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Abstract

When determining kinship relations based on genetic material, there is a need
to quantify the probability for doing errors. These probabilities are typically
very small, but nonetheless important, and needs to be controlled. It is no
trivial task to estimate such small probabilities, and so the main purpose of
this thesis has been to explore how they can best and most accurately be
estimated. The applications in this thesis has been kinship cases in forensic
genetics, but the methods are relevant also for other areas where calculations
rely on the values of small probabilities.

To estimate these probabilities, the simulation method of importance
sampling was used. This method works by sampling from a more benefi-
ciary distribution than the one of original interest, and then correcting for it.
The precision of the estimates has also been of interest in this thesis, and is
quantified in terms of the variance and MSE. These measures were used to
evaluate different possible sampling distributions. The importance sampling
method worked better for smaller probabilities than the straightforward sim-
ulation, but there are some trade-offs; there seems to be a difference between
which distribution gives the best estimates, and which ones manage to make
non-zero estimates for the smallest probabilities.

As is intuitively understood, using more markers when genotyping makes
it easier to correctly determine relationships, but it does however also make
it harder to estimate the probabilities involved. In conclusion, we have found
that relevant estimates can be found, and that these estimates can be used to
add understanding to conventionally used verbal statements when evidence
is presented in court. It is possible to accompany such verbal statements,
like “extremely strong evidence”, to tangible probabilities.



ii

Sammendrag

N̊ar slektskapsforhold skal bestemmes p̊a grunnlag av genetisk materiale er
det et behov for å tallfeste sannsynligheten for å gjøre feil. Disse sannsyn-
lighetene er typisk veldig små, men likevel viktige, og m̊a kontrolleres. Det
er ingen triviell oppgave å estimere slike små sannsynligheter, og hensikten
i denne avhandlingen har hovedsakelig vært å undersøke hvordan disse kan
estimeres p̊a beste og mest presise måte.

For å estimere disse sannsynlighetene har simuleringsmetoden importance
sampling blitt brukt. Denne metoden virker ved å trekke utvaget fra en mer
gunstig fordeling enn den som opprinnelig er av interesse, for s̊a å korrigere
for dette. Presisjonen til estimatene har ogs̊a vært av interesse i denne opp-
gaven, og har blitt tallfestet gjennom varianse og MSE. Disse målene ble
brukt til å evaluere forskjellige alternative fordelinger. Metoden importance
sampling virket bedre for mindre sannsynligheter enn direkte simulering, men
noen avveininger må gjøress; det ser ut til å være en forskjell mellom hvilken
fordeling som gir det beste estimatet, og hvilken som f̊ar til å produsere et
resultat som ikke er null for de aller minste sannsynlighetene.

Som man intuitivt kan forst̊a s̊a blir det enklere å bestemme slektskap
p̊a en korrekt måte n̊ar flere markører tas i bruk, men samtidig blir det
vanskeligere å estimere de involverte sannsynlighetene. For å konkludere,
s̊a har vi funnet at de relevante estimatene kan bestemmes, og at disse es-
timatene videre kan bli brukt til å øke forst̊aelsen for konvensjonelt brukte
verbale uttalelser ved presentasjon av bevis i retten. Det gir en mulighet
for at slike verbale uttalelser som “ekstremt sterkt bevis” kan ledsages av
h̊andfaste sannsynligheter.
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Chapter 1

Introduction

1.1 General background

First we wish to explain the thesis’ title to a general audience. An important
key word is ‘forensics’, by which we mean the science that is relevant for
the law and court. It is not surprising that many areas of science can be
relevant for court cases. A much used example is forensic pathology, that is
typically used to estimate time and find the cause of death. If we use the
term “digital forensics” to refer to new technology in the service of the court,
that is another example. It can include many methods from statistics and
computer science, like pattern recognition and image analysis, that are used
to analyze pictures or the like, which may be of relevance for the court. One
relevant example is that this evidence may come from surveillance cameras
from terrorist attacks.

In this thesis the broad area of application is biology, more specifically we
will deal with genetical (DNA) applications in forensics. Forensic genetics is
a large field, and normally we distinguish between crime cases and kinship
cases, see figure 1.1. This thesis is relevant for both applications, but our
examples will be drawn from kinship cases. Kinship cases are largely the
determination of familial relationships based on DNA profiles. By the term
‘kinship’ we indicate that we may be looking into more distant relationships
than a parent-offspring relationship, but we will mainly focus on paternity
cases. The objective of this is to determine whether a specific man is the
biological father of a child or not. This enterprise is important both for the
children involved, since they may have an obvious interest in their biological
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of the field of forensics

origin, but also for the general society, as these things are often linked to
social benefits etc. This may of course differ between countries.

There are also other types of applications for kinship testing, e.g. in-
heritance claims, where establishing paternity status may have considerable
economic importance for the family involved. A classical example is that
after the death of a rich man it is claimed that he has unacknowledged chil-
dren, and a dispute around the inheritance arises. Immigration is another
area where it is important to determine familial relationships precisely, as
this can have consequences for their possibility of family reunion. In many
countries a person that can prove a close relationship, like being the child
of somebody that has been granted immigration, has the right to reunite.
Again the law and practice differs between countries. A third and important
application is identification of victims after mass disasters (DVI). An early
example of identification of victims based on their living relatives is presented
in [12]. This paper discusses the identification of 141 persons after a plain
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crash at Svalbard in 1996. 139 out of the 141 victims were identified based
on the comparison of DNA recovered from the disaster area and DNA from
living relatives; the two last were identified by other means as no relatives
were found.

To cover the genetical parts of this thesis there will inevitably be presented
some biological theory. For this purpose the ‘Glossary for non-biologist’ from
[3] can be helpful. It can be found through searching up the book title at
https://books.google.com, page 229.

Turning to the first part of the title, we note that statistical methods are
relevant for the mentioned applications in forensic genetics. When conduct-
ing these kinds of tests there is always a risk of doing one of two types of
errors. Formulated in terms of paternity testing, we can either wrongly de-
clare that the true biological father is not the father, or we can declare that a
man who is not the father to the child is the biological father (see figure 1.2).
The probability of committing any of these errors is small, but certainly not
0, and so we have to accept a non-zero chance of committing an error. In this
thesis we would like to calculate the probabilities of these errors as precisely
as possible. This explains the first part of the title, particularly the word
‘small’. Estimating small probabilities is typically a non-trivial task. In this
thesis our main method will be based on stochastic simulation. In particular
we will be using a method called importance sampling, which is especially
well suited for applications of this kind.

Figure 1.2: The two types of errors we can make in a paternity case.

1.2 Literature

There have for a long time been methods available to exclude paternities
based on the ABO blood system. Alleged fathers could be excluded from

https://books.google.com
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paternity if their blood type were incompatible with the child’s, but could
not be confirmed fathers. The works of Erik Essen-Möller [4] are considered
fundamental since they were the first to present the statistical methods to
confirm paternity. The paper [4] gives a historical account of the work of
Essen-Möller and also explains the relevance of forensic genetics. There is
a large literature on forensic genetics and applications to kinship testing.
We will mention some of the more recent text books, like [1, 3, 5], that
are relevant for forensic genetics. Next we will include some references for
more statistical literature. For this thesis the most relevant references are
those that deal with stochastic simulation. A classical book on this topic
is [13]. This book describes variance reduction and parts of the book on
importance sampling is of particular relevance for this thesis. Regarding
scientific literature this thesis builds directly on [9], which describes how
importance sampling can be used in forensics.

1.2.1 Software

The author of [9] also made available an R-package, ‘DNAprofiles’, which
provides functions for importance sampling and exact methods for the type
of applications we have in mind. We have used this R-package in the thesis,
but we have also implemented some new functions in the R-package ‘naomi’.

1.3 Purpose

In Norway alone, there are about 2000 paternity cases that come up a year
(personal communication with Thore Egeland. More information can be
found at http://www.farskap.no). In these cases important decisions are
made based on the methods presented, and our main aim is thus to avoid
errors. In this thesis we will focus on the probability for the second type
of error mentioned above, namely concluding that a man is the biological
father of a child when he is not. The statistical evidence in these cases are
based on the DNA profiles of the persons involved, and is summarized with
what is called the ‘Likelihood Ratio’ (LR). The interpretation of the LR is
that it states how much more probable the collected data is if the man is
the father compared to if he is unrelated to the child. The larger the LR
gets, the more compatible the DNA profiles are. A large enough LR, say
LR > 106, would lead to a conclusion of paternity. We would like to know

http://www.farskap.no
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the probability of getting such a large LR, or larger, if the man is in fact
unrelated to the child, i.e. Pr(LR > 106 | not father). This probability is
called an exceedance probability. It is usually very small, but important to
quantify because it says something about how often we make that type of
mistake. When probabilities get this small, normal simulation methods often
fail. For this reason we will investigate if the simulation method importance
sampling is a good alternative.

Other possible methods include an exact approach, asymptotic approxi-
mation to the normal distribution and direct, Monte Carlo, simulation, which
will all be discussed. In [9] Kruijver presents both a method for exact cal-
culation of these probabilities and for using importance sampling. We have
chosen to follow up on the importance sampling method, since this in princi-
pal could work generally also for a high number of markers, while the exact
approach has some upper boundary. We wanted to expand upon the method
in [9] so that it would also contain methods for evaluating the estimates.

Another objective in this thesis is to find out, in the case of importance
sampling, what distribution is best to sample from. The method of impor-
tance sampling revolves around finding a good alternative distribution, a
biasing distribution, to sample from. The added methods for evaluation of
the estimates was used for this purpose.

1.4 Organization of the thesis

The thesis is organized as follows: In chapter 2 on methods and data we
present the theoretical basis for the thesis. We start by explaining the stan-
dard way of testing hypotheses that are typically taught in beginner courses
in statistics. We then introduce some of the biological concepts that are
needed to understand the forensic aspect of the thesis, and contrast the tra-
ditions of statistics in forensics and in general. In section 2.3 we take an in
depth look at the likelihood ratio and its distribution, and explore different
approaches for finding exceedance probabilities.

At the end of the chapter we look at how to evaluate estimates and a
section on how the thesis was implemented in R. In chapter 3 we lay out the
results in the form of four examples, that are discussed in chapter 4. We also
join in on the discussion around how the statistical evidence is best presented
in court.
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Chapter 2

Methods and data

2.1 Classical hypothesis testing

We start by reviewing the classical approach for hypothesis testing. In clas-
sical statistics, the method of hypothesis testing is widely used to choose
between two competing claims, or hypotheses, on the basis of collected data.
If, for example, someone wants to introduce a new medical drug to the mar-
ket, we need to decide how much better the new drug has to be compared to
the old one, before it is safe to switch the general practice to this new drug.
This decision is based on the value of a test statistic.

One of the hypothesis is called the null hypothesis, H0, and represents the
established knowledge, or the most conservative position to hold. It typically
states that there is nothing new, there is no effect of what we are testing. We
assume that this is true, and so the burden of proof lies with anyone claiming
the opposite.

The distinguishing feature of the classical approach is the model. In
most cases a precise model is defined including probability distributions for
the data involved. The model typically contains some parameters: The data
from the experiment is assumed to follow a known distribution, in the above
example it could make sense to assume a normal distribution. If so, the
parameters are the expectation µ and the standard deviation σ. For conve-
nience we now assume σ to be known. If the drug is supposed to lower a
person’s cholesterol level, we define:

xi = measured cholesterol level for person i with the new drug

xi ∼ NID(µ, σ)

7
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In many cases the old mean is known, because the old way have been in
place for such a long time. Let us assume that the mean with the old drug
is known, we call it µ0. Now we can formulate the hypotheses in terms of
parameters from the model:

H0 : µ ≤ µ0 H1 : µ > µ0

In forensics, as we will discuss in more detail in section 2.2.2, hypotheses
are not formulated in terms of parameters but rather statements like “AF is
the biological father”.

We want to reject the null hypothesis if the sample mean X̄ is sufficiently
larger than µ0, but how much is ‘sufficiently’? Instead of looking at the
distribution of X, we can use what we know from the standard normal dis-
tribution. We know for example that there is a 5 % chance of observing
a z greater than 1.64. In our example, however, the data is not standard
normally distributed, and so we need to find a way to compare x̄ to 1.64:

Z =
x̄− µ0

σ/
√
n

We use this to make a rule for when to choose which hypothesis. First we
have to decide how much of a risk we are willing to take, i.e. specify an α. We
can then summarize the test by the decision rule: Reject if Z > Zα, where
Zα is is the number that delineate the upper (or lower) α · 100 percentile in
the standard normal distribution.

Above we chose α = 0.05, which gives us Zα = 1.64. This means that we
can reject H0 if z > 1.64, or equivalently if x̄ > µ0 + 1.64 · σ√

n
.

When we have found our z-value, we can calculate a p-value. The p-value
is Pr(Z > z|H0), the probability of getting at least this z, given that the null
hypothesis is true. We compare the p-value with the α we chose, and reject
H0 if the p-value is smaller. This means that we are taking a smaller risk
than our upper limit.

There are two different types of mistakes we can make now, called type
I and type II errors. A type I error is to reject the null hypothesis when it
is in fact true, and the type II error is to keep the null hypothesis when the
alternative is true. The type I error is usually considered the most severe
mistake, and we often compare this to the legal system. A person is always
considered innocent until proven guilty, because we are afraid of miscarriages
of justice. To judge an innocent person guilty is in the jurisprudence consid-
ered worse than letting a guilty person go. In that case the null hypothesis



2.2. REVIEW OF FORENSIC GENETICS 9

is that the person is not guilty, and it has to be proven “beyond reasonable
doubt” that the person is guilty. Because of this the hypothesis are said to
be asymmetrical.

2.1.1 Power function

With the classical hypothesis testing approach we are in control of the chance
of doing a type I error, but the α does not control the probability of making a
type II error – failing to reject H0 when H1 is true. To deal with this problem
we can calculate the probability of getting a sample mean in the acceptance
region despite the true mean being different from µ0. This is called β and is
calculated as β = Pr(X̄ < k | µ). However, it is more common to compute
the power of a test, 1− β. The power of a test is the probability of rejecting
the null hypothesis when the true mean is µ (see figure 2.1 on the following
page). The power function γ(µ) = Pr(X̄ ≥ k | µ) depends both on the true
(unknown) value of the parameter µ and the number of observations n:

γ(µ) = Pr(X̄ ≥ k) = Pr(Z ≥ k − µ
σ/
√
n

)

= Pr(Z ≥ zα −
µ− µ0

σ/
√
n

) = 1− φ(zα −
µ− µ0

σ/
√
n

)

This is based on k = µ0 + zα · σ√
n
. An example of a power function is

given in figure 2.2 on page 11. The power function is a useful and intuitive
way of presenting the properties of statistical tests. We can easily study
the effect of increasing sample size, for example. Unfortunately, there is no
simple analogue to power functions in the forensic application since we do not
have a parametric model. However, we will later study how Pr(LR > t|H)
depends on the number of markers.

2.2 Review of forensic genetics

In this section we provide the necessary genetical background. The first
thing that is important to know is the way DNA is inherited from parents
to their children. A child inherits roughly half of its DNA from the mother
and the other half from the father. This means of course that each parent
only passes on half of their DNA to their child. What parts that gets passed
on is chosen in a random way. We will get more into this in section 2.2.1,
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Figure 2.1: The curve on the left is the distribution under H0 with µ0 = 0, while
the curve on the right is the true distribution with µ = 2.5. Both with σ = 1. The
power is the probability of rejecting the null hypothesis when the true mean is µ.

but the process of meiosis will not be explained in any more detail. A more
thorough background can be found in [15]

It is normal to differentiate between coding and non-coding parts of the
genome. A (maybe overly) simplistic explanation is that the coding parts,
the genes, encode protein sequences and so gives rise to different traits called
phenotypes. However, the vast majority of the genome consists of non-coding
parts, at least for more complex organisms, including humans. For some of
these parts we know the biological function, one example being regulation of
genes, but for much of it we do not even know if it has any function.

In the applications of genetics in forensics that we have in mind, only
a small fraction of these non-functional, non-coding parts are utilized. For
this reason, we use the term ‘marker’ (or locus, plural loci) rather than
‘gene’ for the genetic information obtained, as the latter may imply that
some phenotypic information is involved. This way of choosing markers is
the traditional one in forensics. There has, however, been an increase in
the use of phenotypic markers, the objective being for example to determine
hair color. Such problems, i.e. the prediction of phenotypes, will not be
considered in this thesis.
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Figure 2.2: Power function for µ0 = 0, α = 0.05 and σ = 2. When µ = µ0,
the power is the same as α (see figure 2.1 on the preceding page); we see that
γ(0) = 0.05 where the red lines meet. With 10 observations we have an 80%
change of detecting a difference if the real µ = 1.6. With 40 observations we reach
80% certainty already at µ = 0.8.

There are mainly two reasons for the traditional choice of markers; first,
we do not want to collect phenotypic information, as it could be of a sensitive
nature or in other ways be difficult to process. For example, if it is found that
a person is a carrier of a harming mutation, it could be a moral obligation
to inform the individual, which could be difficult.

Second, coding parts of the genome are more susceptible to variations
between populations, and in forensics we prefer to deal with markers that
are homogeneous, meaning that the genetical variation is reasonably constant
between populations. Specifically, it is convenient if we can use the same
databases for many or all populations, as will be explained in more detail
later on.

In addition to being homogeneous, we also prefer the genetical markers
to be polymorphic, i.e. variable. The meaning being that there exist many
variants of it in the population, which is something that makes a marker
good at distinguishing between people. The different variants of a marker
are called alleles, and if there exists a lot of alleles for a marker, it has greater



12 CHAPTER 2. METHODS AND DATA

identifying power.
There are many different types of genetic markers, but STRs, short tan-

dem repeats, are the most commonly used in forensic genetics [3]. These are
places in the genome where patterns in the genetical code occurs, and these
patterns can be repeated a different number of times. How many times a
specific pattern is repeated determines which allele it is, see figure 2.3. An-
other much used type of marker is SNPs, single nucleotide polymorphisms.
These are variations in a single nucleotide in the genome, and they usually
consist of only two alleles. Because of this one needs to use a greater number
of markers compared to STRs to get the same confidence. The advantage
with SNPs is that they are generally less prone to mutations.

Figure 2.3: Each nucleotide in the genome is denoted with one of the letters ‘A’,
‘T’, ‘C’ or ‘G’. The way these are put together is what makes our genomes different
from one another. At some loci the nucleotides form repeating patterns. Here is
a representation of an STR marker made up of the pattern ‘GATA’. The number
of times the pattern is repeated determines which allele the participant has. Here
we see the alleles 8, 9 and 10 for this specific marker. Source: http: // www.

stewartsociety. org/ bannockburn-genetic-genealogy-project. cfm .

Different countries use different markers, but the overlap is considerable
in the sense that quite a few markers are in common. An effort has been made
to standardize and use the same markers in the databases in a large number
of countries, as described in [6]. This makes it possible to perform searches
across different countries. For instance, if a stain recovered from a crime
sample in Norway, does not give a match against the Norwegian database,
searches can be made against neighboring countries according to the Prüm
agreement (https://en.wikipedia.org/wiki/Pr%C3%BCm_Convention).

http://www.stewartsociety.org/bannockburn-genetic-genealogy-project.cfm
http://www.stewartsociety.org/bannockburn-genetic-genealogy-project.cfm
https://en.wikipedia.org/wiki/Pr%C3%BCm_Convention
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2.2.1 Standard paternity case

In this thesis we will concern ourselves with the theory surrounding rela-
tionship inference, and the simplest form of relationship inference we find in
paternity cases. Here the goal is to say on a satisfyingly solid basis whether
some alleged father is in fact the father of a child or not. A standard pater-
nity case is illustrated in figure 2.4 (this figure and figure 2.5 are made using
the R package ‘paramlink’ developed by M.D. Vigeland). We get DNA-data
from the parties involved, in this simple example only from one marker. If
we only have data from the alleged father and the child, it is called a duo
case. If we also have data from the mother it is a trio case.

AF
A/A

MO
B/C

CH
A/B

NN
−/−

MO
B/C

CH
A/B

AF
A/A

Figure 2.4: A standard paternity case: On the left hand side, AF and mother are
parents of the child, whereas in the right hand side AF is an unrelated man. AF
is the alleged father, MO is the (undisputed) mother, CH is the child.

The figure shows three individuals: AF (alleged father), MO (mother) and
CH (a child). Females are conventionally shown using circles, males squares.
In the left hand part, AF and mother are parents of the child, whereas AF is
an unrelated individual in the right hand side. One marker is shown in the
figure. For each (autosomal) marker, a person has two alleles, one inherited
from the mother and one from the father. (For X and Y chromosomes and
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the mitochondrial DNA, inheritance patterns differ, however, these markers
are not discussed in this thesis.) For instance, we see that the alleged father’s
genotype (GAF ) is A/A and the child’s genotype (GCH) is A/B.

In accordance with Mendelian genetics, each parent passes on one of their
two alleles randomly to the child. In the case shown in figure 2.4 AF will
have to pass on A since he is homozygous, whereas the mother would pass on
B or C, each with probability 0.5. The figure indicates data consistent with
paternity, but it could also be due to chance. To find out which of the two
scenarios are most likely to have generated the data, we calculate a likelihood
ratio (LR), as will be explained in section 2.2.3. But first we need to take a
look at how the hypothesis are sat up in the forensic setting.

2.2.2 Hypotheses in forensics

Previously, in section 2.1, we discussed hypothesis testing as it is normally
done in the classical way. Next, the approach in the forensic genetic setting
is introduced and we will compare and contrast these traditions.

As mentioned previously, the formulation of hypotheses differentiates the
forensics field from classical statistics. Instead of writing them in the form
of parameters, they are formulated verbally. For this reason it is crucial that
the hypotheses are precisely formulated. A typical example in a paternity
case will be (also see [3]):

H1 : AF is the biological father of the child.

H2 : Someone unrelated to AF is the biological father of the child.
(2.1)

We have to bear in mind that we always test a hypothesis against some
alternative, and our conclusions will vary with different hypothesis. If we
include relatives of AF in H2, say the brother of AF, our evaluation of the
evidence will not be unaffected.

Another difference is that the hypotheses are said to be symmetrical. This
is because we think of it as equally bad to commit either of the two possible
errors (see figure 1.2 on page 3): to wrongly claim that someone is the father
of a child or to claim that the persons are unrelated when they are not.
This is in contrast to the classical testing, were we are most concerned about
falsely rejecting H0, the type I error. Since we are equally worried about
falsely rejecting either hypothesis, the concepts of type I and type II errors
fade. Furthermore, we do not denote either of the hypotheses with the name
H0, as this implies that a position is assumed without evidence.
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As a consequence, p-values are no longer used to draw conclusions. The
p-value only control the chance of a type I error. Regardless, because of the
lack of a parametric formulation we do not have a good analogue to these
values, and so we need a different criterion to evaluate the claims. In the
next section we go into the Likelihood Ratio and how it is used to evaluate
evidence in forensic genetics.

In summary, if we compare classical hypothesis testing to the tradition
in the forensics field, three differences stand out: first is the framework of
parameterized models that we do not have in forensics, second the symmetry
of the hypotheses, and third is the lack of the critical value and p-value to
conclude the testing. By “critical value” we understand a value anchored in
calculations; such calculations are not presented to justify what threshold, t,
is used to conclude in forensics.

2.2.3 Likelihood Ratio

As described in the previous section, we do not use p-values to conclude the
testing in forensics. Instead we summarize the evidence with the likelihood
ratio. It is defined as:

LR =
Pr(Data|H1)

Pr(Data|H2)

As seen from the formula, one has to state the two competing hypothesis
to be able to calculate the LR. In a paternity case they will usually be as
shown in equation 2.1 on the preceding page.

The LR is a summary of the statistical evidence, and is interpreted as
how much more likely the data is if H1 is true compared to if H2 is true. The
‘data’ is the information from the genetic markers.

If we use the data from figure 2.4 on page 13 and start with assuming AF
to be the father, he has to pass on the allele A with probability 1 (disregarding
mutations and other artifacts like genotyping error). If a random man is the
father the allele frequencies in the general population have to be used to
estimate how probable the child’s profile is. We denote the frequency of
allele A in the population as pA. The mother is assumed to be the mother
in both cases, and passes down a B with probability 0.5.

LR =
Pr(Data|H1)

Pr(Data|H2)
=

Pr(GAF , GMO, GCH |H1)

Pr(GAF , GMO, GCH |H2)
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=
Pr(GCH |GAF , GMO, H1)

Pr(GCH |GAF , GMO, H2)

Pr(GAF , GMO|H1)

Pr(GAF , GMO|H2)

=
Pr(GCH |GAF , GMO, H1)

Pr(GCH |GMO, H2)
=

1 · 0.5
pA · 0.5

=
1

pA

Here we see that the strength of the evidence depends on how common
the allele pA is. This is quite intuitive, as it is more probable to see a common
feature in a random person than a rare one. This is also the reason why we
prefer polymorphic markers. For example, if pA is close to zero, the LR goes
to infinity. If AF is the only, or one of a very few people, with this feature,
it is much more likely that this allele comes from him compared to a random
person. If, on the other hand, pA = 0.5, which means that half the population
have this allele, then the LR = 2. The interpretation for the LR is then that
it is only twice as likely that the data is a result of AF being the father
compared to some random man unrelated to him. This means that the LR
is heavily dependent on our estimates of allele frequencies being accurate.

So far only one marker has been considered, but more markers are needed
to obtain reliable conclusions. The problem then arises: how should infor-
mation from different markers be combined? Importantly, this is achieved
by selecting markers to be independent. This will be the case if markers are
on different chromosomes or sufficiently far apart on the same chromosome.
We know from basic probability theory, that independence is a fundamental
property that allows multiplication. From every marker we calculate an LR,
and because we use independent markers we can combine these by multipli-
cation to one overall LR, i.e.,

LR = LR1 · LR2 · . . . · LRn

Example 2.1. A duo case with three markers is shown in figure 2.5. In
this example we go through how the partial LRis from each markers are
combined to one overall LR in practice, based on the profiles in the figure.
The standard assumptions are in force (i.e. no mutations, Hardy Weinberg
Equilibrium, no genotyping errors).

Marker D3S1358:

LR1 =
0.5p17
p217

=
0.5

0.2040
= 2.45
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AF
17/18

8/8
6/7

MO
−/−
−/−
−/−

CH
17/17

8/8
6/9

Three markers

Figure 2.5: Pedigree for a duo case with three markers. The markers used are the
three first in the table A.1 in appendix A.2.

Marker TPOX:

LR2 =
1p8
p28

=
1

0.5539
= 1.81

Marker TH01:

LR3 =
0.5p9
2p6p9

=
0.5

2 · 0.2093
= 1.19

Total:

LR = 2.450 · 1.805 · 1.195 = 5.285

The markers are the three first from the table A.1 in appendix A.2, which
is similar to table 2.5 in [3]. The rest of the allele frequencies can be found
at http://familias.name/Table2.5.fam.

?

http://familias.name/Table2.5.fam
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2.2.4 Match probabilities

Sometimes, for example in crime cases, we want to compare two profiles
to find out if they come from the same person. If we have a stain from a
crime scene and a reference sample from a suspect, we can calculate a match
probability, i.e. the probability that the profiles come from two randomly
selected individuals that happens to have identical genotypes by chance. This
is called RMP, random match probability, and can be used as an alternative
to the LR. If there is a match between the two samples, the RMP for a given
marker is calculated as the observed genotype’s frequency. For example,
if both stain and suspect has a genotype A/B, we calculate the RMP as
Pr(G = A/B). If there is no match, the suspect is considered excluded, and
no number is reported.

2.2.5 Hardy-Weinberg equilibrium

Motivated by the two previous sections, we understand that it is necessary
for the computations that we know the genotype frequencies in the general
population. As these are generally unknown, we use databases to estimate
them. Because there are so many different combinations of the alleles, es-
pecially with highly polymorphic markers, and the databases are not large
enough to encounter them all, we have to settle for estimates of the allele
frequencies. An example of why it is often impossible to estimate genotype
frequencies can be seen from the marker SE33 in the NorwegianFrequencies
database in the R package ‘Familias’. This particular marker has 55 different
alleles, which means there are

(
55
2

)
+ 55 = 1540 different genotypes.

This means that we need to estimate allele frequencies. Once we have
estimates of the allele frequencies we can assume Hardy-Weinberg equilibrium
(HWE). This makes it possible to estimate the genotype frequencies from
these allele frequencies. If we have a diallelic marker with alleles 1 and 2
that have frequencies p and q respectively, the genotypes would occur with
these probabilities under HWE:

Pr(G = 1/1) = p2

Pr(G = 1/2) = 2pq

Pr(G = 2/2) = q2
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We also observe that p2 + 2pq + q2 = 1, as a consequence of there being
only two alleles, so that p+ q = 1. In general, if we have p1, ..., pn alleles, the
genotype frequencies are found from the expansion of (p1 + ... + pn)2. For
instance with three alleles:

(p1 + p2 + p3)
2 = 1 ⇒ p21 + p22 + p23 + 2p1p2 + 2p1p3 + 2p2p3 = 1

2.2.6 Testing of markers

A lot of tests are done on the markers before they are used, including tests for
HW equilibrium. There are several methods of doing this, here we will focus
on the chi-square test. This test examines the difference between observed
genotype counts and the counts expected under HWE.

Example 2.2. An example of a dataset for one marker is given in table 2.1
on the next page. The test’s null hypothesis is H0: HWE applies, against the
alternative H1: HWE does not apply. We assume the null hypothesis to be
true, and we use the test to see if there are significant deviations from what
we would then expect to see. The conventional chi-square test-statistic for
the data in table 2.1 on the following page is as follows:

χ2 =
∑ (observed− expected)2

expected
=

(30− 25)2

25
+

(43− 50)2

50
+

(27− 25)2

25

= 2.14

Since we have k = 3 categories (genotypes), the degrees of freedom are
3− 1 = 2. This assumes that we disregard uncertainty in the estimate of p.
If p had to be estimated from table 2.1, the degrees of freedom would have
been 3-1-1=1. With α = 0.05 we have to compare our calculated χ2 with
5.99. Since 2.14 is less than 5.99 we can not reject the null hypothesis of
HWE. This result is often used to argue that one can use the HW method
for estimating genotype frequencies from allele frequencies.

?

The p-value for the test in example 2.2 is 0.343, which is the probability
of observing a χ2 of 2.14 or higher, if it is true that HW equilibrium applies.
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Table 2.1: One SNP marker simulated for 100 people, and the corresponding ex-
pected counts under HWE. The allele frequencies are p = q = 0.5.

Genotype Observed Expected
1/1 30 25
1/2 43 50
2/2 27 25

When we test in this way, the consequence is that the burden of proof lies
with anyone claiming the system to be out of HWE. It is not obvious that
it is correct to assume HWE in the testing. This is especially tricky without
an accompanying power calculation to tell us if we would actually discover a
deviation from HWE had there been one.

Another problem we quickly encounter when performing this test, is a
problem with sparse tables. The chi-square test presented here uses an
asymptotic approach that relies on there being enough observations in each
cell. A common rule of thumb is that it should be at least 5 observations
in each cell, but this will often not be the case with real data. There are
however other methods of testing for HWE that do not have this problem,
but we will not go into them in any detail in this thesis.

Figure 2.6: Two different haplotypes for the same chromosome. Source:
http: // www. broadinstitute. org/ cancer/ software/ genepattern/

modules/ docs/ HAPSEG/ 1? print= yes

http://www.broadinstitute.org/cancer/software/genepattern/modules/docs/HAPSEG/1?print=yes
http://www.broadinstitute.org/cancer/software/genepattern/modules/docs/HAPSEG/1?print=yes
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Another type of test of the markers is a test for linkage disequilibrium
(LD). Unlike the HWE test that is concerned with independence within mark-
ers, the test for LD examines independence between different markers. Nev-
ertheless, the test for LD is analoguous to the HWE test, as we also here
compare observed and expected counts. The null hypothesis here is H0:
there is linkage equilibrium, against the alternative H1: there is linkage dis-
equilibrium.

To carry out the test we need to observe haplotypes. A haplotype is a
specific combination of alleles from different markers located on the same
chromosome [3], see figure 2.6 on the preceding page for an illustration. For
simplicity we use male X-chromosomes in this example, as it is easy to know
the haplotypes due to the fact that males only have the one X-chromosome.

Table 2.2: A haplotype is the combination of alleles from different markers located
on the same chromosome. For any given chromosome we denote the allele frequen-
cies as pij for allele j from marker number i. The table shows an example with
a chromosome with 2 markers, each with 2 alleles. These can combine to give 4
different haplotypes, as seen in table 2.3.

Marker 1 Marker 2
Allele 1 p11 p21
Allele 2 p12 p22

Example 2.3. Consider two SNP markers on the X-chromosome observed
in 100 males. The alleles are denoted 1 and 2 for both markers, with allele
frequencies of p11 = 0.4 and p21 = 0.3 (see table 2.2 for notation). The
individuals each have one of the four possible haplotypes stated in table 2.3.
If there is linkage equilibrium (LE), the frequencies of these haplotypes can
be found from the marginal, for example Pr(1 − 1) = p11p21. The expected
haplotype count is found by multiplying the expected haplotype frequency
with the total number of observations. Once you have the expected counts
it is the same procedure as with the test for HWE:

χ2 =
(10− 12)2

12
+

(25− 28)2

28
+

(30− 18)2

18
+

(35− 42)2

42

= 9.82

Here we have 4 - 1 = 3 degrees of freedom (again assuming that the pa-
rameters are known from other data), and with an α of 0.05 the critical value
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is 7.81. Since the calculated χ2 = 9.82 is greater than the critical value 7.81,
we can reject the null hypothesis of linkage equilibrium. This means that we
can not use the marginal distribution to estimate the haplotype frequencies.
More severe is the fact that this will affect all our calculations, including
the LR [8]. This is because the combination of markers with multiplication
depends on the markers being independent, as discussed in section 2.2.3.
Section 7.4 of [3] presents a model, the so called lambda model, that can be
used to estimate haplotype frequencies in the presence of potential LD.

Table 2.3: Example haplotype counts for 100 males for two SNP markers on the
X-chromosome (made up data). The allele frequencies used to calculate expected
counts are p11 = 0.4 and p21 = 0.3. For example, if the system is in linkage
equilibrium we expect 100 · 0.4 · 0.7 = 28 of the haplotype ”1 - 2”.

Haplotype Observed Expected
1 - 1 10 12
1 - 2 25 28
2 - 1 30 18
2 - 2 35 42

?

Unfortunately there is a great deal of confusion related to independence
in genetics (see [16]). On one side, independence is related to markers being
unlinked, which means that they are passed on independently in a pedigree,
as opposed to as a unit (linkage). Linkage typically comes into play when
meioses in one individual affect several individuals, e.g. two brothers. On the
other side, there can also be dependence on the population level, in which
case it is called linkage disequilibrium.

It is not straightforward to formulate simple rules for when we must
assume no linkage to be allowed to multiply the LRs. In general, we require
both that markers are not linked and in linkage equilibrium for independence
to hold, but for paternity cases it is often sufficient with LE. In there is LD,
however, we would need the requirement of no linkage to be met.
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2.3 The distribution of the LR

Now we turn to the more mathematical part of the thesis, focusing on the
LR. After we have calculated an LR, what interests us is the exceedance
probability Pr(LR ≥ t|Hi). This is the probability of getting an LR of t or
higher given the hypothesis Hi. In this thesis we will write these probabilities
as Pr(Xi ≥ t).

As mentioned in the introduction, there are two types of mistakes we
can make in a paternity test. One type is to conclude that a person is
not the biological father of a child when in fact he is. The probability of
making this error, Pr(X1 < t), is considered easy to compute and we will
therefore not go into any detail about this. On the other hand, the probability
Pr(X2 ≥ t), of committing the other error of claiming that an unrelated man
is the father, is not trivial to find. This is the general problem of estimating
small probabilities that thesis focuses on.

There are different approaches to finding these probabilities, and in this
section we will go more into detail on four such methods. Here we think of
the LR as a random variable and approximate or find its distribution with
the various methods.

2.3.1 Exact distribution

We start with the exact approach. In other words, this is not an approx-
imation, but a way of unambiguously finding the true probabilities for all
possible values the LR can take on. This is a manageable task when the
number of markers is low, but as we will see, rapidly becomes a complex
problem whit increasing numbers of markers.

Example 2.4. Consider a paternity case with only one marker, and with
the hypotheses still as stated in equation 2.1 on page 14. The marker used is
diallelic with allele frequencies p and q. All possible combinations of AF-CH
genotypes and the resulting LRs are stated in table 2.4 on the following page.

In the columnH1 we find the probabilities Pr(GCH |GAF , H1)·Pr(GAF |H1),
whereas Pr(GCH |GAF , H2)·Pr(GAF |H2) is stated in the H2 column. Since the
hypotheses does not affect the probability of AF’s genotype, Pr(GAF |H1) =
Pr(GAF |H2) = Pr(GAF ). There are some symmetric cases in the table that
gives the same LR, e.g. line 2 and 4, but we have chosen to list both cases.
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Table 2.4: Duo case with one diallelic marker with allele frequencies pA = p and
pB = q. Column three and four shows Pr(GCH |GAF , Hi) · Pr(GAF |Hi) for the
specified hypothesis.

GAF GCH H1 H2 LR
(A/A) (A/A) p · p2 p2 · p2 1/p
(A/A) (A/B) q · p2 2pq · p2 1/(2p)
(A/A) (B/B) 0 q2 · p2 0
(A/B) (A/A) 0.5p · 2pq p2 · 2pq 1/(2p)
(A/B) (A/B) 0.5(p+ q) · 2pq 2pq · 2pq 1/(4pq)
(A/B) (B/B) 0.5q · 2pq q2 · 2pq 1/(2q)
(B/B) (A/A) 0 p2 · q2 0
(B/B) (A/B) p · q2 2pq · q2 1/2q
(B/B) (B/B) q · q2 q2 · q2 1/q

For example, consider the first line. Under H1, when AF is the father, the
child inherits an A from him with probability 1. The other A allele the child
gets from the mother with probability p from the general population, as she
is not genotyped. The probability for AF’s genotype A/A is p2 if we assume
HWE. That gives us 1p · p2. Under H2, Pr(GCH |GAF , H2) = Pr(GCH |H2).
We use the HW probabilities for the genotypes, i.e. p2 for both the father’s
and child’s genotype.

In the cases where p = q = 0.5, the LR sample space is {0, 1, 2}. Table 2.5
shows the probability of getting each of these LRs given the two hypotheses.

Table 2.5: Table for the basic introductory example

t Pr(X1 = t) Pr(X2 = t)
0 0.00 0.125
1 0.75 0.75
2 0.25 0.125

The numbers in table 2.5 are computed like this:

Pr(X1 = 0) = 0 + 0 = 0

Pr(X1 = 1) = qp2 + qp2 + pq + pq2 + pq2 = 0.75

Pr(X1 = 2) = p3 + q3 = 0.25
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Pr(X2 = 0) = p2q2 + p2q2 = 2 · 0.0625 = 0.125

Pr(X2 = 1) = 2qp3 + 2qp3 + 4p2q2 + 2pq3 + 2pq3 = 0.75

Pr(X2 = 2) = p4 + q4 = 0.125

In other words, each probability in table 2.5 is the sum of the chances of
getting an LR of t given the hypothesis in question.

?

The problems for the exact approach arises when we combine several
markers, each with its own partial LR, by multiplication. When we want to
calculate the exact probability of getting a specific LR, we have to consider
every combination of the partial LRis from each marker that can result in
the LR. For the highest and lowest values, we can easily calculate the exact
probability by hand. Let:

X = number of markers where LRi = 0

p = Pr(LRi = 0)

Then X is binomially distributed, i.e.:

X ∼ Bin(p, n)

Pr(X2 = 0) = Pr(X > 0) = 1− Pr(X = 0) = 1− (1− p)n

Similarly

Pr(X2 = LRmax) = Pr(LRi = LRimax)n

The second lowest and second highest values can also be calculated by
hand. The second lowest value occurs if all markers have their second lowest
LR (assuming the lowest value is 0):

LRsl = The second lowest LR

Pr(X2 = LRsl) = Pr(LRi = LRisl)
n

To get the second highest LR, all markers will have to have the highest
value, except one that has the second highest value:

LRsh = The second highest LR
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Pr(X2 = LRsh) = nPr(LRi = LRimax)n−1 Pr(LRi = LRish)

The probability of getting the maximum LR, Pr(X2 = LRmax), is easy to
calculate even when the markers have different distributions: as every marker
will have to result in its maximum LR, Pr(X2 = LRmax) = Πn

i=1 Pr(X2 =
LRimax)

Figure 2.7: Pr(LR = t|Hi) is found as the sum of the probabilities for all paths
whose product is t. The number of terms in the sum is very big when we use many
markers, because there are so many possible paths to the same LR. Shown in the
figure are two different paths (under H1), marked in red and blue, that nonetheless
can result in the same total LR.

For the rest of the possible LRs, however, it can be much more compli-
cated. In figure 2.7 we have illustrated this problem for 10 markers. This can
be 10 markers following the same distribution, or 10 different distributions
with ni possible values each. If we call specific combinations of LRis from
different markers for paths, then each path will occur with the probability∏n

i=1 Pr(LRi), assuming all markers to be independent. Pr(LR = t|H) is
found as the sum of the probabilities for all paths whose product is t. When
many markers are used, the number of possible paths can get very high. To
find all possible paths with a brute force method is very computer intensive,
which is illustrated in [2]. In [9] Kruijver presents a more efficient method for
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exact computations, but this also has an upper limit with respect to number
of markers. The result is that this approach only works in simple cases with
a small number of markers, but will generally not work. Hence, alternative
methods are needed.

2.3.2 Asymptotic

Another possible approach to the problem of small probabilities is to use an
approximation to the normal distribution. The central limit theorem states
that the mean of independent random variables from the same distribution
is approximately normally distributed if the sample size is big enough. As
the samples size increases, the distribution of the mean approach the normal
distribution asymptotically. This relation holds regardless of the distribution
of the random variables themselves. That means that if:

E(X) = µ ∧ SD(X) = σ then

E(X̄) = µ ∧ SD(X̄) =
σ√
n

The theorem is also valid for sums of independent random variables. Then
the outcome is as follows:

E(
n∑
i=1

Xi) = nµ SD(
n∑
i=1

Xi) =
√
nσ

Applied to the likelihood ratio, it means that the LR is not covered by
the central limit theorem, but U = log(LR) is approximately normally dis-
tributed if enough markers are used, with E(U) = nµ and SD(U) =

√
nσ in

accordance with the theorem.

LR =
n∏
i=1

(LRi)

U = log(LR) = log(
n∏
i=1

(LRi)) =
n∑
i=1

(log(LRi))

Now µ = E(log(LRi)) and σ2 = V ar(log(LRi)), and can be found
through the formulas for discrete distributions.
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Example 2.5. Let LRi be the marker from table 2.5 on page 24 under H1

and lri be a specific value that LRi can take. Then

µ = E(log(LRi)) =
n∑
i=1

log(lri) Pr(LRi = lri)

= log(1) · 0.75 + log(2) · 0.25

= 0.1732868

σ2 = V ar(log(LRi)) =
n∑
i=1

log(lri)
2 Pr(LRi = lri)− µ2

= log(1)2 · 0.75 + log(2)2 · 0.25− 0.17328682

= 0.09008494

If we use 5 such markers, then

E(U) = nµ = 5 · 0.1732868 = 0.866434

SD(U) =
√
nσ2 =

√
5 · 0.09008494 = 0.6711369

?

We find approximations to the exceedance probabilities through the nor-
mal distribution:

Pr(LR > t|H) = Pr(log(LR) > log(t)|H) = 1− Pr(log(LR) ≤ log(t)|H)

≈ 1− φ(
log(t)-nµ√

nσ
)

In figure 2.8 we used this method for 10 iid markers under H1 following the
distribution in table 2.5 on page 24, and compared it to the exact approach
from [9], and we see that the approximation is not too good even for the
higher probabilities.

There are however some problems with this asymptotic approach. One
of the problems is that we are primarily interested in the distribution of the
LR under H2. The problem with this lies in that 0 is often a possible value
for the LR under H2, but we can not take the logarithm of 0. We would
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Figure 2.8: Pr(LR > t|H1), found by the normal approximation and the exact
method. Both methods have been used on the same ts, so the red and black points
go together pairwise vertically. The data is based on 10 markers, all following the
distribution in table 2.5 on page 24.

then be forced to make an asymptotic mixture distribution of the normal
distribution and one where 0 is a possibility.

A second, maybe bigger, problem is that the central limit theorem, at
least in its simplest form, requires the random variables to follow the same
distribution. This means that all markers we use have to have the same allele
frequencies for the theorem to apply, which is not very realistic. It could be
possible to use more advanced versions of the theorem, but we have chosen
to not follow this lead. It would anyway be dubious to rely on estimates from
these types of methods when the markers are not iid.

Another reason to give up this approach is that log-normal distributions
are known to be heavy tailed, and it is exactly the tails of the distribution
that we take interest in. This is especially a problem when the sample size is
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not big enough. It is highly uncertain that n = 16 markers, which is a normal
number of markers, is enough for the distribution to converge to the normal
distribution. We therefore move on to look at other possible approaches.

2.3.3 Monte Carlo simulation

By Monte Carlo simulation we mean straightforward simulation as is ex-
plained below. Simulation can be a good tool for solving problems that are
too complex to solve analytically. As we saw in section 2.3.1 on the exact
approach, our problem should then be a good candidate for a simulation
study. It can be used to approximate probabilities by running multiple mock
trials on a computer. Monte Carlo simulation (often used synonymously
with Stochastic simulation [13]) usually involves dividing the problem into
smaller subproblems where we know the distribution of the stochastic vari-
ables involved. With the distributions and a random number generator, the
computer can mimic the stochastic variables so that we get a view of the
different possible outcomes of the system as a whole.

We have a somewhat different application in mind, as we will use simu-
lation to find probabilities. These probabilities can be written as sums (for
the discrete case) or as integrals (continuous case). However, as we have seen
in the previous section, these sums and integrals are too hard to calculate
analytically and therefore we resort to simulation.

Example 2.6. We can for example use simulation to estimate the probability
of getting a sum smaller than seven when rolling two dice. Let S be the sum
of both dice and assume H = the throws are independent. We want to find
Pr(S < 7|H) by simulation. In R it could look like this:

set.seed(5)

N=10

s1 <- sample(1:6, N, replace=TRUE)

s2 <- sample(1:6, N, replace=TRUE)

s <- s1 + s2

p <- mean(as.integer(s<7))

>p

[1] 0.3
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Here we ‘throw’ two dice 10 times each and find the frequency of hits.
We get an estimate of 0.3, but it is not a very good one. The answer can in
this case easily be computed exactly by hand, it is approximately 0.4167. As
is intuitively understood (and as a result of the law of large numbers), the
number of trial runs is crucial to the accuracy of the estimate, and 10 runs
is far from enough. Another try:

dice <- function(nsim, N, seed = FALSE) {

if (seed) {

set.seed(seed)

}

p.vec <- NULL

for (i in 1:nsim){

s1 <- sample(1:6, N, replace=TRUE)

s2 <- sample(1:6, N, replace=TRUE)

s <- s1 + s2

p <- mean(as.integer(s<7))

p.vec <- c(p.vec, p)

}

return(p.vec)

}

nsim <- 100

N <- 10000

res <- dice(nsim, N, 8)

This code makes 100 estimates, each based on 10 000 throws. A higher
number of simulations not only increases the accuracy of the estimate, but it
also lets us study its variability with greater precision. With several estimates
it is possible to look at the distribution of the estimates, and that gives us
more information of the quality of the estimate. Figure 2.9 on the following
page shows a histogram of the 100 estimates made in the code above to show
how they are distributed.

When evaluating simulation methods it is always a good idea to start
with small problems where it is possible to find the exact value. That way
we have a way to know how much the estimate misses. We will come back
to methods for evaluating the estimates in section 2.4.

?
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Figure 2.9: The distribution of the 100 estimates made in the code above.

However, not all problems are suitable for this kind of simulation. This
issue is something that will be explored closely in this thesis, more specifically
when the reason is that the probabilities are too small to be detected.

Example 2.7. We can look at an example of this: if it is stated that
U ∼ N(0, 1) and we want to estimate the probability that U exceeds 1,
Pr(U > 1), Monte Carlo simulation could be used. Random numbers from
U’s distribution are drawn and we count up the number of draws that are
greater than 1. This would work pretty well because the probability of inter-
est is of a ‘reasonable’ size. If instead we wanted to estimate the probability
that this U would exceed 5, Pr(U > 5), we would with Monte Carlo simula-
tion most likely not encounter a U bigger than 5 at all, and then the estimate
would be 0. This is not because the event is impossible, it is just extremely
rare.

?

In situations like the one in example 2.7, when the probability that is
being simulated is very small, the Monte Carlo method often falls short.

2.3.4 Importance sampling

With this in mind, we have to look to other methods to more precisely
estimate these kinds of small probabilities. One such method is importance
sampling, and the basic method is described in [9] and [13]. The basic idea is
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to sample from another probability distribution than the one you originally
are interested in, and then adjust to the distribution of interest, see figure 2.10
on the next page.

Put in general terms, we always want to estimate some expectation of the
type Ef(x) where x ∼ p [13]. The exact expression for this expectation is

Ef(x) =

∫ ∞
−∞

f(x)p(x)dx

With Monte Carlo simulation we would estimate this as the mean of a
sample:

Ef(x) ≈ 1

N

n∑
i=n

f(xi) where xi ∼ p

To find the importance sampling estimator, we first rewrite the exact
expression:

Ef(x) =

∫ ∞
−∞

f(x)p(x)dx

=

∫ ∞
−∞

f(x)
p(x)

q(x)
q(x)dx

=

∫ ∞
−∞

f∗(x) q(x)dx where f∗(x) = f(x)
p(x)

q(x)

Mathematically we do nothing illegal here, it is allowed for any probabil-
ity distribution q(x) such that q(x) = 0 ⇒ p(x) = 0. We can now estimate
this expression in a Monte Carlo fashion, but it would now be called the
importance sampling estimate. The index ‘b’ indicates that the biasing dis-
tribution is used.

Ebf(x) ≈ 1

N

n∑
i=N

f∗(xi)

≈ 1

N

n∑
i=N

f(xi)
p(xi)

q(xi)

In other words, this is still an estimate of Ef(x) with x ∼ p, the difference
is that we now draw the xis from q’s distribution, but importantly we correct
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Figure 2.10: Say we want to know Pr(X > 5), then the number of simulations
would have to be very high for us to expect to get even one hit. If instead we
sample from the distribution with for example µ = 4, it is much more likely to see
X > 5.

for doing so. q is called the biasing distribution, and the term p(x)
q(x)

is called
the importance weights.

Let θ = Ef(x). As with the Monte Carlo method, this will give an
unbiased estimate, but they will not have the same variance:

V ar(θ̂MC) =
1

N
V ar(f(x))

V arb(θ̂I) =
1

N
V arb(f∗(x)) =

1

N
V arb(f(x)

p(x)

q(x)
)

Here θ̂MC and θ̂I are the estimators for the Monte Carlo and importance
sampling methods, respectively.

Importance sampling is a method for variance reduction. This is achieved
by choosing the biasing distribution q wisely, so that it reduces the variance
of f∗(x) such that V arb(f∗(x)) < V ar(f(x)). By reducing the estimator’s
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variance, we improve its effectiveness. That means that less simulations are
needed, which reduces the running time.

Example 2.8. Let us revisit example 2.7 from the previous section and
try to find Pr(U > 5|µ = 0) = E(I(U > 5)), but now with importance
sampling drawing from the distribution with µ = 5. Since the problem is
that the probability is small, we want to choose a biasing distribution where
the desired outcome occurs more frequently. The Monte Carlo estimator
would be:

E[I(U > 5)] ≈ 1

N

n∑
i=N

I(Ui > 5) where Ui ∼ N(0, σ)

We rewrite the exact expression, using φµ(U) for the normal density func-
tion with expectation µ:

E[I(U > 5)] =

∫ ∞
−∞

I(U > 5)φ0(U)dU

=

∫ ∞
−∞

I(U > 5)
φ0(U)

φ5(U)
φ5(U)dU

=

∫ ∞
−∞

f∗(U)φ5(U)dU

Which means that the importance sampling estimate is

Eb[I(U > 5)] ≈ 1

N

N∑
i=N

f∗(Ui)

≈ 1

N

N∑
i=N

I(Ui > 5)
φ0(Ui)

φ5(Ui)
where Ui ∼ N(5, σ)

This process, from sampling to estimate, is shown step-by-step in table 2.6
on the following page. Instead of drawing Uis from the distribution with
µ = 0 and hoping to encounter enough Ui > 5, we draw from the distribution
with µ = 5, where it of course is much more likely to see Ui > 5. This will be
a more accurate estimate than the one we get with Monte Carlo simulation,
because this U is more frequently occurring in the distribution it is drawn
from.
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Table 2.6: The process of making an estimate of Pr(U > 5|µ = 0) with importance
sampling. The final estimate is the mean of the last column.

U I(U > 5) φ0(U)
φ5(U)

I(U > 5)φ0(U)
φ5(U)

1 6.22 1 8.38e-09 8.38e-09
2 4.88 0 6.94e-06 0
3 4.04 0 4.47e-04 0
4 4.92 0 5.54e-06 0
5 3.86 0 1.13e-03 0
6 3.94 0 7.36e-04 0
7 4.62 0 2.55e-05 0
8 5.61 1 1.78e-07 1.78e-07
9 6.67 1 8.70e-10 8.70e-10
10 3.46 0 8.12e-03 0

?

Next we explain how importance sampling is used in our context. Our
hypotheses are as stated in section 2.2.2, namely H1: AF is the father, versus
H2: a man unrelated to AF is the father. We would like to calculate Pr(LR >
t|H2), and this probability, the probability of declaring an unrelated man to
be the father, is small.

Example 2.9. Say we set the threshold t to 106. If LR > 106 then we
conclude that AF is the father, if it is less we conclude that he is not. We
want to know the probability of wrongly concluding that he is the father,
i.e. Pr(LR > t|H2) = E[I(LR > t)|H2] (the conditioning is dropped in the
notation below). The Monte Carlo estimator and its variance is:

E[I(LR > t)] ≈ 1

N

N∑
i=N

I(LRi > t)

V ar(θ̂MC) =
1

N

[
E[θ̂2MC ]− (E[θ̂MC ])2

]
=

1

N

[
E[I(LRi > t]2)− (E[I(LRi > t)])2

]
=

1

N

[
E[I(LRi > t)]− (E[I(LRi > t)])2

]
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̂V ar(θ̂MC) =
1

N

 1

N

N∑
i=N

I(LRi > t)−
(

1

N

N∑
i=N

I(LRi > t)

)2


=
1

N

[
θ̂MC − θ̂2MC

]
where LRi now denotes the ith randomly drawn LR from H2’s distribu-

tion. For the importance sampling estimator we use the LR’s distribution
under H1, where the bigger LRs have a higher probability. The estimator
and its variance is:

Eb[I(LR > t)] ≈ 1

N

N∑
i=N

I(LRi > t)
Pr(Data > t|H2)

Pr(Data > t|H1)

=
1

N

N∑
i=N

I(LRi > t)
1

LRi

V arb(θ̂I) =
1

N

[
E(θ̂2I )− E(θ̂I)

2
]

=
1

N

[
E[I(LRi > t)2

(
1

LRi

)2

]− E[I(LRi > t)
1

LRi

]2

]

=
1

N

[
E[I(LRi > t)

1

LR2
i

]− E[I(LRi > t)
1

LRi

]2
]

̂V arb(θ̂I) =
1

N

 1

N

N∑
i=N

I(LRi > t)
1

LR2
i

−
(

1

N

N∑
i=N

I(LRi > t)
1

LR

)2


where the LRs are drawn according to H1.

?

On the optimal choice of biasing distribution

How to choose the best biasing distribution q depends a great deal on why
importance sampling is used. One reason to use the method is when the
distribution p that is being studied is impossible or very difficult to sample
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from. In that case you often want to choose a q that resembles p as much as
possible, with the key difference that it is actually possible to sample from. If,
on the other hand, the reason to use importance sampling is to improve your
estimate and make it more stable, you want to choose a biasing distribution
that minimizes the estimates variance.

There is a theoretical optimal biasing distribution, but this can often be
impossible or impractical to sample from. This has been much discussed in
the literature, and the wikipedia page about importance sampling (https:
//en.wikipedia.org/wiki/Importance_sampling) has some suggestions,
e.g. is ‘scaling’ and ‘translation’ mentioned. However, this is not necessarily
directly applicable to our application in the forensic setting.

In the forensics field there has not been done much research into the
selection of a biasing distribution. The default mode is to use the probability
distribution of LR under the numerator (H1) hypothesis, but there is no
theoretical reason why this should be optimal. This is something we will
look further into in the results section.

2.4 Evaluation

When we have the option to choose amongst several estimators, we need to
have some criterion by which we choose the best or more precise one. First,
it is important to know if your estimate is biased or unbiased, i.e. if it makes
any systematic errors. An analogy is often drawn to a dartboard, where the
bullseye is the true value of the parameter in question, and if your estimator
is unbiased, your aim is on the bullseye [14].

As we see in figure 2.11, the variance also has a lot to say for the quality
of the estimator. If it has a high variance it can be unreliable even though it
is unbiased. In example 2.9 on page 36 we go through how to calculate the
variance. The general formula is

V ar(θ̂) = E[(X − θ)2] = E(X2)− (E(X))2

The problem with this approach is that if the estimate is biased, the
variance does not necessarily tell us very much. Sometimes it can even be
absurd if we only compare by the variance. An example of this is when we
use Monte Carlo simulation for small probabilities and the estimate is 0,
then the variance is also 0. This does not necessarily mean that it is a better
estimate than an estimate that lies closer to the true value but has a higher

https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Importance_sampling
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Figure 2.11: The bias of an estimator illustrated with a dartboard: an unbiased
estimator aims on the ‘bullseye’, the parameter, whereas a biased estimator is
skewed. The ultimate goal is to have an unbiased estimator with low variance.
Source: [14], page 101.

variance. What is the best estimate depends on what the further use of it
will be, as an estimate of 0 can clutter later calculations. This is discussed
more extensively in chapter 4.

In many cases it can be useful with the mean squared error, MSE, instead
of (or in addition to) the variance. This is particularly useful for biased
estimators. The MSE, as the name suggests, calculates the squared distances
between the estimate and the parameter value, i.e., by how much our estimate
on average misses on the target.

MSE(θ̂) = E(θ̂ − θ)2

= V ar(θ̂) + [E(θ̂)− θ]2

= V ar(θ̂) + [bias(θ̂, θ)]2

From the formula we see that for unbiased estimators, the MSE is always
the variance of the estimate.

In table 2.7 on the following page the MSE is shown when estimating
Pr(U > u|µ = 0) using importance sampling with different biasing distri-
butions. Two patterns emerges when we look at this table – first, the main
diagonal is standing out as the smallest MSE for each row. Second, the MSE
is decreasing as u is increasing. The reason for the former could in this case
be that importance sampling works best when sampling from the distribu-
tion where u has the highest probability of occurring. The latter is connected
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Table 2.7: MSE when estimating Pr(U > u|µ = 0) with importance sampling,
sampling from the distribution with µ = µI . For the last line, the exact value gets
so small that R rounds it of to 0. For the two first entries of that line, the estimate
is also 0, which leads to the MSE also being is 0.

u µI = 0 µI = 3 µI = 5 µI = 7 µI = 9
0 4.54e-06 4.23e-04 4.68e-02 2.45e-01 2.50e-01
3 1.41e-08 1.68e-10 4.62e-10 1.49e-07 1.74e-06
5 8.22e-14 8.28e-17 5.00e-18 1.22e-16 1.35e-14
7 1.64e-24 5.67e-25 1.63e-27 1.34e-28 1.09e-27
9 0.00 0.00 2.11e-38 1.31e-38 1.26e-38

to the terms absolute and relative error. As u increases further and further
away from µ, the probability for U to be larger than u decreases. A small
probability is easier to estimate just as an artifact of it being small. As a
consequence, the absolute error gets smaller. The relative error on the other

hand, takes into account the size of the estimate: eR = (θ̂−θ)2
θ

In table 2.8 we made the equivalent of table 2.7, but with the relative
error instead of the MSE. It still has the same tendency of decreasing with
increasing u, but to a lesser degree. As is seen in the last line of the table, the
disadvantage of dividing by the true parameter value is that it crashes when
the true value gets very small. Sometimes the sum of the absolute differences
is used to avoid this.

Table 2.8: Relative error when estimating Pr(U > u|µ = 0) with importance
sampling that uses a biasing distribution with µ = µI . For the last line, the exact
value gets so small that R rounds it of to 0. For the two first entries of that line,
the estimate is also 0, and ‘0/0’ gives NaN in R. For the three last entries of the
same line we divide non-zero estimates by 0, which gives ‘Inf ’ in R.

u µI = 0 µI = 3 µI = 5 µI = 7 µI = 9
0 4.09e-06 6.12e-04 2.56e-03 4.90e-01 5.00e-01
3 6.62e-07 7.90e-08 2.12e-08 9.23e-06 1.29e-03
5 2.87e-07 1.12e-10 1.23e-12 3.07e-10 1.58e-08
7 1.28e-12 8.31e-14 2.97e-16 1.08e-18 1.25e-16
9 NaN NaN Inf Inf Inf
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2.5 Implementation

Here we present the software that has been used throughout the work with
the thesis. All the work has been implemented in R version 3.3.0 (2016-
05-03). M. Kruijver’s R-package ‘DNAprofiles’ has been used extensively,
both for simulation, exact probabilities, datasets for allele frequencies and
distributions of LRis. We have also used the package ‘paramlink’ for plot-
ting of pedigrees, ‘HardyWeinberg’ (presented in [7]) to simulate genotype
frequencies in connection with testing for Hardy Weinberg Equilibrium and
the NorwegianFrequencies database from ‘Familias’ to look into the marker
SE33.

In addition we have made an R package called ‘naomi’. This package
is the main contribution in this thesis as far as implementation goes. The
documentation of the functions made can be found in appendix A.1, and the
code needed to make data for the tables and figures in this thesis is included
as examples there.

Those who are interested in a closer look at the package can email the
author at naomin.azulay@gmail.com

mailto:naomin.azulay@gmail.com
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Chapter 3

Results

Primarily, we are interested in the probability Pr(X2 ≥ t) for a big t, because
this is the probability of saying that there is a familial relationship when
there in fact is not. We will try to simulate this with importance sampling
with a varying number of markers.

Example 3.1. Let us now revisit table 2.5 on page 24. When we have one
marker with this distribution, the highest possible LR is 2, so we want to
simulate Pr(X2 = 2). We simulate with importance sampling using the R-
function showed in figure 3.1 on the next page. The code can also be found
in appendix A.1.

With the seed 123 we get an estimate of 0.12462 which is close to the
exact value of 0.125. We used option 3 in the function and got that the
estimate’s variance is 4.677986e-07 and the MSE is 6.121986e-07.

?

Example 3.2. Now we consider Pr(X2 > t) when the LR is based on two
markers that follow the distribution in table 2.5 on page 24.

The simulation results in table 3.1 on page 45 are produced using the
Imp-function from example 3.1 with option 3 and 4 respectively for impor-
tance sampling and Monte Carlo simulation. The function finds Pr(Xi > t),
and this is how the point probabilities was derived from the exceedance prob-
abilities:

Pr(X2 = 0) = 1− Pr(X2 > 0)

Pr(X2 = 1) = Pr(X2 > 0)− Pr(X2 > 1)

43
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Figure 3.1: The function returns an estimate of Pr(X2 > t) for n iid markers made
with either importance sampling or Monte Carlo simulation. For option 3 and 4 it
also outputs the estimate’s variance, and if q.exact is specified, it return the MSE.
The code is included because it is very general, and has been used extensively in
the thesis. The restriction in this code is that the markers used have to be iid.
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Pr(X2 = 2) = Pr(X2 > 1)− Pr(X2 > 2)

Pr(X2 = 4) = Pr(X2 > 3.99)

Since there is no likelihood between 2 and 4, any 2 ≤ t < 4 could have
been used to find Pr(X2 = 4). For two markers the calculations are still
possible to do by hand (see section 2.3.1), and so we have the benefit that
we have the true values for comparison. From table 3.1 we see that when
the number of markers is low, both Monte Carlo simulation and importance
sampling produces good results. When summing up the MSEs from each row
in the table, we get 3.434186e-06 for importance sampling and 1.043244e-05
for Monte Carlo simulation.

Table 3.1: Pr(X2 = t) for two markers following the distribution in table 2.5. In
the variance estimates in line 2 and 3 we ignored the covariance term. The effect
is likely to be small, but the covariance term should be included in future versions.

t Exact Importance Variance Monte Carlo Variance
0 0.234375 0.2352000 7.410846e-07 0.2359600 1.802829e-06
1 0.562500 0.5624350 1.302311e-06 0.5632200 3.408596e-06
2 0.187500 0.1872625 6.005034e-07 0.1869900 1.770134e-06
4 0.015625 0.0155125 3.637487e-08 0.0157000 1.545351e-07

?

Example 3.3. In table 3.2 on the following page we estimated Pr(X2 =
LRmax) with Monte Carlo simulation and importance sampling for up to
10 markers, all following the distribution from table 2.5. We chose to look
at the probability of getting LRmax partly because it is an easy probability
to calculate by hand, making it possible to include the MSE. The table
was made with the function ‘opt’ shown in figure 3.2, which uses the ‘Imp’
function in figure 3.1 to make the estimates. The sum of the MSEs was
3.24129e-06 and 9.335999e-07 for Monte Carlo simulation and importance
sampling respectively.

The results show how the estimate made from Monte Carlo simulations
quickly goes to zero for a small number of markers, while the estimate found
with importance sampling lasts for a higher number of markers.
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Table 3.2: Pr(X2 = 2n) for n iid markers following the distribution in table 2.5.
The estimates are found with importance sampling and Monte Carlo simulation,
the simulation was run 100 000 times.

n Exact Importance Variance Monte Carlo Variance
1 1.25e-01 1.26e-01 4.70e-07 1.26e-01 1.10e-06
2 1.56e-02 1.54e-02 3.62e-08 1.53e-02 1.51e-07
3 1.95e-03 1.93e-03 2.37e-09 2.00e-03 2.00e-08
4 2.44e-04 2.41e-04 1.50e-10 2.30e-04 2.30e-09
5 3.05e-05 3.16e-05 9.85e-12 3.00e-05 3.00e-10
6 3.81e-06 4.38e-06 6.83e-13 0.00 0.00
7 4.77e-07 7.81e-07 6.10e-14 0.00 0.00
8 5.96e-08 7.81e-08 3.05e-15 0.00 0.00
9 7.45e-09 1.95e-08 3.81e-16 0.00 0.00

10 9.31e-10 0.00 0.00 0.00 0.00

Figure 3.2: The R-function used to vary the biasing density when using importance
sampling. The output is an nmax × 4 data.frame with the exact value, estimate,
variance and MSE.
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We used the same function ‘opt’ to look at different biasing distributions
when estimating Pr(LR > LRmax|H2). This was done for 1 up to 20 markers
of the type in table 2.5 on page 24. Earlier we used the distribution under H1

as a biasing distribution, but now we have experimented with distributions
on the form (0, 1-b, b). The b was varied over 100 different values from 0.01
to 1. The resulting MSEs are plotted in figure 3.3.
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Figure 3.3: The effect on the MSE of varying the biasing distribution when esti-
mating Pr(LR > LRmax|H2) with importance sampling. This was done for 1 up to
20 markers of the type in table 2.5 on page 24, but instead of using the distribution
under H1 as earlier, (0, 0.75, 0.25), we experimented with distributions on the
form (0, 1− b, b). We used 100 different bs that were evenly spaced in the interval
[0.01, 1]. The minimal MSE is plotted with a star and occurred for b = 0.25, the
distribution under H1.

In figure 3.4 we plotted the logarithm of the exact value and three different
estimates of Pr(X2 = LRmax) for up to 12 markers. One estimate was based
on Monte Carlo simulation and two on importance sampling. The one named
‘IMP’ in the figure used H1s distribution as biasing distribution while the
other one, named ‘IMP 0.5’, used b = 0.5.

?
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Figure 3.4: Plotted are the number of markers against the logarithm of the different
estimates and the exact value. ‘IMP’ and ‘MC’ are the estimates from table 3.2 on
page 46, while ‘IMP 0.5’ is the estimate resulting from using importance sampling
with b = 0.5.
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Example 3.4. Often times there are problems when forensic science meets
the courtroom. For the layperson without a background in statistics or prob-
ability theory, the LR is easily misunderstood. It does not help that the LR,
in contrast to probabilities, does not have a clear range, but depends upon
the number of markers. To make the LR more interpretable, a standardized
score as seen in table 3.3, was proposed in [11]. This was developed and im-
plemented at NFC, Sweden (http://nfc.polisen.se/en/English/), and
is now in use in there, meaning that the evidence is presented using the scale
instead of the LR.

Table 3.3: The scale developed and implemented at NFC, Sweden. It is now in use
in Sweden for reporting of evidence in court.

Score LR Explanation: The results are...
4 LR> 106 ...at least a million times more expected ...
3 6000 <LR≤ 106 ...at least 6000 times more expected ...
2 100 <LR≤ 6000 ...at least 100 times more expected ...
1 6 <LR≤ 100 ...at least 6 times more expected ...
0 1/6 <LR≤ 6 ...approximately as expected ...

...if the main hypothesis is true compared
to if the alternative hypothesis is true.

-1 1/100 <LR≤ 1/6 ...at least 6 times more expected ...
-2 1/6000 <LR≤ 1/100 ...at least 100 times more expected ...
-3 1/106 <LR≤ 1/6000 ...at least 6000 times more expected ...
-4 LR≤ 1/106 ...at least a million times more expected ...

...if the alternative hypothesis is true
compared to if the main hypothesis is true.

We examined the probabilities of getting each score in the table when
looking at different relationships and with different number of markers. Ta-
ble 3.4 and 3.5 show the results for 10 and 15 markers for two pair of hy-
pothesis; parent-offspring and full siblings, both against the persons being
unrelated. We used the function sim.q from the package DNAprofiles to find
the probabilities. Consider for instance the first line in table 3.4. This says
that if AF is truly the biological father of the child, the chance of getting
an LR bigger than 1 million is 0.021 when using 10 markers, and 0.34 when
using 15 markers. A considerable difference, in other words. When AF is
not the biological father, the probability of getting such a large LR is only

http://nfc.polisen.se/en/English/
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8.6e-09 and 9.9e-08 respectively for 10 and 15 markers. It is interesting to
note how this is actually smaller for 10 markers than 15 markers for both
pairs of relations. We have not studied this in any detail, or if the difference
is significant for that matter. It could be an artifact of using more markers.

Table 3.4: The probability of getting each score on the Swedish scale when looking
at a parent-offspring (PO) vs unrelated (UN) relationship with 10 and 15 markers.
The allele frequencies used are Dutch and can be found through the R package
‘DNAprofiles’.

Number of markers: 10 15
True relationship: PO UN PO UN

Pr(LR> 106) 0.021 8.7e-09 0.34 9.9e-08
Pr(6000 <LR≤ 106) 0.41 2.3e-05 0.61 1.4e-05
Pr(100 <LR≤ 6000) 0.55 0.0008 0.049 2.8e-05

Pr(6 <LR≤ 100) 0.022 0.00047 9.9e-05 1.6e-06
Pr(1/6 <LR≤ 6) 4.4e-05 1.6e-06 1e-07 1.1e-06

Pr(1/100 <LR≤ 1/6) 0.00 0.00 0.00 0.00
Pr(1/6000 <LR≤ 1/100) 0.00 0.00 0.00 0.00

Pr(1/106 <LR≤ 1/6000) 0.00 0.00 0.00 0.00
Pr(0 ≤LR≤ 1/106) 0.00 0.99869 000 0.99

It can also be interesting to see the cumulative probabilities, so these are
shown in tables 3.6 and 3.7. Here we see the probability of getting a certain
score or higher. Consider the second line in table 3.6. Here we see that if
the true relation is full siblings and 10 markers are used, the probability of
getting an LR bigger than 6000 is 0.43. When using 15 markers the equivalent
number is 0.95. If the persons are truly unrelated, the probability of getting
an LR over 6000 is 2.3e-05 and 1.4e-05 respectively for 10 and 15 markers.

?
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Table 3.5: The probability of getting each score on the Swedish scale when looking
at a full sibling (FS) vs unrelated (UN) relationship with 10 and 15 markers.
The allele frequencies used are Dutch and can be found through the R package
‘DNAprofiles’.

Number of markers: 10 15
True relationship: FS UN FS UN

Pr(LR> 106) 0.059 1.8e-08 0.27 5.3e-08
Pr(6000 <LR≤ 106) 0.28 1.2e-05 0.37 1.2e-05
Pr(100 <LR≤ 6000) 0.37 0.00088 0.24 0.00048

Pr(6 <LR≤ 100) 0.18 0.009 0.08 0.0037
Pr(1/6 <LR≤ 6) 0.089 0.094 0.033 0.035

Pr(1/100 <LR≤ 1/6) 0.012 0.26 0.0048 0.11
Pr(1/6000 <LR≤ 1/100) 0.0013 0.5 0.00075 0.38

Pr(1/106 <LR≤ 1/6000) 9.3e-06 0.14 1.6e-05 0.42
Pr(0 ≤LR≤ 1/106) 0.00 0.00055 1e-07 0.053

Table 3.6: The cumulative probabilities of getting a given score or higher when
looking at a parent-offspring (PO) vs unrelated (UN) relationship using 10 and 15
markers.

Number of markers: 10 15
True relationship: PO UN PO UN

Pr(LR> 106) 0.021 8.6e-09 0.34 9.9e-08
Pr(LR> 6000) 0.43 2.3e-05 0.95 1.4e-05
Pr(LR> 100) 0.98 0.00082 1.00 4.2e-05
Pr(LR> 6) 1.00 0.0013 1.00 4.3e-05
Pr(LR> 1/6) 1.00 0.0013 1.00 4.5e-05
Pr(LR> 1/100) 1.00 0.0013 1.00 4.5e-05
Pr(LR> 1/6000) 1.00 0.0013 1.00 4.5e-05
Pr(LR> 1/106) 1.00 0.0013 1.00 4.5e-05
Pr(LR≥ 0) 1.00 1.00 1.00 1.00
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Table 3.7: The cumulative probabilities of getting a given score or higher when
looking at a full siblings (FS) vs unrelated (UN) relationship using 10 and 15
markers.

Number of markers: 10 15
True relationship: FS UN FS UN

Pr(LR> 106) 0.059 1.8e-08 0.27 5.3e-08
Pr(LR> 6000) 0.34 1.2e-05 0.64 1.3e-05
Pr(LR> 100) 0.71 0.0009 0.88 0.0005
Pr(LR> 6) 0.9 0.0099 0.96 0.0042
Pr(LR> 1/6) 0.99 0.1 0.99 0.039
Pr(LR> 1/100) 1.00 0.36 1.00 0.15
Pr(LR> 1/6000) 1.00 0.86 1.00 0.53
Pr(LR> 1/106) 1.00 1.00 1.00 0.95
Pr(LR≥ 0) 1.00 1.00 1.00 1.00



Chapter 4

Discussion

In this thesis, our main application for the methods have been on the de-
termination of kinship. We want to make as few errors as possible, and
to know the probability of making these errors. This can be challenging
because the probabilities can get so small that the normal Monte Carlo sim-
ulation method fails. For this reason we decided to explore if an alternative
simulation method, importance sampling, could be a good option for this
application.

There are, however, other applications where the methods discussed could
be useful. An example can be taken from the area of construction, where
a bridge or oil rig have a design load for wave heights of some size, say 25
meter. It is then important to quantify the probability of observing a wave
higher than 25 m in the construction’s future life time. When this is not
done, the constructions tend to have a grossly exaggerated design load, with
the economical implications for the builder that it has [10]. This is the case
since a sequence of conservative, overly safe decisions tend to be made in a
deterministic framework.

Yet another example is that of an insurance company facing the results of
extreme weather or other disasters. In such circumstances they can get many
claims in at the same time, and it is therefore important to know that their
resources can cover such a scenario. More specific, if the amounts claimed
are S1, ..., Sn and the resources that the company has available are r, they
want to be sure that the combined claim X = S1 + ...+Sn can be met, given
some conditions H. In other words, it is important to have an r such that
Pr(X > r|H) is small.

53
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4.1 Related research

Importance sampling is one of several methods for variance reduction in sim-
ulations, and is commonly used for problems that involves small probabilities.
However, it had apparently not been used in the forensics field until [9], where
the author was the first to use it in this setting. The paper can in a sense be
viewed as a response to [2], where Dørum et al. presented an algorithm to
find exceedance probabilities based on the exact distribution of the LR. The
connection to p-values was also pointed out in the same paper. A search in
https://scholar.google.com (May 12, 2016) shows that [9] has been cited
10 times, mostly from scientists associated with either the author or Dørum.

4.2 On the results and reporting of evidence

We found that the importance sampling method succeeds in finding smaller
probabilities than the Monte Carlo method. This is shown for example in
table 3.2 where the Monte Carlo method gives up after 5 markers with 105

simulations, while the importance sampling method lasts up to and including
9 markers. But we also see that there is not a big difference in the MSEs
for the methods. When the probabilities get very small, 0 can be a very
good approximation, close to the exact answer. An estimate of 0 is, however,
difficult to use in further calculations, for example as the denominator of
an LR. Sometimes, even an estimate which is farther from the true value is
preferred to the 0 estimate.

We further made calculations based on the Swedish table, table 3.3. When
using such tables it is important to know the probability of getting each score
under the different hypotheses in question. We estimated these probabilities
for a parent-offspring relation in table 3.4 and for full siblings in table 3.5,
both for 10 and 15 markers. We see that since a parent-offspring relationship
is closer than a sibling relationship, the probability is higher for getting the
highest LRs.

For instance, we found that the probability that LR exceeds 100 in a duo
case is 0.98 and 1.00 for 10 and 15 markers. This shows that 15 markers is
preferable and indeed 15 markers is a lower bound on the number of markers
typically used. The probability that LR exceeds 100 when the man is not
the father should be close to 0. We found 0.00082 and 4.2e-05. While these
numbers are small, it would obviously be an advantage to increase the number

https://scholar.google.com
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of markers to say, 23 markers, as is used in some labs. Obviously, including
markers like SE33, that has 55 alleles, may help. The point is that we have to
bear in mind that a large number of paternity cases are performed worldwide
and therefore numbers close to 1 (when H1 is true) and 0 (when H2 is true)
are called for. The number 100 above is rather arbitrary, but our calculations,
and perhaps commons sense, indicate that it could be good to have a cutoff
between 6000 and 106

It is worthwhile to note that there is an ongoing debate in the forensic
science community on how the evidence is best presented in court. Some
prefer a verbal scale like the Swedish one, reasoning that the LR is often
difficult to explain in court. Others prefer to report the LR as it is, arguing
that when a scale like the Swedish one is taken into use, judges and judiciary
has to get accustomed to the new system, which can take even more time and
effort. Furthermore, by introducing a verbal scale, the reporting officer may
in a sense interfere with the job of the court and judges. One could argue
that only numbers, based on well documented models and software, should be
reported, and that statements like “very strong evidence” should be avoided.
These and similar statements involve some amount of interpretation.

In some countries and labs it is more normal to report the posterior proba-
bility rather than the LR. The posterior probability has not been discussed in
this thesis, but is explained for example in [3]. It has the advantage of being a
probability with an easy interpretation and known range, but also the draw-
back of relying on some rather subjective input, namely the prior probabilities
for the hypothesis. Normally a flat prior is used, i.e Pr(H1) = Pr(H2) = 1/2,
and then the posterior probability is Pr(H1 | data) = LR/(1+LR). This ap-
proach is discussed further in [3].

Two of the R-functions made in connection with this thesis, ‘Imp’ and
‘opt’, warrant some extra attention. The former has an important extension
compared to sim.q from ‘DNAprofiles’, namely the possibility to calculate
the variance and MSE of the estimates. This makes it possible, for instance
via the ‘opt’ function, to study the effects from choosing different biasing
distributions.

In figure 3.3 we did this for 100 such distributions for an LR based on
our standard marker from table 2.5 on page 24. From this it looks like
using the probability distribution of LR under the numerator hypothesis, or
a very similar one, is in fact the optimal choice. What is optimal depends
on how important it is to not have a 0 estimate – a higher value of b makes
the importance sampling method produce results for a higher number of
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markers, but then they tend to be overestimated. We see an example of
this in figure 3.4; when we do importance sampling with b = 0.25, as is the
probability underH1, the estimate lies close to the exact value, while a b = 0.5
overestimates the probabilities. But then again, the former cannot produce
results after 9 markers, while the latter gives estimates up to and including 18
markers (both numbers produced with the function’s default seed of 16). The
MSEs accompanying table 3.1 and 3.2 indicate that when using importance
sampling with the optimal biasing distribution, this is preferred to the Monte
Carlo simulation regardless of the above discussion. However, we have not
checked if this difference in the MSEs is significant.

4.3 Future reaserch

It would be of interest to see how the results are for other, especially more
distant, types of relationships that we have not investigated. An example is
half siblings, either against a hypothesis of unrelatedness or full siblings. We
would also like to know how transferable our results are to other related areas,
like crime cases and mixtures. Specifically, tables like 3.6 could be useful for
the common mixtures, i.e., those involving 2, or perhaps 3 persons. For
this pupose, a carefully designed computer experiment, with several varying
parameters, could be relevant. In addition, more simulations could be done
for our applications, and parameters related to mutation, deviation from
HWE, genotyping error and drop-out of alleles could be explored.

It would also be interesting to see an equivalent to table 3.4 where the
mother has also been genotyped. We would then expect considerably im-
proved results. The results of table 3.6 and similar tables could be reported
as ROC curves. In this way the two types of errors can be studied in one
figure.

There is also more to be done on the subject of the optimal biasing
distribution when using importance sampling. It would be nice to figure out
if there is some general rule to follow, or if we just have to find it trough
trial and error in each situation. The figure 3.3 is made based on a parent-
offspring relationship with iid markers, which could be expanded upon to
apply to other relations and markers to see if the same relation holds true
there. For this purpose it should not be too difficult to modify the function
‘Imp’ to accept markers with different distributions.
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4.4 Final remarks

The main purpose of this thesis has been to explore how small probabilities
can be estimated. The applications has been for kinship cases in forensic
genetics, where there is a need to control the typically small probabilities for
errors. The thesis builds directly on [9], and we have further extended on the
results from it. Compared to the paper [9] and associated implementations
in the R-package ‘DNAprofiles’, we have focused on the precision of the
estimates, quantified as the variance and MSE, and how to use those measures
of precision to choose a biasing distribution.

Examples as those summarized in table 3.6 are also important, and we
are not aware of similar calculations. Our methods have been implemented
in the R-package ‘naomi’; see appendix A.1 for documentation.
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Appendix A

Appendix

A.1 R-code

The essential code prepared for this thesis is included in the R package
‘naomi’, available from the author (naomin.azulay@gmail.com). Below we
include the automatically generated pdf documentation.

Some changes has been done in the example belonging to the function
‘Imp’ concerning the making of table 3.1:

## The importance sampling part of table 3.1:

n=2

N=10^5

exact <- c(1-0.875^2, 0.75^2, 2*0.75*0.125, 0.125^2)

set.seed(89)

#LR=0

p0 <-Imp(t = 0, x, fx.p, fx.d, n, option=3, N, q.exact=1-exact[1])

p00 <- c(1-p0[1], p0[2:3])

#LR=1

p1 <- c(Imp(t = 0, x, fx.p, fx.d, n, option=3, N,

q.exact=sum(exact[2:4])),

Imp(t = 1, x, fx.p, fx.d, n, option=3, N,

q.exact=sum(exact[3:4])))

p11 <- c(p1[1] - p1[4], p1[2] + p1[5])

p11 <- c(p11, p11[2] + (p11[1] - exact[2])^2)

59
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#LR=2

p2 <- c(Imp(t = 1, x, fx.p, fx.d, n, option=3, N,

q.exact=sum(exact[3:4])),

Imp(t = 2, x, fx.p, fx.d, n, option=3, N,

q.exact=exact[4]))

p22 <- c(p2[1] - p2[4], p2[2] + p2[5])

p22 <- c(p22, p22[2] + (p22[1] - exact[3])^2)

#LR=4

p4 <-Imp(t = 3.99, x, fx.p, fx.d, n, option=3, N,

q.exact=exact[4])

importance <- matrix(c(p00, p11, p22, p4), ncol=3, byrow=T)

mse.imp <- sum(importance[,3])

##The mc part is made by changing the argument ‘option’ from 3 to 4
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May 17, 2016

Type Package

Title Naomis master package

Version 1.0

Date 2016-04-29

Author Naomi Azulay

Maintainer Naomi Azulay <naomi.azulay@nmbu.no>

Description The code used in Naomi Azulays masters thesis: Estimation of small pribabilties with ap-
plications to forensic genetics.

License GPL(>=2)

Imports DNAprofiles

R topics documented:
naomi-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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Index 9

naomi-package Naomis master package

Description

The R-code developed during the work with Naomi’s master’s thesis. The most important, data-
producing code is presented. The code used in Naomi Azulays masters thesis: Estimation of small
pribabilties with applications to forensic genetics.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

1



2 Imp

Author(s)

Naomi Azulay Maintainer: Naomi Azulay <naomi.azulay@nmbu.no>

Imp MC or imp simulation of Pr(LR>t|H)

Description

Estimates the exceedance probability Pr(LR>t|H) with either Monte Carlo simulation or importance
sampling for n iid markers. It is also possible to get the estimate’s variance and the MSE.

Usage

Imp(t, x, fx.p, fx.d, n, option = 3, N = 10^5, q.exact=FALSE)

Arguments

t Double. Threshold.

x Vector of double. Possible values for the LR for one marker.

fx.p Vector of double. Probabilities for the possible LR values under Hp (H1).

fx.d Vector of double. Probabilities for the possible LR values under Hd (H2).

n Integer. Number of iid markers.

option Integer. 1 for MC with sim.q from DNAprofiles, 2 for imp with sim.q, 3 and
4 is a ‘manual’ simulation with imp and MC respectively, the variance of the
estimate is included. For option 3 and 4 MSE is outputted if q.exact is specified.

N Integer. Number of simulations. Default is 10^5.

q.exact Double. The exact probability. Used for calculation of MSE.

Value

The estimate of Pr(LR >t |H), and potentially the variance and MSE. For option 1 and 2 it is a
double (only the estimate), for option 3 and 4 this is a vector of doubles of length 2 or 3, depending
on whether q.exact is specified. The order is estimate, variance, MSE.

Author(s)

Naomi Azulay

Examples

##Example of estimating with MC and getting variance and MSE:
t <- 1.99
x <- c(0, 1, 2)
fx.p <- c(0, 0.75, 0.25)
fx.d <- c(0.125, 0.75, 0.125)
res <- Imp(t, x, fx.p, fx.d, n = 1, option = 4, q.exact=0.125)

## The code used in example 3.1:
set.seed(123)
res <- Imp(t, x, fx.p, fx.d, n = 1, option = 3, q.exact=0.125)
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## The importance sampling part of table 3.1:
n=2
N=10^5
exact <- c(1-0.875^2, 0.75^2, 2*0.75*0.125, 0.125^2)
set.seed(89)

#LR=0
p0 <-Imp(t = 0, x, fx.p, fx.d, n, option=3, N, q.exact=exact[1])
p00 <- c(1-p0[1], p0[2:3])

#LR=1
p1 <- c(Imp(t = 0, x, fx.p, fx.d, n, option=3, N, q.exact=exact[1]),

Imp(t = 1, x, fx.p, fx.d, n, option=3, N, q.exact=exact[2]))
p11 <- c(p1[1] - p1[4], p1[2] + p1[5], p1[6])

#LR=2
p2 <- c(Imp(t = 1, x, fx.p, fx.d, n, option=3, N, q.exact=exact[2]),

Imp(t = 2, x, fx.p, fx.d, n, option=3, N, q.exact=exact[3]))
p22 <- c(p2[1] - p2[4], p2[2] + p2[5], p2[6])

#LR=4
p4 <-Imp(t = 3.99, x, fx.p, fx.d, n, option=3, N, q.exact=exact[4])

moments E(LR) and Var(LR) for one marker.

Description

Calculates the expectation and variance of LR, 1/LR and log(LR) for one marker with the formulas
for discrete distributions.

Usage

moments(h)

Arguments

h List of two vectors. x is the possible LRs, fx is the probability of getting each
LR.

Value

Returns a data.frame with the expectation and variance of LR, 1/LR and log(LR).

Author(s)

Thore Egeland and Naomi Azulay
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Examples

## data for figure 2.8:
library(DNAprofiles)
n <- 10

#asymptotic:
hp <- list(x = c(1,2), fx = c(0.75, 0.25))
m <- moments(hp)
mu <- m[1,3]
s<- sqrt(m[2,3])
t <- c(2^(1:n))
log.p <- 1-pnorm((log(t)-n*mu)/(sqrt(n)*s))

#exact values:
x.p <- c(1, 2)
fx.p <- c(0.75, 0.25)

dist <- vector("list", n)
for( i in 1:n)

dist[[i]] <- list(x = x.p, fx = fx.p)
pair <- dists.product.pair(dist)
cdfD <- dist.pair.cdf(pair)

exact = 1-cdfD(t)

## The function is currently defined as:
function (x)
moments=function(h){

LR=h$x
p=h$fx
E=sum(LR*p)
E2=sum(LR^2*p)
Var=E2-E^2
EInverse=sum(LR^(-1)*p)
EInverse2=sum(LR^(-2)*p)
VarInverse=EInverse2-EInverse^2
Elog=sum(log(LR)*p)
varlog=sum((log(LR))^2*p)-Elog^2
res=data.frame(LR=c(E,Var),LRInverse=c(EInverse,VarInverse),

LRlog=c(Elog,varlog))
rownames(res)=c("E","Var")
return(res)

}

opt Vary the biasing distribution

Description

Returns a list with two elemts - a table of estimated Pr(LR = LRmax) for 1 up to nmax iid markers,
and the MSE summed over all rows. It is made specifically for the marker from table 2.5 in the
thesis, with the possibility for varying the sampling distribution with the argument b.
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Usage

opt(b=0.25, N=10^5, nMax=10, seed=16, option=3)

Arguments

b Double. Argument to vary the biasing distribution, on the form (0, 1-b, b). The
default is Pr(LR = x | H1) for x = c(0, 1, 2), namely (0, 0.75, 0.25).

N Integer. Number of simulations, passed on to Imp. Default is 10^5.

nMax Integer. The table is made for 1 up to nmax number of markers.

seed Integer. The seed for the simulation. Default is 16.

option Integer. The option passed to Imp, the default is 3. Possible values is in the
range from 1 to 4, but only 3 or 4 should be used here.

Value

Returns a list with two elements. tab is the table with the estimates, variance and MSEs. sumMSE
is the sum of the column with MSEs.

Author(s)

Thore Egeland and Naomi Azulay

References

Naomi’s master thesis. Used to make table 3.2, figure 3.3 and 3.4.

Examples

## Table 3.2 is based on:
imp.tab <- opt(nMax=20)
mc.tab <- opt(nMax=20, option=4)

## For figure 3.3 we added:
mod <- opt(b=0.5, nMax=12)$tab

## Figure 3.4:
y <- NULL
# we used this bb:
#bb <- seq(0.01, 1, 0.01)
#but for convenience we use this in the example:
bb <- seq(0.1, 1, 0.2)
res <- vector("list", length(bb))

for (i in 1:length(bb)){
res[[i]] <- opt(bb[i], nMax=20)
y <- c(y, res[[i]]$sumMSE)

}

## The function is currently defined as
opt <- function(b=0.25, N=10^5, nMax=10, seed=16, option=3){

x <- c(0, 1, 2)
a <- 1-b
fx.p <- c(0, a, b)
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fx.d <- c(0.125, 0.75, 0.125)
set.seed(seed)
tab <- NULL
for (n in 1:nMax){

t <- 2^n-0.01
q.exact <- 0.125^n
est <- Imp(t, x, fx.p, fx.d, n = n, option=option, N=N, q.exact=q.exact)
tab <- rbind(tab, c(n, q.exact, est))

}
colnames(tab) <- c("n", "Exact","SIM","varSIM","MSE.SIM")
return(list(sumMSE=sum(tab[,5]),tab=tab))

}

swedishTable Calculations on the Swedish table

Description

Calculates the probability for each score in the Swedish table, or the cumulative probability of
getting a score or higher, for hypothesis about relation r1 and r2.

Usage

swedishTable(r1, r2, n=10, Nsim=10^5,cumul=FALSE, seed=17)

Arguments

r1 The relation under H1, e.g "FS" - full sibling or "UN" - unrelated. See ibd-
probs(x) for full list of possible relations.

r2 The relation under H2, e.g "FS" - full sibling or "UN" - unrelated. See ibd-
probs(x) for full list of possible relations.

n Integer. Number of estimates to make. Default is 10.
Nsim Integer. Number of simulations. Default is 10^5.
cumul Logic
seed Integer. The seed for the simulation. Default is 17.

Value

Returns a matrix with four columns - for both 10 and 15 markers we estimate the probability of
getting the scores given each of the hypothesis.

Author(s)

Naomi Azulay

Examples

## Tables 3.4-3.7:
#We used n=100, but for convenience we use 10 here
library(DNAprofiles)
tab <- swedishTable(r1="FS", r2="UN")
tab <- swedishTable(r1="FS", r2="UN", cumul=TRUE)
tab <- swedishTable("PO", "UN", seed=78)
tab <- swedishTable("PO", "UN", seed=78, cumul=TRUE)
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tableU Estimates Pr(U>b | mu = 0) for U ~ N with imp.

Description

Estimates Pr(U>b | mu = 0) for U ~ N(0, sd) with imp using a biasing distribution with mu = a.
Returns list of 5 elements - a table with each step of making the imp estimate, the estimate, the
exact value, the MSE and the relative error.

Usage

tableU(N=10, a=5, sd=1, b=5)

Arguments

N Integer. Number of simulations. Default is 10^5.

a Double. The mean for the biasing distribution.

sd Double. The standard deviation for both distributions.

b Double. Treshold for Pr(U>b).

Value

List of 5: tab - a data.frame with the imp method step-by-step, theta.hat - the estimate, theta.exact -
the exact value, mse - the MSE, rel.err - the relative error.

Author(s)

Naomi Azulay

Examples

## Table 2.6:
set.seed(67)
imp.table <- tableU()$tab

## Tables 2.7 and 2.8:
N=10^5
set.seed(67)

MSE <- NULL
relERR <- NULL
for (u in c(0,3,5,7,9)) {

for (mu in c(0,3,5,7,9)) {
res <- tableU(N, a=mu, sd=1, b=u)
MSE <- c(MSE, res$mse)
relERR <- c(relERR, res$rel.err)

}
}

## The function is currently defined as:
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tableU <- function(N=10^5, a=5, sd=1, b=5) {
simU <- rnorm(N, mean=a, sd=sd)
Icol <- as.integer(simU>b)
w <- dnorm(simU, 0, sd)/dnorm(simU, a, sd)
z <- Icol*w
tab <- data.frame(simU, Icol, w, z)
theta.hat <- mean(z)
theta <- 1-pnorm(b, sd = sd)
var.theta <- (mean(Icol*w^2)-theta.hat^2)/N
mse <- var.theta + mean((theta.hat-theta)^2)
rel.err <- (theta.hat-theta)^2/theta
list(tab = tab, theta.hat = theta.hat, theta.exact = theta, mse=mse, rel.err=rel.err)

}

{ ~kwd1 }
{ ~kwd2 }
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A.2 Table for duo case

Table A.1: Genotype data for a child and alleged father (AF) along with LRs. The
allele frequencies used can be found at http: // familias. name/ Table2. 5. fam .

System Child AF LR
D3S1358 17/17 17/18 2.450

TPOX 8/8 8/8 1.805
TH01 6/9 6/7 1.195

D21S11 29/30 28/29 1.096
D18S51 14/16 16/17 2.153

PENTA E 7/11 11/16 2.408
D5S818 12/12 12/13 1.406

D13S317 8/8 8/11 4.042
D7S820 9/10 9/13 1.434

D16S539 13/14 11/14 8.312
CSF1PO 10/10 10/11 2.025

PENTA D 8/11 8/13 11.989
VWA 19/19 17/19 5.565

D8S1179 13/16 11/16 9.651
FGA 21/22 21/21 2.956

D12S391 19/22 19/23 2.184
D1S1656 14/16 14/15 3.333
D2S1338 18/20 18/23 3.147

D22S1045 12/12 12/15 26.748
D2S441 10/13 10/15 1.446

D19S433 12/15 12/14 3.344
Total 0

http://familias.name/Table2.5.fam
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