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Abstract

Forecasting volatility and Vaue-at-Risk (VaR) are popular topics of study in econometrical
finance. Their popularity can likely be attributed to the statistical challenges related to
producing reliable VaR estimates across awide array of assets and data series. As many
financial assets offer unique statistical properties, it has proven to be adifficult task to find a
model reliable enough to be considered accepted as the best method.

This study focuses on the problem of forecasting volatility and one-day-ahead VaR. The
thesis has two main purposes. Firstly, we want to further examine the performance of linear
guantile regression modelsin VaR forecasting against more established models as
benchmarks. Secondly, we want to compare the performance between each of the three
guantile regression models to see which one performs the best. The three quantile regression
modelsin question are HAR-QR, EWMA-QR and GARCH(1,1) QR.

Our findings strongly support the conclusion that quantile regression outperforms the three
benchmark modelsin predicting one-day-ahead VaR for all of the five assets examined. When
subjected to coverage tests for both unconditional and conditional coverage each quantile
regression delivered perfect unconditional coverage. However, only the HAR-QR model
delivered perfect conditional coverage and thus performed the best of the three models.

The benchmarks models RiskMetrics, GARCH(1,1) and Historical Simulation showed
particular problems with estimating the left tail quantiles of the distribution. The study shows
that compared to the QR approach, these models fail to capture time variant volatility and the
negative skewness and leptokurtosis that is present in most of the assets return distributions.
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1 Introduction

In finance does risk refer to measurement of uagdst. This uncertainty lies in what the
price of an investment or asset (such as equiitas]s, commodities, swaps, etc.) will be in
the future, i.e how the price will change. The eriltictuations represent the financial returns,
and how returns vary over time is referred to asa$sets volatility and is measured by the
standard deviation. Investors are often less coreckwith achieving higher than expected
gains than they are about mitigating unexpecteatlyd but feasible losses, which forms the
basis for risk assessment. Therefore, Value-dt-R4aR) modeling is an important
technique used to measure and quantify the rigbkcaged with a particular investment.

VaR can be defined as the maximum expected loggessgd in percentage or nominal terms
that will occur with a certain degree of certaiotyer some given time period. VaR can also
be expressed as a measure of the loss an investdeccertain wilhot occur with a certain
degree of certainty over that same time horizon.

An accurate estimate for VaR is important to ingesor financial institutions in order to
provide a more reliable assessment of risk. Thexdawever several challenges related to
the modelling and forecasting of reliable VaR esaties. The basic parametric VaR models do
for example assume the returns are normally digedband the volatility is constant.
However, have numerous studies showed that emipiettans for financial assets more often
than not exhibit skewed probability distributionghwleptokurtosis, volatility clustering and
leverage effects:

Leptokurtosis means a distribution that has fat#s and higher peak than the normal
distribution. This implicates the distribution hasre observations further out on the sides, i.e
the probability for extreme outcomes is greatentwaat would be the case if the returns
were in fact normal distributed.

Volatility clustering refers to the tendency of ablity in financial time series to be time
variant. Periods with large price movements arerofollowed by periods with more large
movements, and vice versa for tranquil periods.sTinarkets go through cycles with the
implications that volatility is non-constant andifw to be clustering together in periods.

Leverage effect is a term that describes how \litlator some assets such as equities has a
tendency to increase more in the wake of largeegellis compared to the periods after price



increases of the same magnitude. Commodities iargeaxhibit the opposite asymmetry,
where there usually is a positive correlation bemvesturns and volatility (Alexander 2008).

These properties of financial returns do forecgstihvVaR more difficult than it would in a
world where financial returns are normally disttéadi and volatility is constant. In an attempt
to produce reliable VaR forecasts, several diffeegaproaches for VaR estimation have been
proposed. In addition to the parametric modelsHistorical Simulation (HS) and Monte
Carlo Simulation models are common approaches iatedavith VaR analysis. In more
recent quantile regression methods have emergadg@smingly robust method for VaR
forecasting. Quantile regression will be discugsedrther detail in the Literature review
section. When provided with independent varialihes take time variant volatility into
account, quantile regression models have deliveeegreliable results.

The purpose of this thesis is to further test thigta of quantile regression models to produce
reliable daily VaR estimates. In order to perfohra test ,three different quantile regression
models will be implemented to forecast the one-alagad VaR values of two stocks traded at
the New York Stock Exchange, two commodities traaleithe Chicago Mercantile Exchange
and one stock index. We will attempt to forecastWaR values for 1% and 5% for long
positions and the 95% and 99% VaR values for ghasitions.

In addition to the quantile regression models im@ated in Haugom et al. (2014) and Steen
et al.(2015) using short, medium and long-term tddhaand exponentially weighted moving
average volatility as regressor(s) respectivelyhaxe implemented a quantile regression
model with volatility from a GARCH(1,1) to test it&curacy against the other models. The
choice of using a model with GARCH(1,1) volatilag the independent variable stems from
volatility forecasts from GARCH(1,1) in several dies that have proven to model volatility
pretty accurately for many assets. Hence, a ptisgems like this will be a reliable model.

VaR from RiskMetrics, GARCH(1,1) and Historical Sifation will also be estimated to
serve as benchmarks for the three quantile regressodels.

This paper is organised as follows. Section 2 dessisome of the relevant literature and
previous studies of the models. Section 3 descthredataset and provides descriptive
statistics of the data. Section 4 summarizes thtbadelogy used in this study in greater
detail, the models performance criteria and howeséthem. Section 5 presents the results,
while section 6 concludes our findings and suggesteer research on the topic.



2 Literaturereview

Studies in risk management in general and ValuRisit-in particular are numerous and the
literature has become quite extensive. Below, we lineghlighted and summarized some of
the most relevant research used in this particilaty.

With volatility in terms of the standard deviatibaeing such a significant component of risk
management the primary focus of a lot of earlied&s is how to best model stochastic
volatility. In one such study Akgiray (1989) foutite GARCH(1,1) model to be superior
over ARCH and exponentially weighted moving averdg@MA) when forecasting monthly
US stock index volatility. Bollerslev et al (199Q)mmarized a lot of the studies conducted in
the area of modeling volatility and concluded tkteasions of the ARCH model. i.e the
GARCH family of models, have the ability to be etige tools for reliable volatility
forecasting.

In Does anything beat a Garch(1,1)? Hansen and Lunde (2005) compared 330 models from
the ARCH family to test who best predicts conditibmariance for the DM-$ exchange rate
and the IMB stock. With GARCH(1,1) used as the Ibemark, the study found no evidence
the GARCH(1,1) was outperformed by more sophistitahodels when applied to exchange
rates. However, the GARCH(1,1) was inferior to GARM@odels that took leverage effects
into account when applied to the IMB stock.

RiskMetrics was developed in the mid-nineties B/Morgan and contributed to making VaR
the industry-wide standard as a risk managemensunedRiskMetrics Group, 1996). The
method consists of modeling volatility dynamicddly an exponentially weighted moving
average process where volatility is a weighted tionoof previous observed volatility.
McMillan and Kambouroudis (2009) conducted a stwtigre RiskMetrics and various
GARCH models were tested in forecasting VaR fodBferent stock indicies. The results
demonstrated RiskMetrics provide reliable VaR eatés at the 5% level. However,
RiskMetrics was the worst performing model whereéasting the 1% VaR.

The Historical Simulation (HS) method for estimgtvMaR was suggested by Boudoukh et
al.(1998) and Barone-Adesi et al.(1998, 1999). Apisroach fast gained popularity as a
survey among financial institutions conducted byigeam and Smith (2006) reported that
nearly 3 out of 4 of the respondents prefer HS m&thod for predicting VaR. Several studies
involving the HS method have been conducted andn&h&012) summarizes the findings of
38 of these papers. The conclusion of the survéyaisHS provides better unconditional



coverage than both simple and sophisticated GAR®Heats. With respect to conditional
coverage, the HS method yields inferior performarammpared to the models with
dynamically modeled volatility. However, the fileet HS method demonstrates better
conditional coverage results than unfiltered HShoét The Filtered HS approach involves
making the VaR estimation based on volatility atgdseturn rather than ordinary empirical
returns (for applications see for example Alexar(@608)).

The quantile regression (QR) was first propose&dgnker and Basset (1978). Where the
basic ordinary least square method provides amasdiof the conditional mean of the
endogenous variable, the quantile regression egsiae various conditional quantiles of
interest directly. Hence the method seems very sugled for VaR predictions. Taylor (1999)
demonstrated the ability of the QR model in VaRefasting when he showed that the QR
technique was found to perform well compared tooegmtial smoothing and GARCH
volatility for estimating VaR.

Steen et al. (2015) compares QR to RiskMetricsHistbrical Simulation in VaR estimation
for 20 different commodities and one commodity xdgonditional volatility modeled as
exponentially weighted moving average (EWMA) wasdias the independent variable in the
guantile regression, similar to the volatility bat used in RiskMetrics. The study found that
over the sample the QR risk model performed bétean both RiskMetrics and HS, both at
the more extreme 1% and 99% levels as well as%harid 95% levels.

Another version of the QR model to use for VaR mtiohs is the HAR-QR model and was
introduced in Haugom et al. (2014). This model prtsdhe conditional quantiles of interest
directly based on measures of daily, weekly andthigolatility estimated from observed
returns. The approach is motivated by the hetermgesnmarket hypothesis, which claims the
asymmetric behavior of the observable volatilitgige to traders’ different assessment of risk
horizon. More specifically, the hypothesis states short-term traders are mainly acting on
short-term volatility, while long-term traders tetwddisregard short-term volatility in favor of
long-term volatility when deciding whether to buysell an asset. The HAR-QR model is a
modified version of the approximating long-term noeypnmodel of Corsi (2009), which was
developed to capture volatility for different haris in accordance with the heterogeneous
market hypothesis.

Compared to HS and RiskMetrics, as well as the monmeplex methods Symmetric Absolute
Value, Assymetric Grinding, adaptive and indireeir€h(1,1), and the skewed t-student t-
APARCH model, the HAR-QREG was found to perform oeith regarding conditional as
well as unconditional coverage.



We conclude this section with a general note tasiilis of empirical studies often are
sensitive to particular data samples. Different@ansizes may yield different results. For
example, Alexander (2008) demonstrates how nora@metric VaR and HS estimation

over the same data sample yields more similartetan what each one of the methods do
when applied to two different data samples. Thigeseas an illustration of how sample size
and data input may be a larger determinant of \igtRnates than the features of the particular
method applied. We will attempt to address thigedsy utilizing a large sample size with
gualitative variation, so that the overall resuéiiect the models abilities rather than the data
sample.

3 Dataand Descriptive Statistics

The data used for this study consists of five fai@anassets; two stocks ExxonMobile
(NYSE:XOM) and Freeport McMoRan Copper & Gold (NY:EEX), two commaodities;

WTI crude oil (CL1) and copper (HG1), and the stowkex; S&P500. Logarithmic returns
from daily closing prices for the period 01.12.19991.12.2015 yield five financial time
series with 4045 observations each. For both contrasdve use front month future prices
from the CME Group. In order to avoid the jumpseaturns that are typically generated when
a front contract is rolled over to the next froahtract, we use price adjusted contracts where
the roll-over returns are smoothed out over theftag days before delivery. All of the data is
downloaded from Quandl. (See www.quandl.com forampformation.)

Both stocks are S&P500 components and the two comepavhose stock prices are being
examined trade in one each of the selected commasdkreeport in copper, ExxonMobile in
oil). The relationships will (at least perhaps $ome) serve only as a quietly interesting
background, as closer attempts to determine anyrigadpelationships constitute sufficiently
work to be topics for studies on their own.

In table 1 is descriptive statistics for the fisssats presented.



S&P500 Freeport  ExxonMobil&VTI crude oil Copper

Observations 4045 4045 4045 4045 4045
Mean 0.01% 0.00% 0.02% 0.01% 0.02%
Maximum 10.96% 25.20% 15.86% 13.34% 10.36%
Minimum -9.47% -21.20% -15.03% -16.54% -11.71%
Standard deviation 1.27% 3.21% 1.59% 2.29% 1.75%
Excess kurtosis 8.04 5.27 10.21 3.32 3.78
Skewness -0.19 -0.21 0.04 -0.24 -0.20
Jarque-Bera 10929 4718 17584 1894 2440
Jarque-Bera p-value 0.00 0.00 0.00 0.00 0.00
LM test for ARCH(1) 214.88 134.91 419.00 119.81 179.23
LM test p-value 0.00 0.00 0.00 0.00 0.00
Breusch-Godfrey, 2.lags 34.21 7.12 93.63 6.32 19.94
Breusch-Godfrey p-value 0.00 0.02 0.00 0.04 0.00
ADF test, 2 lags -43.10 -41.37 -44.75 -41.18 -41.47

Table 1: Descriptive statistics for the data sample for the period 01.12.1999 —31.12.2015

The upper panel shows the assets daily values afhnmeaximum, minimum, standard

deviation, skewness, and excess kurtosis. Whillalbssets mean returns are close to 0 as

one would expect when examining daily financiabgdate see the standard deviations differ

substantially. In effect being a diversified politbo(with market capitalization ratio as
weights), the S&P500 has the lowest volatilityenms of standard deviation (1.27% on a

daily basis) which is consisten with the teachiofjMarkowitz (1952). Freeport is in

percentage points roughly twice as volatile as Ekkobile overthe sample period (3.21%

and 1.59% respectively) , while WTI is ma@atile than Copper (2.29% versus 1.75% or
36.21% versus 27.67% on an annual basis when wigpihguhe standard deviations by the
square root of 250 trading days).

Normally distributed data are assumed to have arstnical distribution around its mean
which implies a skew of 0. Datasets with skew déwgafrom O thus deviates from the normal

distribution. Skew is negative for all assets extlee ExxonMobile stock which has a small
positive skewness (0.04). WTI exhibits the mostatieg skewness (-0.21) followed by
Freeport and Copper (-0.21 and -0.20, respectivBlgyative skew means the distribution has
a longer left tail, which means greater probabiitynegative returns to occur than if the

distribution was symmetric (see also A.1). This neeaumerical parametric models such as

RiskMetrics and GARCH(1,1) may be less reliable.

Excess kurtosis is the amount of kurtosis greai@n 8 which is the kurtosis of the normal

distribution (see also A.2). Kurtosis of a datgsetvides information about how concentrated



the returns are around their mean. The valuesaaigiye for all assets, with the largest being
10.21 (ExxonMobile) and smallest 3.32 (WTI). Thevést excess kurtosis for WTI
contributes to the lowest Jarque-Bera value fdraesormality in return distribution for each
of the assets. However, it is well above the aitievel and all five null hypothesis of
normality is rejected in favor of non-normality @kp-values are (approximately) zero. The
kurtosis values well above 3 indicate leptokurtasithe assets return distributions which
mean the distributions have higher peak and fatky than the normal distribution. Further,
this implies that more of the variance in the datdue to extreme deviations from the mean
than would be the case if the distributions wenemadly distributed.

The lower panel displays some other statisticeémh of the time series. Lags have been set
ad hoc as we only aim to investigate for presefckfierent properties and not to determine
the exact specification of lags for each series.

The Augmented Dickey-Fueller statistic well excetrtscritical value of -3.43 at 1%
significance for all assets. Hence we concludditieetime series of returns are stationary,
which gives persistence to the return series thra@igpbility in mean, volatility and
autocorrelation over time and thus rules out rane@ik processes.

The Breusch-Godfrey test checks for the presene@itofcorrelation in the return series, i.e
the method tests whether the return series is gmgntly distributed or not. The null
hypothesis in our case states there is no autdabome for 2 autocorrelation lags, which is
rejected for all five assets at 5% significance. ddenowever note WTI is close to not being
rejected at 5%.

Presence of ARCH effects is further emphasizedhbybBngel's Lagrange Multiplier test for
heteroscedasticity in the variance term conditiaaln previous returns, as the null
hypothesis of no ARCH effects from the immediatevpyus return on the present returns is
rejected for all assets. The presence of ARCH &ffeeggest the time series exhibit time
variant volatility which in turn imply the distrilional properties are time variant. This again
leads to changes in VaR quantiles over time in @aee with changing market conditions.

Figures 1-5 shows price versus returns, distrilmatiplots and estimates of skewness and
kurtosis using a rolling window of 250 trading dayg¢e see from the development in asset
prices that each of the five has experienced melppriods of rising prices as well as periods
dominated by price declines. The correspondingmstillustrate the volatility of prices over
the sample. We can see that volatility increasédtstially for each returns series during the
financial crisis period in 2008, where all five elssexperienced steep drops in prices.
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A period of increased volatility can also be seaartlie two stocks and the stock index around 2000-
2002 when the dot com bubble burst. Even thougletises was restricted to the technology sector
initially (which also affect the SP500 index), is@evidently affected the prices for the ExxonMebi
and Freeport stocks, while no particular strong&# of these market events can be seen on the two
commodities.

We also notice the volatility clustering througkideage effects in some of the plots. ExxonMobibe, f
example, demonstrates stable volatility for theqeewhere the stock price rose steadily from rdygh
December 2003 to before December 2005 and an inateeidicrease in volatility when the price started
to meet resistance just after. That volatility isrenstable in periods with rise in prices thaneniqds

with price declines, is also easily seen throughlo@itSP500 series. However, the positive correlatio
between volatility and returns that Alexander (20808ygests apply to commodities in general, cannot
be visually detected in the WTI series. For Copperdo see volatility increasing during the spikehe
copper price from around December 2003 to the teamipyp peak that was reached in 2005-2006.
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Further we see that the volatility was fairly snaaid stable during the steady price decline
from just after December 2011 onwards through titead the sample period. However, do
we also see the volatility increase at severalsiooa after sharp drops in thecopper price, so
it seems the selected commodities exhibit no (Miguelear correlation between volatility

and returns throughout this data sample.

The distributional density plots of the empiricalurn series against the normal distribution in
figures 1-5 highlight the leptokurtic propertiegpent in the return distributions. All exhibit
higher peaks and more extreme observations thatitae fatter tails than what would be the
case if the returns were normally distributed. €abillustrates this fact by comparing the
empirical quantiles versus the normal quantiles.

1% 5% 95 % 99 %
Empir. Norm. Empir. Norm. Empir. Norm.  Empir. Norm.
SP500 | -3,51 %-2,94 %| |-1,97 %|-2,08 %| | 1,80 %| 2,08 %| | 3,60 %| 2,94 %
Freeport| -9,96 % -7,47 %| |-5,08 %| -5,28 %| | 4,73 %| 5,28 %| | 8,14 %| 7,47 %
ExxonM|-4,40 %|-3,70 %| |-2,44 %| -2,62 %| | 2,29 %| 2,62 %| | 3,94 %| 3,70 %
WTI |-6,10 %) -5,34 %| |-3,66 %|-3,77 %| | 3,53 %| 3,77 %| | 5,80 %| 5,34 %
Copper| -5,23 %-4,08 %| |-2,70 %| -2,89 %| | 2,75 %| 2,89 %| | 4,84 %| 4,08 %

Table 2: Comparison of empirical and normal quantiles of daily returnsfor the five assets. St.deviations
for the entire data sampleisused for calculating normal quantiles.

The comparisons of quantiles clearly demonstrétedat tails in each of the empirical
distributions compared to the normal distributicms the absolute value of every empirical
guantile is greater than the corresponding normahtjle. We see the difference in
percentage points is greater in the left tail; teathe absolute difference between empirical
and normal quantile is greater than for the diffiees in the right tail. This is also evident in
the density plots for all five assets, where werseee extreme return values located in the
left tail versus the right.

Overall we can conclude that the distributionalgemies (volatility, skewness, kurtosis and
guantiles) vary across the five selected assetsudihthe skewness was not that different for
four of the five assets, we see from the lowertrggaph in figures 1-5 that skewness and
kurtosis do fluctuate over time. Together with affiag and clustering volatility as elaborated
above, we also can conclude from the empirical thetbthe distributional properties for the
five assets change over time independently of etdtwdr. For a risk model to provide reliable
predictions of quantiles it is essential to capthese factors.
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4 Methodology

Here is a more in-depth explanation of the metlagydied in this study.

4.1 Value-at-risk models

Value-at-Risk is a risk measure that is defined\lxander (2008) as the loss that we are
100 x a% confident will not be exceeded if the asset isloeler a certain period of time.
Alternatively VaR can be expressed as the assdciess that will occutr% of the time over
that particular holding period (see also A.3 foiilarstration).

Assuming a mean return of zero for daily data, Whiee descriptive data section confirmed is
suitable for our sample of daily returns, the VaRjiven by

VaR, = Z,o; , 4.1)

wherea denotes the significance level afid denotes the quantile corresponding with the
normal distribution of this particular significani@vel. The most basic parametric VaR
models use sample standard deviation as inputgisame way the normal quantiles reported
in table 2 were derived. However, did we see evidef time variant volatility in section 3,
which suggest dynamically volatility estimationsigut in formula (4.1) should improve the
estimation of VaR compared to a static estimat¢hisistudy we will use RiskMetrics and
GARCH(1,1) as methods for such dynamic volatilgyimates.

4.1.2 RiskMetrics

RiskMetrics was first proposed by JP Morgan in 198% model is conditional upon
normally distributed returns, which ignores theserece of fat tails which often is the case in
financial data. The model does however take vahlatlustering into account and is given by

Tt = EtO't f Where&‘t ""N(O,l), (4.2)
d2=0—-Dr_y + 6%, , (4.3)

wherel is set equal to 0.94 for daily data, and henceiskto an exponentially weighted
moving average (EWMA). Since the persistent paramsetum up to 1 is this also classifies
as a version of an Integrated GARCH model. Tte farm in (4.3) determines the intensity
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of reaction of volatility to markets events, whike last term denotes the persistence in
volatility. That is, the part of the volatility ésstate that is insensitive to what happens in the
market today but determined by past market events.

4.1.3 GARCH(1,1)

The Generalized AutoRegressive Conditional Heteasticity (Bollerslev, 1986) is a
generalization of the autoregressive condition&ie®scedastisity (ARCH) model that was
developed by Engle(1982) and can capture the tangng volatility as section 3 revealed is
present in our time series. By including a terniaghed conditional variance of returig?_;
the GARCH model is able to capture features suclokility clustering and serial
correlation in the returns series. As defined bgxainder (2008), a GARCH(1,1) is given by

O_tz =w + alrtz_l + ﬁlo-tz_l y (44)

wherer? ; is the lagged squared returns ang a constanta, will denote how fast the
variance will react to market shocks (with squaretdrns as proxy for market shock or
unexpected returns (Alexander 2008) ), wiijeas mentioned above will denote the
magnitude of the variance from the previous peobtime.

The GARCH model's parameters are estimated by maixigithe value of the log likelihood
function as defined by Alexander (2008) is given by

InL(§) = —%Zfﬂ(ln(atz) + (;)2) , (4.5)

whereg; is another notation for returng, With the restrictions thato > 0 ,a,8 = 0 and
a + B < 1, ensures the unconditional variance is finite positive and that the conditional
variance will always be positive.

The resulting volatility estimates from either fRReskMetrics or the GARCH procedure is
then used as input in (4.1). VaR value for one-dlagad is calculated by multiplying the
square root of the one-day-ahead variance #jth

4.2 Historical Simulation (HS)

Historical Simulation is a method that does not enake of conditional information, and thus
estimates the VaR unconditional on volatility. HSmplemented by creating a database of
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daily returns and then using a rolling window tadfithe upper and lower quantiles of interest.
This value, which for the 5% VaR simply will be t68" lowest value of the observed returns
in the window of 1000 obsevations, is the uncondai one-day-ahead VaR:

VaRg 41 = Q*({n- Y1), (4.6)

whereQ? is thea quantile andr.}}-, is the series of returns from 1 to n, which repres
the rolling window. A window of 1000 observationdlwe applied since this is suggested as
the optimal in Alexander (2008).

4.3 Quantileregression (QR)

Quantile regression introduced by Koenker and B44958) seeks to estimate the quantile of
the dependent variable conditional on the indepeineeriable. In forecasting VaR , which
simply put is a specific quantile of future retunmditional on current information, QR
seems as an ideal method to use. As elaboratée irdrature review section studies have
shown QR to deliver reliable VaR estimates. Theptgninear QR model can be written as

rl=al4 B0, +¢!, 4.7)

where the error terms distribution function is wEped. As proposed by Koenker and
Basset (1978) any solution to the following miniation problem defines the conditiorgh
quantile,0<q <1 ;

ming g Z?:l(q - 1rtsa+[)’at_1) (Yt —(a+ ﬁat—1))a (4.8)
where

1 ifry<a+poi4

4.9
0 otherwise (4.9)

lrca+Bory = {

Equivalently, but more precisely defined by (Steeal 2015) for our particular context, the
conditional quantile function can be expressed as

VaR}|o,—y = & + plo._1 + &lop_s (4.10)

Where sets of unique parametersdaandf can be estimated for each quantile and we can
obtain the entire return distribution for a giveadue for the conditional volatility.
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4.4 HAR-QREG (Heter ogenousAutor egressive Quantile Regression Model)

The HAR-QREG model is a variation of the ordinarfy @at use the realized log returns to
make measures of daily, weekly and monthly hisébnolatility respectively and predicts the
conditional quantiles directly. When

Odayt = VT2 4.11)
1
Pueeks = L0y + Tt +17) (4.12)
1
Omontht — \/5 (Tt2—19 + rt2—18+... + th), (4.13)

the HAR-QREG model is defined as

rtq = af + ﬁfaday,t—l + ﬁgaweek,t—l + ﬁgo-month,t—l + 5? ’ (4-14)

where the analogous minimization problem as foriedlan (4.8) but with two extra
parameters to estimate defines 4tile quantile of interest.

4.5 Backtesting procedures

With backtesting we mean testing the VaR modelsiraoy over a historical period when the
true outcome is known. For backtesting puroposesnpément the Kupie¢l995) and
Christoffersen (1998) tests. Kupiec is an uncoaddl coverage test, which statistically
examines whether the frequency of exceedance$itsf or “violations”) over the sample is
statistically close enough to the selected confiddavel. For a confidence level of 99% for
instance, we expect an exceedance to occur oncg lewedred days on average, and five
exceedances to occur over that same time intenaatanfidence level 95% and so on for
other levels of confidence.

In order to execute the test firstly an indicatariable is definedi; that gets the value dfif
the VaR estimate at tintes exceeded and the valueQoif it is not. For quantilesy, more
than 50% at timé&
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1 if 1 < VaR,
It = {

0 if . >VaR, (4.15)

In the case of short position, i.e estimation @f ight tails at 95% and 99%, and generally for
any quantile above 50% at tirtie

1 if r, > VaR,
I = {

0 if . <VaR, (4.16)

Whenn, is the number of violations, the number of non-violations,,,, is the expected

proportions of exceedances, ang is the proportion of observed violations, the satistic
under the null hypothesis of correct unconditiac@lerage is:

—2In(LR.) = 2 — [ngIn(1 — nexp) +ny ln(nexp) —noln(1 — myps)

—Nny ln(l - T[obs) - nlln(ﬂobs)] ~X12 (4-17)

wheren, is the number of violations amglis the number of non-violatiom,,,, is the

expected ratio of exceedances ang = n,/(ny + n,) is the observed ratio of exceedances.
H, states we have a correctly specified model. Giiteevel of the test is 3.84 (5% level).

However, a reliable VaR model does also requireteedances to be independent of each
other in addition to totaling to the right amountresponding to the confidence level. We do
not want the model to produce clusters of overurmterpredictions. For example is it not
desirable that all the violations are in successrger at the end of the data sample.
Christoffersen (1998) proposes a conditional cayetast which examines the models ability
to produce estimates that are independent on tReégtimate in the previous period. The test
value ofLR,. is however only sensitive to clustering where bités immediately followed

by another. Should there for example be a pattémravthere is an exceedance every third
day during a period, the test will not capture thependency. The Christoffersen statistic is
defined:

—2In(LR..) =2 — [n, ln(l - nexp) +ny ln(nexp) — ngoln(1 — my7)

—No1 In(91) — N0 In(1 — 1199) — ny11In(7r41)] "')(% (4.18)
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n;; denotes the number of observations with valsesucceeded by an observation with value
J, where 1isa hitand O is a no hit; = ny;/(ny1 + nyp) andmy; = ngye/ (Mo + ny1) The
critical value (5% level) from the chi distributia®n5.99 . The null hypothesid,, which

states the model is correctly specified statidifcgppeaking with regards to conditional
coverage, is rejected if the test statistic excéleel€ritical values.

5 Results

From the sample of 4045 observation for the twaksdptwo commaodities and one index we
lose the 20 first observations in order to getitipaits necessary for running the HAR-QREG
model through the sample. With respect to the remgi4025 observations we calculate one-
day in-sample VaR estimates and compare them wélempirical returns for the various
models at the 1%, 5%, 95% and 99% levels. Thetseated evaluated using the Kupiec
(1995) and Christoffersen (1998) as describedemtiethodology section.

HS use the 1000 previous daily returns as the datatsom which the window starts rolling.
This gives us the same amount of returns to bacitggsnst as the other models.

The GARCH(1,1) and EWMA volatilities are estimateing all the 4045 observation so that
the time period for which volatility input is estated is the same and comparable for all three
guantile regression models. The parameters fogulaatile regression models are estimated
based the remaining sample of 4025 observations.

The estimated quantile regression models and GAB&ds of volatility are estimated in
Stata and then implemented in Excel for runningktbpiec and Christoffersen tests (see A.4
for the estimated GARCH parameters for each assétility).

6 models, 5 assets and 4 VaR levels give us adb20 test statistics to evaluate. The
results are reported in table 3 and 4.
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5.1 RiskMetricsand GARCH (1,1)

The results suggest that neither RiskMetrics noRGAI(1,1) predicts the 1% VaR at an
accurate level. Both models get rejected at att ties the 1% VaR level for all five assets.
The numbers of exceedances are systematicallyighad pass the unconditional coverage
tests (and the Christoffersen tests). The Riskiemodel does especially predict too many
violations for the 1% level.

Although the unconditional 5% VaR estimations atty accurate for both models, the
overall becomes less reliable when we also considennconditional tests. Even though the
estimates for the 5% VaR level is somewhat bettetiie GARCH(1,1) model than
RiskMetrics, the two models fail to predict thet ligfils of the five assets distributions with
any accuracy.

1% 5 % 95 % 99 %
Coverage Uncond. Cond. Uncond. Cond. Uncond. Cond. Uncond. Cond.
RiskMetrics 0% 0% 60% 20% 100% 100% 80% 60 %
GARCH(1,1) 0% 0% 100% 80 % 60% 80% 100% 100 %

Table 5: RiskMetrics and GARCH(1,1) aggregated successfoatenconditional and conditional coverage
across the quantiles

On the contrary, the models are more reliable wiredicting the right tails. We can see the
GARCH(1,1) model passes both the conditional ammbnditional tests at the 99% VaR level
for all the five assets, while the RiskMetrics atiivers good results, the one exception
being the total failure on the estimation of VaR®@&o for Copper. At the 95% VaR, both
models also deliver mostly statistically accuratsuits, although the GARCH(1,1) model
completely fails in its prediction of the Exxon skaat this level.

Considering the models are conditional normal réseilts are not very surprising. Despite the
models using dynamical volatility, the models d¢ capture the fat tails of the distributions
that the descriptive statistics in table 1 showedpsesent in most of the distributions.

The difference of the left and right tail predicttomay be due to the negative skewness of
every return distribution (except for the ExxonMelstock), which implies more extreme
outcomes in the left tail. This implies the cormfital normal models will underestimate the
absolute value of the left tail VaR predictions. @é further evidence for this being the case
from the rejected Kupiec tests for the lower questdue to far too many hits.
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5.2 Historical Simulation (HS)

The HS methods underperforms at the 1% level. Astiva case with the conditional normal
models just assessed, the HS method also systaihatieerpredicts the number of hits for
the 1% coverage. However, the overprediction iseatgdeal lower than that of the
RiskMetrics and GARCH(1,1) models.

1% 5% 95 % 99 %
Coverage Uncond.Cond. Uncond. Cond. Uncond. Cond. Uncond. Cond.
HS 40% 20% 100% 20% 100% 20% 80% 60%

Table 6: HS aggregated success rate for unconditional andittenal coverage across the quantiles

The HS method performs much better at the 5% afl188els when it comes to
unconditional coverage, which we see is not regefide any Kupiec statistics across the five
assets. Unconditional coverage on the other harfdr from statistically satisfactory, as the
HS method only achieve a 20% success rate at ddboh [@vels.

This is in line with several other studies involyithe HS method,; it delivers good
unconditional coverage, but not conditional coverakhis result can be attributed to the HS
method’s ability to capture the empirical returstidbution, but without making it conditional
on volatility. Hence time variant volatility feaes are not captured. Also, when the past not
resembles the present in average, the unconditppedictions will be inaccurate as well.

5.3 Quantile Regression models

The three quantile regressions employed perform wetl, with good results overall when
evaluated at the 5% significance level for bothamtiitional and conditional coverage.

1% 5% 95 % 99 %
Coverage Uncond.Cond. Uncond. Cond. Uncond. Cond. Uncond. Cond.
EWMA QR 100 % 80 % 100 % 80 % 100 % 100 % 100 % 100 %
HAR QR 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
GARCH(1,1)
QR 100 % 80 % 100 % 60 % 100 % 100 % 100 % 100 %

Table 7: QR models™ aggregated success rate for unconditoubconditional coverage across the quantiles.
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GARCH(1,1) QR delivers a success rate of 100% R and WTI, and 87.50% for Exxon,
WTI, and Copper. The model delivers perfect uncoomatal coverage for all assets, but fails
the conditional tests in three instances.

EWMA QR gets a passing grade of 100% for threevef dssets and 87.5% for Copper and
Exxon. As in the case with QR GARCH all the faisy®e from inability to provide correct
conditional coverage.

The HAR-QR model on the other hand, delivers pémesults for unconditional as well as
conditional coverage and hence gets a perfect 6¢dr@0% for all of the five assets. A closer
look at the test statistics reveal that while theneno systematical differences in Kupiec
statistics between the QR models, the HAR-QR témgsoduce the lowest Christoffersen.
This is further proof of the HAR-QR models supeidility to provide correct conditional
coverage. By having three different horizons oftitity as independent variables, the model
can isolate effects from each horizon to bettetuwraghe variation of conditional return
distributions. This is the model's strength asinetl by Haugom et. al(2014).

The two former quantile regression models do ngelihat same kind of dimensionality as
they are regressed on one independent variablepased to three. Equally for all three
models though, is that by using one sample metboth&é quantile regression, we model the
relationship between the returns and the volatdgiimate(s) to be stable over time. For the
QR GARCH model do we also, by using one set ofress for the entire period, model the
GARCH volatility to be developing by the same magueé over the sample. Both these
assumptions may be too restrictive or simplisti¢tdbent sample periods will in general
yield different estimates depending on changingketazonditions.

Contrary to the QR GARCH (1,1) model where the trqmimentioned is derived from one
estimation based on the entire sample, this réistnicloes not apply to either HAR-QREG or
the QR EWMA. This is because the inputs in the HQREG model are as optimal as they
can be at every instant by the model's construclibe same applies to QR EMWA, though
this model also only use one set of parameterohsgtouction.

From the estimated GARCH(1,1) parameters in A.4caresee the estimated parameters are
different from the parameters in the EWMA modethaligh the GARCH(1,1) output
resemble the EWMA parameters, particularly in rdgdo Freeport and WTI. Both models
put relatively much weight on past variance. Jugdiom the very reliable performance of
both the QR EWMA and QR GARCH(1,1) does this natessarily have any negative effect
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on the reliability of the models volatility foresta However, too much weight on previous
variance can become an issue during sudden changesket regimes, where the EWMA
and GARCH(1,1) models may adapt to the new markeditions somewhat slower than the
HAR-QR.

Despite the potential rigidity in constructing tm@dels based on one set of quantile
regression parameters estimated on the basis ehtire data sample, we see that all three
QREG models perform very well over the sample lawtltheir own merit and when
compared to the alternative models. However, doetesee any substantial difference in
performance between the QR EWMA and QR GARCH(M)en also taking into account
that the latter in fact had a slightly worse susaage and is slightly more time consuming to
implement, the results do not provide any basistggesting the QR GARCH(1,1) should be
preferred over the QR EWMA model.

6 Conclusion

In this study different VaR models have been exachiand evaluated with respect to
forecasting the one-day-ahead market risk measqy&thlue-at-Risk. We have been
particularly interested in how the quantile regi@ssnodels perform both when compared to
the benchmark models and when compared individudlly have tested the models abilities
to predict the day-ahead VaR for long positions @fd 5% levels) and short positions (95%
and 99%) for a small selection of equities and caalitres. The models have been
implemented over a sample of 4025 trading days imaf-sample study for which the
models have been evaluated. Our main finding istbeaquantile regression models perform
better than the benchmark models RiskMetrics, GARCH and Historical Simulation.

The benchmarks models deliver substantially infaresults compared with the quantile
regressions over this data sample of financialtasédl of the models examined do however
perform better when predicting the upper tail & thturn distributions versus the lower tail.
This could be due to the fact most of the seridsbéixnegative skewness and leptokurtosis.
This suggests there are more observations betweemean of the distribution and the
maximum value compared to the number of returrikereft end of the distribution. Also the
conditional normal models do slightly better atdicéing the right tail of the equities
compared to the commodities. This could be dubeassets difference with respect to
leverage effects; the stocks volatility is in gexieénore stable in periods with positive returns
than what is the case for commodities.
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Among the quantile regression models is HAR-QRntloelel that performs best of all with a
perfect score for all unconditional and conditiocaverage tests. EWMA QR and
GARCH(1,1) QR have a success rate of of 95% arfeP®2espectively. HAR-QR only
requires observed returns to model day-ahead VdRsaherefore perhaps the easiest method
to implement. It is an interesting feature of thely that the most easily implemented model
performs the best.

However, as emphasized by Alexander (2008) is \aBchsting sensitive to sample period
and choice of financial assets. This means we ghmeireluctant to make any claims of one
model’s universally superiority over another basadly on the basis of this study. However,
we will conclude that the findings in this studynti@bute to further proof of the ability of
guantile regression models to deliver robust Vafedasts in general. We also draw the
conclusion that based on this data sample, theopembGARCH(1,1) QR doesn’t seem to
offer any significant improvement over the EWMA @#del.

While the data samples in this study contain fisgeds which are qualitatively different in
terms of volatility ranging from the low volatilitg&P500 index to the highly volatile

Freeport stock, the assets distributions in terhsk@wness and kurtosis are not that different.
Further studies where the performance of lineantjigaregression models are tested should
possibly consider applying assets with more vanretiin distributional properties as well as
volatility in order to further stress the modeldiibs to produce reliable VaR estimates.

Another natural extension of this study could bariplement quantile regression with
volatility estimated from models that are more sfoeadly optimized for each asset. Even if
the GARCH(1,1) delivers reasonable volatility fasts, input from more other GARCH
models could further enhance the performance offrtbéel. For example, asymmetric
GARCH models have in general proven to reliablgdast volatility at longer horizons, as
demonstrated in Marcucci (2005). Or implementatbtwo-regime models such as Markov
regime-switching GARCH model (see for example H2012)) could be considered. It is
safe to say that there are several possibilitiesnadel selection in the pursuit of finding a
model that may match the performance of the HARmQilel.

25



References

Alexander, C. (2009Market Risk Analysis: Volumes|, 11, 111 and IV, Vol. 4. Wiley.

Akgiray, V. (1989). Conditional heteroskedastigitytime series of stock returns: Evidence
and forecastslhe journal of business 62(1), 55-80.

Barone-Adesi, G. Bourgoin, F and Giannopoulos,iR98). Don’t look backRisk 11(8), 100-
104.

Barone-Adesi, G. Giannopoulos, K and Vosper, L9@)9VaR without correlations for non-
linear portfolios.Journal of Futures Markets 19(5), 583-602.

Bollerslev, T.,Chou, R., Kroner, K., and Jayaraman, N. (1992). ARtodeling in finance: a
review of the theory and empirical evidendeurnal of Econometrics 52(1-2), 5-59.

Boudouk, J., Richardson, M., and Whitelaw, R. ()998e best of both world&isk 11(5),
64-67.

Christoffersen, P. (1998). Evaluating interval frasts International Economic Review 39(4),
841-862.

Corsi, F. (2009). A simple approximate long-memagdel of realized volatilityJournal of
Financial Econometrics 7(2), 174-196.

Dickey, D., and Fuller, W. (1979). Distribution thfe estimation for autoregressive time

series whit a unit rooflournal of the American Satistical Association 74(366), 427-431.

Engle, R. (1982). Autoregressive conditional hetkealasticity with estimates of the variance
of UK inflation. Econometrica 50(4), 987-1008.

Hansen, P., and Lunde, A. (2005). A forecast corsparof volatility models: Does anything
beat a GARCH(1,1)Journal of applied econometrics 20(7), 873-889.

Haugom, E., Ray, R., Ullrich, J. Veka, S., and Waatd, S.(2014). A simple quantile
regression model to forecast day-ahead Value-at-Ris

Hull, J. (2012) Options, futures and other derivatives. 8" edition. Pearson.

Jorion, P. (2001Yalue at Risk: The new benchmark for managing financial risk.
New York: McGraw-Hill.

Koenker, R., and Bassett, G.(1978). Regressiontigsicconometrica 46(1), 33-50.

Kupiec, P. (1995). Techniques for verifying thewwecy of risk measurement models.
Journal of Derivatives 3(2), 73-84.

26



Markowitz, H. (1952). Portfolio selectiodournal of Finance 7(1), 77-91.

Marcucci, Juri. (2005). Forecasting stock markeatiiity with regime-switching GARCH
models.Sudiesin Nonlinear Dynamic & Econometrics 9(4), 1-55.

McMillan, D. G., and Kambouroudis, D. (2009). AreskMetrics forecasts good
enough? Evidence from 31 stock markétgernational Review of Financial
Analysis 18(3), 117-124.

RiskMetrics Group (1996) RiskMetrics technical doant. J. P. Morgan/ Reuters, fourth
edition. https://www.msci.com/documents (accesseaidry 25, 2016)

Sharma M. (2012). The historical simulation methardvalue-at-Risk: A research
based evaluation of the industry favoritedian Institute of Management. PGDM.

Steen, M., Gjglberg, Ole., and Westgaard, S. (20@&nmodity value-at-risk modeling:
comparing RiskMetrics, historic simulation and quilarregressionJournal of Risk Model
Validation 9(2), 49-79.

Taylor, J. (1999). A quantile regression approacestimating the distribution of multiperiod
returns.Journal of Derivatives 7(1), 64-78.

27



Appendix

Al
A A
Negative Skew Positive Skew
Figure 1: Distributions with negative and positive skew
A.2
B
A
_/\_ -
Masokurtic
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Figure 2: lllustrations of meokurtic (A), leptokurtic (B) and Platykurtic (C) distributions
A.3

@ @™

Figure 3: lllustration of VaR with critical value of 5% , & = 5%., so that the confidence level is 95% (a) is the
significance interval and (b) is the confidence interval

A4
w 251 B1
SP500 1.74e-06 .0917648 .895721
Freeport 7.35e-06 .0566837 9372174
ExxonMobile 3.37e-06 .076373 .9087458
WTI 3.15e-06 .0574707 .9381223
Copper 1.66e-06 .0425723 .9520863

Tabell 1: The resulting coefficient output from GARCH(1,1) estimation for the five assets in the data sample
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