic areas

with similar ecological conditions, such as geology, climate,

vegetation, soils and hydrogeology (Mahalovich and

McArthur 2004). Ecoregional seed transfer zones were first

defined in recognition of strong regional differences in life-

history traits for commercially important tree species (Mil-

lar and Libby 1989; Hufford and Mazer 2003; Vander

Mijnsbrugge et al. 2005; Miller et al. 2011). To apply the

ecoregional approach of seed zone definition in the com-

plex landscape of Norway (Fig. 1) would be both difficult

and impractical.

Another strategy is to use an adaptive focus. To ensure

the technical success of restoration, the best adapted plant

population for the target area is often used as seed source

(Bischoff et al. 2006; Leimu and Fischer 2008; Rice and

Knapp 2008; Wilson et al. 2008; Hereford 2009). To quan-

tify adaptive potential of the populations seeds of different

origin are tested in common garden experiments (Kitchen

and McArthur 2001; Johnson et al. 2004; Kawecki and

Ebert 2004; Miller et al. 2011). Such adaptive effect differ-

entiation is documented in some plant populations (Sahli

et al. 2008; Bischoff et al. 2010); however, there are also

examples of the opposite (e.g. Fjellheim et al. 2015). The

largest challenge in alpine regions in Norway is seedling

establishment and rapid creation of vegetation cover in a

harsh environment prone to erosion. Using adapted seed

material may be of paramount importance for restoration

in alpine areas of Norway, but may not necessarily preserve

genetic integrity of local populations as it has been shown

that in some cases, the best adapted populations are not

local (Bischoff et al. 2010; Jones 2013).

A third approach that may best fulfil the intention of the

Nature Diversity Act to preserve genetic integrity of local

flora is to use gene flow patterns for seed zone design. It

involves a goal of maintaining the natural spatial genetic

structure of the species, as well as preserving genetic diver-

sity to ensure long-term population survival and reproduc-

tion (McKay et al. 2005). The history of a population and

the landscape within which it exists are critical factors

influencing the genetic relationships of populations (Krauss

and Koch 2004). Genetic structure results from the joint

action of mutation, migration, inbreeding, selection and

drift, which in turn must operate within the historical and

biological context of each plant species (Loveless and Ham-

rick 1984). Neutral markers have commonly been used to

reflect gene flow and genetic drift, and have been useful for

defining seed transfer zones for the conservation of contin-

uous plant populations (Moritz 1999; Diniz-Filho and

Telles 2002; Krauss and Koch 2004; Malaval et al. 2010).

However, neutral markers do not normally reflect adaptive

variation (Holderegger et al. 2006), and additional studies

such as common garden studies of potentially important

traits or genome-wide scans to detect adaptation to climate

(Steane et al. 2014) are needed to identify locally adapted

plant populations.

The science and practice of ecological restoration have

raised high expectations for our ability to reverse the loss of

biodiversity and ecosystem services (Mijangos et al. 2014).

Realistically, decision-making in restoration is based on

incomplete knowledge (Rice and Emery 2003), and our

governments are still in need of practical and efficient tools

for management and preservation. Genetic tools from con-

servation genetics and related research areas can improve

the practice of ecological restoration by providing data on

population expansions and contractions, historical gene

flow and coalescence (Mijangos et al. 2014). An under-

standing of the various processes involved in shaping the

genetic structure of a population will increase the short-

and long-term success of conservation and restoration

efforts (Rice and Emery 2003).

The main aim of this study was to provide a scientific

basis for selection of local seeds for restoration of vegeta-

tion in alpine regions in Norway in compliance with the

Norwegian Nature Diversity Act. To circumvent the need

for time- and cost-consuming reciprocal transplant and

common garden trials to identify well-adapted seed mate-

rial, but still ensure good seedling establishment, we chose

to work with a set of common species already in commer-

cial seed production and regularly used in restoration pro-

jects, but as of today not necessarily in compliance with the

Norwegian Nature Diversity Act. We used molecular mark-

ers and population genetic tools to identify genetic groups

for the species and compare the groups to suggest general

seed transfer zones that match the genetic structures found

in all species. The resulting generalised seed transfer zones

provide a basis for selection of local seeds for most alpine

vegetation reconstructions in Norway in foreseeable future.

Materials and methods

Collection of plant materials

Plant material (leaves) was collected in natural habitats

from 20 locations throughout Norway in 2009 and 2011

(Fig. 2; Tables 1 and S1). The collection and the choice of

the model species were published in Jørgensen et al. (2014)
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and were based on the following criteria: (i) plant materials

must be fresh and disease-free, (ii) growing distance

between individual plants within collection sites must be at

least 5–10 m, (iii) collection of the species should not take

place in an area where previous seeding or introduction of

the species may have occurred as result of re-vegetation,

(iv) high growth rate (ensures quick establishment of vege-

tation cover) (v) a minimum of 20 individual plants of

each species per location and (vi) the species are already in

use in commercial seed production (ensures good seed pro-

duction). The six species chosen for the study are Agrostis

mertensii Trin., Avenella flexuosa (L.) Parl., Carex bigelowii

Torrey ex Schweinitz, Festuca ovina L., Poa alpina L. and

Scorzoneroides autumnalis (L.) Moench. A total of 151–300
individuals of each species were sampled throughout Nor-

way (Table 1). After collection, the plant materials were

stored in individual zip-lock bags containing silica gel.

DNA extraction

Silica gel-dried leaf tissue and one 3-mm Tungsten Carbide

Bead (QIAGEN Inc., Valencia, CA, USA), were placed in a

96-well plate and kept for 3 min in liquid nitrogen. The

plates were shaken twice in a Mixer-mill disruptor MM301

(Retsch, Haan, Germany) for 90 s at 25 Hz. DNA was

extracted, using the Plant DNA Kit of Omega Bio-tek

(Norcross, GA, USA) according to the manufacturer’s

instructions.

AFLP analysis

The AFLP analysis (Vos et al. 1995) was performed as pre-

viously described (Elameen et al. 2008a; Jørgensen et al.

2014), with modifications that included the use of fluores-

cently labelled primers instead of radioactive labelling. Six
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Figure 2 Sampling localities included in this study (to the right), and cluster analysis (to the left) of all localities based on a principal component analy-

sis of the mean PCO scores for all populations and all species included in this study. Above: Scatterplot of the first two axes, PCA 1 (64%) and PCA 2

(12%). Below: PCA 1 scores for all localities sorted by geography.
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amplification primer pairs with two selective bases were

tested using 10 individuals for each species. Four of these

(Table 2; Applied Biosystems, Foster City, CA, USA and

Invitrogen, Carlsbad, USA) were chosen based on the num-

ber of amplified fragments in the range 50–500 base pairs,

and amount of polymorphism among the included individ-

uals.

Data scoring

Data were recorded manually using GeneMapper 5

(Applied Biosystems), and only clear polymorphic bands

were scored for presence (1) or absence (0). The results of

AFLP were confirmed by repeating the analyses of 23 ran-

domly selected plants of each of the six species. The repli-

cated profiles were compared, and markers with more than

5% errors were removed from the data sets. Also single

profiles with significantly higher or lower number of bands

compared to the average were removed as we assumed that

to be the result of imperfect PCRs.

Statistical analyses

Our main goal was to define seed transfer zones in Norway

for the selected species. To do so, we needed to identify

geographic structure and analyse the diversity for each

taxon. To identify geographic structure, we used two

approaches. First, we visualised the genetic variation using

an ordination method, principal coordinate analysis (PCO)

as we had binary matrices. The analyses were conducted

using the software PAST (Hammer et al. 2001) and Dice’s

similarity index (Dice 1945). Second, we used a nonhierar-

chical clustering method that grouped the individuals to

maximise linkage disequilibrium among groups, that is we

assumed the same pattern in several markers across group

barriers, whereas within groups, the patterns should be

Table 1. Sampling for each species included in this study, individuals per population. Lat./Long. give approximate coordinates for each locality, north

and east. See Table S1 for further details.

Locality Lat./Long. (N/E)

Agrostis

mertensii

Avenella

flexuosa Carex bigelowii Festuca ovina Poa alpina

Scorzoneroides

autumnalis

1) Finnmark E 70.27/30.96 15 15 15 15 7 –

2) Finnmarksvidda 69.40/24.53 14 15 14 – – –

3) Finnmark W 71.08/25.75 – 15 15 14 11 15

4) Lyngen 69.60/20.24 – 15 14 – 4 15

5) Lofoten/Vester�alen 68.34/14.65 15 15 – – 7 15

6) Ofoten/Bjørnefjell 68.45/18.10 15 15 11 14 13 15

7) Saltfjellet 67.07/16.05 15 15 12 15 14 5

8) Børgefjell 65.18/13.46 14 15 12 – – 14

9) Mer�aker 63.36/11.74 – 15 14 14 9 15

10) Kvikne/Tynset 62.57/10.45 – 15 15 14 6 15

11) Trollheimen 62.71/9.55 – 15 14 15 13 13

12) Dovrefjell 62.30/9.60 – 15 14 13 15 15

13) Strynefjellet 62.02/7.40 15 15 14 – – 14

14) Vikafjellet 60.93/6.43 15 15 15 – 13 11

15) Valdresflya 61.34/8.81 15 15 10 14 – 15

16) Ringebufjellet 61.58/10.36 – 15 15 15 10 15

17) Hardangervidda W 60.43/7.41 15 15 – 14 – 15

18) Hardangervidda E 60.24/8.53 15 15 14 14 – 15

19) Norefjell 60.34/9.19 15 15 13 14 15 15

20) Setesdal/Vesthei 59.46/7.19 13 15 8 – 14 3

Total no. of specimens 191 300 239 185 151 240

Table 2. Sequences of the EcoRI and MseI selective primers used for AFLP analysis.

Primer combination EcoRI primer 50-30 MseI primer 50-30

EcoRI0 9 MseI0 GACTGCGTACCAATTC GATGAGTCCTGAGTAA

EcoRI12 9 MseI17 6FAM-GACTGCGTACCAATTCAC GATGAGTCCTGAGTAACG

EcoRI19 9 MseI17 6FAM-GACTGCGTACCAATTCGA GATGAGTCCTGAGTAACG

EcoRI20 9 MseI17 6FAM-GACTGCGTACCAATTCGC GATGAGTCCTGAGTAACG

EcoRI21 9 MseI17 6FAM-GACTGCGTACCAATTCGG GATGAGTCCTGAGTAACG
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random. The groups were identified using the Bayesian

program Structure v 2.1 (Pritchard et al. 2000; Falush et al.

2003). Plots of likelihoods, similarity coefficients and DKs
(Evanno et al. 2005) were made in the statistical package R

(http://www.r-project.org/) using the script Structure-sum

(Ehrich 2006). To analyse the diversity patterns, we used

analysis of molecular variance (AMOVA) in the program

Arlequin v 3.11 (Excoffier et al. 1992, 2005) that calculated

the variation within and among prior defined populations.

We also ran Mantel tests (Mantel 1967) for correlations

between genetic and geographic distance matrices in Arle-

quin.

To visualise patterns among geographical localities, we

conducted a meta analysis where mean PCO scores for each

population and each species (i.e. mean population values

for the first two eigenvectors) were used as input in a prin-

cipal component analysis (PCA) in PAST.

Results

Agrostis mertensii

The ordination analysis separated the two northernmost

populations (Finnmark E and Finnmarksvidda) from the

remaining along the first two axes (25 and 15%, respec-

tively; Fig. 3). No further structure could be identified. In

the Structure analyses, the likelihoods, similarities and DKs
all suggested a clustering into three groups (Fig. S1): one

consisting primarily of the northernmost populations (Fin-

nmark E and Finnmarksvidda), the other two overlapping,

but with one dominating Central Norway, and the other

dominating southern Norway (Fig. S2). The AMOVA analysis

showed that 52% of the variation was among populations,

whereas 48% was within population variation (Table 3).

The Mantel test showed no significant relation between

genetic and geographic distance.

Avenella flexuosa

No apparent groups were identified in the ordination anal-

ysis, but a gradient from North to South could be seen

along the first two axes (5 and 4%, respectively; Fig. 3). In

the Structure analyses, the likelihoods, similarities and DKs
all suggested a clustering into a single group (Figs S1 and

S2). The AMOVA analysis showed that only 10% of the varia-

tion was among populations, whereas 90% was within pop-

ulation variation (Table 3). The Mantel test showed no

significant relation between genetic and geographic

distance.

Carex bigelowii

The populations were grouped into two groups along the

first two axes of the PCO (20 and 4%, respectively); a

northern group from Saltfjellet northwards, and a southern

group from Bjørgefjell southwards (Fig. 3). However, the

northeasternmost population from Varanger/Finnmark E

grouped with the southern group. In the Structure analyses,

the likelihoods, similarities and DKs all suggested a cluster-

ing into two groups (Fig. S1): one consisting primarily of

the populations from Saltfjellet and northwards, the other

primarily of the populations from Bjørgefjell and south-

wards (Fig. S2). The AMOVA analysis showed that 30% of the

variation was among populations, whereas 70% was within

population variation (Table 3). The Mantel test showed no

significant relation between genetic and geographic

distance.

Festuca ovina

The ordination analysis separated the southernmost popula-

tions (Hardangervidda E and W, and Norefjell) from the

remaining along axes one and two (6 and 5%, respectively;

Fig. 3). No further structure could be identified. In the Struc-

ture analyses, the likelihoods, similarities and DKs all sug-

gested a clustering into two groups (Fig. S1): one consisting

primarily of the populations from Hardanger (E and W) and

Norefjell, and the other of the remaining populations

(Fig. S2). The AMOVA analysis showed that 11% of the varia-

tion was among populations, whereas 89% was within popu-

lation variation (Table 3). The Mantel test showed no

significant relation between genetic and geographic distance.

Poa alpina

The ordination analysis separated the Saltfjellet population

from the remaining along axis one (7%), and partly the

southernmost populations (Setesdal/Vesthei and Norefjell)

from the remaining along axis two (7%; Fig. 3). In the

Structure analyses, the likelihoods, similarities and DKs all
suggested a clustering into three groups (Fig. S1): one con-

sisting primarily of the Saltfjellet population, one consisting

of the two southernmost populations (Setesdal/Vesthei and

Norefjell), and the third consisting of the remaining popu-

lations (Fig. S2). The AMOVA analysis showed that 28% of

the variation was among populations, whereas 72% was

within population variation (Table 3). The Mantel test

showed no significant relation between genetic and geo-

graphic distance.

Scorzoneroides autumnalis

No apparent groups were identified in the ordination anal-

ysis, but a gradient from North to South could be seen

along the first two axes (6 and 5%, respectively; Fig. 3). In

the Structure analyses, the likelihoods, similarities and DKs
all suggested a clustering into two groups (Fig. S1): one
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domination in northern Norway, the other in the South,

but overlapping (Fig. S2). The AMOVA analysis showed that

12% of the variation was among populations, whereas 88%

was within population variation (Table 3). The Mantel test

showed no significant relation between genetic and geo-

graphic distance.

Agrostis mertensii Avenella flexuosa

Carex bigelowii Festuca ovina

Poa alpina Scorzoneroides autumnalis
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The meta analysis

When running a PCA on the mean PCO scores for each

population and species, no clear groups of the localities

could be identified. However, they did form a gradient

along the first PCA axis (64%) with the southernmost pop-

ulations at the low end and the northernmost populations

at the high end (Fig. 2).

Discussion

Delineation of species specific seed transfer zones

Four of the six species (Poa alpina, Festuca ovina, Scor-

zoneroides autumnalis and Avenella flexuosa) show shallow

spatial structuring of genetic variation with the two first

axes in the PCO explaining less than 15% of the variation

(Fig. 3), and most of the genetic variation in these species

is found within populations (Table 3). Avenella flexuosa

and S. autumnalis show no clear structuring of the popula-

tions; however, a south–north gradient can be seen in the

PCO. The Structure analysis of S. autumnalis suggests a

division into two genetic groups, one mainly southern and

one mainly northern (Figs S1 and S2). Nevertheless, no

sign of isolation by distance was detected by Mantel tests

and we suggest a single seed zone in Norway for each of

these species. Festuca ovina and P. alpina show weak differ-

entiations of the southernmost populations compared to

the northern ones. The transition corresponds with a major

change in bedrock and may relate to that (Norwegian Geo-

logical Survey 1984). Considered separately, each species

would probably have been identified as a single genetic

group given the low percentage of variation explained and

little differentiation between the populations. However, the

congruence of the structuring of variation in the two spe-

cies supports a separate seed zone south of Hardan-

gervidda. Population 7 of P. alpina (from Saltfjellet) is

separated from the remaining populations. Poa alpina is

known to have mixed reproductive strategies, with some

populations reproducing apomictically and some sexually

(M€untzing 1965). Apomixis would reduce gene exchange

with other populations, and may explain the differentia-

tion. Given the overall lack of differentiation, it is unlikely

that this population represents a population with a separate

history, and we propose not to define the Saltfjellet area as

a separate seed transfer zone. As a precautionary measure,

P. alpina could be excluded from restoration projects and

seed source populations in this area.

In contrast to the weak genetic structuring identified in

P. alpina, F. ovina, A. flexuosa and S. autumnalis, the

genetic diversity of C. bigelowii is clearly structured into

two groups, one northern and one southern (Figs 3 and 4),

in accordance with previous findings (Sch€onswetter et al.

2008). The area where the two groups meet is a well-known

contact area for both plants and animals in the middle of

Fennoscandia (e.g. Taberlet et al. 1998; Hewitt 1999;

Brochmann et al. 2003; Schmitt 2007) and corresponds to

where the icecap of the Weichselian longest prevailed

(P�asse and Andersson 2005). The two groups probably rep-

resent two of the main immigration routes to Norway after

the ice age: an eastern element migrating from Russia and a

southern element migrating from Central Europe. Carex

bigelowii mainly reproduces vegetatively by runners (Cal-

laghan 1976), and this may contribute to reduced gene flow

between the two groups, maintaining the structure of

genetic diversity. The one population (in Finnmark) that is

completely separated from the remaining is probably intro-

duced. Many species were brought to this area from Ger-

many during World War II (polemochores), and C.

bigelowii may well have been one of them (Alm et al. 2009;

Alm personal communication). Therefore, we choose not

to let it influence the definition of seed transfer zones.

The populations of Agrostis mertensii separate into two

distinct geographic groups in the PCO analysis with a bor-

der west of the high mountain plateau of Finnmarksvidda

(Figs 3 and 4), whereas the Structure analysis further

divides the southern group into two (Figs S1 and S2). The

large differences between the populations are also reflected

in the AMOVA analysis (Table 3). We may explain the differ-

entiation between groups with reproductive strategy or

phylogeographic history. We have, however, not been able

to find any information about the reproductive biology of

A. mertensii, so we are unable to confirm this.

Large amount of gene flow may account for the low level

of genetic structuring and lack of signal in Mantel tests in

P. alpina, F. ovina, A. flexuosa and S. autumnalis as they are

all wind-pollinated (P. alpina, F. ovina, A. flexuosa) or

wind-dispersed (S. autumnalis). The three species with the

least differentiation between the populations (F. ovina, A.

flexuosa and S. autumnalis) are distributed also in lowland

parts of Norway, and the connectivity between alpine

regions most likely facilitates gene flow between the

populations. Furthermore, the Norwegian populations of

Table 3. AMOVA analyses for the six species included in this study. Only

percentage of variation is shown. All components were significant with

P < 0.05.

Species

Among population

variation (%)

Within population

variation (%)

Agrostis mertensii 52 48

Avenella flexuosa 10 90

Carex bigelowii 30 70

Festuca ovina 11 89

Poa alpina 28 72

Scorzoneroides autumnalis 12 88
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A. flexuosa, S. autumnalis and F. ovina are part of a larger,

continuous geographic distribution of the species (Hult�en

and Fries 1986) covering all of Europe and large parts of

Asia ensuring high effective population sizes and probably

gene flow to the populations from several directions, work-

ing against genetic differentiation of populations as seen in

the analyses of molecular variance. Similar results were

found in the widespread, wind-pollinated Phleum pratense,

where no structuring of genetic variation (SSR) could be

found in its entire Eurasian distribution area (Fjellheim

et al. 2015). The distribution of A. mertensii, C. bigelowii

and P. alpina is restricted to alpine regions in Norway, and

the lack of continuous distribution may limit gene flow

between the populations and account for the larger

between-population variation. The geographic distribution

ranges of A. mertensii, C. bigelowii and P. alpina are limited

in comparison with A. flexuosa, S. autumnalis and F. ovina,

possibly reducing the influx of genetic material to the pop-

ulations, and increasing the among population variation.

Our results suggest that four seed transfer zones suffice

for all species included in the study (Fig. 4). When com-

bining the results from all species in a meta analysis, the

sampling localities are structured according to geographical

distance (Fig. 2). The transitions between the zones follow

a latitudinal gradient with borders along 61 and 66° north
in the southern part of the country and a third line west of

the mountainous plateau of Finnmarksvidda. The geo-

graphical limits of the four zones are of course approxi-

mate, limited by the spatial resolution of the sampling and

the gradational nature of the transitions. When considering

a single species, the number of zones is larger than war-

ranted; however, the four zones are not in conflict with any

of the genetic patterns that we find (Fig. 4). Furthermore,

the structure we do find is shallow, reflecting the young age

of the Norwegian flora. The division into general seed

transfer zones instead of single zones for each species cre-

ates a practical tool for environmental management and is

possible to implement for seed producers and end users.

Restoration ecologists have put much focus on defining

seed transfer zones based on adaptation. To increase the

chance of success of establishing vegetation cover, the best

adapted population for the restoration area is identified by

testing seeds of different origins in common garden experi-

ments to quantify home seed advantages (Kitchen and

McArthur 2001; Johnson et al. 2004; Kawecki and Ebert

2004; Bower and Aitken 2008; Miller et al. 2011). However,

the scale at which we find local adaptation is highly variable

among species and populations and is dependent on

Agrostis
mertensii

Festuca
ovina

Avenella
flexuosa

Poa
alpina

Carex
bigelowii

Scorzoneroides
autumnalis

1
2

3

4

General
seedzones

Figure 4 Suggested seed transfer zones for each species included in this study, and suggested overall seed transfer zones.
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distribution, mode of dispersal and reproduction, and evo-

lutionary and life history (Lenssen et al. 2004; Bischoff

et al. 2006; Broadhurst et al. 2008; Leimu and Fischer

2008). The species we included in our study are widely dis-

tributed, abundant and either wind-pollinated or wind-dis-

persed; thus gene flow is common also on a large scale, and

adaptation is probably also large-scaled. Phleum pratense, a

common, widely distributed grass species which has similar

life-history strategies as our species (wind-pollination and

wind-dispersal) shows no sign of local adaptation within

the Nordic region (Fjellheim et al. 2015).

The species chosen for the study are known to be easily

established and have high growth rate as they have already

been used for restoration projects in Norway, however, not

in compliance with the Nature Diversity Act as seeds has

not necessarily been of local provenance. The proposed sys-

tem answers the call in the Norwegian Nature Diversity Act

for seeds of local provenance. If, for certain areas, specific

adaptations are required, we suggest that our seed transfer

zones are used as a framework, and that restoration ecolo-

gists look further at adaptation within the zones.

Conclusion

Serving and balancing the different interests and needs of

many stakeholders and end-users during the planning of a

restoration project can be challenging. The project should

be feasible for practitioners at the same time as it ensures

establishment success of vegetation, often within the frame-

work of laws and regulations. Furthermore, restoration tar-

gets may vary from ecosystems to vegetation and single

species. In this study, we developed an easy and flexible sys-

tem that may serve as an example on how to meet the dif-

ferent demands for choice of seed material for restoration

of vegetation, which may well be adopted also in other geo-

graphical regions and ecosystems. To our knowledge, this

is the first study to combine this many species covering a

large geographic area using a gene flow approach to seed

transfer zone construction. Studies published so far focus

on single species restoration (e.g. Gao et al. 2012; Gibbs

et al. 2012; Michalski and Durka 2012) or on regional scale

(e.g. Krauss and Koch 2004; Krauss and He 2006; Malaval

et al. 2010). Our study shows that dense and nation-wide

sampling of several species commonly used in restoration

of vegetation in combination with highly variable and neu-

tral genetic markers is a useful and practical approach for

defining local seed provenance. The results are intended to

be of immediate use to help practitioners and managers

select appropriate seeds for restoration projects in compli-

ance with the Norwegian Nature Diversity Act. For the six

species in the study, four seed transfer zones suffice for

Norway, which is precautionary as no species had more

than two genetic groups. The species are all alpine with

large amounts of gene flow; thus, we should be careful if we

extrapolate from these results to lowland species or to spe-

cies that are not wind-pollinated or wind-dispersed. Even

so, for the purpose of re-vegetation in alpine regions in

Norway, our six species is quite enough. In most cases of

re-vegetation, we primarily need to establish a cover for

aesthetic reasons, to avoid erosion or prevent invasion of

non-native species.
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