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Abstract

This thesis is mainly concerned with the efficient numerical solution of opti-
mization problems subject to linear PDE-constraints, with particular focus
on robust preconditioners and diffuse domain methods. Associated with
such constrained optimization problems are the famous first-order Karush-
Kuhn-Tucker (KKT) conditions. For certain minimization problems, the
functions satisfying the KKT conditions are also optimal solutions of the
original optimization problem, implying that we can solve the KKT system
to obtain the optimum; the so-called “all-at-once” approach. We propose
and analyze preconditioners for the different KKT systems we derive in this
thesis.

In papers I and II we study PDE-constrained optimization problems
with inequality constraints and problems subject to total variation regular-
ization, respectively. These are both non-linear problems, so we apply itera-
tive methods; the Primal Dual Active Set algorithm and the split Bregman
method, resulting in iterative schemes where we must solve a sequence of
linear KKT systems. Using Riesz maps to form preconditioners, we get itera-
tion numbers independent of the mesh parameter h, and we are able to prove
a maximum growth in MINRES iteration numbers of order O([log(α−1)]2)
as the regularization parameter α→ 0. Furthermore, we present numerical
simulations with the improved rate of order O(log(α−1)).

To derive a solver which is completely robust with respect to both the
mesh parameter h and the regularization parameter α is, from a functional
analysis perspective, a matter of finding weighted Sobolev spaces in which
all the stability estimates are independent of h and α. If such topologies are
obtained, the Riesz maps associated with the underlying normed spaces will
form a natural preconditioner for the KKT system, resulting in solvers with
h- and α-independent iteration numbers.

The third paper concerns the derivation of such a robust preconditioner
for a specific PDE-constrained optimization problem. More specifically, we
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study an elliptic control problem with boundary observations only and lo-
cally defined control functions. A careful analysis reveals that there exists an
isomorphism between the control space and the space of Lagrange multipli-
ers, leading to stability estimates of the associated KKT system independent
of the mesh parameter h and regularization parameter α. Consequently, we
obtain a completely h- and α-robust Krylov subspace solver. The problem
studied in Paper III was motivated by the inverse problem of electrocardio-
graphy (ECG).

Finally, in papers IV and V, we are concerned with the computational
representation of the involved domains. In applications, the domains are
often complex or not exactly known. We apply the diffuse domain method,
an embedding technique, to solve PDE-constrained optimization problems
posed on such domains. A full theoretical investigation is undertaken, and
strict convergence rates, with respect to the diffuse domain parameter ε,
is obtained. We must also handle topologies depending on the parame-
ter ε, which increases the complexity of deriving robust KKT solvers. A
completely ε-robust iterative solver is, nevertheless, achieved from a careful
construction of topologies.

All the theoretical investigations, presented in this thesis, are supported
by numerical simulations, and we obtain very good agreement between the
theoretical and numerical results.
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Samandrag

Denne avhandlinga ser i hovudsak p̊a effektive numeriske løysingar av PDE-
betinga optimeringsproblem, med eit særskilt fokus p̊a robuste prekondis-
jonerar og “diffuse domain”-metodar. Assosiert med slike optimeringspro-
blem er dei velkjende Karush-Kuhn-Tucker (KKT)-føresetnadane. For mange
betinga optimeringsproblem, vil funksjonar som tilfredstillar KKT-vilk̊ara
samstundes vere ei optimal løysing p̊a det opprinnelege optimeringspro-
blemet. Dette impliserar at vi kan løyse KKT-likningane for å finne op-
timum. Vi konstruerar og analyserar prekondisjonerar for dei forskjellige
KKT-systema vi utleiar i denne avhandlinga.

I artikkel I studerar vi kontrollproblem med ulikskapsvilk̊ar p̊a kontroll-
funksjonen, medan vi i artikkel II analyserar optimeringsproblem underlagt
totalvariasjonsregularisering. Begge desse problema er ikkje-lineære, som
gjer at vi m̊a nytte iterative metodar for å løyse problema. Ved bruk av
hhv. “the Primal Dual Active Set”- og “split Bregman”- algoritmen, f̊ar
vi iterative skjema kor vi m̊a løyse ein sekvens av lineære KKT-system.
Brukar vi Riesz-operatorar til å danne prekondisjonerar, f̊ar vi iterasjons-
tal som er uavhengige av meshparameteren h og vi beviser ein maksimal
vekst i iterasjonstal av orden O([log(α−1)]2) n̊ar regulariseringsparameteren
α → 0. I tillegg syner vi numeriske simuleringar med den forbetra raten
O(log(α−1)).

Å finne ein løysar som er heilt robust med omsyn p̊a b̊ade meshpara-
meteren h og regulariseringsparameteren α er, i fr̊a eit funksjonalanalyse-
perspektiv, eit spørsm̊al om å finne vekta Sobolevrom der alle stabilitetses-
timata er uavhengige av h og α. Gitt slike topologiar, vil Riesz-operatorane
som er assosiert med dei underliggande normerte romma danne ein naturleg
prekondisjonerar for KKT-systemet.

Den tredje artikkelen omhandlar utleiinga av ein slik robust prekondi-
sjonerar for eit spesifikt PDE-betinga optimeringsproblem. Vi studerar eit
elliptisk kontrollproblem med kun randobservasjonar og ein lokalt definert
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kontrollfunksjon. Ein rigorøs analyse synar at det eksisterar ein isomorfi
mellom kontrollrommet og rommet av Lagrangemultiplikatorar, som fører til
stabilitetsestimat som er uavhengige av h og α. Følgeleg f̊ar vi ein fullstendig
h- og α-robust Krylovromløysar.

Til slutt, i artikkel IV og V, er vi oppteken av numerisk representasjo-
nen av dei involverte domena. For reelle problem er domena ofte komplekse
eller ikkje nøyaktig kjende. Vi nyttar “diffuse domain”-metoden, ein em-
beddingsteknikk, for å løyse PDE-betinga optimeringsproblem gitt p̊a slike
domene. Ein full teoretisk analyse er gjennomført, og konvergensrater med
omsyn p̊a “diffuse domain”-parameteren ε er oppn̊add. I tillegg handsamar
vi her topologiar som er avhengige av parameteren ε, som gjer det meir ut-
fordrande å oppn̊a robust prekondisjonering av KKT-systema. Ein ε-robust
Krylovromløysar er likevel utleia fr̊a ein nøye konstruksjon av dei involverte
topologiane.

Alle dei teoretiske undersøkingane i avhandlinga er støtta av numeriske
simuleringar, og vi oppn̊ar veldig godt samsvar mellom dei teoreriske og
numeriske resultata.
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“For the things of this world cannot be made known without a knowledge of
mathematics”
- Roger Bacon
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Introduction

1.1 Background

1.1.1 Motivation

Mathematics is used to model phenomena in a broad range of scientific
and industrial disciplines. Many of these models are formulated in terms of
partial differential equations (PDEs). These equations can be used to sim-
ulate electrical potentials, heat conduction, groundwater flow, water waves,
electromagnetic waves, etc.

A large class of PDEs is deterministic, i.e. there is no randomness in the
model. This means that a given initial state will always produce the same
output. In more philosophical terms, we might say that the equations model
the effect (output) of a given cause (initial state/input data). In practical
applications, we often have no information about the initial state, but we
can only observe (parts of) the effect. This can be formulated as a PDE-
constrained optimization problem: We search for the initial state, or source,
which produces the best approximation of the measured output.

PDE-constrained optimization is an active research field, and there is
a vast number of challenges to investigate. We will make no attempt to
address all of these issues, but rather focus on those we study in this thesis.
To motivate the particular choice of topics, we present the application which
inspired our selection of problems: The inverse problem of electrocardiogra-
phy.

The aim of this inverse problem is to identify an ischemic1 region in
the heart by combining ECG recordings with the bidomain model. We will

1Ischemia is a state of reduced blood supply to the heart, usually due to coronary
artery disease. It is a reversible condition, but also a precursor to a heart infarct.
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1. INTRODUCTION

not go into details on how to derive the model, but rather refer to [9, 12].
Instead, we will present the involved PDE and motivate how we can use this
model to locate an ischemic area.

The PDE reads: Find u ∈ H1(ΩB) such that∫
ΩB
∇ψ ·M∇u dx = −

∫
ΩH
∇ψ ·Mi∇f dx, ∀ψ ∈ H1(ΩB), (1.1)

where

1. u ∈ H1(ΩB) is the extracellular potential, i.e. the potential outside
the heart cells,

2. f ∈ H1(ΩH) is the transmembrane potential, i.e. the potential differ-
ence over the cell membrane of the heart cells,

3. ΩB is the domain of the body (including the heart),

4. ΩH is the domain of the heart,

5. M and Mi are the conductivity tensors of the body and heart, respec-
tively.

See Figure 1.1 for a visual representation of the domains.
Intuitively, it might seem peculiar that (1.1) is time-independent, given

the fact that the potentials in the heart vary over the course of a heartbeat.
It is known, however, that the transmembrane potential is approximately
piecewise constant during the ST-segment of the heartcycle:

f(x) ≈
{

0mV x in healthy tissue,
50mV x in ischemic tissue.

(1.2)

This is supported by biomedical evidence, and the voltages used in (1.2)
assume that the potentials have been normalized with respect to rest. For
further details, see e.g. [5].

Consequently, if we can find the region of the heart ΩH where the trans-
membrane potential is approximately equal to 50mV , we can determine the
ischemic region from (1.2).

In diagnostics, to measure the transmembrane potential directly is not
realistic, but the extracellular potential on the body surface is readily avail-
able from ECG recordings. Thus, we obtain the inverse problem

min
(f,u)∈H1(ΩH)×H1(ΩB)

{1
2‖Tu− d‖

2
L2(∂ΩB) + 1

2α‖f‖
2
H1(ΩH)

}
(1.3)

subject to∫
ΩB
∇ψ ·M∇u dx = −

∫
ΩH
∇ψ ·Mi∇f dx, ∀ψ ∈ H1(ΩB), (1.4)
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1. INTRODUCTION

Figure 1.1: A 2D picture of the domains. ΩH represents the heart and is
depicted in gray color. We denote the remaining domain by the torso, ΩT .
The cavities (white areas) inside the heart represent the ventricles.

where d ∈ L2(∂ΩB) is the ECG recording and T : H1(ΩB) → L2(∂ΩB) is
the trace operator.

If this model is to be used in clinical practice, there are several challenges
which need to be addressed. All the problems studied in this thesis can,
as aforementioned, be motivated from a desire to make the inverse ECG
problem applicable for medical use. We present the different issues studied
in this thesis, in bullet points.

1. To enhance the accuracy of the model, one might attempt to incor-
porate more information. We already mentioned that, according to
biomedical knowledge, the transmembrane potential is known a priori
to approximately satisfy (1.2). This motivates the additional con-
straint

0 ≤ f(x) ≤ 50 ∀x ∈ ΩH .

In Paper I, such box constraints are studied for controls in L2, and a
numerical investigation is also undertaken for an H1-control function.

2. It is well known that Tikhonov regularization, which is applied in (1.3),
yields smooth solutions. From a diagnostics perspective, however, it
might be beneficial to clearly separate the ischemic and the healthy
regions. The Tikhonov regularization technique will in such cases be
of limited value. To allow for discontinuous solutions, we can instead
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1. INTRODUCTION

apply Total Variation (TV) regularization, i.e.

R(f) = α

∫
ΩH
|∇f | dx. (1.5)

Formally, the functional R can also be applied in a distributional sense
to functions in a weaker space than W 1,1(ΩH). This alternative regu-
larization technique is studied in Paper II.

3. In the PDE-constrained optimization community, one of the most ac-
tive research topics is preconditioning of the optimality systems as-
sociated with the optimization problem. This is essential in order to
obtain efficient numerical schemes. In Paper III, we study this issue
for optimization problems associated with (1.3)-(1.4). Essentially, the
challenge is to find the “natural“ subspaces, of the general Sobolev
spaces, to which the control and state functions belong.

4. Finally, we are concerned with the domains ΩB and ΩH associated
with (1.3)-(1.4). In software, the representation of these domains is
challenging. The domains are rather complex, patient specific, and
a segmentation of the body from MRI data is still quite time con-
suming and might involve manual labor to segment blurred or unclear
transitions between regions. Therefore, we are interested in domain
embedding techniques, and in particular the diffuse domain method,
which basically only relies upon a signed distance function. The signed
distance function measure the Euclidean distance to the heart, and is
less challenging to derive than performing a segmentation, and it does
not involve actual meshing of the patient specific heart. In the last
two papers (IV and V), we investigate how complex or unknown do-
mains can be embedded inside larger and trivial domains, and how
we can approximate and solve the optimization problem on this larger
domain.

1.1.2 Linear PDE-constrained optimization problems

For optimal control problems with linear PDE constraints, we can formulate
the abstract optimization problem

min
(f,u)∈F×U

{1
2‖Tu− d‖

2
Z + 1

2α‖f‖
2
F

}
︸ ︷︷ ︸

J(f,u)

, (1.6)

subject to
Au+Bf = 0, f ∈ Fad, (1.7)

where α > 0 is the regularization parameter, d is the measured observation
data, and the control function f and state function u are defined on the
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1. INTRODUCTION

domains Ωf and Ω, i.e.

f : Ωf → R, u : Ω→ R, Ωf ⊆ Ω. (1.8)

Furthermore, we introduce the following assumptions:

Assumption 1.1.

1. F , U and Z are Hilbert spaces,

2. Fad ⊂ F is non-empty, closed and convex,

3. A : U → U ′ is linear, bounded and has a bounded inverse2,

4. B : F → U ′ is linear and bounded, and

5. T : U → Z is linear and bounded.

The symbol ”′“ is used to denote dual spaces and dual operators, i.e.

〈Au, φ〉 = 〈A′φ, u〉 ∀u, φ ∈ U.

The first term in (1.6) is known as the fidelity term, whereas the second
term is called the regularization term. For most PDE-constrained optimiza-
tion problems, the observation data d is measured on a restricted domain,
e.g. the boundary of the domain of the state equation. With such limited
observations and Ωf ⊂⊂ Ω, a lack of regularization, i.e. α = 0, will typically
result in (1.6)-(1.7) being severely ill-posed, and a solution might not even
be unique. However, the following theorem asserts when a unique solution
is guaranteed.

Theorem 1.1. Let α > 0 and assume that Assumption 1.1 holds. Then
there exists a unique solution of (1.6)-(1.7).

Proof. A proof can be found in [3, Theorem 1.43].

1.1.3 First-order optimality condition

There are several solution methods for constrained optimization problems.
In the field of PDE-constrained optimization, one technique that has re-
ceived much attention is the “all-at-one” approach, where one solves the
entire corresponding first-order optimality system simultaneously. For con-
vex optimization problems, these optimality systems, known as the Karush-
Kuhn-Tucker (KKT) conditions, yield necessary, and sometimes sufficient,
criteria for an optimal solution to exist.

2In general A : U → V ′, if we apply test functions which are different from the trial
functions. We do not encounter such formulations in this thesis, and hence we restrict the
focus to A : U → U ′.
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1. INTRODUCTION

To derive the KKT conditions for the optimization problem (1.6)-(1.7),
we first define the reduced functional Ĵ : F → R by

Ĵ(f) = J(f,−A−1Bf), (1.9)

where u = −A−1Bf is the solution of (1.7) and J is defined in (1.6). Sec-
ondly, we introduce the notion of Riesz maps. For a general Hilbert space
H, the Riesz map

RH : H → H′

is the canonical isometry between H and its dual space H′. The optimality
conditions then read

Theorem 1.2 (Necessary and sufficient first-order conditions). Let α > 0
and assume that Assumption 1.1 holds. Then there exists w̄ ∈ U such that
(f̄ , ū) ∈ Fad × U is the optimal solution of (1.6)-(1.7) if and only if the
following conditions are satisfied:

〈αRF f̄ , f − f̄〉+ 〈B′w̄, f − f̄〉 ≥ 0, ∀f ∈ Fad, (1.10)
T ′T ū+A′w̄ = T ′d, (1.11)
Aū+Bf̄ = 0. (1.12)

Proof. A proof can be found in the standard literature, but we include one
for the sake of completeness. By assumption, Fad is non-empty and con-
vex. Furthermore, Ĵ in (1.9) is strictly convex, Gâteaux differentiable and
coercive, i.e.

Ĵ(f)→∞ if ‖f‖F →∞.
From standard convex optimization theory, a necessary and sufficient con-
dition for a (unique) optimal solution f̄ ∈ Fad of minf Ĵ(f) is then

〈Ĵ ′(f̄), f − f̄〉 ≥ 0 ∀f ∈ Fad. (1.13)

The derivative of Ĵ is

Ĵ ′(f̄) = αRF f̄ +B′[A′]−1T ′(TA−1Bf̄ + d)
= αRF f̄ +B′w̄ ∈ F ′,

where we have defined

w̄ = [A′]−1T ′(TA−1Bf̄ + d). (1.14)

Substituting this into (1.13), we find that

〈Ĵ ′(f̄), f − f̄〉 = 〈αRF f̄ , f − f̄〉+ 〈B′w̄, f − f̄〉 ≥ 0 ∀f ∈ Fad,

which yields (1.10). Furthermore, since A is a bijection, see Assumption 1.1,
it immediately follows that

ū = −A−1Bf̄, (1.15)
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1. INTRODUCTION

which yields (1.12). Also, from the definition (1.14) of w̄ we note that

A′w̄ = T ′(TA−1Bf̄ + d) = −T ′T ū+ T ′d,

see (1.15), and consequently (1.11) follows.

Remark 1.1 (Lagrangian). If we introduce the Lagrangian L : F×U×U →
R as

L(f, u, w) = J(f, u) + 〈Au+Bf,w〉

= 1
2‖Tu− d‖

2
Z + 1

2α‖f‖
2
F + 〈Au+Bf,w〉,

see (1.6)-(1.7), we observe that

Lf (f, u, w) = αRF f +B′w,

Lu(f, u, w) = T ′(Tu− d) +A′w,

Lw(f, u, w) = Au+Bf.

Consequently, the optimality conditions in Theorem 1.2 can be formulated
as

〈Lf (f̄ , ū, w̄), f − f̄〉 ≥ 0,∀f ∈ Fad, (1.16)
Lu(f̄ , ū, w̄) = 0,
Lw(f̄ , ū, w̄) = 0.

Hence, the function w, introduced in Theorem 1.2, is called a Lagrange
multiplier.

Remark 1.2 (Optimality system without control constraints). If Fad = F ,
the condition (1.16) in Remark 1.1 becomes

Lf (f̄ , ū, w̄) = 0.

1.2 Preconditioners

In the first three papers, we study optimality systems which need efficient
iterative solvers. Although these systems are not identical, they carry a
similar structure.

To discuss this structure, let us first consider the case Fad = F . Recall
from remarks 1.1 and 1.2 that the optimality conditions for (1.6)-(1.7) then
read

Lf (f̄ , ū, w̄) = 0,
Lu(f̄ , ū, w̄) = 0,
Lw(f̄ , ū, w̄) = 0,

7



1. INTRODUCTION

or

αRF f +B′w = 0, (1.17)
T ′(Tu− d) +A′w = 0, (1.18)

Au+Bf = 0. (1.19)

In order to study the optimality conditions as a so-called saddle-point
system, we introduce the two bilinear forms a : (F ×U)× (F ×U)→ R and
b : (F × U)× U → R by

a(f, u;φ, ψ) = α〈RF f, φ〉+ 〈T ′Tu, ψ〉,
b(f, u;ϕ) = 〈Au+Bf, ϕ〉.

These bilinear forms enable us to formulate the optimality conditions in
Theorem 1.2, for the case Fad = F , as the saddle-point problem

a(f, u;φ, ψ) + b(φ, ψ;w) = g(φ, ψ) ∀(φ, ψ) ∈ F × U,
b(f, u;ϕ) = h(ϕ) ∀ϕ ∈ U,

where, in our case, the functionals g : F ×U → R and h : U → R are defined
as

g(φ, ψ) = 〈T ′d, ψ〉,
h(ϕ) = 0,

see (1.17)-(1.19). Alternatively, (1.17)-(1.19) can be formulated on the block
form αRF 0 B′

0 T ′T A′

B A 0


︸ ︷︷ ︸

Aα

fu
w


︸ ︷︷ ︸
x

=

 0
T ′d
0


︸ ︷︷ ︸

q

, (1.20)

where
Aα : F × U × U → F ′ × U ′ × U ′.

For such saddle-point systems, we can apply Brezzi’s splitting theorem to
obtain stability estimates.

The aim of papers I-III is to create preconditioners such that the solvers
are robust with respect to both the mesh parameter h and the regularization
parameter α. In more abstract terms, to achieve full robustness we need
weighted Sobolev spaces in which the stability estimates are independent of
the parameters h and α. This is far from trivial, but if ‖Aα‖ and ‖A−1

α ‖
are bounded independently of h, solving (1.20) with h-independent iteration
numbers can be achieved by applying an appropriate Krylov solver to the
preconditioned system

BαAαx = Bαq, (1.21)

8



1. INTRODUCTION

where Bα : F ′×U ′×U ′ → F ×U×U is an isomorphism, with h-independent
bounds for both ‖Bα‖ and ‖B−1

α ‖, as discussed in [4]. With a sound dis-
cretization of (1.21), the h-independence is inherited by the associated dis-
cretized system.

Concerning the regularization parameter, complete α-robust solvers for
(1.20) have only been obtained for a few specific state equations where Ωf =
Ω and the data is measured on the entire domain Ω, see [10, 8]. If Ωf ⊂⊂ Ω
and only limited observation data is available, the most general result is a
maximum growth in iteration numbers of order O([log(α−1)]2) as α→ 0, see
[6]. The authors of [6] also explain why growth of order O(log(α−1)) often
is to be expected in practice.

We now briefly discuss the optimality systems we study in papers I-III,
and what degree of α-robustness we obtain in each case:

1. In the first paper, we invoke the so-called Primal Dual Active Set
(PDAS) algorithm to deal with the box constrains

fl(x) ≤ f(x) ≤ fu(x) ∀x ∈ Ωf ,

on the control. (See Section 1.3.1 for a brief introduction to the PDAS
method.) This results in an iterative procedure where we solve a se-
quence of equations of the form (1.20). In each iteration, the control f
is only unknown on parts of the domain, so the mappings in the first
column of Aα operates on functions with restricted support. We prove
a maximum growth of order O([log(α−1)]2) in iteration numbers when
α→ 0, and present experiments with logarithmic growth.

2. The second paper is concerned with total variation (TV) regulariza-
tion. We apply the split Bregman algorithm to deal with the non-
differentiability of the regularization term, see (1.5). (For an overview
of the split Bregman method, see Section 1.3.2.) In each iteration,
we must solve a system similar to (1.20), only with RF replaced by a
weak form of −∆. Also in this paper we prove a maximum growth in
iteration numbers of order O([log(α−1)]2).

3. In Paper III we have no box constraints and a standard Tikhonov
regularization term. For a specific control space and state equation,
we are able to obtain full α-robustness in the case of Ωf ⊂⊂ Ω, cf.
(1.8), and observation data only on the boundary ∂Ω of Ω. In more
detail, if F = H1(Ωf )′ and U = H1(Ω), it can be shown that the
state function and Lagrange multiplier actually belong to a subspace
of H1(Ω) which is isomorphic to the control space H1(Ωf )′, leading to
stability estimates independent of α.

9



1. INTRODUCTION

1.3 Algorithms

Two of the algorithms applied in this thesis are not standard techniques in
optimization, and we will therefore sketch the ideas behind the Primal Dual
Active Set (PDAS) and (split) Bregman methods.

1.3.1 PDAS method

In Paper I we investigate optimization problems with box constraints on the
control. To show how the PDAS method can be used to solve such problems,
consider the optimization problem

min
f∈L2(Ωf )

Ĵ(f) s.t. f(x) ≥ 0. (1.22)

We only consider the box constraint f(x) ≥ 0 to avoid unnecessary details.
If f̄ is an optimal solution of (1.22), we can define the active set Ā and

the inactive set Ī by

Ā = {x ∈ Ωf : f̄(x) = 0} and Ī = Ā \ Ωf . (1.23)

If we define the Lagrange functional

L(f, λ) = Ĵ(f)− (f, λ)L2(Ωf ),

associated with (1.22), we obtain the well-known first-order conditions

Lf (f̄ , λ̄) = Ĵ ′(f̄)− λ̄ = 0, (1.24)
λ̄ ≥ 0, f̄ ≥ 0, λ̄f̄ = 0, (1.25)

see e.g. [7].
Since the active set Ā in (1.23) is unknown, we need an algorithm to find

this set. Due to the condition (1.25), the most intuitive approach is maybe
to guess an active set A0, construct the inactive set I0 = Ωf \A0, and then
solve

Ĵ ′(f (1)) = λ(1),

f (1) = 0, x ∈ A0,

λ(1) = 0, x ∈ I0.

Next, we update our inactive and active sets in accordance with whether
(1.25) is satisfied. That is,

1. If x ∈ A0 and λ(1)(x) ≤ 0, we move x to the inactive set I1.

2. If x ∈ I0 and f (1)(x) < 0, we move x to the active set A1.

3. Otherwise, (1.25) holds, and x stays in the same set.

10



1. INTRODUCTION

After updating the sets A1 and I1, we can solve

Ĵ ′(f (2)) = λ(2),

f (2) = 0, x ∈ A1,

λ(2) = 0, x ∈ I1,

etc.
We keep doing this in an iterative manner until convergence is reached.

This is essentially the PDAS algorithm.
To formulate the algorithm more precisely, we start by observing that

(1.25) is equivalent to the condition

∀c > 0 : λ(x) + min(0, cf(x)− λ(x)) = 0. (1.26)

From this observation, we can define the active and inactive sets depending
on whether a point x violates (1.26), i.e. whether λ(x) + min(0, cf(x) −
λ(x)) 6= 0 ∀c > 0. The two sets become

Ak = {x ∈ Ωf : (cfk − λk)(x) < 0},
Ik = Ωf \ Ak.

By combining these updates with solving

Ĵ ′(fk+1) = λk+1,

fk+1 = 0, x ∈ Ak,
λk+1 = 0, x ∈ Ik,

we obtain the full algorithm. In more rigorous terms, the method is a specific
case of a semismooth Newton method. We will not go into details, but refer
to [2, 3].

1.3.2 Bregman and split Bregman methods

Our motivation for introducing the split Bregman method is its success in
solving finite dimensional optimization problems of the form

min
fh∈Fh

{
1
2‖Khfh − dh‖2Zh + α

∫
Ωf
|∇fh|

}
, (1.27)

i.e. problems with TV regularization. We can relate (1.27) to a PDE-
constrained optimization problem if Kh is a discrete approximation of the
operator K : F → Z, defined as

K = −TA−1B,

see (1.6)-(1.7).
The split Bregman method is derived from the Bregman method, which

again can be understood as a generalization of the classical proximal point
method. Hence, we start by briefly presenting the latter method.

11
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Proximal method

Consider the general optimization problem

min
x∈H1

F(x), (1.28)

where H1 is a finite dimensional Hilbert space. The proximal point method
is the iterative algorithm

xk+1 = arg min
x∈H1

{ 1
2λ‖x− x

k‖2H1 + F(x)
}
. (1.29)

To understand the motivation behind this method, we define the proximal
operator

proxF (y) = arg min
x∈H1

{ 1
2λ‖x− y‖

2
H1 + F(x)

}
, (1.30)

and observe that the solution of (1.28) is a fixed point of proxF (y). Hence,
if the original minimization problem (1.28) is difficult to solve, the proximal
point method allows us to solve a sequence of “nicer“ problems.

Bregman method

The Bregman method can be viewed as a generalization of (1.29). For a
convex and Gâteaux differentiable function Φ : H1 → R, we define the
Bregman distance

BΦ(x, y) = Φ(x)− Φ(y)− (∇Φ(y), x− y)H1 , (1.31)

where we would like to emphasize that ∇Φ(y) ∈ H1 is the ”Riesz derivative“
of Φ(y), i.e.

∇Φ(y) = R−1
H1

Φ′(y).

Since the function Φ is convex, the Bregman distance will always be posi-
tive. Following the recipe from the proximal point method, we derive the
algorithm

xk+1 = arg min
x∈H1

{
BΦ(x, xk) + λF(x)

}
. (1.32)

If we choose Φ(·) = 1
2‖·‖

2
H1

, the Bregman algorithm reduces to the standard
proximal point method.

The main strength of the Bregman method, however, is that the function
Φ is not required to be differentiable. For convex functions, the derivative
∇Φ(·) is generalized by the set-valued subdifferential ∂Φ(·) of Φ(·).

If the derivative does not exist, we must choose a specific element, a
subderivative p, in the set-valued subdifferential. To explain how to consis-
tently select such a subderivative, assume that pk ∈ ∂Φ(xk). Then, replacing

12
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∇Φ(xk) by pk in (1.31)-(1.32) yields

xk+1 = arg min
x∈H1

{
Bpk

Φ (x, xk) + λF(x)
}

= arg min
x∈H1

{
Φ(x)− Φ(xk)− (pk, x− xk)H1 + λF(x)

}
= arg min

x∈H1

{
Φ(x)− (pk, x)H1 + λF(x)

}
, (1.33)

where we have used the fact that Φ(xk) and (pk, xk) are independent of x.
Since xk+1 is a minimizer of (1.33), we know from standard optimization
theory that

∂Φ(xk+1)− pk + λ∇F(xk+1) 3 0.

Hence, we can choose the update

pk+1 = pk − λ∇F(xk+1) ∈ ∂Φ(xk+1), (1.34)

to get a consistent choice for pk+1.
To initialize the algorithm, it is standard to choose x0 = 0 and p0 = 0.

For a different choice of x0, the process of choosing p0 becomes an optimiza-
tion problem in itself. To summarize, the Bregman method consists of the
two updates

xk+1 = arg min
x∈H1

{
Φ(x)− (pk, x)H1 + λF(x)

}
, (1.35)

pk+1 = pk − λ∇F(xk+1). (1.36)

Quadratic problems

Before we address how the Bregman method can be applied to solve (1.27),
we consider the quadratic minimization problem

min
x∈H1

1
2‖Lx− z‖

2
H2︸ ︷︷ ︸

F(x)

, (1.37)

where L : H1 → H2 is a linear operator between two finite dimensional
Hilbert spaces. The derivative of F(x), defined in (1.37), is

∇F(x) = L∗(Lx− z),

where L∗ : H2 → H1 is the adjoint of L. Consequently, if we choose p0 = 0,
the update (1.36) for pk+1 becomes

pk+1 = −λL∗
(
k+1∑
n=1

Lxn − z
)
.

13
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From this update of pk+1, we can rewrite (1.35) on the form

xk+1 = arg min
x∈H1

{
Φ(x) + 1

2λ‖Lx− z +
k∑

n=1
(Lxn − z)‖2H2

}
.

Then, by defining bk =
∑k
n=1(Lxn − z), we can in this case simplify (1.35)-

(1.36) to xk+1 = arg minx
{

Φ(x) + 1
2λ‖Lx− z + bk‖2H2

}
bk+1 = bk + (Lxk+1 − z).

(1.38)

Split Bregman method

In [1], the authors realized that (1.38) could be applied very carefully in order
to solve (1.27). This minimization problem can be formulated equivalently
as the constrained problem

min
fh,qh

{
1
2‖Khfh − dh‖2Zh + α

∫
Ωf
|qh|

}
s.t ∇fh = qh.

Now, let x = (fh, qh) and define

Φ(x) = 1
2‖Khfh − dh‖2Zh + α

∫
Ωf
|qh|, (1.39)

F(x) = 1
2‖∇fh − qh‖

2
L2
h

(Ωf ). (1.40)

Applying (1.38) to this choice of Φ and F yields the algorithm
(fk+1
h , qk+1

h ) = arg minfh,qh{
1
2‖Khfh − dh‖2Zh

+α
∫

Ωf |qh|+
1
2λ‖∇fh − qh + bk‖2

L2
h

(Ωf )}
bk+1 = bk + (∇fk+1

h − qk+1
h ).

(1.41)

We observe that minxF(x) = 0 if∇fh = qh, see (1.40) and recall also the
discussion of (1.28)-(1.30). Hence, if the algorithm converges to a minimizer
x̄ = (f̄h, q̄h) of F , i.e. ∇f̄h = q̄h, we observe from (1.41) that this x̄ also
minimize Φ(x), see (1.39). For more details on convergence and equivalence
to other methods, see e.g. [11].

To simplify (1.41), one can split the first step of (1.41) into two mini-
mization problems. That is, we first freeze qh = qkh and minimize for fk+1

h ,
and then freeze fh = fk+1

h and minimize for qk+1
h . The result is the split

Bregman algorithm
fk+1
h = arg minfh

{
1
2‖Khfh − dh‖2Zh + 1

2λ‖∇fh − q
k
h + bk‖2

L2
h

(Ωf )

}
qk+1
h = arg minqh

{
α
∫

Ωf |qh|+
1
2λ‖∇f

k+1
h − qh + bk‖2

L2
h

(Ωf )

}
bk+1 = bk + (∇fk+1

h − qk+1
h ).

(1.42)
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Both (1.41) and (1.42) are commonly referred to as the split Bregman
method, although they are not equivalent. The former is equivalent to an
augmented Lagrangian method, whereas the latter is equivalent to an Al-
ternating Direction Method of Multipliers (ADMM) algorithm, see e.g. [11]
for a summary. For simulations, (1.42) is usually the preferred method.

1.3.3 Diffuse domain method

In order to solve PDEs or PDE-constrained optimization problems numeri-
cally, we need a mesh representation of the domain. This is not necessarily
trivial, if the domain is complex, or even unknown. For example, meshing
the heart of a patient is difficult, and requires proper segmentation. Several
methods have been suggested to remedy this issue, among them the diffuse
domain method.

This method relies on the fact that the signed distance function

dΩ(x) = dist(x,Ω)− dist(x,Rn \ Ω)

can be used to describe the domain Ω. That is, we have Ω = {x ∈ Rn :
dΩ(x) < 0}. Consequently, we can in a controllable manner embed the
complex domain Ω in a larger, easily implementable domain Ω. See Figure
1.2 for a visual representation of the embedding.

The diffuse domain method then makes use of the distance function dΩ in
order to approximate second order elliptic boundary value problems posed
on Ω by variational forms given on the larger domain Ω. To illustrate this
procedure in detail, let us consider the following PDE

−∇ · (M∇u) + cu = f in Ω,
n ·M∇u+ bu = g on ∂Ω.

The weak formulation of this boundary value problem reads: Find u such
that for all suitable test functions v,∫

Ω
(∇v ·M∇u+ cuv) dx+

∫
∂Ω
buv dσ =

∫
Ω
fv dx+

∫
∂Ω
gv dσ. (1.43)

Written more generically, we have expressions of the form∫
Ω
k(x)dx and

∫
∂Ω
l(x)dσ, (1.44)

where k and l involve test and trial functions or test and source functions.
The idea is now to approximate the integrals in (1.44) with integrals over

the larger domain Ω. Recall that the signed distance function is negative
for points inside Ω and positive for points outside Ω. Thus, if we introduce

ϕε(x) = S

(
−dΩ(x)

ε

)
,
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Figure 1.2: An example of a complex domain Ω, the extended domain Ωε =
{x ∈ Rn : dΩ(x) < ε} and the simple, larger domain Ω.

where S is a sigmoid function with S(t) = t
|t| when |t| ≥ 1, we observe that

ϕε(x) > 0 for x ∈ Ω and ϕε(x) < 0 for x ∈ Ω \ Ω. Furthermore, S(·/ε)
converges to the sign function as ε → 0, and consequently the phase-field
function

ωε = 1
2(1 + ϕε). (1.45)

converges to the indicator function for Ω as ε→ 0.
In Paper IV, we use Fubini’s theorem and the co-area formula to derive

just approximations of the integrals in (1.44). Here, we will give a more
intuitive justification for the approximations.

Since the phase-field function ωε is an approximation of the indicator
function for Ω, it seems reasonable that∫

Ω
k(x) dx ≈

∫
Ω
k(x)ωε(x) dx

for small values of ε > 0.
Similarly, the absolute value |∇ωε| of the gradient of ωε becomes a con-

centrated distribution around {x : dD(x) = 0}, i.e. around the boundary
∂Ω. Therefore, it seems reasonable that∫

∂Ω
l(x) dx ≈

∫
Ω
l(x)|∇ωε(x)| dx

for small values of ε > 0.
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If we apply these approximations, the original weak PDE (1.43) suggests
the following variational problem: Find uε such that for all suitable test
functions v,∫

Ω
(∇v ·M∇uε + cuεv)ωε +

∫
Ω
buεv|∇ωε| =

∫
Ω
fvωε +

∫
Ω
gv|∇ωε|, (1.46)

where M , f and g are extended carefully to the larger domain Ω.
In Paper IV, convergence rates of

‖uε − u‖X

is studied in different norms and under different regularization assumptions.
In Paper V, the diffuse domain formulation is applied to a PDE-constrained

optimization problem. That is, all original variational forms in the associ-
ated KKT system are approximated with diffuse variational forms similar to
(1.46). Here, we are also interested in robust preconditioners of the diffuse
KKT systems - not only with respect to the regularization parameter α and
the mesh parameter h, but also with respect to the diffuse parameter ε. We
derive preconditioners with complete ε-robustness.

17





Bibliography

[1] T. Goldstein and S. Osher. The split Bregman method for L1-
regularized problems. SIAM Journal on Imaging Sciences, 2:323–343,
2009.

[2] M. Hintermüller, K. Ito, and K. Kunisch. The Primal-Dual Active Set
strategy as a semismooth Newton method. SIAM Journal on Optimiza-
tion, 13(3):865–888, 2003.

[3] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with
PDE Constraints. Springer-Verlag, 2009.

[4] K. A. Mardal and R. Winther. Preconditioning discretizations of sys-
tems of partial differential equations. Numerical Linear Algebra with
Applications, 18(1):1–40, 2011.

[5] B. F. Nielsen, M. Lysaker, and P. Grøttum. Computing ischemic regions
in the heart with the bidomain model - First steps towards validation.
IEEE Transactions on Medical Imaging, 32:1085–1096, 2013.

[6] B. F. Nielsen and K. A. Mardal. Analysis of the Minimal Residual
Method applied to ill-posed optimality systems. SIAM Journal on Sci-
entific Computing, 35(2):A785–A814, 2013.

[7] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2
edition, 2006.

[8] J. W. Pearson and A. J. Wathen. A new approximation of the Schur
complement in preconditioners for PDE-constrained optimization. Nu-
merical Linear Algebra with Applications, 19:816–829, 2012.

19



BIBLIOGRAPHY

[9] A. J. Pullan, M. L. Buist, and L. K. Cheng. Mathematically Modelling
the Electrical Activity of the Heart: From Cell to Body Surface and
Back. World Scientific Publishing Company, 2005.
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Abstract

By combining the Minimal Residual Method and the Primal-Dual
Active Set algorithm, we derive an efficient scheme for solving a class
of PDE-constrained optimization problems with inequality constraints.
The approach studied in this paper addresses box constrains on the
control function, and leads to an iterative scheme in which linear op-
timality systems must be solved in each iteration. We prove that the
spectra of the associate saddle point operators, appearing in each itera-
tion, are well behaved: Almost all the eigenvalues are contained in three
bounded intervals, not containing zero. In fact, for severely ill-posed
problems, the number of eigenvalues outside these three intervals are
of order O(ln(α−1)) as α → 0, where α is the parameter employed in
the Tikhonov regularization. Krylov subspace methods are well known
to handle such systems of algebraic equations very well, and we thus
obtain a fast method for PDE-constrained optimization problems with
box constraints. In contrast to previous papers, our investigation is
not targeted at analyzing a specific model, but instead covers a rather
large class of problems.

Our theoretical findings are illuminated by several numerical ex-
periments. An example covered by our theoretical findings, as well
as cases not fulfilling all the assumptions needed in the analysis, are
presented. Also, in addition to computations only involving synthetic
data, we briefly explore whether these new techniques can be applied
to real world problems. More specifically, the algorithm is tested on a
medical imaging problem with clinical patient data. These tests sug-
gest that the method is fast and reliable.
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1 Introduction

In the field of optimization many researchers have studied the minimiza-
tion of quadratic cost-functionals with constraints given by partial differen-
tial equations. Several books have been written about this subject, see e.g
[3, 5, 7, 15]. By using the Lagrange multiplier technique, one might derive a
system of equations which must be satisfied by the optimal solution. After
suitable discretization, this system, which typically is a saddle-point prob-
lem, can be solved by an all-at-once method. That is, a scheme in which the
primal, dual and optimality conditions are solved in a fully coupled manner.

Such optimality systems are often ill-posed, which leads to bad condition
numbers for the discretized systems, and regularization techniques must
therefore be invoked. Typically, if Tikhonov regularization is employed,
then the spectral condition number of the system is of order O(α−1), where
α > 0 is the regularization parameter. Hence one might expect that, for
small values of α, the number of iterations required to solve the system,
using e.g. Krylov subspace methods, would be large. However, in [11] the
authors prove that the spectrum of the optimality system consists of three
bounded intervals and a very limited number of isolated eigenvalues outside
these three intervals. This result is established for a quite broad class of PDE
constrained optimization problems and imply that the Minimal Residual
Method (MINRES) will handle the associated algebraic systems very well.
In fact, if the problem at hand is severely ill-posed, then the required number
of iterations cannot grow faster than O([ln(α−1)]2) as α→ 0, and in practice
one often observes iterations counts of order O(ln(α−1)).

Many real world problems are not only modeled by PDEs, but also
involve inequality constraints. These are often given in the form of box
constraints on the control function. In this paper we explore whether the
method and analysis presented in [11] can be extended to handle such prob-
lems adequately.

Inequality constraints typically require the use of an iterative method to
solve the overall optimization task. In consequence, since the linear systems
arising in each iteration typically are ill-posed, we need to solve a sequence
of algebraic systems with bad condition numbers.

For some specific state equations, such problems have been solved effi-
ciently, see e.g. [4, 14]. These efficient techniques also combines the cher-
ished PDAS method in [2] with different numerical techniques for solving
saddle-point problems [1]. We will consider such optimization tasks in a
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more abstract and general setting. More precisely, our analysis concerns the
class of problems that can be written on the form

min
(v,u)∈L2(Ωv)×U

{
1

2
‖Tu− d‖2Z +

1

2
α‖v‖2L2(Ωv)

}
, (1)

subject to

Au+Bv = 0, (2)

v(x) ≥ 0 a.e. in Ωv, (3)

where

• L2(Ωv) is the control space,

• U is the state space, 1 ≤ dim(U) ≤ ∞, and

• Z is the observation space, 1 ≤ dim(Z) ≤ ∞.

We assume that U and Z are Hilbert spaces. Further, Ωv ⊂ Rn is the
domain the control function v is defined on, d is the given observation data,
and α > 0 is the regularization parameter. In Section 2 we will state the
assumptions we need on the linear operators A,B and T . Also, there exists
a solution to the problem (1)-(3) under fairly loose assumptions. For α > 0,
the solution is unique, see e.g. [5] for details.

For the problem (1)-(2), without the inequality constraint v(x) ≥ 0, it
was proven in [11] that for a sound discretization of the associated KKT
system 


αI 0 B∗

0 T ∗T A∗

B A 0




︸ ︷︷ ︸
=Bα



v
u
w


 =




0
T ∗d

0


 , (4)

the eigenvalues of the discretized operator Bhα satisfies

sp(Bhα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b]. (5)

Here, a, b and c are constants, independent of the regularization parameter
α, and N(α) = O(ln(α−1)) for severely ill-posed problems. Krylov subspace
methods handle problems with spectra on the form (5) very well, and, since
we have an indefinite system, the Minimal Residual (MINRES) method [12]
is well suited for solving (4).

Based on this discussion, we can formulate the objectives of this paper
as follows:

• We will combine the PDAS method, presented in [2], with the MINRES
method used in [11] to obtain a standard recipe for solving problems
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of the form (1)-(3). We prove that in each iteration of the PDAS
algorithm we obtain a reduced system with a spectrum on the form
(5), which we then can solve efficiently with the MINRES algorithm.
Our derivation of the reduced systems, arising in the PDAS method,
is heavily inspired by [4, 14]. Moreover, in the numerical experiments
section, we show how to apply Riesz maps as preconditioners to solve
some model problems.

• Real world problems often involve highly unstructured meshes and
noisy data. Our second objective is to undertake a numerical inves-
tigation of such a real world PDE-constrained optimization problem,
known as the inverse problem of electrocardiography (ECG). The aim is
to identify a heart infarct using ECG recordings and PDE-constrained
optimization with box constraints. This problem has an H1-control
function, and is therefore not supported by the analysis of (1)-(3).
Nevertheless, our scheme converged, and seemed to improve the qual-
ity of the solution - compared to the solution without box constraints.

For practical PDE-constrained optimization problems, the condition num-
bers of the discretized KKT systems is known to increase significantly, not
only as the regularization parameter α → 0, but also when the mesh pa-
rameter h > 0 decreases. We will not discuss this generally, but for the
synthetic model problem, we will explain how to handle the h-dependency
by invoking Riesz maps as multigrid preconditioners. We then obtain an
algorithm robust with respect to h and which grows moderately in iteration
numbers as α→ 0.

Remark 1.1. We consider the prototypical inequality constraint v(x) ≥ 0,
since the aim of this paper is to show that the linear systems occurring
in each iteration of the PDAS algorithm can be efficiently solved with the
MINRES method, and the simple constraint v(x) ≥ 0 makes the derivation
and analysis more transparent. To see how to handle the more general box
constraints

vl(x) ≤ v(x) ≤ vu(x),

see e.g. [16, 14]. Also note that the requirement v(x) ≥ 0 occurs in many ap-
plications, e.g., when the control function v measures density, temperature,
mass or pressure.

2 Assumptions

We assume that:

A1 : A : U → U is bounded and linear1

1Assume that the state equation (2) is a PDE. Then, A is typically a mapping from
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A2 : A−1 exists and is bounded.

A3 : B : L2(Ωv)→ U is bounded and linear.

A4 : T : U → Z is bounded and linear.

A5 : The optimization problem (1)-(2) is severely ill-posed for α = 0.

As shown in [11], if the assumptions listed above hold, then for a sound
discretization of the KKT system (4), the eigenvalues of this discretized
system satisfies (5). If (4) is well posed for α = 0, then the numerical solution
of this problem is ”straightforward” and regularization is not needed. We
will focus on the challenging case, i.e. severely ill-posed systems.

3 KKT system

We will now derive the algorithm for solving (1)-(3). The first thing we
need, is the optimality system, which can be obtained from the Lagrangian

L(v, u, w, λ) =
1

2
‖Tu−d‖2Z+

1

2
α‖v‖2L2(Ωv)+(w,Au+Bv)U−(λ, v)L2(Ωv). (6)

The standard optimality theory states that if (v∗, u∗) is a solution of
(1)-(3), then there exist duality functions (w∗, λ∗) such that the Fréchet
derivatives of (6), with respect to v, u and w,

〈
∂L
∂v
, φ

〉
= (αv, φ)L2(Ωv) + (Bφ,w)U − (λ, φ)L2(Ωv), ∀φ ∈ L2(Ωv),

〈
∂L
∂u

, φ

〉
= (Tu− d, Tφ)Z + (Aφ,w)U , ∀φ ∈ U,

〈
∂L
∂w

, φ

〉
= (Au+Bv, φ)U , ∀φ ∈ U,

should all be equal to zero at the optimal point (v∗, u∗, w∗, λ∗). In addition,
the conditions given by

(λv)(x) = 0, (7)

λ(x), v(x) ≥ 0, (8)

should also be satisfied at this optimal point. By writing the Fréchet deriva-
tives on block form, we get the well known KKT system



αI 0 B∗

0 T ∗T A∗

B A 0





v
u
w


 =



λ
T ∗d

0


 , (9)

U onto its dual space U ′, and hence A1 is not fulfilled. This can, nevertheless, easily be
rectified by applying the inverse Riesz map R−1

U : U ′ → U to (2) and thereby obtain the
operator R−1

U A : U → U . In this context, one might consider R−1
U to be a preconditioner.

We will return to this issue in the example sections.
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which we combine with (7)-(8) to obtain the full optimality system. Note
that, since we have a convex problem, a solution (v∗, u∗, w∗, λ∗) of (7)-(9)
will also be a solution of (1)-(3).

4 Primal-dual active set method

To solve our optimization problem, we will follow the primal-dual technique
introduced in [2], and later used in [4] and [14].

Thus, we start by noting that (7)-(8) are equivalent to the condition

λ+ min(0, cv − λ) = 0 ∀c > 0.

This motivates the PDAS algorithm, where we can define the active A and
inactive I sets as follows

A = {x ∈ Ωv : (cv − λ)(x) < 0}, (10)

I = Ωv \ A, (11)

where Ωv is the domain of the control v. We can now formulate the PDAS
method for solving our optimality problem (1)-(3). In the iterative proce-
dure, we need to solve systems on the form (9) at each step, i.e., solve



αI 0 B∗

0 T ∗T A∗

B A 0





vk

uk

wk


 =



λk

T ∗d
0


 , (12)

together with

λk(x) = 0 on Ik, (13)

vk(x) = 0 on Ak. (14)

Note that the unknowns are vk, uk, wk and λk, and hence there are unknowns
on both sides of equation (12). Here, Ak and Ik are the active and inactive
sets associated with the kth iteration of the PDAS algorithm, see steps 9
and 10 in Algorithm 1.

In [2] it is shown that the primal-dual active set method provides a local
minimum if the active set stays unchanged in two consecutive iterations. We
can now, schematically, present the PDAS algorithm, see Algorithm 1.

Although the algorithm is in place, it is possible to reduce the CPU cost
of solving (12) - (14). The idea is based on the fact that, at each iteration, we
know that the control parameter vk is zero on the active domain (14), and
similarly, we know that the Lagrange multiplier λk is zero on the inactive
domain (13). Hence, it intuitively seems possible to restrict the control vk to
the inactive domain. Similarly, we want to restrict the Lagrange multiplier
λk to the active domain. By restricting these functions, the optimality
system to be solved becomes smaller, in the sense of fewer indices in the
corresponding discretized KKT equations, and hence it will be faster to
solve.
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Algorithm 1 Primal-dual active-set method

1: Choose the initial set A0 of active constraints
2: I0 = Ωv \ A0

3: for k = 0, 1, 2,... do
4: if k > 0 and Ak = Ak−1 then
5: STOP (algorithm converged)
6: else
7: Solve (12) - (14)
8: end if
9: Ak+1 = {x ∈ Ωv : (cvk − λk)(x) < 0}

10: Ik+1 = Ωv \ Ak+1

11: end for

5 Reduced KKT system

We will now first derive a linear system which only involves the restrictions
of vk and λk to the inactive and active domains, respectively. Thereafter,
we analyze whether assumptions A1-A5, see Section 2, are inherited by this
system.

Let q ∈ L2(Ωv) be arbitrary. We may split q ∈ L2(Ωv),

q(x) =

{
qI

k
(x) if x ∈ Ik,

qA
k
(x) if x ∈ Ak.

(15)

where

qI
k

= q|Ik ,
qA

k
= q|Ak .

Let us also introduce the notation

L2(Ik) = {q|Ik : q ∈ L2(Ωv)}, (16)

L2(Ak) = {q|Ak : q ∈ L2(Ωv)},

and note that

qI
k ∈ L2(Ik),

qA
k ∈ L2(Ak).

To derive the reduced KKT system, we need an operator which maps
the restricted function vI

k
of the control vk into the entire control space

L2(Ωv). This operator must map a function defined on the domain Ik into
a function defined on the domain Ωv by employing a zero extension. We will
denote this operator by

EI
k

: L2(Ik)→ L2(Ωv). (17)
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Note that, for any r ∈ L2(Ik),
(
EI

k
r
)

(x) = r(x) for all x ∈ Ik, (18)
(
EI

k
r
)

(x) = 0 for all x ∈ Ak. (19)

We also need a similar operator EA
k

for the Lagrange multiplier λk.
That is, an operator which maps the restricted version λA

k
of λk into the

full domain Ωv, by a zero extension. Formally, this is defined as

EA
k

: L2(Ak)→ L2(Ωv),

where this mapping satisfies
(
EA

k
r
)

(x) = r(x) for all x ∈ Ak, (20)
(
EA

k
r
)

(x) = 0 for all x ∈ Ik, (21)

which holds for any r ∈ L2(Ak). From (18)-(19) and (20)-(21), we can define
the inner products of the ”restricted” spaces L2(Ik) and L2(Ak) as

(q, r)L2(Ik) = (EI
k
q, EI

k
r)L2(Ωv), (22)

(q, r)L2(Ak) = (EA
k
q, EA

k
r)L2(Ωv). (23)

By construction, Ik ∩ Ak = ∅, and (19) and (21) therefore imply that

the ranges of EI
k

and EA
k

are orthogonal sets in L2(Ωv),

R
(
EI

k
)
⊥ R

(
EA

k
)
. (24)

Also note that EI
k

and EA
k

are one-to-one, but not onto. Due to (18)-(19)
and (20)-(21), all q ∈ L2(Ωv) satisfy

q = EI
k
qI

k
+ EA

k
qA

k
, (25)

cf. the splitting (15).
Recall that the linear operator B maps the control in L2(Ωv) into the

state space U , see sections 1 and 2. We can now use (25) to conveniently
split this mapping:

Bq = BEI
k
qI

k
+BEA

k
qA

k

= BI
k
qI

k
+BA

k
qA

k
, (26)

where

BI
k

= BEI
k

: L2(Ik)→ U, (27)

BA
k

= BEA
k

: L2(Ak)→ U, (28)

With these operators at hand, we are now able to simplify the optimality
system (12) - (14). We start with formulating the following lemma.
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Lemma 5.1. Let EI
k

and EA
k

be the extension operators introduced in
(18)-(19) and (20)-(21), respectively. Then

(i) q = EI
k
qI

k
+ EA

k
qA

k
for any q ∈ L2(Ωv),

(ii) Bq = BI
k
qI

k
+BA

k
qA

k
for any q ∈ L2(Ωv),

(iii) B∗ = EI
k
[BI

k
]∗ + EA

k
[BA

k
]∗,

where BI
k

and BA
k

are defined in (27) and (28), respectively.

Proof. (i) was established in the derivation leading to (25).

(ii) was established in the derivation leading to (26).

(iii) can be verified has follows. First, (18)-(19) and (20)-(21) imply that,
for any q, r ∈ L2(Ωv),

(qI
k
, rI

k
)L2(Ik) = (q, EI

k
rI

k
)L2(Ωv),

(qA
k
, rA

k
)L2(Ak) = (q, EA

k
rA

k
)L2(Ωv).

Consequently, for arbitrary q ∈ L2(Ωv) and s ∈ U ,

(q,B∗s)L2(Ωv) = (Bq, s)U

= (BI
k
qI

k
+BA

k
qA

k
, s)U

=
(
qI

k
, [BI

k
]∗s
)
L2(Ik)

+
(
qA

k
, [BA

k
]∗s
)
L2(Ak)

=
(
q, EI

k
[BI

k
]∗s
)
L2(Ωv)

+
(
q, EA

k
[BA

k
]∗s
)
L2(Ωv)

=
(
q,
{
EI

k
[BI

k
]∗ + EA

k
[BA

k
]∗
}
s
)
L2(Ωv)

.

Hence, it follows that B∗ = EI
k
[BI

k
]∗+EA

k
[BA

k
]∗, which finishes the

proof.

Assume that vk, uk, wk and λk satisfy (12)-(14), i.e.

αvk +B∗wk = λk, (29)

T ∗Tuk +A∗wk = T ∗d, (30)

Bvk +Auk = 0, (31)

λk = 0 on Ik, (32)

vk = 0 on Ak. (33)
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From properties (i) and (iii) in Lemma 5.1 we find that equation (29) may
be written on the form

αvk +B∗wk = αEI
k
vI

k
+ αEA

k
vA

k
+ EI

k
[BI

k
]∗wk + EA

k
[BA

k
]∗wk

= EI
k
λI

k
+ EA

k
λA

k
= λk.

Since λI
k

= 0 and vA
k

= 0,

αEI
k
vI

k
+ EI

k
[BI

k
]∗wk + EA

k
[BA

k
]∗wk = EA

k
λA

k

or
EI

k
{
αvI

k
+ [BI

k
]∗wk

}
+ EA

k
{

[BA
k
]∗wk − λAk

}
= 0. (34)

But recall that the ranges of EI
k

and EA
k

are orthogonal, cf. (24), and that
these operators are one-to-one. Consequently, we find that (34) can be split
into two equations

αvI
k

+ [BI
k
]∗wk = 0,

[BA
k
]∗wk − λAk = 0,

which implies that (29) can be replaced with these two expressions.
Next, we can use property (ii) in Lemma 5.1 to express equation (31) as

Bvk +Auk = BI
k
vI

k
+BA

k
vA

k
+Auk = 0

or
BI

k
vI

k
+Auk = 0,

where we have used that vA
k

= 0.
The KKT system (29)-(33) can therefore be written on the form

αvI
k

+ [BI
k
]∗wk = 0,

[BA
k
]∗wk − λAk = 0,

T ∗Tuk +A∗wk = T ∗d,

BI
k
vI

k
+Auk = 0,

Proposition 5.2. Assume that vk, uk, wk and λk solve (12)-(14). Then

vI
k

= vk|Ik , uk, wk and λA
k

= λk|Ak satisfy


αII

k
0 [BI

k
]∗

0 T ∗T A∗

BI
k

A 0




︸ ︷︷ ︸
=Bkα



vI

k

uk

wk


 =




0
T ∗d

0


 , (35)

λA
k

= [BA
k
]∗wk. (36)

With other words, in each iteration of the PDAS method we can solve
the block system (35) and thereafter use the straightforward update (36) for
the Lagrange multiplier.
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6 Spectrum of the reduced KKT system

Assume that assumptions A1-A5 hold, see Section 2. In the introduction
we mentioned that for a sound discretization of (4), associated with (1)-(2),
without the inequality constraint (3), the discrete operator Bhα has a spec-
trum of the form (5). This issue is analyzed in detail in [11]. Krylov subspace
solvers therefore handle (4) very well. We have shown in the derivation lead-
ing to (35) that we get KKT systems very similar to (4) in each iteration of
the PDAS algorithm. One might therefore hope that the MINRES method
also is a fast solver for the reduced system (35). This issue can be investi-
gated by exploring whether the operators appearing in Bkα, defined in (35),
also satisfy assumptions A1-A5. In short, are these properties, assumed to
hold for Bα, inherited by Bkα? If this is the case, then the spectrum of Bkα
also will consist of three bounded intervals with a few isolated eigenvalues,
i.e. be of the form (5), and Krylov solvers will handle (35) well.

We start by pointing out that (35) is the KKT system associated with
the following optimization problem:

min
(vIk ,u)∈L2(Ik)×U

{
1

2
‖Tu− d‖2Z +

1

2
α‖vIk‖2L2(Ik)

}
, (37)

subject to

Au = −BIkvIk = −BEIkvIk , (38)

where L2(Ik), EIk and BI
k

are defined in the previous section.
We note that (37)-(38) is on the same form as (1)-(2), except that B in

(2) has been replaced with BI
k

= BEI
k
. Since the operators A and T are

unchanged in the reduced problem (37)-(38), we immediately conclude that
(35) fulfills assumptions A1, A2, and A4. It remains to explore A3 and
A5.

Note that assumption A3 no longer concerns the operator B, but instead
the operator

BI
k

= BEI
k

: L2(Ik)→ U,

cf. the derivation leading to (27). Thus, we must prove that

EI
k

: L2(Ik)→ L2(Ωv),

see (17)-(19), is a bounded and linear operator. It is obvious that such an
extension operator is linear, and from (18)-(19) and (22) we find that

‖EIkr‖L2(Ωv) = ‖r‖L2(Ik) for any r ∈ L2(Ik),

and therefore

‖EIk‖ = sup
r∈L2(Ik)

‖EIkr‖L2(Ωv)

‖r‖L2(Ik)

= 1. (39)
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Since B is assumed to be bounded and linear, we can conclude that BI
k

is
linear and bounded, i.e. (35) satisfies assumption A3.

Although we assumed that (1)-(3) is ill-posed without regularization
α = 0, see assumption A5 in Section 2, this may not be the case for (37)-
(38) (with α = 0). For example, if the inactive set Ik only contains one
element/index, then (37)-(38) typically will be well-posed even with zero
regularization. Hence, one can in general not assure that A5, assumed to
be satisfied by B0, is inherited by Bk0 . There are two possibilities:

• If, luckily, (37)-(38) is well posed for α = 0, then regularization is not
needed, and the effective numerical solution of this linear system with
the MINRES method follows from standard theory.

• If A5 is inherited by (37)-(38), then A1-A5 are satisfied, and a sound

discretization Bk,hα of Bkα will have eigenvalues satisfying

sp(Bk,hα ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b]. (40)

(Of course, the constants in this expression may differ from those
in (5)). From this result, and the Chebyschev polynomial analysis
presented in [11], it follows that the number of MINRES iterations
needed to solve (35) can not grow faster than of order O([ln(α−1)]2)
as α → 0. Moreover, in practical computations one often observes it-
erations counts of order O(ln(α−1)). (The latter issue is also discussed
from a theoretical point of view in [11]).

Definition 6.1 (“Sound discretization”). A ”sound discretization“ of Bkα
means that also the discrete problem should satisfy A1−A4, with operator
norms which are bounded independently of the mesh parameter h. In addi-
tion, a discrete version of A5 should hold, i.e. that the eigenvalues of Bk,h0

satisfy

|λi(Bk,h0 )| ≤ c̃e−C̃i, i = 1, ..., n, (41)

where c̃, C̃ are positive constants.

Remark 6.2. For finite dimensional problems, there obviously always exist
c̃ and C̃ such that (41) holds. Our results are therefore only of relevance for
problems where

c̃e−C̃n

is extremely close to zero. That is, much smaller than typical choices of the
size of the regularization parameter α. The latter will typically be the case
if an ill-posed problem is discretized.

Theorem 6.3. Let Bkα be the operator defined in (35). Assume that as-
sumption A5 is inherited by (37)-(38). Then, for every α > 0 and for a
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sound discretization Bk,hα of Bkα, in the sense of Definition 6.1, the spectrum
of the associated discretized operator obeys

sp(Bk,hα ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b].

Here, a, b, and c are positive constants independent of α and N(α) =
O(ln(α−1)).

Since the operators appearing in Bkα fulfill assumptions A1-A5, the proof
of this theorem is identical to the analysis presented in [11], and therefore
omitted.

We conclude, at least theoretically, that the MINRES algorithm is well
suited for solving the KKT system (35) appearing in each iteration of the
PDAS algorithm applied to the box constrained optimization problem (1)-
(3). We will illuminate these findings below with numerical experiments.

7 Example 1

In our first model problem we define

Ω = (0, 1)× (0, 1),

Ωv =

(
1

4
,
3

4

)
×
(

1

4
,
3

4

)
,

and consider the minimization problem

min
(v,u)∈L2(Ωv)×H1(Ω)

{
1

2
‖Tu− d‖2L2(∂Ω) +

1

2
α‖v‖2L2(Ωv)

}
(42)

subject to

−∆u+ u =

{
−v if x ∈ Ωv,

0 if x ∈ Ω \ Ωv,
(43)

∇u · n = 0 on ∂Ω, (44)

v(x) ≥ 0 a.e. (45)

Here, T denotes the trace operator T : H1(Ω) → L2(∂Ω), which is well
known to bounded and linear, i.e. assumption A4 holds. Note that the
state space U and the observation space Z are

U = H1(Ω), (46)

Z = L2(∂Ω). (47)

We are thus trying to recover the function v ∈ L2(Ωv) from an observation
of u along the boundary ∂Ω of Ω.
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Remark 7.1. We want to derive the optimality system associated with (42)-
(45) and to solve it with Algorithm 1. There are, however, two issues that
must be handled before we can employ the theoretical considerations pre-
sented above:

(a) In the generic state equation (2) we assumed that the operator A is a
mapping from the state space U onto the state space U , i.e. A : U →
U . This differs from standard PDE theory. For example, the weak
form of (43) involves an operator Â mapping H1(Ω) onto its dual space
(H1(Ω))′.

(b) In order to solve the KKT system associated with (42)-(45) numerically,
we must discretize the operators by applying, e.g., the Finite Element
Method (FEM).

Both of these matters can be handled adequately, and we will discuss each
of them in some detail. It is, however, difficult to treat both problems simul-
taneously. Therefore, we address them separately, starting with (a), which
will provide us with a suitable preconditioner for the continuous KKT sys-
tem. Thereafter, we briefly comment the discretization of the preconditioned
optimality system, i.e. issue (b).

7.1 Preconditioner

Let us explore issue (a). As mentioned above, the discussion of this matter
will provide us with a suitable preconditioner for the KKT system arising
in each iteration of the PDAS algorithm applied to solve (42)-(45).

The variational form of (43)-(44) reads: Find u ∈ U = H1(Ω) such that
∫

Ω
∇u · ∇ψ + uψ dx = −

∫

Ωv

vψ dx for all ψ ∈ U,

or
〈Âu, ψ〉 = −〈B̂v, ψ〉 for all ψ ∈ U, (48)

where

Â : U → U ′, u→
∫

Ω
∇u · ∇ψ + uψ dx, ψ ∈ U,

B̂ : L2(Ωv)→ U ′, v →
∫

Ωv

vψ dx, ψ ∈ U.

We may write (48) more compactly, i.e.

Âu = −B̂v.
In order to obtain an equation of the form (2), where A : U → U and
B : L2(Ωv) → U , we can simply invoke the inverse R−1

U of the Riesz map
RU : U → U ′, i.e.

R−1
U Âu = −R−1

U B̂v,
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which is on the desired form since

A = R−1
U Â : U → U, (49)

B = R−1
U B̂ : L2(Ωv)→ U. (50)

From standard theory for elliptic PDEs, it follows that A, A−1 and B are
bounded. We thus conclude that assumptions A1, A2 and A3 are satisfied.

Recall that, in each iteration of the PDAS method, we must solve the
system (35). We will now explore the form of this system for the present
model problem. In (35),

BI
k

= BEI
k
,

see the discussion leading to (27). In the present context, we may use (50)
to write this operator on the form

BI
k

= R−1
U B̂EI

k

= R−1
U B̂I

k
, (51)

where we define

B̂I
k

= B̂EI
k
.

Equation (35) also involves the adjoint operators A∗ and [BI
k
]∗ of A and

BI
k
. According to a rather technical argument presented in [11],

A∗ = R−1
U Â′, (52)

[BI
k
]∗ = [RL2(Ik)]

−1[B̂I
k
]′, (53)

where the ”′” notation is used to denote dual operators, and RL2(Ik) is the

Riesz map of L2(Ik) to its dual space, see (16).

From (49), (51), (52) and (53) it follows that the operator Bkα in (35)
can be written on the form

Bkα =



αII

k
0 [BI

k
]∗

0 T ∗T A∗

BI
k

A 0




=




αII
k

0 [RL2(Ik)]
−1[B̂I

k
]′

0 T ∗T R−1
U Â′

R−1
U B̂I

k
R−1
U Â 0




=




[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U




︸ ︷︷ ︸
=[Rk]−1



αRL2(Ik) 0 [B̂I

k
]′

0 RUT
∗T Â′

B̂I
k

Â 0




︸ ︷︷ ︸
=B̂kα

. (54)
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We can therefore express
Bkαpk = b,

cf. (35), appearing in each iteration of the PDAS algorithm, as




[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U






αRL2(Ik) 0 [B̂I

k
]′

0 RUT
∗T Â′

B̂I
k

Â 0






vI

k

uk

wk




=




[RL2(Ik)]
−1 0 0

0 R−1
U 0

0 0 R−1
U






0
RUT

∗d
0


 . (55)

Written more compactly, this system reads

[Rk]−1B̂kαpk = [Rk]−1b̂, (56)

where

b̂ = Rkb =




0
RUT

∗d
0


 ,

pk =



vI

k

uk

wk


 .

Note that

B̂kα : L2(Ik)× U × U →
(
L2(Ik)× U × U

)′
,

and that

[Rk]−1 :
(
L2(Ik)× U × U

)′
→ L2(Ik)× U × U.

One may therefore regard [Rk]−1 to be a preconditioner for the (continuous)
KKT system arising in each iteration of the PDAS method applied to (42)-
(45), see [9] for further details. Note that the operators Rk, [Rk]−1, B̂kα
and [B̂kα]−1 are bounded. Hence, a proper discretization of these mappings
should yield a discretized approximation of (54) which is well behaved for
any mesh parameter h > 0. This completes the discussion of issue (a).

7.2 Discretization

Let us turn our attention towards the discretization matter mentioned in
(b), i.e. the discretization of (56). Recall that Bkα = [Rk]−1B̂kα only operates
on the inactive part of the control. Expressed with mathematical symbols,

Bkα : L2(Ik)× U × U → L2(Ik)× U × U.
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Hence, in each iteration of the PDAS method one may regard L2(Ik) to be
the control space, while the state space U and the observation space Z are
defined in (46)-(47), respectively.

As mentioned earlier, one may think of the inverse Riesz maps [RL2(Ik)]
−1

and R−1
U , see (54), as preconditioners. Since U = H1(Ω), it follows that, in

a FEM setting,

• RL2(Ik) ”corresponds” to the mass matrix MI
k,Ik

v associated with the

inactive set Ik ⊂ Ωv,

• RU ”corresponds” to the sum of the mass matrix M and the stiffness
matrix S associated with the domain Ω.

Concerning the details of the discretization of the operators in B̂kα, defined
in (54), we refer to [9]. If we use the superscript notation ”Ik” and ” : ” to
denote the inactive indices and all the indices, respectively, the end result is
as follows:

• Â yields the matrix M +S, which is the sum of the mass and stiffness
matrix associated with the domain Ω.

• B̂Ik yields the matrix MI
k,:

v , where Mv is the mass matrix associated
with the sub domain Ωv of Ω.

• RUT ∗T yields the matrix M∂ , which is the mass matrix associated
with the boundary ∂Ω of the domain Ω.

• The functions v, u, w and d yields the corresponding vectors v̄, ū, w̄
and d̄.

Hence, the discretized system associated with (55) reads



MI

k,Ik
v 0 0
0 M + S 0
0 0 M + S



−1 

αMI

k,Ik
v 0 MI

k,:
v

0 M∂ M + S

M :,Ik
v M + S 0




︸ ︷︷ ︸
B̄kα



v̄I

k

ūk

w̄k




︸ ︷︷ ︸
p̄k

=



MI

k,Ik
v 0 0
0 M + S 0
0 0 M + S



−1 


0
M∂ d̄

0




︸ ︷︷ ︸
b̄

.

(57)

We thus use the preconditioner

[R̄k]−1 =



MI

k,Ik
v 0 0
0 M + S 0
0 0 M + S



−1

. (58)
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We have now handled both issues (a) and (b), and derived a discretized
preconditioned KKT system (57). It remains to discretize the Lagrange
multiplier update (36). Since the procedure for doing this is very similar to
the discussion of the KKT system, we leave the technical details to Appendix
A. The end result is the update

MA
k,Ak

v λ̄A
k

= MA
k,:w̄k, (59)

where “ Ak ” denotes the active indices.
To summarize, in each iteration of the PDAS algorithm we must solve

the preconditioned system (57). The Lagrange multiplier λ̄A
k

is thereafter
computed by solving (59). Finally, the active and inactive sets are updated
according to steps 9 and 10 in Algorithm 1.

7.3 Numerical setup

• All code was written in the framework of cbc.block, which is a FEniCS-
based Python implemented library for block operators. See [8] for a
full description of cbc.block.

• We used the PyTrilinos package to compute an approximation of the
preconditioner (58), using algebraic multigrid (AMG) with a symmet-
ric Gauss-Seidel smoother and three smoothing sweeps. All tables con-
taining iteration counts for the MINRES method were generated with
this approximate inverse Riesz map. On the other hand, the eigenval-
ues of the KKT systems [R̄k]−1B̄kα, see (57)-(58), were computed with
an exact inverse [R̄k]−1 computed in Octave.

• We divided the domain of Ω = (0, 1)× (0, 1) into N ×N squares, and
each of these squares were divided into two triangles.

• The following stopping criterion was used to stop the MINRES itera-
tion process

‖rkn‖
‖rk0‖

=

[
( B̄kαp̄kn − b̄, [R̄k]−1[B̄kαp̄kn − b̄] )

( B̄kαp̄k0 − b̄, [R̄k]−1[B̄kαp̄k0 − b̄] )

]1/2

< ε, (60)

where ε is a small positive parameter. Note that the superindex k is
the iteration index for the ”outer” PDAS method, while the subindex
n is the iteration index for the ”inner” MINRES algorithm at each
step of the PDAS method.

• In the synthetic examples no noise was added to the input data d, see
(1). For the problem involving real world data, however, the input data
was given by clinical recordings and obviously contained a significantly
amount of noise.
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• Synthetic observation data d, used in (42), was produced by setting

v(x) = 3 sin(2πx1), x = (x1, x2) ∈ Ωv, (61)

in (43). Thereafter the boundary value problem (43)-(44) was solved
and d was put equal to u|∂Ω. Note that the control (61) cannot be
recovered by solving the optimality system (42)-(45), due to the in-
equality constraint v(x) ≥ 0. Hence, the problem formulation might
seem peculiar, but as the goal of this example is to study the iteration
numbers for the reduced KKT systems, it is desirable to have active
constraints for all reasonable values of the regularization parameter α.
An experimental investigation suggested the use of a control function
of the form (61) to obtain nonempty active sets for large values of the
regularization parameter α (α ≈ 1).

7.4 Results

We are now ready to proceed to the actual experiments. In the introduction
we mentioned that the KKT system associated with (1)-(2), without box
constraints, has a spectrum of the form (5), as long as assumptions A1-
A5 in Section 2 are fulfilled. Recall that Theorem 6.3 asserts that such
a spectrum will be inherited by each subsystem in the PDAS algorithm,
provided that assumption A5 still holds. Figure 1 shows the spectrum of
such a subsystem. It is definitely on the form (40), and we expect that the
MINRES method will solve the KKT systems efficiently.

Table 1 contains the average number of MINRES iterations required to
solve the reduced KKT systems. That is, the average number of MINRES
iterations needed in each iteration of the PDAS algorithm. In these experi-
ments we used a zero initial guess in every run of the MINRES method, i.e.
p̄k0 = 0, see (60).

In [11] the authors proved that the number of required MINRES itera-
tions cannot grow faster than O([ln(α−1)]2), and also explained why itera-
tions counts of order O([ln(α−1)]) often will occur in practice. Consider the
last row of Table 1, i.e. N = 512. For the stopping criterion ε = 10−6 in
(60), the iteration counts can be relatively well modeled by the formula

32.2− 10.5 log10(α),

where we used the method of least squares to estimate the constants in this
expression. Similarly, for N = 512 and the stopping criterion ε = 10−10, we
can model the work effort rather accurately with the formula

45.0− 20.1 log10(α).

We conclude that the required number of MINRES iteration only grows
(approximately) logarithmically as the regularization parameter α → 0.
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a) b)

Figure 1: The eigenvalues of [R̄k]−1B̄kα in Example 1. Panel a) displays
the eigenvalues of the full system, i.e. no active constraints and Ik = Ωv.
Furthermore, α = 0.0001 and N = 32. Panel b) shows the spectrum of a re-
duced KKT system, with 700 active inequalities. We observe that there are
fewer eigenvalues in the interval [cα, 2α] in panel b), cf. (40)). More specif-
ically, 700 eigenvalues have been ”removed” from this interval in panel b),
compared with panel a). We do not present a plot of the isolated eigenvalues,
i.e. λi ∈ (2α, a), since the full system only has three isolated eigenvalues,
and the reduced system only has one isolated eigenvalue.

Note that the spectral condition number κ(Bk,hα ) of Bk,hα is of order O(α−1),
which is ”confirmed” by Figure 1. The standard theory for Krylov subspace
solvers states that MINRES needs O(κ(Bk,hα )) iterations. Hence, the classi-
cal estimate provides a very pessimistic estimate for the needed workload.

Table 1 contains iteration counts for both ε = 10−6 and ε = 10−10, cf.
the stopping condition (60). We observe that the iteration numbers increase
roughly by a factor of 1.5 if ε is decreased from 10−6 to 10−10. However, we
see no visible difference between the controls v1 and v2 computed with these
two stopping criteria, see Figure 2. In fact, the relative difference between
the solutions depicted in this figure is 2.12∗10−5. In retrospect, we conclude
that the choice ε = 10−10 does not significantly increase the accuracy of
the solution compared to the choice ε = 10−6. Thus, choosing a suitable
stopping criterion is a delicate matter; the criterion must be strict enough
to obtain convergence, but not so hard that many unnecessary iterations are
performed.

We have previously mentioned that the experiments presented in Table
1 were performed using the zero initial guess in every run of the MINRES
method, i.e. p̄k0 = 0. Intuitively, the initial guess p̄k0 = p̄k−1

n might seem
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N\α 1 .1 .01 .001 .0001

32 23 32 38 46 56
64 27 36 42 51 66
128 27 37 42 52 71
256 33 42 48 59 75
512 33 44 52 59 78

(a) Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 34 45 55 70 86
64 39 52 64 83 103
128 41 54 67 85 109
256 48 61 75 95 121
512 49 64 80 103 130

(b) Stopping criterion ε = 10−10.

Table 1: The average number of MINRES iterations required to solve the
reduced KKT systems in the PDAS algorithm. The two panels display the
iteration counts for two different choices of ε, see (60). Here, we used the
initial guess p̄k0 = 0 in the MINRES algorithm for iteration k of the PDAS
method.

preferable. That is, we set the initial guess for the MINRES algorithm equal
to the solution from the previous PDAS iteration. In this case, however, (60)
should be adjusted to avoid an unreasonable strict stopping criterion when
p̄k−1
n ≈ p̄∗, where p̄∗ is the exact solution of the discretized PDE constrained

optimization problem. We suggest the following alternative stopping crite-
rion to terminate the MINRES iteration process:

‖rkn‖
‖r0

0‖
=

[
( B̄kαp̄kn − b̄, [R̄k]−1[B̄kαp̄kn − b̄] )

( B̄0
αp̄

0
0 − b̄, [R̄0]−1[B̄0

αp̄
0
0 − b̄] )

]1/2

< ε. (62)

Note that the initial guess p̄k0 = p̄k−1
n and the alternative stopping criterion

(62) will consistently be used together. Similarly, when we employ the initial
guess p̄k0 = 0, the criterion (60) will be used to terminate the iteration
process.

How these two different initial guesses affect the iteration counts, can
be observed by comparing Table 1 with Table 2. In Table 1 we used the
initial guess p̄k0 = 0 in every run of the MINRES method, whereas for the
numbers presented in Table 2 we employed p̄k0 = p̄k−1

n . For large values of
α, we observe a reduction in the iteration counts, but this effect seems to
be less apparent for the smaller values of α. We suspect this to be linked
to our choice of synthetic observation data, d, which was generated by the
control (61). For this observation data d, and small values of α, the solutions
of (42)-(44) and (42)-(45) are very different, i.e. the inequality constraints
have a significant impact. As a result of this difference, the initial guess
p̄k0 = p̄k−1

n is not much better than the zero guess. We will return to this
matter in the next section.
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(a) Stopping criterion ε = 10−6. (b) Stopping criterion ε = 10−10.

Figure 2: The solution of (42)-(45) for two different stopping criteria. In

these examples, N = 256 and α = 0.01. The relative difference
‖v1−v2‖L2(Ω)

‖v1‖L2(Ω)

between these two control functions is 2.12 ∗ 10−5.

8 The inverse problem of electrocardiography

We will now study a real world problem. In the inverse problem of elec-
trocardiography one attempts to identify an ischemic region/infarction by
combining ECG recordings with the, so called, bidomain model 2. Since
the derivation of the bidomain model is not essential for understanding the
optimization problem, we refer to [13] for further details about this model.

The control function v in this application, however, must be addressed
in some detail. In this medical problem, the control v is the transmembrane
potential of the heart, i.e. the potential difference over the cell membrane of
the heart cells. According to biomedical knowledge, we know a priori that
this potential satisfies

v(x) ≈
{

0mV x in healthy tissue,

50mV x in ischemic tissue.
(63)

Our objective is to compute the transmembrane potential v by solving an
optimization problem. Thereafter, we use (63) to determine the ischemic
region, i.e. this region is the sub-domain of the heart where v(x) ≈ 50.

The optimization problem will be related to the form (1)-(3), where we
have the following information:

• The input data d in (1) is a normalized clinical ECG recording.

2Ischemia is a state of reduced blood supply to the heart, usually due to coronary
artery disease. It is a reversible condition, but also a precursor to a full heart attack.
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N\α 1 .1 .01 .001 .0001

32 16 14 36 46 54
64 15 28 36 50 65
128 13 22 31 46 64
256 15 26 35 49 68
512 15 23 36 51 69

(a) Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 27 32 51 70 85
64 25 46 58 80 102
128 27 35 60 80 105
256 32 40 62 79 103
512 25 46 64 90 109

(b) Stopping criterion ε = 10−10.

Table 2: The average number of MINRES iterations required to solve the
reduced KKT systems in the PDAS algorithm. The two tables contain the
iteration counts for two different choices of ε, see (62). Here, we used the
initial guess p̄k0 = p̄k−1

n in the MINRES algorithm for iteration k of the PDAS
method.

• The state equation (2) will be the bidomain model3.

• We use (63) to define suitable inequality constraints.

• The control space, however, is no longer an L2-space, but an H1-space.

In detail, the optimization problem can be formulated as follows

min
(v,u)∈H1(ΩH)×H1(ΩB)

{
1

2
‖Tu− d‖2L2(∂ΩB) +

1

2
α‖v‖2H1(ΩH)

}
(64)

subject to

∫

ΩB

∇ψ ·M∇u dx = −
∫

ΩH

∇ψ ·Mi∇v dx, ∀ψ ∈ X, (65)

v(x) ≥ 0, x ∈ ΩH , (66)

where

M(x) ≈
{
Mi(x) +Me(x), x ∈ ΩH ,

Mo(x), x ∈ ΩT .

Remark 8.1. Note that (63) also implies an upper bound for v. This upper
bound, however, is dependent on a number of model parameters and is, for
reasons outside the scope of this article, not as essential as the lower bound.
In addition, our simulations did not provoke any active upper constraints.

In this section we use the following notation:

· v is the transmembrane potential.

3As in Example 1, the bidomain equation involves an operator Â mapping U onto its
dual space U ′. Hence, we need an inverse Riesz map to obtain a minimization problem of
the form (1)-(3).
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Figure 3: A 2D picture of the domains. ΩH represents the heart and is
depicted in gray color. We denote the remaining domain by the torso, ΩT .
The cavities (white areas) inside the heart represent the ventricles.

· u is the extracellular potential.

· draw is the ECG recording, and d = draw − 1
|∂ΩB |

∫
∂ΩB

draw is a
normalization of the data with respect to the boundary integral, see
[10] for details.

· Mi and Me are the intracellular and extracellular conductivity tensors
of the heart, respectively.

· Mo is the extracellular conductivity of the torso.

· ΩH is the domain of the heart.

· ΩT is the domain of the torso.

· ΩB = ΩH ∪ ΩT is the domain of the body.

· U = {q ∈ H1(ΩB) :
∫
∂ΩB

q = 0}. Reasons for using this particular
Hilbert space are discussed in [10].

For a visual representation of the domains ΩH , ΩT and ΩB, see Figure 3.

Remark 8.2. In this example, the control space is no longer L2(Ωv), but
H1(ΩH), which is not covered by the analysis presented in the theoretical
sections. To derive a PDAS algorithm for this H1-framework is, to the
authors knowledge, still an open challenge. Essentially, the problem is that
the inequality conditions can no longer be expressed on the simple explicit
form (7)-(8), but instead involve solving an obstacle problem, see [6] for
further details.
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For a strictly finite dimensional optimization problem, however, a PDAS
algorithm exists. Unfortunately, we can then no longer guarantee that it will
reflect the structure of the associated infinite dimensional problem. Never-
theless, we find it interesting to investigate the problem from a practical point
of view.

Since the discretization of the optimality system associated with (64)-
(66) is almost identical to the discretization of the optimality system in
Example 1, we will first present the results and thereafter return to the
mathematical treatment of (64)-(66).

For the simulations, we have two different sets of patient data, both
recorded at Oslo University Hospital. For each of the two patients, we have
patient specific geometrical models. Figure 4 shows the body mesh associ-
ated with Patient 1. Note that the grid is highly unstructured.

Figure 4: The body mesh associated with Patient 1. The blue color repre-
sents the heart, and the red colors represent the lungs. The mesh consists
of 51, 489 nodes, whereof 33,156 are located in the heart.

8.1 Results

Table 3 and Table 4 contains the iteration counts for Patient 1 and Patient
2, respectively. The numbers are much higher than those reported for the
synthetic example (Example 1), but the growth is still (approximately) log-
arithmic as α → 0. For Patient 1 the iteration counts for k = 0, i.e. the
first PDAS iteration, can be modeled by the formula

2064.6− 1287.6 log10(α).

Similarly, we can model the average workload for Patient 1 by the formula

1225− 798.4 log10(α).
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We would like to stress that, in this example, the relatively high iteration
numbers do not appear to be linked to the fact that our control space is H1,
instead of L2. More precisely, the iteration counts for k = 0, i.e. when
there are no active constraints, are not lower than for k > 0. Other possible
explanations for the high iteration numbers will be discussed in Section 9.

For this real world application, we are not only interested in the iter-
ation counts, but also in the actual time it takes to solve the optimiza-
tion problem. All simulations were performed on a regular laptop with the
Intel R©CoreTMi5-2520M CPU @ 2.50GHz × 4 processor. From Table 3,
we conclude that it lasted between 5 and 13 minutes to solve the inequal-
ity constrained optimization problem for Patient 1. For Patient 2, it took
between 6 and 15 minutes, depending on the choice of α. For the particu-
lar choice of regularization parameter α = 0.1, 664 seconds were required.
The computed control function for this choice of α can be seen in Figure
5. The figure also displays the solution of (64)-(65), i.e. the optimization
problem without the inequality constraint. We see that the introduction of
(66) sharpens the image, and thus provides a more well defined separation
of the ischemic region and the healthy tissue. For the cardiologists, such
a clear distinction is definitely desirable. In fact, one may argue that the
image computed without box constraints is of no practical value.

k\α 1 10−1/2 10−1 10−3/2 10−2

0 1808 2851 3694 3911 4497
1 1127 1480 1967 2281 2426
2 361 741 880 1046 1279

Mean 1099 1691 2180 2413 2734

Wall Time 308s 467s 598s 659s 770s

Table 3: The wall time and the number of MINRES iterations required to
solve the optimization problem for Patient 1. Note that k denotes the PDAS
iteration number. Here, the stopping criterion was ε = 10−6, see (62).

k\α 1 10−1/2 10−1 10−3/2 10−2

0 1879 2977 3224 4080 4717
1 1332 1747 2499 2751 3256
2 608 1032 1403 2005 2233

Mean 1273 1919 2375 2945 3402

Wall Time 362s 538s 664s 794s 909s

Table 4: The wall time and the number of MINRES iterations required to
solve the optimization problem for Patient 2. Note that k denotes the PDAS
iteration number. Here, the stopping criterion was ε = 10−6, see (62).
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k\α 1 10−1/2 10−1 10−3/2 10−2

Mean 1488 2111 2821 3027 3408

Wall Time 400s 586s 761s 810s 902s

Table 5: The wall time and the average number of MINRES iterations
required to solve the optimization problem for Patient 1. These numbers
were generated with the initial guess p̄k0 = 0 in every run of the MINRES
method, and the stopping criterion was ε = 10−6, see (60).

(a) Inverse solution without inequality
constraints.

(b) Inverse solution with inequality con-
straints.

Figure 5: The computed transmembrane potential v for Patient 2. Here,
α = 0.1. Panel a) shows the solution of (64)-(65). Panel b), on the other
hand, displays the solution of the full problem (64)-(66).

Recall that we, in Example 1, discussed the effect of the initial guess
on the performance of the MINRES algorithm. In the present real world
application, we have so far reported results obtained with the initial guess
p̄k0 = p̄k−1

n . For reason of comparison, we also ran simulations with p̄k0 = 0,
see (60). The iteration counts and wall time obtained for these computa-
tions can be found in Table 5. Contrary to what was observed in Example
1, we conclude that the initial guess p̄k0 = p̄k−1

n yields a significant improve-
ment, compared with the ”naive” guess p̄k0 = 0. We save roughly 400− 600
iterations on average. From a computing-time perspective, the reduction is
also significant, with savings in the range of 90 seconds to 3 minutes, i.e.
about a 20% reduction in computing-time.
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8.2 Discretization

We now return to the mathematical aspects of (64)-(66). Note that the
control space V , the state space U and the observation space Z are

V = H1(ΩH),

U =

{
q ∈ H1(ΩB) :

∫

∂ΩB

q = 0

}
,

Z = L2(∂ΩB),

see Figure 3 for an overview of the domains. Hence, we are trying to recover
a function v ∈ H1(ΩH) from an observation d ∈ L2(∂ΩB) of u along the
boundary ∂ΩB of the body ΩB. Notice the form of (63). Since the unknown
control is known, a priori, to be approximately piecewise constant, it seems
natural to put more weight on the derivative of v in the regularization.
Therefore, we use the weighted norm

‖v‖2V = ρ‖v‖2L2(ΩH) + ‖∇v‖2L2(ΩH)

on V , where 0 < ρ � 1. This will be reflected in the block operators
presented below. In our experiments, we have chosen ρ = 10−4.

We start our derivation of the optimality system by considering the state
equation (65). This equation can be written as

〈Âu, ψ〉 = −〈B̂v, ψ〉, ∀ψ ∈ U,

where

Â : U → U ′, u→
∫

ΩB

∇ψ ·M∇u dx, ψ ∈ U,

B̂ : V → U ′, v →
∫

ΩH

∇ψ ·Mi∇v dx, ψ ∈ U.

We can now proceed as in Example 1 and derive a KKT system with a
structure similar to (55). Once more, we refer to [9] for details regarding
the matrix representation of the operators in the KKT system. By letting
“ Ik ” and “ : ” denote the inactive indices and all indices, respectively, the
discretization can roughly be described as follows:

• R
V Ik yields the sum (ρMH + SH)I

k,Ik of the mass matrix MH and

the stiffness matrix SH associated with the domain Ik ⊂ ΩH .

• RU yields the stiffness matrix SB associated with the domain ΩB. 4

4Recall that U = {q ∈ H1(ΩB) :
∫
∂ΩB

q = 0}, which makes it possible to use the

Poincaré inequality to define the norm ‖ · ‖U on U as ‖q‖U =
∫

ΩB
|∇q|2. It therefore

follows that the Riesz map only yields the stiffness matrix.
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• Â yields the matrix N associated with the operator −∇·M∇u on ΩB.

• B̂ yields the matrix L associated with the operator ∇ ·Mi∇v on ΩH ,
and consequently, B̂I

k
yields the matrix LI

k,:.

• RUT ∗T yields the matrix M∂ , which is the mass matrix associated
with the boundary ∂ΩB of the body ΩB.

Hence, the discretized KKT system will in this case read:




(ρMH + SH)I
k,Ik 0 0

0 SB 0
0 0 SB



−1 

α(ρMH + SH)I

k,Ik 0 LI
k,:

0 M∂ N

L:,Ik N 0





v̄I

k

ūk

w̄k




=




(ρMH + SH)I
k,Ik 0 0

0 SB 0
0 0 SB



−1 


0
M∂ d̄

0


 .

We thus use the preconditioner

[R̄k]−1 =




(ρMH + SH)I
k,Ik 0 0

0 SB 0
0 0 SB



−1

. (67)

Finally, we update the Lagrange multiplier λ̄A
k

by solving

(ρMH + SH)A
k,Ak λ̄A

k
= LA

k,:w̄k,

where “ Ak ” denotes the active indices. (The derivation of this update is
similar to the one leading to (59).

8.3 A H1(Ωv) control space on a regular grid

We have already discussed that the lack of a continuous PDAS algorithm for
cases involving a H1(Ωv) control space do not seem to affect the performance
of the preconditioner for the inverse ECG problem studied above. Now, we
explore this issue further by considering the optimization problem

min
(v,u)∈H1(Ωv)×H1(Ω)

{
1

2
‖Tu− d‖2L2(∂Ω) +

1

2
α‖v‖2H1(Ωv)

}
(68)

subject to

∫

Ω
∇ψ · ∇u dx+

∫

Ω
ψu dx = −

∫

Ωv

∇ψ · ∇v dx, ∀ψ ∈ H1(Ω), (69)

v(x) ≥ 0, x ∈ Ωv. (70)
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The domains Ω and Ωv are defined as follows:

Ω = (0, 1)× (0, 1),

Ωv =

(
1

4
,
3

4

)
×
(

1

4
,
3

4

)
.

We will not present all the computational details, but instead focus on
the iteration numbers for the preconditioned MINRES scheme applied to
the KKT system associated with (68)-(70).

N\k 0 1

64 237 209
128 273 227
256 297 277
512 334 275
1024 390 351

Table 6: The number of MINRES iterations required to solve the optimiza-
tion problem (68)-(70). Note that k denotes the PDAS iteration number.
For k = 0 there are no active constraints, whereas for k = 1 many constrains
are active. Here, the stopping criterion was ε = 10−10, see (62), α = 0.01,
and the initial guess was set to p̄k0 = 0 for each PDAS iteration.

From Table 6 we conclude, at least for this problem, that there are
no practical difficulties with combining our preconditioner with the PDAS
algorithm. On the contrary, we observe a decrease in the number of MINRES
iterations needed for k = 1, compared with the results obtained for k = 0.
Note that, in the first PDAS iteration, i.e. k = 0, there are no active
constraints, whereas for k = 1 many constrains are active. Hence, for this
problem, the lack of a well defined extension operator EI

k
, see (17)-(19),

does not seem to introduce any severe difficulties. Nevertheless, further
theoretical investigations are needed to develop a robust PDAS algorithm
for PDE-constrained optimization problems with H1(Ωv) control spaces.

9 Conclusions

In this article we have analyzed the KKT systems arising in each iteration
of the PDAS algorithm applied to PDE-constrained optimization problems
with box constraints. More specifically, we have investigated whether the
system

Bkαpk = b

can be solved efficiently with the MINRES method. Here, α is the Tikhonov
regularization parameter, and Bkα denotes the indefinite Hermitian operator
arising in each iteration of the PDAS scheme.
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Our main theoretical result shows that the discretized operator Bk,hα ,
associated with Bkα, has a spectrum with a very limited number N(α) of
isolated eigenvalues, whereas the remaining eigenvalues are contained in
three bounded intervals:

sp(Bk,hα ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {λ1, λ2, ..., λN(α)} ∪ [a, b]. (71)

For severely ill-posed problems N(α) = O(ln(α−1)). Theoretically, we there-
fore conclude that the MINRES algorithm will solve the KKT systems effi-
ciently. Furthermore, since the spectral condition number κ(Bk,hα ) of Bk,hα is
of order O(α−1), and the standard theory for the MINRES method states

that O(κ(Bk,hα )) iterations are required, we conclude that the classical anal-
ysis provides a pessimistic estimate for the needed workload.

In [11] it was established that the spectrum of the KKT system associ-
ated with (1)-(2), without inequality constraints, is on the form (71). From
a technical point of view, the main challenge addressed in this paper was
to prove that this property is inherited by the KKT system arising in each
iteration of the PDAS method.

We presented a number of numerical experiments. In the first synthetic
example, Example 1, we were interested in the growth of the iteration num-
bers with respect to both the regularization parameter α and the mesh
parameter h. For the parameter α, we observed iteration counts almost of
order

O(ln(α−1))

as α → 0. Moreover, tables 1 and 2 show that the algorithm is robust
with respect to the mesh parameter h. Theoretically, the spectral condition
numbers of the KKT systems are bounded independently of any h > 0, and
the slight increase we observed in practice is probably due to computational
issues with the algebraic multigrid scheme.

In Section 8 we presented results for a real world problem. Namely, the
inverse problem of electrocardiography (ECG) in which the unknown source
is an ischemic region in the heart. Also for this problem, iteration counts
approximately of order O(ln(α−1)) were obtained. The numbers were, how-
ever, much higher than the iteration counts encountered in Example 1. This
can be due to a number of reasons: The size of the domain, the unstruc-
tured grid, the noise in the data, or the form of the state equations. All
these issues should be investigated properly in a separate paper.

Neither the inverse ECG problem, nor the synthetic example considered
in Section 8.3, fulfill all the assumptions needed by our theoretical analysis.
More specifically, these examples involve an H1 control space, such that
suitable extension operators, needed by the PDAS scheme, are not readily
available. Nevertheless, our experiments revealed that solving the associated
KKT systems, with many active constraints, did not require more MINRES
iterations than solving unconstrained problems. Also, we obtained a rather
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limited growth in the iteration numbers, as α decreased, for the real world
application. In fact, we solved this problem in roughly 5 to 15 minutes,
depending on the value of regularization parameter α. With optimized pre-
conditioners, code optimization and a stronger CPU, it should be possible to
reduce the computing time to less than 1 minute. For example, by changing
the preconditioner (67) to

[Rk]−1 =




(ρMH + SH)I
k,Ik 0 0

0 N 0
0 0 N



−1

, (72)

we get iteration counts as reported in Table 7. Clearly, substituting the
stiffness matrix SB in (67) with the matrix N , associated with the oper-
ator −∇ · M∇ on ΩB, reduces the iteration counts and computing time
significantly.

k\α 1 10−1/2 10−1 10−3/2 10−2

0 993 1528 2194 2661 3085
1 621 953 1224 1622 1715
2 191 444 693 817 948

Mean 602 975 1370 1700 1916

Wall Time 177s 285s 390s 471s 518s

Table 7: The number of MINRES iterations required to solve the opti-
mization problem for Patient 1. These numbers were generated with the
alternative preconditioner (72). Note that k denotes the PDAS iteration
number. Here, the stopping criterion was ε = 10−6, see (62).

The overall conclusion of this paper is: By combining the MINRES
method and the PDAS algorithm, some PDE constrained optimization prob-
lems arising in real world applications can be solved within reasonable time
limits.
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A

We will discretize the update of the Lagrange multiplier in Example 1, see
the discussion preceding (59). The generic update for this multiplier is given
in (36) as

λA
k

= [BA
k
]∗wk, (73)

where in each iteration of the PDAS method

BA
k

= BEA
k
,

see (28). Furthermore, recall from (50) that

B = R−1
U B̂.

It then follows from (28) that

BA
k

= R−1
U B̂EA

k

= R−1
U B̂A

k
,

where

B̂A
k

= B̂EA
k
.

The update (73) involves the adjoint operator [BA
k
]∗ of BA

k
. According to

a rather technical argument presented in [11],

[BA
k
]∗ = [RL2(Ak)]

−1[B̂A
k
]′,

where the symbol ”′” is used to denote dual operators and RL2(Ak) is the

Riesz map of the space L2(Ak), see (16). Hence, the continuous Lagrangian
update in Example 1 is

λA
k

= [RL2(Ak)]
−1[B̂A

k
]′wk,

or

RL2(Ak)λ
Ak = [B̂A

k
]′wk.

We again refer to [9] for further details about the discretization. Let the
superscript notation ”Ak” and ” : ” denote the active indices and all the
indices, respectively. The discretized update for the Lagrange multiplier
then reads

MA
k,Ak

v λ̄A
k

= MA
k,:w̄k.
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[15] F. Tröltzsch. Optimal Control of Partial Differential Equations: The-
ory, Methods and Applications, volume 112 of Graduate Studies in
Mathematics. American Mathematical Society: Providence, Rhode Is-
land, 2010.

[16] M. Ulbrich and S. Ulbrich. Primal-dual interior-point methods for PDE-
constrained optimization. Mathematical Programming, 117(1-2):435–
485, 2009.

2. PAPER I

57



2. PAPER I

58



3

Paper II - The split Bregman algorithm applied to
PDE-constrained optimization problems with total variation

regularization

This paper is submitted for publication.

59





The split Bregman algorithm applied to

PDE-constrained optimization problems with total

variation regularization
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November 8, 2014

Abstract

We derive an efficient solution method for ill-posed PDE-constrained
optimization problems with total variation regularization. This regu-
larization technique allows discontinuous solutions, which is desirable
in many applications. Our approach is to adapt the split Bregman tech-
nique to handle such PDE-constrained optimization problems. This
leads to an iterative scheme where we must solve a linear saddle point
problem in each iteration. We prove that the spectra of the corre-
sponding saddle point operators are almost contained in three bounded
intervals, not containing zero, with a very limited number of isolated
eigenvalues. Krylov subspace methods handle such operators very well
and thus provide an efficient algorithm. In fact, we can guarantee that
the number of iterations needed cannot grow faster than O([ln(α−1)]2)
as α → 0, where α is a small regularization parameters. Moreover, in
our numerical experiments we demonstrate that one can expect itera-
tion numbers of order O(ln(α−1)).

Keywords: Total Variation regularization, PDE-constrained optimization,
Bregman algorithm, MINRES, KKT systems.

AMS subject classifications: 49K20, 35Q93, 65F22

1 Introduction

In the field of PDE-constrained optimization, sophisticated algorithms and
increased computing power have made it possible to compute numerical
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solutions of many advanced optimization problems. The use of Karush-
Kuhn-Tucker (KKT) systems to solve such problems has become increas-
ingly popular. These optimality systems are usually ill-posed, which leads
to bad condition numbers for the discretized systems. Therefore, some kind
of regularization technique must be invoked. The most popular method is
the Tikhonov regularization technique, since this leads to linear optimality
systems, provided that the state equation is also linear. In [18] the authors
prove that a class of such saddle point systems can be solved efficiently
by applying the Minimal Residual (MINRES) algorithm. More specifically,
they prove that the eigenvalues of the discretized KKT system are almost
contained in three bounded intervals. The number of isolated eigenvalues is
only of order O(ln(α−1)), where α is the regularization parameter. Krylov
subspace methods are well suited to handle systems with such spectra.

It is known, however, that the use of a Tikhonov regularization term pro-
duces a smooth solution. In many inverse problems, the control parameter
is often some physical property, like a heat source, density of a medium or
an electrical potential. When we try to identify such quantities, it might be
desirable to make a sharp separation between regions with different qualities
of the physical property. In other words, we want “jumps” in the solution.
Thus, one might argue that the smooth solutions produced with Tikhonov
regularization are of limited value in such cases. The inverse problem of
electrocardiography is a problem of this type, where one seeks to locate the
ischemic1 region of the heart. This can be achieved with a PDE-constrained
optimization problem, where the control is the electrical potential in the
myocardium, and the data is given in terms of ECG recordings. The is-
chemic area can be determined from the fact that the electrical potential
is (approximately) piecewise constant, with different values in the ischemic
and healthy regions. From an imaging point of view, it would be beneficial
to properly separate these areas [27, 17].

In the field of image analysis, researchers have for decades been interested
in optimization problems with such discontinuous solutions. In [22] the
authors proposed the famous Rudin-Osher-Fatemi (ROF) model

min
v∈BV (Ω)

{
1

2
ρ‖v − d‖2L2(Ω) +

∫

Ω
|Dv| dx

}
, (1)

where the Banach space of functions with bounded variation is defined by

BV (Ω) = {v ∈ L1(Ω) :

∫

Ω
|Dv| dx <∞}, (2)

and the regularization term in (1) is defined by the distribution
∫

Ω
|Dv| dx = sup

{∫

Ω
v div p : p ∈ C1

0 (Ω;Rn); |p|∞ ≤ 1

}
. (3)

1Ischemia is a precursor of heart infarction.
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For elements in W 1,1(Ω), the distribution (3) is equal to the normal weak
derivative, see [1].

The regularization term (3) is known as Total Variation (TV) regular-
ization, and it allows for discontinuous solutions. This ability to include
“jumps” in the solution has made it very popular for denoising pictures.
Unfortunately, (1) is a very challenging problem to solve, since the TV term
is highly non-linear and also non-differentiable. Nevertheless, due to the
desirable denoising property, it has received much attention, and a large
number of solution algorithms have been suggested, see e.g. [5, 25, 4].

The denoising case has been extended to include more sophisticated
problems. In particular, the deblurring problem has been thoroughly an-
alyzed. This problem can be written as

min
v∈BV (Ω)

{
1

2
ρ‖K̂v − d‖2L2(Ω) +

1

2
κ‖v‖2L2(Ω) +

∫

Ω
|Dv| dx

}
, (4)

where K̂ : BV (Ω)→ L2(Ω) typically is a convolution operator, see e.g, [26].
The term 1

2κ‖v‖2L2(Ω), 0 ≤ κ << 1, is added to guarantee uniqueness when

K is non-injective [8]. This deblurring problem is the starting point for our
PDE-constrained optimization formulation. Mathematically, an abstract
form of a finite dimensional PDE-constrained optimization problem with
TV regularization reads

min
(vh,uh)∈Vh×Uh

{
1

2
ρ‖Tuh − dh‖2Z +

1

2
κ‖vh‖2L2(Ω) +

∫

Ω
|Dvh| dx

}
, (5)

subject to
Auh +Bvh = 0, (6)

where

1. Vh = H1
h(Ω), i.e. P 1

h equipped with the H1-norm, is the control space,
1 ≤ dim(Vh) < ∞. The reason for this choice of norm will become
clear when we discuss the preconditioner.

2. Uh = U ∩ Pnh is the state space, 1 ≤ dim(Uh) <∞, and

3. Zh = Z ∩ Pnh is the observation space, 1 ≤ dim(Zh) <∞.

From [8] it follows that this problem has a unique solution if κ > 0, or
if TA−1B is injective. Here, U and Z are Hilbert spaces, Pnh is a n-th
order scalar FEM space and (6) is a discretized PDE. Furthermore, dh is
the given observation data, the domain Ω ⊂ Rn is bounded, and ρ > 1 is
the regularization parameter2. The operators A, B and T will be discussed
properly in Section 3.

2Often the regularization parameter is placed in front of the regularization term and
not in front of the data fidelity term. In the former approach, the values will then typically
be 1/ρ.
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Note that we limit our study to discretized problems posed in terms
of finite dimensional spaces. This simplifies the discussion of the TV-
regularization and enables the use of the results published in [18].

For a specific kind of elliptic equation, the use of total variation regular-
ization has been used to identify discontinuous coefficients. Basically, such
problems have been solved with an augmented Lagrangian method, see e.g.
[6, 9], or a level set method, see e.g. [14, 7].

The objective of this paper is to propose and analyze an efficient algo-
rithm for solving the general problem (5)-(6). To succeed with this objective,
we must not only guarantee an efficient iterative solution of the non-linear
total variation term, but also for the inner systems that we will obtain in
each iteration of the outer algorithm. This will be achieved by combining
the analysis in [18] with a successful method for solving (4), namely the split
Bregman method [10]. In more detail, we outline the paper as follows:

• Section 2 contains a brief introduction to the split Bregman algorithm.

• In Section 3 we show how the PDE-constrained optimization problem
(5)-(6) can be modified in such a way that we can apply the split
Bregman algorithm.

• In Section 4 we prove that the KKT systems that arise in each iteration
of the split Bregman algorithm have a spectrum almost contained in
three bounded intervals, with a very limited number of isolated eigen-
values. Hence, Krylov subspace algorithms will handle these systems
very well. We will come back to the exact form of this spectrum in
Section 4.

• Section 5 presents an alternative version of the split Bregman algo-
rithm.

• In Section 6 we illuminate the theoretical results with some numerical
experiments.

• Finally, the conclusions are presented in Section 7.

2 Brief overview of the split Bregman algorithm

The split Bregman method has its roots in the Bregman iteration, which is
an algorithm for computing extrema of convex functionals [2]. Later, it was
used in [19] as a new regularization procedure for inverse problems. In [10]
the authors used this approach to find an effective solution method for L1-
regularization problems. In particular, they demonstrated why this method
works well for total variation problems. The authors started by writing (4)
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on the form

min
vh,ph∈Vh×P0

h

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +

∫

Ω
|ph|
}
, (7)

subject to

∇vh = ph, (8)

where P0
h is a vector space of piecewise constant functions.

We will not go into details on how the split Bregman algorithm is derived,
instead we refer to [10] and [3]. We would, however, like to highlight an
interesting remark from [3]: Note that the problem (7)-(8) can be solved by
sequentially solving the penalty formulation

min
vh,ph∈Vh×P0

h

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω)

+

∫

Ω
|ph|+

1

2
λk‖∇vh − ph‖2L2

h(Ω),

}

where λk → ∞. Unfortunately, such penalty methods are ineffective, and
leads to numerical difficulties as λk grows large.

In the split Bregman algorithm, see Algorithm 1, we note that the pa-
rameter λ is fixed. Instead, it is the “data” that varies with the introduction
of bk, where bk can be interpreted as the Lagrange multiplier estimate asso-
ciated with (8). Hence, we obtain much better numerical stability. In [29]
and [28] it is explained why the split Bregman scheme can be consider as an
augmented Lagrangian method [11, 21].

Algorithm 1 The split Bregman algorithm for total variation regular-
ization

1: Choose v0
h = 0, p0

h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: vk+1

h = arg minvh∈Vh
1
2ρ‖Kvh−dh‖2Zh + 1

2κ‖vh‖2L2
h(Ω)

+ 1
2λ‖∇vh− pkh +

bkh‖2L2
h(Ω)

,

4: pk+1
h = arg minph∈P0

h

∫
Ω |ph|+ λ

2‖∇vk+1
h − ph + bkh‖2L2

h(Ω)
,

5: bk+1
h = bkh +∇vk+1

h − pk+1
h .

6: end for

Before we end this section, we would like to present one important the-
orem from [3]:
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Theorem 2.1. Assume that there exists at least one solution v∗h of (7)-(8).
Then the split Bregman algorithm satisfies

lim
k→∞

1

2
ρ‖Kvkh − dh‖2Zh +

1

2
κ‖vkh‖2L2

h(Ω) +

∫

Ω
|∇vkh| dx

=
1

2
ρ‖Kv∗h − dh‖2Zh +

1

2
κ‖v∗h‖2L2

h(Ω) +

∫

Ω
|∇v∗h| dx.

If the solution v∗h is unique, we also have

lim
k→∞

‖vkh − v∗h‖L2
h(Ω) = 0.

3 Split Bregman algorithm for PDE-constrained
optimization problems

Recall that our main objective is to derive an efficient solution method
for (5)-(6), i.e. for rather general PDE-constrained optimization problems
subject to TV regularization. We will restrict our analysis to problems that
satisfy the assumptions

A1 : A : Uh → U ′h is bounded and linear.

A2 : A−1 exists and is bounded.

A3 : B : Vh → U ′h is bounded and linear.

A4 : T : Uh → Zh is bounded and linear.

Here, bounded should be interpreted as; having operator norm which is
bounded independently of the mesh parameter h.

Due to assumption A2, we can write (6) on the form

uh = −A−1Bvh. (9)

Consequently, we might formulate the minimization problem (5)-(6) as

min
v∈Vh

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +

∫

Ω
|∇vh| dx

}
(10)

where K : Vh → Zh is defined by

K = −TA−1B. (11)

We observe that the minimization problem (10) is on the same form as (4).
This motivates the use of the split Bregman algorithm. Unfortunately, how-
ever, the explicit computation of the operator K is not possible in practical
applications; if (6) is a PDE, then the inverse of A is typically too expensive
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to compute explicitly. This issue has been handled, in the case of Tikhonov
regularization, by solving the associated KKT system. The purpose of this
paper is to adapt the KKT approach to the framework of the split Breg-
man algorithm. As we will see below, this yields an efficient and practical
solution method for PDE-constrained optimization problems subject to TV
regularization.

We do this by applying Algorithm 1 to the minimization problem (10).
Step 5 in Algorithm 1 is straightforward. Furthermore, Step 4 is, since3

∇vk+1
h , pkh, b

k
h ∈ P0

h, very cheap to solve by the shrinkage operator

pk+1
h,xi

(x) = shrink

(
∇xivk+1

h (x) + bkh,xi(x),
1

λ

)
, (12)

where
shrink(a, b) =

a

|a| ∗max(a− b, 0),

see [10]. Hence, the challenge is to find the minimizer of Step 3. That is, we
must solve the minimization problem

min
vh∈Vh

{
1

2
ρ‖Kvh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +
1

2
λ‖∇vh − pkh + bkh‖2L2

h(Ω)

}
,

where dh, p
k
h and bkh are given quantities. By combining this minimization

problem with equations (9) and (11), we get the equivalent constrained
minimization problem:

min
vh,uh∈Vh×Uh

{
1

2
ρ‖Tuh − dh‖2Zh +

1

2
κ‖vh‖2L2

h(Ω) +
1

2
λ‖∇vh − pkh + bkh‖2L2

h(Ω)

}

(13)
subject to

Auh +Bvh = 0. (14)

For the sake of simplicity, we want our optimality system to be as similar
as possible to the optimality system analyzed in [18]. Thus, we need to scale
the cost-functional in (13) such that we get

min
vh,uh∈Vh×Uh

{
1

2
‖Tuh − dh‖2Zh +

1

2
γ‖vh‖2L2

h(Ω) +
1

2
α‖∇vh − pkh + bkh‖2L2

h(Ω)

}

(15)
subject to (14), where

α =
λ

ρ
and γ =

κ

ρ
. (16)

Next, we can introduce the Lagrangian associated with (14)-(15):

L(vh, uh, wh) =
1

2
‖Tuh − dh‖2Zh +

1

2
γ‖vh‖2L2

h(Ω)

+
1

2
α‖∇vh − pkh + bkh‖2L2

h(Ω) + 〈Auh +Bvh, wh〉.
3For higher order discretizations, the problem in Step 4 becomes more difficult to solve.
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The first-order optimality conditions can be found by computing the deriva-
tives of the Lagrangian with respect to vh, uh and wh. These conditions can
be expressed by the KKT system



−α∆ + γE 0 B′

0 T ′T A′

B A 0




︸ ︷︷ ︸
Âα



vh
uh
wh


 =



−α∇ · pkh + α∇ · bkh

T ′dh
0


 , (17)

where ” ′ ” is used to denote dual operators, and E : Vh → V ′h is defined by

〈Evh, φh〉 = (vh, φh)L2
h(Ω), φh ∈ Vh.

We have thus derived a new system of equations to be solved in Step
3 in Algorithm 1, which does not require the explicit inverse of A. Also
note the form of the operator −∆ : Vh → V ′h in the top left corner of the
KKT system (17). In an infinite dimensional setting, this operator must
be replaced with the more involved operator D′D : BV (Ω) → BV (Ω)′, see
[8] for a thorough discussion of this operator.4 The operator D′D is much
more challenging to analyze, but it coincides with the operator −∆ in a
finite dimensional setting, which follows from the fact that Dv = ∇v for
all elements in W 1,1(Ω), see [1]. This concludes the discussion of Step 3 in
Algorithm 1.

We might now formulate the full algorithm for solving the PDE-constrained
optimization problem (5)-(6), see Algorithm 2.

Algorithm 2 The split Bregman algorithm for PDE-constrained opti-
mization problems with TV regularization

1: Choose v0
h = 0, p0

h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: Let (vk+1

h , uk+1
h , wk+1

h ) be the solution of (17).

4: pk+1
h = arg minph∈P0

h

∫
Ω |ph|+ λ

2‖∇vk+1
h − ph + bkh‖2L2

h(Ω)
,

5: bk+1
h = bkh +∇vk+1

h − pk+1
h .

6: end for

The efficiency of the split Bregman algorithm has been demonstrated
earlier, see e.g. [10, 3]. Of the three inner steps of the for-loop in Algorithm
2, the update of bkh is obviously cheap, and the update of pkh is accomplished
by the simple shrinkage operator (12). What remains, however, is to analyze
the spectrum of the KKT system in (17), see Step 3 in Algorithm 2: The
efficiency of the algorithm is highly dependent on how fast we can solve
these KKT systems with, e.g., Krylov subspace solvers.

4In fact, it is possible to work with the dual space of BV with respect to the weak-*
topology, which leads to the Laplacian instead of D′D in a function space as well [12, 13].
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4 Spectrum of the KKT system

In its current form, the operator Âα in (17) is a mapping from the product
space Vh × Uh × Uh onto the dual space V ′h × U ′h × U ′h. Since this operator
maps to the dual space, and not to the space itself, it is not possible to use
the MINRES method directly. A remedy exists, however, in the form of
Riesz maps. In this case, we must introduce the two Riesz maps

RVh : Vh → V ′h,

RUh : Uh → U ′h.

This enables us to use the MINRES algorithm, since the KKT system (17)
can be written as


R−1
Vh

0 0

0 R−1
Uh

0

0 0 R−1
Uh




︸ ︷︷ ︸
R−1



−α∆ + γE 0 B′

0 T ′T A′

B A 0




︸ ︷︷ ︸
Âα



vh
uh
wh




=



R−1
Vh

0 0

0 R−1
Uh

0

0 0 R−1
Uh






−α∇ · pkh + α∇ · bkh

T ′dh
0


 , (18)

where
R−1Âα : Vh × Uh × Uh → Vh × Uh × Uh.

The operator R−1 can be considered to be a preconditioner. See [16, 18] for
a more thorough analysis.

We performed an experimental investigation that suggested the use of
small values of α to obtain good convergence results for the outer split Breg-
man algorithm. That is, λ/ρ should be small, see (16). According to stan-
dard theory for Krylov subspace methods, the number of iterations needed
by the MINRES algorithm is of the same order as the spectral condition
number of the involved operator. In our case, this corresponds to iterations
numbers of order O(α−1), when γ = 0. We will now show that this estimate
is very pessimistic.

Since the case γ = 0 is the most challenging, and also the most inter-
esting, we will for the rest of the analysis assume that this is the case, i.e.
γ = 0. Let us first simplify the notation in (18), and write the operator
R−1Âα in the form

R−1Âα = Aα =



αQ 0 B̃∗

0 T ∗T Ã∗

B̃ Ã 0


 , (19)

where we have the following definitions:
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• Q = −R−1
Vh

∆ : Vh → Vh,

• B̃ = R−1
Uh
B : Vh → Uh,

• Ã = R−1
Uh
A : Uh → Uh,

• T ∗T = R−1
Uh
T ′T : Uh → Uh.

In this new form, the operator Aα in (19) is very similar to the operator
analyzed in [18]. In fact, they analyzed the operator Bα : Vh × Uh × Uh →
Vh × Uh × Uh, defined as

Bα =



αI 0 B̃∗

0 T ∗T Ã∗

B̃ Ã 0


 . (20)

The main result in [18] is that the spectrum of Bα is of the form

sp(Bα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN(α)} ∪ [a, b],

where
N(α) = O(ln(α−1)

and the constants a, b and c > 0 are independent of the parameter α. The
analysis in [18] is roughly performed as follows:

• The negative eigenvalues are shown to be bounded away from zero,
regardless of the size of regularization parameter α ≥ 0. That is, it
even holds for α = 0. Hence, the negative eigenvalues of Aα, defined
in (19), are bounded away from zero: The argument in [18] can be
adapted to the present situation in a straightforward manner.

• For the positive eigenvalues, the Courant-Fischer-Weyl min-max prin-
ciple is used to show that the difference between the eigenvalues of
B0 and Bα is “small”, where B0 denotes the operator Bα with zero
regularization α = 0. More specifically, they prove that the difference
between the eigenvalues of B0 and Bα, properly sorted, is less than the
size of the regularization parameter 0 < α � 1. It is easy to verify
that a similar property will hold for A0 and Aα. More specifically, the
difference between the eigenvalues of A0 and Aα is less than c̃α, where
c̃ = ‖Q‖.

• Finally, the analysis in [18] requires that

α(vh, vh)Vh + (T ∗Tuh, uh)Uh

must be coercive whenever

Ãuh + B̃vh = 0.
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It is proven in [18] that this property holds for the operator Bα. For
the operator Aα, defined in (19), this analysis is more involved, and
it will therefore be explored in detail here. More specifically, we must
show, provided that suitable assumptions hold, that

α(Qvh, vh)Vh + (T ∗Tuh, uh)Uh

is coercive for all (vh, uh) satisfying

Ãuh + B̃vh = 0.

To further investigate the coercivity problem associated with (19), we
introduce the notation

Xh = Vh × Uh, ‖xh‖Xh = ‖(vh, uh)‖Xh =
√
‖vh‖2Vh + ‖uh‖2Uh ,

Mα =

[
αQ 0
0 T ∗T

]
: Xh → Xh, (21)

N =
[
B̃ Ã

]
: Xh → Uh. (22)

Since we work with finite dimensional spaces, we employ the control
space Vh with the norm

‖ · ‖2Vh = ‖ · ‖2L2
h(Ω) + | · |2H1

h(Ω), (23)

i.e. Vh = H1
h(Ω) ⊂ H1(Ω).

Note that, for the analysis presented below, we must assume that the
operator B satisfies assumption A3 with the norm (23), i.e. that

B : Vh → U ′h

is bounded, which along with assumptions A2 and A4 imply that

Kh = K = −TA−1B = −TÃ−1B̃ : Vh → Zh

is bounded5 (Bounded in the sense that the operator norm is bounded inde-
pendently of h). We must also assume that the discrete solutions converge
toward the correct solution as h→ 0:

lim
h→0
‖vh − v‖H1(Ω) = 0⇒ lim

h→0
‖Khvh − K̂v‖Z = 0, (24)

where K̂ : H1(Ω)→ Z denotes the associated mapping between the infinite
dimensional spaces.

We are now ready to formulate the result concerning the coercivity issue
for the operator Aα defined in (19).

5Except for the presentation and discussion of Lemma 4.1, we simply write K instead
of Kh.
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Lemma 4.1. Let Mα and N be defined as in (21) and (22), respectively.
Assume that (24) holds and that K̂ does not annihilate constants, i.e. the
constant function k /∈ N (K̂). Then there exists h̄ > 0 such that the operator
Mα is coercive on the kernel of N , i.e. for α ∈ (0, 1):

(Mαxh, xh)Xh ≥ cα‖xh‖2Xh (25)

for all h ∈ (0, h̄) and for all xh = (vh, uh) ∈ Xh satisfying

Ãuh + B̃vh = 0. (26)

The constant c is independent of h ∈ (0, h̄) and α > 0.

Proof. We will first show that, if K̂ does not annihilate constants, then there
exist constants h̄ > 0 and c ∈ (0, 1), which is independent of h ∈ (0, h̄), such
that

(Khvh,Khvh)Z ≥ (c− 1)(∇vh,∇vh)L2(Ω)

+ c(vh, vh)L2(Ω), ∀vh ∈ Vh, ∀h ∈ (0, h̄). (27)

Thereafter, we will use this result to prove (25)-(26).
Assume that there do not exist h̄ > 0 and c ∈ (0, 1) such that (27) holds.

We will show that this implies that the constant function k must belong to
the null-space of K̂. If (27) is not satisfied, then it follows that there exist
a sequence

lim
i→∞

hi = 0

and a sequence of functions

{vhi} ⊂ H1(Ω), vhi ∈ H1
hi

(Ω), ‖vhi‖2L2(Ω) = 1,

such that

0 ≤ (Khivhi ,Khivhi)Z <

(
1

i
− 1

)
|vhi |2H1(Ω) +

1

i
(vhi , vhi)L2(Ω)

=

(
1

i
− 1

)
|vhi |2H1(Ω) +

1

i
.

We may choose a sequence with the property ‖vhi‖2L2(Ω) = 1 because the

operator Kh is linear. Since (1/i−1)→ −1 as i→∞, we can conclude that

|vhi |H1(Ω) → 0 as i→∞, (28)

‖Khivhi‖Z → 0 as i→∞. (29)

We will now show that {vhi} has a limit in H1(Ω). Let

S =

{
s ∈ H1(Ω) :

∫

Ω
s dx = 0

}
.
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It is well known that H1(Ω) = S ⊕ R, i.e. every function in H1(Ω) can be
(uniquely) expressed as a sum of a function in S and a constant. Hence,

vhi = shi + ri, where

shi ∈ S,
ri ∈ R is a constant.

From this splitting, we obtain

0 ≤ |shi |H1(Ω) = |shi + ri|H1(Ω) = |vhi |H1(Ω) → 0 as i→∞, (30)

see (28).

This enables us to use the Poincaré inequality to conclude that

0 ≤ ‖shi‖L2(Ω) ≤ C|shi |H1(Ω) → 0 as i→∞,

i.e.

‖shi‖L2(Ω) → 0 as i→∞. (31)

Furthermore, recall that ‖vhi‖2L2(Ω) = 1 and that
∫

Ω shi dx = 0. Thus, it
follows that

1 = ‖vhi‖2L2(Ω)

= ‖shi + ri‖2L2(Ω)

= ‖shi‖2L2(Ω) + 2(shi , ri)L2(Ω) + ‖ri‖2L2(Ω)

= ‖shi‖2L2(Ω) + 2ri

∫

Ω
shi dx+ ‖ri‖2L2(Ω)

= ‖shi‖2L2(Ω) + |Ω|(ri)2,

which yields

(ri)
2 =

1

|Ω|
(

1− ‖shi‖2L2(Ω)

)
.

By using (31) we get

ri =
1√
|Ω|
√

1− ‖shi‖2L2(Ω)
→ r∗ =

1√
|Ω|

as i→∞.

We claim that also the sequence {vhi} converges toward r∗ in H1(Ω):

vhi → r∗ =
1√
|Ω|

in H1(Ω).
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This follows from the fact that shi = vhi − ri and (30)-(31):

‖vhi − r∗‖H1(Ω) = ‖vhi − ri + ri − r∗‖H1(Ω)

≤ ‖vhi − ri‖H1(Ω) + ‖ri − r∗‖H1(Ω)

= ‖shi‖H1(Ω) + ‖ri − r∗‖H1(Ω)

= ‖shi‖H1(Ω) + ‖ri − r∗‖L2(Ω)
i→∞−−−→ 0.

Here, we have used that {ri} is a sequence of constants and that r∗ is a
constant, which implies that ‖ri − r∗‖H1(Ω) = ‖ri − r∗‖L2(Ω) and that

ri → r∗ in R⇒ ‖ri − r∗‖L2(Ω) → 0,

provided that Ω has finite measure.

Since {vhi} converges toward r∗ in H1(Ω), we may employ assumption
(24) to find that

lim
i→∞
‖Khivhi‖Z = ‖K̂r∗‖Z .

By combining these observations with (29), we conclude that

r∗ ∈ N (K̂).

To summarize, if (27) does not hold, then K̂ annihilates constants. Con-
versely, if K̂ does not annihilate constants, (27) must hold.

We are now ready to show that (25)-(26) does indeed hold. Note that
(27) can be written on the form: There exists c ∈ (0, 1) such that

(∇vh,∇vh)L2(Ω) + (Khvh,Khvh)Z

≥ c[(∇vh,∇vh)L2(Ω) + (vh, vh)L2(Ω)],

∀vh ∈ Vh and ∀h ∈ (0, h̄). (32)

Assume that x = (vh, uh) ∈ Xh satisfies the state equation, i.e.

Ãuh + B̃vh = 0.

Then,

uh = −Ã−1B̃vh, (33)

and since Ã−1B̃ is assumed to be bounded independently of h,

‖uh‖Uh ≤ c̄‖vh‖Vh . (34)

In addition,

Tuh = −TÃ−1B̃vh = Khvh. (35)
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Therefore, see (21), for α ∈ (0, 1) and h ∈ (0, h̄),

(Mαxh, xh)Xh = α(∇vh,∇vh)L2
h(Ω) + (T ∗Tuh, uh)Uh

≥ α[(∇vh,∇vh)L2
h(Ω) + (Tuh, Tuh)Zh ]

= α[(∇vh,∇vh)L2
h(Ω) + (Khvh,Khvh)Zh ],

where we have used (35). Next, by invoking (32) and (34) we can conclude
that

(Mαxh, xh)Xh ≥ α[(∇vh,∇vh)L2
h(Ω) + (Khvh,Khvh)Zh ],

≥ αc[(∇vh,∇vh)L2
h(Ω) + (vh, vh)L2

h(Ω)],

≥ αc[0.5(∇vh,∇vh)L2
h(Ω) + 0.5(vh, vh)L2

h(Ω) + 0.5c̄−2‖uh‖2Uh ],

≥ αcmin{0.5, 0.5c̄−2}‖(vh, uh)‖2Xh . (36)

That is, Mα is coercive on the kernel of N , cf. (22).

We will now use this lemma to establish the main result of this section.
First, however, we note that:

Remark 1: From A1-A3 it follows that the inf-sup condition holds, i.e.

inf
wh∈Uh

sup
(vh,uh)∈Vh×Uh

(B̃vh, wh)Uh + (Ãuh, wh)Uh√
‖vh‖2Vh + ‖uh‖2Uh‖wh‖Uh

≥ c > 0. (37)

Remark 2: Since we consider finite dimensional problems, there always
exist positive constants c̃, C̃ such that

|τi(A0)| ≤ c̃e−C̃i, i = 1, 2, . . . , n, (38)

where τi(A0) denotes the ith eigenvalue of A0 sorted in decreasing
order according to their absolute value. Here, A0 is Aα with α = 0,
i.e. without regularization. (Aα is defined in (19)).

We consider ill-posed PDE-constrained optimization tasks. For such
problems, c̃e−C̃n will typically be extremely small, i.e. much smaller
than practical choices of the size of the regularization parameter.

Let us state the theorem:

Theorem 4.2. Assume that all assumptions of Lemma 4.1 hold and that
h ∈ (0, h̄). Then there exist constants a, b, c > 0 such that, for α ∈ (0, 1),
the spectrum of Aα, defined in (19), satisfies

sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN(α)} ∪ [a, b], (39)

where

N(α) ≤
⌈

ln(c̃)− ln(α)

C̃

⌉
= O(ln(α−1)).

Here c̃, C̃ are the constants in (38).
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Proof. Since we consider finite dimensional problems, the theorem follows
from Lemma 4.1 and the analysis presented in [18].

Since the spectrum of Aα is of the form (39), we can conclude that
the MINRES method will handle the KKT systems (18) very well. More
precisely, the number of iterations needed by the MINRES scheme to solve
(18) can not grow faster than O([ln(α−1)]2) as α → 0, see [18]. In fact, in
practice, iterations counts of order O(ln(α−1)) will in many situations occur,
which is also explained in [18].

Note that, while the optimality system (5)-(6) requires that either K =
−TA−1B : Vh → Zh is injective or that γ > 0 to obtain a unique solution,
see [8], the inner MINRES algorithm only requires that the constant k does
not belong to the null-space of K̂.

5 Constrained split Bregman algorithm

The split Bregman algorithm we have analyzed is in [10] referred to as the
unconstrained split Bregman method. For some applications, the related
constrained split Bregman algorithm, also introduced in [10], produces bet-
ter convergence rates. In order to discuss the latter method, we observe that
the problem (4) can be formulated on the related, constrained form

min
v∈BV (Ω)

{
1

2
κ‖v‖2L2(Ω) +

∫

Ω
|p| dx

}
,

subject to

K̂v = d on Ωobserve,

Dv = p on Ω.

Here, Ωobserve is the domain on which the observation data d is defined. The
constraints are “implicit” in the sense that they are not necessarily satisfied
in each step of the split Bregman algorithm, see [10]. Instead, the scheme
generates approximations which converge toward functions satisfying these
constraints, and a natural stopping criterion is thus

‖K̂vk − d‖Z < TOL.

Details about the constrained split Bregman algorithm associated with this
problem can be found in [3].

It turns out that this constrained approach also can be applied to a
PDE-constrained optimization problem, and an experimental investigation
gave us better convergence results with this latter approach. We will there-
fore present the constrained split Bregman algorithm for discretized PDE-
constrained optimization problems of the form

min
vh∈Vh

{
1

2
κ‖vh‖2L2

h(Ω) +

∫

Ω
|ph| dx

}
,
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subject to

Auh +Bvh = 0,

Tuh = dh on Ωobserve,

Dvh = ph on Ω.

Note that the first constraint here is “explicit”, i.e. it must be satisfied in
each step of the algorithm. The latter two constraints are “implicit”.

Recall the KKT system (17) that we derived in connection with Algo-
rithm 2. For the constrained split Bregman method, we get the very similar
optimality system



−α∆ + γE 0 B′

0 T ′T A′

B A 0




︸ ︷︷ ︸
Âα



vh
uh
wh


 =



−α∇ · pkh + α∇ · bkh

T ′dh − T ′ckh
0


 , (40)

where ” ′ ” is used to denote dual operators, and E : Vh → V ′h is defined by

〈Evh, φh〉 = (vh, φh)L2
h(Ω), φh ∈ Vh.

Compared with (17), only the term −T ′ckh has been added to the second

row of the right hand side of (40). The operator Âα on the left hand side is
unchanged, and our analysis of the MINRES method, presented above, also
applies to this KKT system. The associated algorithm is, of course, similar
to Algorithm 2, see Algorithm 3.

Algorithm 3 The constrained split Bregman for PDE-constrained op-
timization problems with TV regularization

1: Choose v0
h = 0, p0

h = 0, b0h = 0
2: for k = 0, 1, 2,... do
3: Let vk+1

h , uk+1
h and wk+1

h be the solution of (40).

4: pk+1
h = arg minph∈P0

h

∫
Ω |ph|+ λ

2‖∇vk+1
h − ph + bkh‖2L2

h(Ω)
,

5: bk+1
h = bkh +∇vk+1

h − pk+1
h ,

6: ck+1
h = ckh + Tuk+1

h − dh.
7: end for

We observe that Algorithm 3 only requires one more simple update com-
pared with Algorithm 2: The update for ck+1

h . This extra computer effort is
diminishingly small, and since we obtain better convergence results, we will
present numerical experiments with the use of Algorithm 3 only.
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6 Numerical experiments

6.1 Example 1

Let Ω = (0, 1)×(0, 1). We consider the standard example in PDE-constrained
optimization, but with TV regularization instead of Tikhonov regularization.
That is,

min
(vh,uh)∈Vh×Uh

{
1

2
ρ‖Tuh − dh‖2L2

h(Ω) +

∫

Ω
|Dvh|

}
, (41)

subject to

−∆uh + uh = vh in Ω, (42)

∇uh · n = 0 on ∂Ω, (43)

where the control space Vh, the state space Uh and the observation space
Zh are

Vh = H1
h(Ω) = H1(Ω) ∩ P 1

h , (44)

Uh = H1
h(Ω), (45)

Zh = L2
h(Ω) = L2(Ω) ∩ P 1

h , (46)

respectively. Furthermore, the operator T is the embedding T : H1(Ω) ↪→
L2(Ω). Hence, assumption A4 is satisfied.

Recall that our objective is to solve this system with Algorithm 3. The
main challenge is the efficient solution of the KKT systems (40). To derive
this optimality system, we need the weak formulation of the boundary value
problem (42)-(43).

Computational details. The weak formulation reads: Find uh ∈ Uh
such that

〈Auh, ψh〉 = −〈Bvh, ψh〉 ∀ψh ∈ Uh,

where

A : Uh → U ′h, uh →
∫

Ω
∇uh · ∇ψh + uhψh dx, ∀ψh ∈ Uh, (47)

B : Vh → U ′h, vh →
∫

Ω
vhψh dx,∀ψh ∈ Uh. (48)

From standard PDE theory, we find that A and A−1 have operator norms
which are bounded independently of h. The boundedness of

B : Vh → U ′h,
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where one employs the H1-topology (23) on Vh, follows from the inequalities

∫

Ω
vhψh dx ≤ ‖vh‖L2

h(Ω) · ‖ψh‖L2
h(Ω)

≤
√
‖vh‖2L2

h(Ω)
+ |vh|2H1

h(Ω)
·
√
‖ψh‖2L2

h(Ω)
+ |ψh|2H1

h(Ω)

= ‖vh‖Vh · ‖ψh‖Uh .

We conclude that assumptions A1, A2 and A3 are satisfied.

The KKT system to be solved in Algorithm 3 now takes the form



R−1
Vh

0 0

0 R−1
Uh

0

0 0 R−1
Uh




︸ ︷︷ ︸
R−1



−α∆ 0 B′

0 T ′T A′

B A 0




︸ ︷︷ ︸
Âα



vh
uh
wh




=



R−1
Vh

0 0

0 R−1
Uh

0

0 0 R−1
Uh






−α∇ · pkh + α∇ · bkh

T ′dh − T ′ckh
0


 . (49)

Recall that α = λ/ρ, where ρ is the regularization parameter in (41) and
λ is the parameter employed in the Bregman scheme, see the discussion of
(13)-(16).

The discretization of the operator R in (49) is rather straightforward.
Recall that the finite dimensional space Vh was equipped with the norm
‖ · ‖H1

h(Ω). Furthermore, since U = H1(Ω) in this particular example, it
follows that the discretization of both of the Riesz maps RVh and RUh yields
the sum of the mass matrix M and stiffness matrix S.

For the operator Âα in (49), the discretization is more challenging, but
a general recipe can be found in [16]. The end result can be summarized as
follows:

• A, defined in (47), yields the matrix M + S, which is the sum of the
mass and stiffness matrices associated with the domain Ω.

• B, defined in (48), yields the mass matrix M .

• −∆ yields the stiffness matrix S.

• T ′T = R−1
Uh
T ∗T yields the mass matrix M .

• The functions vh, uh, wh, pkh, bkh, ckh and dh yields the corresponding
vectors v̄, ū, w̄, p̄k, b̄k, c̄k and d̄, respectively.
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Hence, the matrix ”version” of (49) is



(M + S)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1




︸ ︷︷ ︸
R̄−1



αS 0 M
0 M M + S
M M + S 0




︸ ︷︷ ︸
Āα



v̄k+1

ūk+1

w̄k+1




︸ ︷︷ ︸
q̄k+1

=




(M + S)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1





−α∇ · p̄k + α∇ · b̄k

Md̄−Mc̄k

0




︸ ︷︷ ︸
ḡk

.

(50)

The preconditioner thus reads



(M + S)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1


 , (51)

and involves the inverse of the matrix M + S. This inverse is computed
approximately by using algebraic multigrid (AMG). We discuss this in some
more detail in the numerical setup.

Numerical setup.

• We wrote the code using cbc.block, which is a FEniCS-based Python
implemented library for block operators. See [15] for details.

• The PyTrilinos package was used to compute an approximation of
the preconditioner (51). We approximated the inverse using AMG
with a symmetric Gauss-Seidel smoother with three smoothing sweeps.
All tables containing iteration counts for the MINRES method were
generated with this approximate inverse Riesz map. On the other
hand, the eigenvalues of the KKT systems [R̄]−1Āα, see (50), were
computed with an exact inverse [R̄k]−1 computed in Octave.

• To discretize the domain, we divided Ω = (0, 1) × (0, 1) into N × N
squares, and each of these squares were divided into two triangles.

• The MINRES iteration process was stopped as soon as

‖rkn‖
‖rk0‖

=

[
( Āαq̄kn − ḡk, [R̄]−1[Āαq̄kn − ḡk] )

( Āαq̄k0 − ḡk, [R̄]−1[Āαq̄k0 − ḡk] )

]1/2

< ε. (52)

Here, ε is a small positive parameter. Note that the superindex k is
the iteration index for the ”outer” split Bregman method, while the
subindex n is the iteration index for the ”inner” MINRES algorithm
(at each step of the split Bregman method).
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Figure 1: The eigenvalues of [R̄k]−1Āα in Example 1. Here, α = 0.0001
and N = 32, i.e. h = 1/32. ([R̄k]−1 denotes the exact inverse of the
preconditioner - not its AMG approximation).

• No noise was added to the input data dh, see (41).

Results. We are now ready to solve the problem (41)-(43). The synthetic
data dh was produced by setting

vh(x) =

{
−5 if x2 < 0.5,

7 if x2 > 0.5,
(53)

and then we solved the boundary value problem (42)-(43) with (53) as input.
The data dh was thereafter set equal to the solution uh throughout the entire
domain Ω = (0, 1)× (0, 1).

Theorem 4.2 states that the KKT system (18)-(19) arising in each iter-
ation of the split Bregman iteration has a spectrum of the form (39). In
Figure 1, we see a spectrum of such a KKT system, and it is clearly of the
form (39). Hence, we should expect the MINRES algorithm to solve the
problem efficiently.

Table 1 illuminates the theoretically established convergence behavior of
the MINRES algorithm. As previously mentioned, in [18] the authors proved
that the number of iterations can not grow faster than O([ln(α−1)]2), and
showed why iteration growth of O(ln(α−1)) often occur in practice. For
ε = 10−6, see (52), and N = 256, we get the following estimate for the
iteration growth

40.2− 21.6 log10(α),
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where the coefficients are computed by the least squares method. The
growth is very well modeled by this formula. Similarly, for ε = 10−10 and
N = 256, we can model the growth by the formula

57.6− 43.5 log10(α).

N\α 1 .1 .01 .001 .0001

32 22 37 47 59 73

64 31 51 63 81 102

128 26 42 59 75 97

256 39 62 84 108 124

(a) Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 32 61 81 98 116

64 43 82 115 143 173

128 40 74 110 142 170

256 54 103 152 182 232

(b) Stopping criterion ε = 10−10.

Table 1: The average number of MINRES iterations required to solve the
KKT systems arising in the first ten steps of the split Bregman algorithm
in Example 1. The two panels display the iteration counts for two different
choices of ε, see (52).

In Figure 2, four approximate solutions of the optimization problem (41)-
(43) are displayed: After 10, 30, 50 and 70 Bregman iterations. From this
figure, we observe that the jump is “found” after the first 30 iterations, cf.
(53). The subsequent iterations merely “tightens” the jump and levels out
the other parts of the solution. This behavior is similar to the one described
for the image denoising algorithm in [10], where the authors also gave an
explanation for why the split Bregman algorithm would quickly localize the
jump(s).

Remark. As mentioned above, the problem (41)-(43), with Tikhonov reg-
ularization instead of TV regularization, has been analyzed by many scien-
tists. In fact, for Tikhonov regularization a number of numerical schemes
that are completely robust with respect to the size of the regularization
parameter have been developed [24, 23, 20]: Even logarithmic growth in
iterations counts is avoided. As far as the authors knows, it is not know
whether these techniques can be adapted to the saddle point problem (49).

6.2 Example 2

We will now explore a more challenging problem. Let the domain Ω still
be the unit square. Furthermore, define

Ω̃ = (1/4, 3/4)× (1/4, 3/4).
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(a) Approximative inverse (b) Approximative inverse
solution generated with 10 solution generated with 30

split Bregman iterations, i.e. v10
h . split Bregman iterations, i.e. v30

h .

(c) Approximative inverse (d) Approximative inverse
solution generated with 50 solution generated with 70

split Bregman iterations, i.e. v50
h . split Bregman iterations, i.e. v70

h .

Figure 2: The solution of the problem (41)-(43). Here, ε = 10−6, α = 10−6

and N = 128 (i.e. h = 1/128).
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The problem we want to study is

min
(vh,uh)∈Vh×Uh

{
1

2
ρ‖Tuh − dh‖2L2

h(∂Ω) +

∫

Ω̃
|Dvh|

}
, (54)

subject to

−∆uh + uh =

{
−vh if x ∈ Ω̃,

0 if x ∈ Ω \ Ω̃,
(55)

∇uh · n = 0 on ∂Ω, (56)

where the control space Vh, the state space Uh and the observation space
Zh are

Vh = H1
h(Ω̃), (57)

Uh = H1
h(Ω) = H1(Ω) ∩ P 1

h , (58)

Zh = L2
h(∂Ω) = L2(∂Ω) ∩ T (P 1

h ), (59)

respectively. Furthermore, the operator T : H1(Ω) → L2(∂Ω) is the trace
operator. Hence, assumption A4 is satisfied.

We observe two differences between examples 1 and 2. First, the control
domain Ω̃ is now a subdomain of the entire domain Ω, bounded strictly away
from the boundary ∂Ω. Secondly, the observation domain is reduced from
the entire domain Ω to the boundary ∂Ω.

In this model problem, Vh does not coincide with the control space de-
fined in bullet point 1 in Section 1. Nevertheless, the proof of Lemma 4.1
can be adapted to the present situation in a straightforward manner, and
Theorem 4.2 therefore also holds for this example.

Since the discretization of (54)-(56) is very similar to the discretization
of (41)-(43), we do not enter into all the details. Instead, we only focus on
the differences.

The weak formulation of the state equations (55)-(56) reads: Find u ∈ Uh
such that

〈Auh, ψh〉 = −〈Bvh, ψh〉 ∀ψh ∈ Uh,

where the operator A is still defined as in (47). The operator B, however, is
no longer as in (48), but is here defined by

B : Vh → U ′h, vh →
∫

Ω̃
vhψh dx,∀ψh ∈ Uh, (60)

where we can employ the norm

‖ · ‖2Vh = ‖ · ‖2
L2
h(Ω̃)

+ | · |2
H1
h(Ω̃)
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on the control space Vh. From standard PDE theory, we can guarantee that
A and A−1 are bounded, and the boundedness of B is verified in a manner
very similar to the argument presented in connection with Example 1:

∫

Ω̃
vhψh dx ≤ ‖vh‖Vh · ‖ψh‖H1

h(Ω̃)

≤ ‖vh‖Vh · ‖ψh‖Uh
because Ω̃ is a subdomain of Ω. We conclude that assumptions A1, A2 and
A3 are satisfied.

The new control domain Ω̃ and the redefined operators B and T lead to
some changes in the discretization of the optimality system (40), which must
be solved repeatedly in Algorithm 3. These can be summarized as follows:

• B, defined in (60), yields the mass matrix M̃ associated with the
subdomain Ω̃.

• −∆ yields the stiffness matrix S̃ associated with the subdomain Ω̃.

• T ′T = R−1
Uh
T ∗T yields the “boundary” mass matrix M∂ .

• The Riesz map RVh now yields the sum of the mass matrix M̃ and
stiffness matrix S̃.

All other operators are discretized in the same fashion as in Example 1.
Hence, the matrix ”version” of the optimality system in Algorithm 3, asso-
ciated with (54)-(56), takes the form




(M̃ + S̃)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1




︸ ︷︷ ︸
R̄−1



αS̃ 0 M̃
0 M∂ M + S

M̃ M + S 0




︸ ︷︷ ︸
Āα



v̄k+1

ūk+1

w̄k+1




︸ ︷︷ ︸
q̄k+1

=




(M̃ + S̃)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1





−α∇ · p̄k + α∇ · b̄k

M∂ d̄−M∂ c̄
k

0




︸ ︷︷ ︸
ḡk

.

(61)

The preconditioner thus reads




(M̃ + S̃)−1 0 0
0 (M + S)−1 0
0 0 (M + S)−1


 . (62)

Results. The synthetic data dh was produced in the same manner as in
Example 1. We computed the synthetic data from the function vh ∈ Vh,
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Figure 3: The eigenvalues of [R̄k]−1Āα in Example 2. Here, α = 0.0001 and
N = 32. ([R̄k]−1 denotes the exact inverse of the preconditioner - not its
AMG approximation).

where

vh(x) =

{
5 if x1 < 0.5,

−5 if x1 > 0.5.
(63)

Note that the forward operator K = −TA−1B does not guarantee a
unique solution of (54)-(56), since the trace operator is not injective, see
[8]. Nevertheless, the forward operator K does not annihilate constants,
and from Theorem 4.2 it then follows that the MINRES algorithm should
handle the KKT systems, arising in each Bregman iteration, very well.

Figure 3 shows the spectrum of [R̄k]−1Āα for this example. This eigen-
value distribution is clearly on the form (39). Hence, in accordance with
Theorem 4.2, we obtain such a spectrum even though K = −TA−1B is not
injective (and κ = 0 in these computations).

Table 2 displays the iteration counts for Example 2. We see that the
growth in the iteration numbers, as α decreases, is handled well by the
MINRES algorithm. For example, for the case of N = 256 and ε = 10−6,
the growth can be modeled by the formula

40.8− 16.2 log10(α).

Similarly, for N = 256 and ε = 10−10, the least squares method gives us the
formula

58.2− 35.6 log10(α),

3. PAPER II

86



as the best logarithmic fit of iteration growth.

N\α 1 .1 .01 .001 .0001

32 29 44 49 55 63

64 34 48 58 67 82

128 36 52 59 69 84

256 41 60 71 84 110

(a) Stopping criterion ε = 10−6.

N\α 1 .1 .01 .001 .0001

32 41 65 82 100 109

64 47 76 104 126 154

128 50 84 112 144 169

256 57 95 131 163 201

(b) Stopping criterion ε = 10−10.

Table 2: The average number of MINRES iterations required to solve the
KKT systems arising in the first ten steps of the split Bregman algorithm
in Example 2. The two panels display the iteration counts for two different
choices of ε, see (52).

The approximate solutions, seen in Figure 4, are very close to the “input
solution” (63). We thus get very good approximations even though we can
not guarantee a unique solution (κ = 0, see [8]).

In Figure 5 we show the inverse solution computed with Tikhonov reg-
ularization. Compared with the results obtained with total variation regu-
larization, we observe that the latter produces far superior results for this
problem. This is to be expected for problems with very sharp transition
zones.

7 Conclusions

We have studied PDE-constrained optimization problems subject to TV
regularization. The main purpose of this text was to adapt the split Bregman
algorithm, frequently used in imaging analysis, to this kind of problems.

In each iteration of the split Bregman scheme, a large KKT system

Aαq = g (64)

must be solved. Here, 0 < α � 1 is a regularization parameter, and the
spectral condition number of Aα tends to ∞ as α→ 0. We investigated the
performance of the MINRES algorithm applied to these indefinite systems.
In particular, we analyzed the spectrum of Aα, and our main result shows
that this spectrum is almost contained in three bounded intervals, with a
small number of isolated eigenvalues. More specifically, we found that

sp(Aα) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN(α)} ∪ [a, b], (65)

where N(α) = O(ln(α−1)). Krylov subspace solvers therefore handle (64)
very well: The number of iterations required by the MINRES method can
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(a) Approximative inverse (b) Approximative inverse
solution generated with 10 solution generated with 30

split Bregman iterations, i.e. v10
h . split Bregman iterations, i.e. v30

h .

(c) Approximative inverse (d) Approximative inverse
solution generated with 50 solution generated with 70

split Bregman iterations, i.e. v50
h . split Bregman iterations, i.e. v70

h .

Figure 4: The solution of the problem (54)-(56). Here, ε = 10−6, α = 10−6

and N = 128 (i.e. h = 1/128).
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Figure 5: Inverse solution computed with standard Tikhonov regularization.
The regularization parameter is 10−4.

not grow faster than O([ln(α−1)]2) as α→ 0, and in practice one will often
encounter growth rates of order O(ln(α−1)).

Our theoretical findings were illuminated by numerical experiments. In
both examples we observed approximately logarithmic growth in iteration
numbers as α→ 0. This is in accordance with our theoretical results.
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PDE-constrained optimization with local control

and boundary observations: Robust preconditioners

Ole Løseth Elvetun∗and Bjørn Fredrik Nielsen†

December 5, 2014

Abstract

We consider PDE-constrained optimization problems with control
functions defined on a subregion of the domain of the state equation.
The main purpose of this paper is to define and analyze robust pre-
conditioners for KKT systems associated with such optimization tasks.
That is, preconditioners that lead to iteration bounds, for the MIN-
RES scheme, that are independent of the regularization parameter α
and the mesh size h.

Our analysis addresses elliptic control problems, subject to Tikhonov
regularization, and covers cases with boundary observations only and
locally defined control functions. A number of numerical experiments
are presented.

Keywords: PDE-constrained optimization, preconditioning, minimal resid-
ual method.

AMS subject classifications: 49K20, 65F08, 65N21, 65F15.

1 Introduction

Parameter robust preconditioners for KKT systems arising in connection
with PDE-constrained optimization have been successfully constructed [10,
11, 12, 13]. Nevertheless, these methods typically assume that observation
data is available throughout the entire domain of the state equation, and that
the control function also is defined on this domain. In [6] it is explained how
one may handle problems with boundary observations only. The purpose
of this text is to further explore this issue. More specifically, to investigate
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Figure 1: An example of a domain Ω with subdomains Ωf and Ω0.

how to design parameter robust preconditioners for problems with locally
defined control functions and with boundary observations only.

Our work is motivated by the fact that many inverse problems, arising
in the engineering sciences and in medical imaging, involve locally defined
controls and limited observation data. This is, for example, the case for the
inverse problem of electrocardiography (ECG).

2 Model problem

Consider the problem:

min
f , u

{
1

2
‖u− d‖2L2(∂Ω) +

1

2
α ‖f‖2

}
(1)

subject to

∆u− u =

{
f in Ωf ,

0 in Ω0 = Ω \ Ωf ,
(2)

∂u

∂n
= 0 on ∂Ω, (3)

where n denotes the outward directed normal vector, of unit length, of ∂Ω.
We are thus aiming at using a L2-boundary observation d, of u, to identify a
source f defined on the subregion Ωf of the domain Ω of the state equation.
Note that Ω0 represents the region Ω \ Ωf , see Figure 1. We assume that
Ωf and Ω are bounded and open domains, with Lipschitz boundaries, and
that ∂Ωf ∩ ∂Ω = ∅.

Since the state u belongs to H1(Ω), it is natural to seek a control f in
the dual space H1(Ωf )′, and the state equations (2)-(3) take the form

∫

Ω
∇u · ∇w + uw dx = −〈f , Rw〉 ∀w ∈ H1(Ω),

where R : H1(Ω)→ H1(Ωf ) denotes the restriction operator, which, for the
sake of simple notation, will be omitted.
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Riesz’ representation theorem implies that any f ∈ H1(Ωf )′ can be
uniquely represented by a function f ∈ H1(Ωf ). Hence, our optimization
problem can be expressed as

min
f∈H1(Ωf ), u∈H1(Ω)

{
1

2
‖u− d‖2L2(∂Ω) +

1

2
α ‖f‖2H1(Ωf )

}
(4)

subject to

∫

Ω
∇u · ∇w + uw dx = −

∫

Ωf

∇f · ∇w + fw dx ∀w ∈ H1(Ω). (5)

Please note that (4)-(5) is similar to the inverse problem of electrocar-
diography, provided that the ST-shift in the transmembrane potential of the
heart is used as the unknown source/control. But the inverse ECG problem
involves conductivity tensors and the state equation does not contain any
zero order terms.

3 Alternative formulation

We will now show that one can replace the state space H1(Ω) in (4)-(5) with
a function space consisting of functions satisfying, in a suitable weak sense,
∆φ− φ = 0 in Ω0. In Section 4 we employ this fact, and properly weighted
Sobolev norms, to prove that the Brezzi conditions hold with α-independent
constants. Thereafter, this insight is used to remove one of the unknowns
from the KKT system and to develop parameter robust preconditioners.

From (5) it follows that the solution u of the state equation satisfies

(u, ψ)H1(Ω) = 0 ∀ψ ∈ S,

where

S =
{
ψ ∈ H1(Ω) | ψ|Ωf = 0

}
,

i.e.

u ∈ U = S⊥.

We will now briefly argue that H1(Ω) in (4)-(5) can be replaced by U .

• Assume that u satisfies (5). Then, we know that u ∈ U and, since U
is a subspace of H1(Ω), it follows that

(u,w)H1(Ω) = −(f, w)H1(Ωf ) ∀w ∈ U. (6)

• Let w ∈ H1(Ω) be arbitrary and recall the orthogonal decomposition

w = q + q⊥, q ∈ S and q⊥ ∈ U.
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Assume that u ∈ U satisfies (6). Then,

(u,w)H1(Ω) = (u, q)H1(Ω) + (u, q⊥)H1(Ω)

= (u, q⊥)H1(Ω)

= −(f, q⊥)H1(Ωf )

= −(f, q⊥)H1(Ωf ) − (f, q)H1(Ωf )

= −(f, w)H1(Ωf ),

where the second last equality follows from the fact that q ∈ S, i.e.
q|Ωf = 0. Since w ∈ H1(Ω) was arbitrary, we conclude that: If u ∈ U
satisfies (6), then u also satisfies (5).

It follows that we may rephrase (4)-(5) as follows:

min
f∈H1(Ωf ), u∈U

{
1

2
‖u− d‖2L2(∂Ω) +

1

2
α ‖f‖2H1(Ωf )

}
(7)

subject to
∫

Ω
∇u · ∇w + uw dx = −

∫

Ωf

∇f · ∇w + fw dx ∀w ∈ U. (8)

3.1 Helmholtz-harmonic extensions

We will now explain why functions in U can be regarded as Helmholtz-
harmonic extensions, to the entire domain Ω, of functions defined on Ωf .
Below it will become evident why we use the term ”Helmholtz-harmonic”.

Let φ ∈ U = S⊥ be arbitrary. Then,

(φ, ψ)H1(Ω) = 0 ∀ψ ∈ S,

or, since all ψ ∈ S satisfy ψ|Ωf = 0,

∫

Ω0

∇φ · ∇ψ + φψ dx = 0 ∀ψ ∈ S,

where we recall that Ω0 = Ω \ Ωf , see Figure 1. The functions in S may be
regarded as zero-extensions of functions belonging to {q ∈ H1(Ω0) | q|∂Ωf =
0}. Thus, provided that the boundaries of Ωf and Ω are Lipschitz, we may
conclude that

φ̃ = φ|Ω0

is the weak solution of

∆φ̃− φ̃ = 0 in Ω0, (9)

φ̃ = φ on ∂Ωf , (10)

∂φ̃

∂n
= 0 on ∂Ω. (11)
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We therefore refer to the functions in U as Helmholtz-harmonic on Ω0.

Standard stability estimates and the trace theorem imply that

‖φ‖H1(Ω0) = ‖φ̃‖H1(Ω0) ≤ c‖φ‖H1/2(∂Ωf ) ≤ C‖φ‖H1(Ωf ). (12)

Throughout this text, c and C denote generic positive constants that are
independent of the regularization parameter α and the grid parameter h.

Lemma 3.1. There exists a positive constant c such that

‖φ‖H1(Ωf ) ≤ ‖φ‖H1(Ω) ≤ c‖φ‖H1(Ωf ) ∀φ ∈ U.

Proof. The first inequality follows from the assumption that Ωf ⊂ Ω. The
second inequality is a consequence of (12).

4 KKT system

The Lagrangian associated with (7)-(8) reads

L(f, u, w) =

{
1

2
‖u− d‖2L2(∂Ω) +

1

2
α ‖f‖2H1(Ωf )

}

+(f, w)H1(Ωf ) + (u,w)H1(Ω),

with f ∈ H1(Ωf ), u ∈ U and w ∈ U . And, from the first order optimality
conditions

∂L
∂f

= 0,
∂L
∂u

= 0,
∂L
∂w

= 0,

we obtain the optimality system: Determine (f, u, w) ∈ H1(Ωf ) × U × U
such that

α(f, ψ)H1(Ωf ) + (ψ,w)H1(Ωf ) = 0 ∀ψ ∈ H1(Ωf ), (13)

(u− d, φ)L2(∂Ω) + (φ,w)H1(Ω) = 0 ∀φ ∈ U, (14)

(f, ϕ)H1(Ωf ) + (u, ϕ)H1(Ω) = 0 ∀ϕ ∈ U. (15)

This system can be written on the form



αÃf 0 A′f

0 M∂ A′

Af A 0




︸ ︷︷ ︸
A3×3
α



f
u
w


 =




0

M̃∂d
0


 , (16)
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where

A : U → U ′, u 7→ (u, · )H1(Ω), (17)

Af : H1(Ωf )→ U ′, f 7→ (f, · )H1(Ωf ), (18)

Ãf : H1(Ωf )→ H1(Ωf )′, f 7→ (f, · )H1(Ωf ), (19)

M∂ : U → U ′, u 7→ (u, · )L2(∂Ω), (20)

M̃∂ : L2(∂Ω)→ U ′, d 7→ (d, · )L2(∂Ω). (21)

The notation ”′” is used to denote dual operators and dual spaces.

4.1 Weighted norms

For α > 0, standard techniques can be employed to show that the Brezzi
conditions hold for (16). In the standard L2- and H1-norms, however, the
constants in the Brezzi conditions depend on α: Typically, the constant
appearing in the coercivity condition is of order O(α). Consequently, we
can not easily obtain an α-robust preconditioner with these norms. To
remedy this, we can follow the procedure in [12] and introduce weighted
Hilbert spaces, which are constructed in such a manner that the constants
appearing in the Brezzi conditions are independent of the regularization
parameter α.

For the control, state and multiplier spaces, we will work with the
weighted norms

‖f‖2Fα = α‖f‖2H1(Ωf ),

‖u‖2Uα = α‖u‖2H1(Ω) + ‖u‖2L2(∂Ω),

‖w‖2Uα−1
=

1

α
‖w‖2H1(Ω).

Note that we must have α > 0 for these norms to make sense.

4.2 Inf-sup condition

The weighted norms give us the possibility to consider the operator A3×3
α in

(16) as a mapping

A3×3
α : Fα × Uα × Uα−1 → F ′α × U ′α × U ′α−1 .

The analysis of saddle-point problems is standard and consists of three steps:
Boundedness, coercivity on the kernel of the state equation, and the inf-sup
condition. That the first two conditions are fulfilled, with α independent
constants, follows from the results published in [9]. Their analysis will there-
fore be omitted. We are left with proving that the inf-sup condition holds,
which we state in the following lemma:
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Lemma 4.1. There exists a constant c > 0, independent of α > 0, such
that

inf
w∈Uα−1

sup
(f,u)∈Fα×Uα

(f, w)H1(Ωf ) + (u,w)H1(Ω)

‖(f, u)‖Fα×Uα‖w‖Uα−1

≥ c.

Proof. Let w ∈ Uα−1 \ {0} be arbitrary. With f = w|Ωf and u = 0 we find
that

sup
(f,u)∈Fα×Uα

(f, w)H1(Ωf ) + (u,w)H1(Ω)

‖(f, u)‖Fα×Uα‖w‖Uα−1

≥
(w,w)H1(Ωf )

‖w‖Fα‖w‖Uα−1

=
‖w‖2H1(Ωf )√

α‖w‖H1(Ωf )

√
α−1‖w‖H1(Ω)

≥ 1

c̃

‖w‖2H1(Ωf )

‖w‖H1(Ωf )‖w‖H1(Ωf )

=
1

c̃
= c,

where the last inequality follows from Lemma 3.1.

We conclude that both ‖A3×3
α ‖ and ‖[A3×3

α ]−1‖ are bounded indepen-
dently of α > 0.

5 Reducing the size of the KKT system

The main reason why the inf-sup condition in Lemma 4.1 holds, with an α
independent constant, is the fact that H1(Ωf ) and U are isomorphic. We
will now see how this property also can be used to remove the Lagrange
multiplier from the KKT system.

First, however, we will formalize the isomorphism between H1(Ωf ) and
U . Define the extension operator E : H1(Ωf )→ U as

Eφ =

{
φ in Ωf ,

φ̃ in Ω0,
(22)

where φ̃ is the weak solution of (9)-(11). From standard theory for ellip-
tic PDEs and Lemma 3.1, it follows that this operator is an isomorphism
between H1(Ωf ) and U .

Since both the state function, u, and the dual function, w, in the KKT
system (13)-(15) belong to U , we may express them on the form

u = Eû,

w = Eŵ,
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where û, ŵ ∈ H1(Ωf ). Hence, equations (13)-(15) can be reformulated as

α(f, ψ)H1(Ωf ) + (ψ, ŵ)H1(Ωf ) = 0 ∀ψ ∈ H1(Ωf ), (23)

(Eû− d,Eφ)L2(∂Ω) + (Eφ,Eŵ)H1(Ω) = 0 ∀φ ∈ H1(Ωf ), (24)

(f, ϕ)H1(Ωf ) + (Eû,Eϕ)H1(Ω) = 0 ∀ϕ ∈ H1(Ωf ). (25)

On this form, the relation between the control, f , and the dual, ŵ, becomes
clear. In fact, from (23) it follows that

ŵ = −αf.

Consequently, we can replace ŵ with −αf in (24) to obtain the equations

− 1

α
(Eû− d,Eφ)L2(∂Ω) + (Ef,Eφ)H1(Ω) = 0 ∀φ ∈ H1(Ωf ), (26)

(Eû,Eϕ)H1(Ω) + (f, ϕ)H1(Ωf ) = 0 ∀ϕ ∈ H1(Ωf ). (27)

We can then write this system on the block form
[
− 1
αM∂ A
A Af

]

︸ ︷︷ ︸
A2×2
α

[
û
f

]
=

[
− 1
αM̃∂d

0

]
, (28)

where

M∂ : H1(Ωf )→ H1(Ωf )′, û 7→ (Eû,E · )L2(∂Ω), (29)

M̃∂ : L2(∂Ω)→ H1(Ωf )′, d 7→ (d,E · )L2(∂Ω), (30)

A : H1(Ωf )→ H1(Ωf )′, û 7→ (Eû,E · )H1(Ω), (31)

Af : H1(Ωf )→ H1(Ωf )′, f 7→ (f, · )H1(Ωf ). (32)

We conclude that (28) has a unique solution since (16) has a unique solution
and the extension operator E : H1(Ωf )→ U is isomorphic. (Also for other
KKT-systems, arising in connection with PDE-constrained optimization, it
is sometimes possible to reduce the problem to a 2×2 block system, see e.g.
[13, 4].)

6 Analysis of the reduced system

For the original system (16) we have concluded that, in properly weighted
Hilbert spaces, we have Brezzi constants which are independent of the regu-
larization parameter α. It is not self-evident that similar properties can be
proved for the reduced system (28).

The form of (28), and the fact that Eu ∈ U , motivate us to introduce
the weighted norm

‖u‖2U1+α−1
= ‖Eu‖2H1(Ω) +

1

α
‖Eu‖2L2(∂Ω), u ∈ H1(Ωf ),
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for the state function. Note that we, for the sake of simplicity, no longer use
the notation û for functions in H1(Ωf ). To further increase readability, we
define the product space

Vα = U1+α−1 ×H1(Ωf ). (33)

We can now define the bilinear form

a( · ; · ) : Vα × Vα → R,

associated with (28), as

a(u, f ;φ, ϕ) =− 1

α
(Eu,Eφ)L2(∂Ω) + (Ef,Eφ)H1(Ω)

+ (Eu,Eϕ)H1(Ω) + (f, ϕ)H1(Ωf ).

According to Babuška theory [1], (28) is well-posed if and only if a( · , · ) is
continuous and weakly coercive. Since we in Section 5 concluded that (28) is
well-posed, it follows that a( · , · ) fulfills these two conditions. To obtain an
α-robust preconditioner, however, we must show that the constants appear-
ing in the continuity and coercivity bounds are independent of α, provided
that proper weighted norms are applied.

Lemma 6.1. There exists a constant C1 > 0, independent of α > 0, such
that

|a(u, f ;φ, ϕ)| ≤ C1‖(u, f)‖Vα‖(φ, ϕ)‖Vα ,
where Vα is defined in (33).

Proof. Cauchy-Schwartz’ inequality implies that

|a(u, f ;φ, ϕ)| ≤ 1√
α
‖Eu‖L2(∂Ω)

1√
α
‖Eφ‖L2(∂Ω)

+ ‖Ef‖H1(Ω)‖Eφ‖H1(Ω)

+ ‖Eu‖H1(Ω)‖Eϕ‖H1(Ω)

+ ‖f‖H1(Ωf )‖ϕ‖H1(Ωf )

≤ c̃
[

1√
α
‖Eu‖L2(∂Ω)

1√
α
‖Eφ‖L2(∂Ω)

+ ‖f‖H1(Ωf )‖Eφ‖H1(Ω)

+ ‖Eu‖H1(Ω)‖ϕ‖H1(Ωf )

+ ‖f‖H1(Ωf )‖ϕ‖H1(Ωf )

]

≤ 4c̃‖(u, f)‖Vα‖(φ, ϕ)‖Vα ,

where c̃ = max{‖E‖, 1}. The result follows with C1 = 4c̃.
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The weak coercivity of the bilinear operator a( · , · ) is defined in terms of
two inf-sup conditions. Babuška theory asserts that the constants in the inf-
sup conditions coincide when the system is well-posed, provided that only
reflexive Banach spaces are involved. This constant will be independent of
α, as the following lemma expresses.

Lemma 6.2 (Weak coercivity). There exists a constant C2 > 0, independent
of α > 0, such that

inf
(φ,ϕ)∈Vα

sup
(u,f)∈Vα

a(u, f ;φ, ϕ)

‖(u, f)‖Vα‖(φ, ϕ)‖Vα
≥ C2,

and

inf
(u,f)∈Vα

sup
(φ,ϕ)∈Vα

a(u, f ;φ, ϕ)

‖(u, f)‖Vα‖(φ, ϕ)‖Vα
≥ C2.

Proof. Let (φ, ϕ) ∈ Vα \ {(0, 0)} be arbitrary. With u = −φ and f = φ+ ϕ
we get

sup
(u,f)∈Vα

a(u, f ;φ, ϕ)

‖(u, f)‖Vα‖(φ, ϕ)‖Vα

≥
1
α‖Eφ‖2L2(∂Ω) + ‖Eφ‖2H1(Ω) + ‖ϕ‖2H1(Ωf ) + (φ, ϕ)H1(Ωf )

‖(φ, φ+ ϕ)‖Vα‖(φ, ϕ)‖Vα

≥
‖φ‖2U1+α−1

+ ‖ϕ‖2H1(Ωf ) − ‖Eφ‖H1(Ω)‖ϕ‖H1(Ωf )

‖(φ, φ+ ϕ)‖Vα‖(φ, ϕ)‖Vα

≥
‖φ‖2U1+α−1

+ ‖ϕ‖2H1(Ωf ) − 1
2‖Eφ‖2H1(Ω) − 1

2‖ϕ‖2H1(Ωf )

‖(φ, φ+ ϕ)‖Vα‖(φ, ϕ)‖Vα

≥
‖φ‖2U1+α−1

+ ‖ϕ‖2H1(Ωf ) − 1
2‖φ‖2U1+α−1

− 1
2‖ϕ‖2H1(Ωf )

‖(φ, φ+ ϕ)‖Vα‖(φ, ϕ)‖Vα

≥ 1

2
√

3

‖(φ, ϕ)‖2Vα
‖(φ, ϕ)‖Vα‖(φ, ϕ)‖Vα

=
1

2
√

3
,

where we have used that ‖(φ, φ + ϕ)‖Vα ≤
√

3‖(φ, ϕ)‖Vα , which is a conse-
quence of the triangle inequality and that 2ab ≤ (a2 + b2):

‖(φ, φ+ ϕ)‖2Vα = ‖Eφ‖2H1(Ω) +
1

α
‖Eφ‖2L2(∂Ω) + ‖φ+ ϕ‖2H1(Ωf )

≤ ‖Eφ‖2H1(Ω) +
1

α
‖Eφ‖2L2(∂Ω)

+‖φ‖2H1(Ωf ) + 2‖φ‖H1(Ωf )‖ϕ‖H1(Ωf ) + ‖ϕ‖2H1(Ωf )

≤ ‖(φ, ϕ)‖2Vα + ‖φ‖2H1(Ωf ) + ‖φ‖2H1(Ωf ) + ‖ϕ‖2H1(Ωf )

≤ 3‖(φ, ϕ)‖2Vα .
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The first inf-sup condition thus holds with C2 = 1
2
√

3
. Since (28) is

well-posed, the second inf-sup condition immediately follows, with the same
constant, from standard Babuška theory.

We have now verified that the bilinear form a( · , · ) : Vα × Vα → R is
continuous and weakly coercive, with constants that are independent of α.
We can then, from the Babuška theory, conclude that

Theorem 6.3. The operator A2×2
α : Vα → V ′α, defined in (28), is an iso-

morphism. That is, A2×2
α is bounded and continuously invertible for α > 0,

in the sense that

‖A2×2
α ‖L(Vα,V ′α) ≤ C1 and ‖[A2×2

α ]−1‖L(V ′α,Vα) ≤ C−1
2 ,

where both C1 and C2 are independent of α > 0.

Proof. The result follows from Lemma 6.1, Lemma 6.2 and standard Babuška
theory.

7 Preconditioners

For a mapping Aα, of the form (16) or (28), from a Hilbert space H onto
its dual space H ′, Krylov subspace methods cannot be applied to solve

Aαx = b.

However, assuming that an operator Bα : H ′ → H is available, Krylov
subspace methods can be employed to solve

BαAαx = Bαb, (34)

since BαAα is a mapping from H to H.
In [2, 7, 4] the authors discuss that, to obtain an efficient preconditioner

Bα, this mapping should be an isomorphism, with h and α-independent
bounds for both ‖Bα‖ and ‖B−1

α ‖. With these ideas in mind, we can propose
preconditioners for both the 3× 3 and 2× 2 block systems analyzed above.

7.1 3× 3 system

To construct a suitable preconditioner

B3×3
α : F ′α × U ′α × U ′α−1 → Fα × Uα × Uα−1

for A3×3
α , defined in (16), let us recall the scaled norms

‖f‖2Fα = α‖f‖2H1(Ωf ),

‖u‖2Uα = α‖u‖2H1(Ω) + ‖u‖2L2(∂Ω),

‖w‖2Uα−1
=

1

α
‖w‖2H1(Ω).
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We suggest to use the inverse of the Riesz map of the space

Wα = Fα × Uα × Uα−1

as preconditioner, i.e.

B3×3
α =



αÃf 0 0

0 αA+M∂ 0
0 0 1

αA



−1

: W ′α →Wα, (35)

see (17)-(20). Clearly, B3×3
α is an isomorphism with α independent bounds

for ‖Bα‖ and ‖B−1
α ‖. Moreover, provided that sound discretization tech-

niques are employed, this property will be inherited by the associated dis-
cretized operator.

In Section 4 we concluded that both ‖A3×3
α ‖ and ‖[A3×3

α ]−1‖ are bounded
independently of α > 0. Consequently, also ‖B3×3

α A3×3
α ‖ and ‖[B3×3

α A3×3
α ]−1‖

are well behaved, regardless of the size of α > 0. That is, B3×3
α yields a reg-

ularization robust preconditioner:

B3×3
α A3×3

α x = B3×3
α b. (36)

7.2 2× 2 system

In the analysis of the operator A2×2
α , defined in (28), we used the weighted

norm

‖u‖2U1+α−1
= ‖Eu‖2H1(Ω) +

1

α
‖Eu‖2L2(∂Ω), u ∈ H1(Ωf ).

Thus, a natural preconditioner reads

B2×2
α =

[
A + 1

αM∂ 0
0 Af

]−1

: V ′α → Vα, (37)

since this is the inverse of the Riesz map of Vα, see (33) and (29)-(32). Sound
discretization techniques will, as for the 3 × 3 system, provide an α-robust
preconditioner:

B2×2
α A2×2

α x = B2×2
α b. (38)

8 Numerical experiments

8.1 The extension operator

In properly weighted Hilbert spaces, the systems (16) and (28) are well-
behaved, independently of α > 0. To solve these systems numerically, how-
ever, we have to represent the subspace U ⊂ H1(Ω), or alternatively, com-
pute the action of the extension operator E, defined in (22). We now address
how this can be accomplished.
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Let {φi}Ni=1 be a basis for Vh ⊂ H1(Ωf ), where Vh is a standard scalar
FE space. We then get

(Euh, Eφi)H1(Ω) = (uh, φi)H1(Ωf ) + (Euh, Eφi)H1(Ω0), (39)

since the extension leaves the function unchanged throughout Ωf . Further-

more, with uh =
∑N

j=1 ajφj ,

(Euh, Eφi)H1(Ω0) =

N∑

j=1

aj(Eφj , Eφi)H1(Ω0).

We note from (9)-(11) that φ̃j = (Eφj)|Ω0 is uniquely determined from
φj |∂Ωf . And,

φ̃j = (Eφj)|Ω0 = 0 if φj |∂Ωf = 0.

Consequently, only the basis functions associated with nodes positioned at
the boundary ∂Ωf of Ωf will have non-zero extensions. These extensions
are determined by solving (9)-(11). More specifically, one elliptic boundary
problem must be solved for each node positioned at ∂Ωf . This may become
CPU demanding if the number of nodes at this interface is large, but the
process is easy to parallelize. A more thorough discussion of this issue is
present in Section 10.

When the non-zero extensions have been determined, the matrix contri-
butions associated with (Euh, φi)H1(Ω) can be assembled by computing the
two inner-products in (39). And, it is also straightforward to assemble the
“boundary” matrix associated with M∂ , see (28)-(29),

(Euh, Eφi)L2(∂Ω) =
N∑

j=1

aj(Eφj , Eφi)L2(∂Ω).

Remark 8.1. Krylov subspace solvers typically require that A2×2
α p is com-

puted, for a given (vector) p. Since the extension E is defined in terms of an
elliptic PDE, it should be possible to determine A2×2

α p by employing a multi-
grid scheme, without computing Eφj for all indexes associated with nodes at
∂Ωf . Similarly, it is also likely that the action of the preconditioner B2×2

α

can be directly computed with multigrid schemes, see (37) and (29)-(32).
Hence, one would expect that the step of explicitly determining {Eφj} can
be avoided, provided that proper tailored software is available. We, however,
used standard software packages, and it turned out to be difficult to avoid
this preprocessing task prior to assembling and solving the KKT system.

8.2 Numerical setup

To avoid introducing further notation, we will not define new symbols for
the matrices and vectors associated with the operators and functions in (16),
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(28), (35) and (37). We would like to emphasis that, in this section, all use
of these symbols are to the associated discretized versions.

• All simulations were performed using cbc.block; a branch of the FEn-
iCS software [5].

• For all MINRES tests, the preconditioners (35) and (37) were approx-
imated with the Algebraic MultiGrid (AMG) package in PyTrilinos.
We used a symmetric Gauss-Seidel smoother, with three smoothing
sweeps.

• For the computations of the eigenvalues, presented below, we dumped
the matrices to .mat-files and computed the exact preconditioners in
Octave.

• In all simulations, we worked on the domains

Ω = (0, 1)× (0, 1),

Ωf = (.25, .75)× (.25, .75).

The observation data d was generated by solving (5) with

f(x, y) = 3 cos(πx) + y2, (40)

and setting d = u|∂Ω, where u denotes the solution of (5).

• The MINRES iterations were stopped when

(rk,Bp×pα rk)

(r0,Bp×pα r0)
=

(Ap×pα xk − b,Bp×p[Ap×pα xk − b])
(Ap×pα x0 − b,Bp×p[Ap×pα x0 − b])

≤ ε, (41)

where p = 2, 3. In other words, we used a standard relative stopping
criterion.

8.3 3× 3 system

We first consider the numerical solution of (16) with the preconditioner
(35). In Table 1 we can not observe any (systematic) growth in the iteration
numbers when the regularization parameter α decreases. The small increase
in iteration numbers when the mesh parameter h → 0 is most likely linked
to the performance of the AMG. This is supported by Table 2, where we do
not observe a significant increase of the condition number κ(B3×3

α A3×3
α ) for

h = 2−6 compared to h = 2−5. That is, for small values of α, the condition
number equals 8.701 for h = 2−5 and it equals 8.705 for h = 2−6. Thus,
the discretized preconditioner provides iteration counts, for the MINRES
method, which are well behaved with respect to the mesh and regularization
parameters.
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(a) α = 1. (b) α = 10−4.

Figure 2: The spectrum of B3×3
α A3×3

α for two different regularization param-
eters. These results were computed with a mesh parameter h = 2−6.

In Figure 2 the spectrum of B3×3
α A3×3

α is displayed for two choices of
α. Both spectra are clustered, with three large bands of eigenvalues. The
remaining eigenvalues seem to become more clustered for smaller values of
α than for α = 1.

α\h 2−5 2−6 2−7 2−8

1 41 45 47 59
10−1 49 54 55 65
10−2 64 70 72 80
10−3 56 66 68 80
10−4 48 52 57 73

Table 1: The number of MINRES iterations required to solve the KKT
system (16), i.e. the 3×3 system, with the preconditioner (35). The stopping
criterion was ε = 10−8.

8.4 2× 2 system

To numerically solve the 3 × 3 block system (16), with the preconditioner
(35), we must implement the extension operator E in (22). Thus, it is
practically no additional computational effort to reduce the problem to the
2× 2 block system (28), with the preconditioner (37). We will now explore
how the MINRES algorithm performs on this reduced system.

In Table 3 we observe much smaller iteration numbers than for the 3×
3 system, see Table 1. Furthermore, the iteration counts in Table 3 are
well behaved with respect to the size of the mesh parameter h, and, if
anything, the iteration numbers decreases as α decreases. The latter fact is
probably not a generic pattern, but, for this particular model problem, this
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α |λ1| |λn|
1 0.31835 1.8019
10−1 0.22199 1.8019
10−2 0.21079 1.8019
10−3 0.20872 1.8019
10−4 0.20751 1.8019
10−5 0.20713 1.8019
10−6 0.20709 1.8019
10−7 0.20708 1.8019
10−8 0.20708 1.8019

(a) Mesh parameter h = 2−5.

α |λ1| |λn|
1 0.31831 1.8019
10−1 0.22192 1.8019
10−2 0.21078 1.8019
10−3 0.20886 1.8019
10−4 0.20771 1.8019
10−5 0.20710 1.8019
10−6 0.20700 1.8019
10−7 0.20699 1.8019
10−8 0.20699 1.8019

(b) Mesh parameter h = 2−6.

Table 2: The smallest and largest eigenvalues, measured in absolute value,
of B3×3

α A3×3
α .

observation is supported by the eigenvalues reported in Table 4. That is,
the computed condition number κ(B2×2

α A2×2
α ) is non-increasing as α → 0.

The spectrum of B2×2
α A2×2

α is depicted in Figure 3.

According to standard theory, the MINRES scheme requires O(κ(A))
iterations to solve the system Ax = b. For the 2 × 2 block system, with
h = 2−6 and α = 10−4, the condition number is κ(B2×2

α A2×2
α ) = 2.618,

while for the 3 × 3 block system the condition number is κ(B3×3
α A3×3

α ) =
8.675, which gives the ratio 8.675/2.618 ≈ 3.31. The ratio between the
associated iteration counts is 52/17 ≈ 3.06. Similar results hold for the other
choices, reported in our tables, of the mesh parameter and the regularization
parameter.

α\h 2−5 2−6 2−7 2−8

1 31 31 33 37
10−1 30 30 32 35
10−2 28 27 30 34
10−3 21 20 23 27
10−4 18 17 20 24

Table 3: The number of MINRES iterations required to solve the KKT
system (28), i.e. the 2×2 system, with the preconditioner (37). The stopping
criterion was ε = 10−8.

8.5 Comparison with standard preconditioners

Recall the original form (4)-(5) of our optimization problem. The KKT sys-
tem associated with this problem, without invoking the space U of functions
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(a) α = 1. (b) α = 10−4.

Figure 3: The spectrum of B2×2
α A2×2

α for two different regularization param-
eters. These results where generated with the mesh parameter h = 2−6.

α |λ1| |λn|
1 0.61803 2.3822
10−1 0.61803 2.2465
10−2 0.61803 1.9123
10−3 0.61803 1.6180
10−4 0.61803 1.6180

(a) Mesh parameter h = 2−5.

α |λ1| |λn|
1 0.61803 2.4246
10−1 0.61803 2.3213
10−2 0.61803 2.0512
10−3 0.61803 1.6180
10−4 0.61803 1.6180

(b) Mesh parameter h = 2−6.

Table 4: The smallest and largest eigenvalues, measured in absolute value,
of B2×2

α A2×2
α .

which are Helmholtz-harmonic on Ω0, will yield an operator

Cα : H1(Ωf )×H1(Ω)×H1(Ω)→ H1(Ωf )′ ×H1(Ω)′ ×H1(Ω)′.

Hence, we may simply use the inverse of the Riesz map of H1(Ωf )×H1(Ω)×
H1(Ω) to obtain a preconditioned system of the form

RCαx = Rb. (42)

In this case, no weighting of the involved norms is applied. We will now
compare the performance of this methodology with the approaches discussed
above. We will not undertake a complete ”start-to-finish” comparison, since
there are many possibilities, particularly with respect to parallelization, to
speed up the computation of the extension operator. Instead, we will per-
form a pure MINRES test, where we measure the wall-time needed by the
different schemes.

Tables 5 and 6 contain the speed-up obtained by solving the 3 × 3 and
2×2 block systems (36) and (38), respectively, instead of applying the Krylov

4. PAPER III

111



subspace solver to (42). As expected, the speed-up increases when α → 0.
For example, with α = 10−6 and h < 10−5, MINRES solves the 2× 2 block
system more than 48 times faster than the ”standard” preconditioned KKT
system (42).

α\h 2−5 2−6 2−7 2−8

1 1.33 1.71 1.64 1.49
10−1 1.80 2.10 2.22 2.02
10−2 2.00 2.19 2.35 2.42
10−3 3.16 3.88 3.64 3.54
10−4 4.70 6.26 5.17 4.98
10−5 7.22 9.00 8.74 8.58
10−6 9.22 12.5 11.7 10.7

Table 5: Ratio between the wall-time needed by MINRES to solve (42) and
(36) (3× 3 block system).

α\h 2−5 2−6 2−7 2−8

1 2.40 3.63 3.15 3.74
10−1 3.60 5.25 5.24 5.91
10−2 6.50 8.14 7.75 8.86
10−3 12.7 18.6 15.2 16.3
10−4 15.7 23.8 22.7 23.3
10−5 21.7 40.5 39.0 38.1
10−6 27.7 53.0 48.9 48.1

Table 6: Ratio between the wall-time needed by MINRES to solve (42) and
(38) (2× 2 block system).

Tables 5 and 6 show that the methods introduced in this paper perform
favorable compared with the ”standard” preconditioning technique. Nev-
ertheless, the comparison is not truly ”objective”: The stopping criterion
depends on the involved operators and on the regularization parameter α,
see (41). Therefore, we also performed an alternative comparison, where we
added a prior, given by (40), to the minimization problem. More specifically,
we replaced the regularization term in the cost functionals (4) and (7) with

1

2
α‖f − fprior‖2H1(Ωf ), (43)

where fprior(x, y) = 3 cos(πx) + y2. Hence, fprior is both used to generate
the observation data d and as a prior. The control determined by solving
the KKT system will therefore be almost equal to fprior. Our objective is
to study how fast the approximate controls fk, generated by the MINRES
algorithm, approaches this function.
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In Figure 4, the relative difference

‖fk − fprior‖H1(Ωf )

‖fprior‖H1(Ωf )

is displayed as a function of the number of MINRES iterations k. More
specifically, the MINRES method was applied to (42), the 3 × 3 block sys-
tem (36) and the 2 × 2 block system (38). We observe that the relative
difference is reduced to 10−4 in approximately 220 iterations by the first
scheme, while the two latter preconditioning techniques required 35 and 15
iterations, respectively; see figures 4(a), 4(b) and 4(c). In these experi-
ments we used a zero initial guess for the iteration process, α = 10−4 and
h = 1/256.

9 Further analysis

From the analysis presented above, we can conclude that the spectral condi-
tion number of the preconditioned operator B2×2

α A2×2
α is bounded indepen-

dently of α and h. On the other hand, Figure 3 indicates that the spectrum
of this operator may possess further nice properties. The purpose of this sec-
tion is to investigate this issue from an algebraic point of view. Throughout
this section we assume that M∂ , A and Af are FE operators.

A member λ of the point spectrum of B2×2
α A2×2

α must satisfy
[
− 1
αM∂ A
A Af

]

︸ ︷︷ ︸
A2×2
α

[
u
f

]
= λ

[
A + 1

αM∂ 0
0 Af

]

︸ ︷︷ ︸
(B2×2
α )−1

[
u
f

]
,

or

− 1

α
M∂u+ Af = λ

(
Au+

1

α
M∂u

)
, (44)

Au+ Aff = λAff. (45)

From (45) we find that

f =
1

λ− 1
A−1
f Au, λ 6= 1,

which we may insert into (44) to obtain

− 1

α
(1 + λ)M∂u+

1

λ− 1
AA−1

f Au− λAu = 0. (46)

Hence, any eigenvalue must satisfy

1

α
(1 + λ)〈A−1AfA

−1M∂u, u〉+
1

1− λ〈u, u〉+ λ〈A−1Afu, u〉 = 0, (47)

where
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(a) ”Standard” Riesz preconditioner, see (42).

(b) 3× 3 preconditioner, see (35).

(c) 2× 2 preconditioner, see (37).

Figure 4: The relative difference ‖fk−fprior‖H1(Ωf )/‖fprior‖H1(Ωf ) as a func-
tion of the number of MINRES iterations k.
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• A−1AfA
−1M∂ is semi-positive,

• A−1Af is positive.

Theorem 9.1.

a) Let

γ = λmin(A−1Af ),

γ = λmax(A−1Af ).

Then,

sp(B2×2
α A2×2

α ) ⊂
[

min

{
−1,

1

2
−
√

1

4
+

1

γ

}
,

max

{
−1,

1

2
−
√

1

4
+

1

γ

}]
∪
(

1,
1

2
+

√
1

4
+

1

γ

]
.

b) If λ ∈ sp(B2×2
α A2×2

α ) is an eigenvalue associated with (u, f), where u|∂Ωf =
0, then

λ =
1±
√

5

2
≈
{

1.618,
−0.618.

c) The multiplicity of the eigenvalue λ = −1 equals the dimension of the
null-space of the operator

Q : u→ (u, φ)H1(Ωf ) − (Eu,Eφ)H1(Ω0), φ ∈ Vh,

where Vh is a FE space for H1(Ωf ).

Remarks

For the model problem associated with Figure 3, γ = 1.000 and γ = 0.250.
Hence, in this case, invoking a) yields that

sp(B2×2
α A2×2

α ) ⊂ [−1.562,−0.618] ∪ (1, 2.562] ∀α > 0.

The eigenvalues λ = −0.618, 1.618, see b), typically have large multi-
plicity and appear as “long horizontal line segments” in Figure 3. (These
numbers coincide with those derived in [8]. We have not fully investigated
the connection between the analysis presented in this paper and [8].)

If supp(u) ⊂ Ωf , then Eu|Ω0 = 0 and, hence, u 6= 0 can not belong to
the null-space of Q, see c). From this we may conclude that the dimension
of the kernel of Q, and thus the multiplicity of λ = −1, is less or equal to
the number of nodes at the boundary ∂Ωf of Ωf .
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Proof of Theorem 9.1a). • Note that, if u = 0, then (44) implies that
f = 0. Hence, there does not exist any eigenfunction (u, f) with u = 0.
Therefore, in the analysis presented below, we can always assume that
u 6= 0 in (47).

• Also, for λ = 0, (1 +λ), 1
1−λ > 0 and from (47) we find that 0 can not

be an eigenvalue.
Positive eigenvalues

• Since (1 + λ), 1
1−λ , λ > 0 for λ ∈ (0, 1), (47) yields that the open unit

interval (0, 1) contains no eigenvalues.

• For λ = 1, (45) implies that u = 0 and it follows from (44) that also
f = 0. We conclude that 1 does not belong to the spectrum of BαAα.

• For λ > 1 we find that, see (47),

1

α
(1 + λ)〈A−1AfA

−1M∂u, u〉 +
1

1− λ〈u, u〉+ λ〈A−1Afu, u〉

≥ 1

1− λ〈u, u〉+ λγ〈u, u〉

=

(
1

1− λ + λγ

)
〈u, u〉

> 0

if λ > 1
2 +

√
1
4 + 1

γ . Thus, there are no eigenvalues larger than 1
2 +

√
1
4 + 1

γ .

We conclude that positive eigenvalues must belong to the interval
(

1,
1

2
+

√
1

4
+

1

γ

]
.

Negative eigenvalues

• For λ ∈ (−1, 0) it follows that (1 + λ), 1
1−λ > 0 and λ < 0. Conse-

quently, see (47),

1

α
(1 + λ)〈A−1AfA

−1M∂u, u〉 +
1

1− λ〈u, u〉+ λ〈A−1Afu, u〉

≥ 1

1− λ〈u, u〉+ λγ〈u, u〉

=

(
1

1− λ + λγ

)
〈u, u〉

> 0

if λ > 1
2 −

√
1
4 + 1

γ . Hence, there can not be any eigenvalues in the

interval
(

max
{
−1, 1

2 −
√

1
4 + 1

γ

}
, 0
)

.
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• For λ < −1 we find that 1 + λ, λ < 0 and 1
1−λ > 0. Then, (47) yields

that

1

α
(1 + λ)〈A−1AfA

−1M∂u, u〉 +
1

1− λ〈u, u〉+ λ〈A−1Afu, u〉

≤ 1

1− λ〈u, u〉+ λγ〈u, u〉

=

(
1

1− λ + λγ

)
〈u, u〉

< 0

if λ < 1
2 −

√
1
4 + 1

γ . Therefore, no eigenvalues are less than

min
{
−1, 1

2 −
√

1
4 + 1

γ

}
.

We conclude that negative eigenvalues must belong to the interval
[

min

{
−1,

1

2
−
√

1

4
+

1

γ

}
,max

{
−1,

1

2
−
√

1

4
+

1

γ

}]
.

This finishes the proof of a).

Proof of Theorem 9.1b). If u|∂Ωf = 0, then the extension operator E gener-
ates a zero extension, i.e. Eu|Ω0 = 0. Consequently,

M∂u = 0,

see (29). Hence, (46) takes the form

1

λ− 1
AA−1

f Au− λAu = 0

or
1

λ− 1
Au− λAfu = 0. (48)

Since Eu|Ω0 = 0 and Eu|Ωf = u, we find from (31) and (32) that

〈Au, u〉 = (Eu,Eu)H1(Ω) = (u, u)H1(Ωf ) = 〈Afu, u〉,

which, combined with (48), yields that

(
1

λ− 1
− λ
)
〈Afu, u〉 = 0.

Recall that Af is positive, and therefore λ must satisfy

1

λ− 1
− λ = 0

or λ = (1±
√

5)/2.
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Proof of Theorem 9.1c). Let (u, f) be an eigenvector with eigenvalue λ =
−1. Then, (44) becomes

Af = −Au
or

f = −u.
Inserting this into (45) yields that

Au− Afu = Afu,

which we may express on the form

Au− 2Afu = 0.

This implies that, see (31) and (32),

(Eu,Eφ)H1(Ω) − 2(u, φ)H1(Ωf ) = 0 ∀φ ∈ Vh.

Since Eu|Ωf = u and Ω0 = Ω \ Ωf , it follows that

(Eu,Eφ)H1(Ω0) − (u, φ)H1(Ωf ) = 0 ∀φ ∈ Vh. (49)

Evidently, if u 6= 0 solves (49) and f = −u, then (u, f) will satisfy
(44)-(45) with λ = −1. This completes the argument.

10 Summary, discussion and conclusions

We have introduced a robust preconditioner for a PDE-constrained opti-
mization problem with local control and with boundary observations only.
This extends previous results, which have mainly focused on optimization
tasks for globally defined controls and global observations.

The state equation of our model problem is elliptic, and the robust pre-
conditioning strategy is derived by employing the ”natural” Hilbert space
for this equation. More specifically, the solution of the state equation is
Helmholtz-harmonic on the complement of the support Ωf ⊂⊂ Ω of the
control. Consequently, the Sobolev norm of the functions belonging to this
Hilbert space is equivalent to the Sobolev norm associated with Ωf . Based
on this observation, we can define a preconditioner which is robust with
respect to the size of the regularization parameter α > 0. Furthermore,
this approach enables us to significantly reduce the size of the KKT system:
All unknowns are only defined on the support Ωf of the control, and the
Lagrange multiplier can be removed from the problem, which yields a 2× 2
block-system, instead of a 3× 3 system. For our model problem, employing
rather fine meshes and with a relatively small regularization parameter, we
obtained a reduction of the computing time by a factor in the range [20, 50]
- only recording the CPU-time needed to solve the KKT systems.
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Prior to solving the 2 × 2 block system, a Helmholtz-harmonic exten-
sion of each FEM basis function, associated with nodes at ∂Ωf , must be
computed. This is, of course, a negative aspect of our methodology. But
this process can be fully parallelized with optimal speed-up. Also, if purely
serial computations are employed, one will typically have very good initial
guesses for an iterative scheme, e.g. CG, for computing these extensions:
The Helmholtz-harmonic extensions of neighboring FEM basis functions can
be used as initial guesses. Moreover, the benefits of our scheme increases as
the size of the support Ωf of the control decreases, because fewer extensions
must be determined and the reduction of the number of unknowns increases.

From an inverse problem perspective, it is certainly not sufficient to solve
the KKT system once with one particular choice of the size of the regulariza-
tion parameter α. On the contrary, since the noise level of the data typically
is unknown, a series of KKT systems, with varying degree of regularization,
must be solved in order to determine a close-to-optimal value for α, see e.g.
[3]. In such a process, it is only necessary to compute the above-mentioned
Helmholtz-harmonic extensions once, and the speed-up obtained by solving
the 2 × 2 KKT system, using our α robust preconditioner, will be large.
A similar beneficial situation will occur if it is desirable to solve the PDE-
constrained optimization problem with a number of different observation
data sets, i.e. solving many KKT systems with different data d. This will
be the case for a number of inverse problems arising in the engineering sci-
ences. For example, for the inverse problem of electrocardiography (ECG).

By employing tailored multigrid schemes, we also expect that it might
be possible to avoid the preprocessing step of explicitly computing the
Helmholtz-harmonic extensions. This turned out to be very difficult to
achieve by using standard multigrid software packages, and must be re-
garded as an open problem.

Our investigation only concerns elliptic control problems, and we assume
that the unknown control belongs to H1. If one insists on searching for a L2-
control, which would allow discontinuities, we do not know how to construct
a robust preconditioner for the associated KKT system, but one could try
to generalize the approach presented in [6]. It is also an open question how
to obtain similar results for parabolic state equations or other relevant PDE
models.
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Abstract

The diffuse domain method for partial differential equations on
complicated geometries recently received strong attention in partic-
ular from practitioners, but many fundamental issues in the analysis
are still widely open. In this paper we study the diffuse domain method
for approximating second order elliptic boundary value problems posed
on bounded domains, and show convergence and rates of the approxi-
mations generated by the diffuse domain method to the solution of the
original second order problem when complemented by Robin, Dirichlet
or Neumann conditions.

The main idea of the diffuse domain method is to relax these bound-
ary conditions by introducing a family of phase-field functions such
that the variational integrals of the original problem are replaced by
a weighted average of integrals of perturbed domains. From an func-
tional analytic point of view, the phase-field functions naturally lead
to weighted Sobolev spaces for which we present trace and embedding
results as well as various type of Poincaré inequalities with constants
independent of the domain perturbations. Our convergence analysis is
carried out in such spaces as well, but allows to draw conclusions also
about unweighted norms applied to restrictions on the original domain.
Our convergence results are supported by numerical examples.
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1 Introduction

This paper considers the approximation properties of the diffuse domain
method (also called diffuse interface method, cf. [24, 33]) when applied to
linear second order elliptic equations of the form

−div(A∇u) + cu = f in D (1)

complemented by suitable boundary conditions on a sufficiently smooth do-
main D ⊂ Rn. We focus on Neumann, Robin and Dirichlet boundary con-
ditions, i.e. either

n ·A∇u+ bu = g on ∂D or (2)

u = g on ∂D. (3)

For solving equations of the above type we will employ variational methods.
Roughly speaking, for instance (1)–(2) is reformulated as follows: Find u
such that for all suitable test functions v

∫

D
A∇u · ∇v + cuv dx+

∫

∂D
buv dσ =

∫

D
fv dx+

∫

∂D
gv dσ. (4)

In many applications the domain D, the boundary ∂D (or equally well some
interface inside the domain) is not known exactly or its geometry is compli-
cated making a proper approximation of the integrals difficult or expensive
[2, 13, 16, 29, 32, 35]. In addition to the methods used in the aforementioned
references, let us point to further literature dealing with methods to handle
these type of difficulties; for instance the immersed boundary method [31],
the immersed interface method [23], the fictitious domain method [15], the
unfitted finite element method [5], the finite cell method [30], unfitted dis-
continuous Galerkin methods [6], composite finite elements [19, 25]; let us
also refer to these papers for further links to literature and applications. In
this work we will focus on the diffuse domain method, see for instance [24].

The diffuse domain method relies on the fact that the domain D can be
described by its oriented distance function dD(x) = dist(x,D)−dist(x,Rn \
D), x ∈ Rn. As one can easily see, we have D = {dD < 0}. In order to relax
the sharp interface condition dD < 0, let us introduce ϕε = S(−dD/ε) for ε >
0 small and S being a sigmoidal function, i.e. non-decreasing with S(t) =
t/|t| for |t| ≥ 1. As ε tends to zero, S(·/ε) converges to the sign function,
and hence the phase-field function ωε = (1+ϕε)/2 formally converges to the
indicator function χD of D. The key idea to approximate the integrals in (4)
is a weighted averaging of the integrals over {dD < t} instead of integrating
over the original domain {dD < 0} only (and similar for boundary integrals).
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Since 1
2εS
′( ·ε) approximates a concentrated distribution at zero, we expect

∫

D
h(x) dx =

∫

{dD<0}
h(x) dx

=

∫ ∞

−∞

1

2ε
S′(− t

ε
)

∫

{dD<0}
h(x) dx dt

≈
∫ ∞

−∞

1

2ε
S′(− t

ε
)

∫

{dD<t}
h(x) dx dt

=
1

2

∫ 1

−1

∫

{ϕε>s}
h(x) dx ds,

where we have used the substitution s = S(− t
ε) in the last step. Now

the layer cake-representation can further be used for given integrable h to
rewrite
∫ 1

−1

∫

{ϕε>s}
h(x) dx dt =

∫

Ω

∫ ϕε(x)

−1
ds h(x) dx =

∫

Ω
(1 + ϕε(x))h(x) dx.

By an analogous computation we obtain for the boundary integral
∫

∂D
h(x) dσ(x) ≈ 1

2

∫ 1

−1

∫

∂{ϕε>s}
h(x) dσ(x) ds,

which can be simplified via the co-area formula to
∫ 1

−1

∫

∂{ϕε>s}
h(x) dσ(x) dt =

∫

Ω
h(x)|∇ϕε(x)| dx.

Here, Ω ⊃ D is a domain with “simple” geometry, i.e. a geometry which
can be easily approximated. Based on this motivation we shall define the
following diffuse volume and surface integrals
∫

D
h(x) dx ≈

∫

Ω
h(x)ωε(x) dx and

∫

∂D
h(x) dσ(x) ≈

∫

Ω
h(x)|∇ωε(x)|dx.

(5)

Using this approximation in (4) leads us to the following variational problem:
Find uε such that for all suitable test functions v∫

Ω
(A∇uε · ∇v + cuεv)ωε dx+

∫

Ω
buεv|∇ωε| dx

=

∫

Ω
fvωε dx+

∫

Ω
gv|∇ωε| dx. (6)

Under the usual assumptions on A, b and c, the bilinear form on the left-
hand side of (6) is well-defined on the weighted Sobolev space W 1,2(Ω;ωε),
which is the closure of smooth functions u : Ω→ R with finite (semi-) norm

‖u‖2W 1,2(Ω;ωε) =

∫

Ω

(
|∇u|2 + |u|2

)
ωε dx.
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The main point of the present manuscript is to estimate the error between
the solution u of (4) and the solution uε of (6). Our key results are the
following two theorems, the first treating the low regularity case and the
second giving optimal rates under full regularity:

Theorem 1.1. Let ∂D be of class C1,1 and let 0 ≤ c ∈ L∞(Ω), 0 ≤ b ∈
W 1,∞(Ω) and A ∈ L∞(Ω) such that κ ≤ A(x) ≤ κ−1 for all x ∈ Ω and some
constant κ > 0. Moreover, assume that f ∈ L2(Ω;ωε) and g ∈W 1,2(Ω;ωε).
Furthermore, let u ∈ W 1,2(D) be a solution to (4) and uε ∈ W 1,2(Ω;ωε) be
a solution to (6). Then there exists p > 2 and a constant C > 0 independent
of ε such that

‖u− uε‖W 1,2(Ω;ωε) ≤ Cε
1
2
− 1
p .

Theorem 1.2. In addition to the assumptions of Theorem 1.1 let ∂D be
of class C∞, and let f, g, A, b, c ∈ C∞(Ω). Then there exists a constant C
independent of ε such that

‖u− uε‖W 1,2(Ω;ωε) ≤ Cε3/2.

Let us mention that the case b = 0 is allowed here and corresponds to
Neumann boundary conditions. The index p in Theorem 1.1 is related to
Lp regularity of ∇u, see [18, 26] and Section 6.1 below. In order to prove
the theorems, we need a few technical ingredients. As is obvious from the
above discussion, we have to deal with a family of weighted Sobolev spaces
parametrized by ε. For certain choices of S, we observe that the weight ωε

is proportional to a power of a distance function near ∂D, see (12) below.
For this type of weights and fixed ε many results have been established in
literature; see for instance [20, 21, 27, 28] and more generally [36]. Since
we are dealing with a family of spaces corresponding to a family of weights
ωε, we are particularly interested in the behavior of the weighted spaces
when ε changes. We will present trace theorems, embedding theorems and
Poincaré inequalities with constants independent of ε, which turn out to be
indispensable tools for the analysis of (6), and which we think might be of
interest in their own, see Section 4. In order to prove these statements, we
have to revise and adapt the classical proofs of [28] and combine them with
arguments recently used in the context of shape optimization; see [3, 8, 11]
for such arguments applied to unweighted Sobolev spaces.
A further necessary ingredient to obtain the error estimates of Theorem 1.1
and Theorem 1.2 are rigorous error estimates for the approximations (5) in
terms of ε and the regularity of the integrands. A consequence of our results
is that for h ∈ Lp(Ω;ωε)

∫

D
hdx−

∫

Ω
hωε dx = O(ε1−1/p), as ε→ 0,
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see Theorem 5.1. Assuming h and ∇h in Lp(Ω;ωε), we can exploit the
special averaging procedure in the derivation of the diffuse integrals in a
crucial way to obtain the improved estimate

∫

D
hdx−

∫

Ω
hωε dx = O(ε2−1/p), as ε→ 0,

cf. Theorem 5.2. Concerning Robin boundary values, let us mention recent
formal result obtained by asymptotic analysis stating an L2-convergence rate
for the error u − uε of O(ε2) [22]. Using a problem adapted norm we also
obtain a rate O(ε2). For two-dimensional problems and under reasonable
assumptions on this problem adapted norm, which we however cannot verify
for our problem, we also arrive at a L2-convergence rate O(ε2). The latter
is well confirmed by numerical results.

Concerning Dirichlet boundary values, the corresponding convergence rate
only yields the half order compared to the Robin boundary values. Hence
in the setting of Theorem 1.1, but with (3) instead of (2), we obtain

‖u− uε‖W 1,2(D) = O(ε
1
4
− 1

2p ), as ε→ 0,

and accordingly, in the setting of Theorem 1.2 with (3) in place of (2), we
obtain

‖u− uε‖W 1,2(D) = O(ε
3
4 ), as ε→ 0.

In the best case, using the problem adapted norm, we can show a rate
O(ε). This complies with recent results in literature, which were obtained
for one-dimensional problems or numerically [14, 34].

The outline of the manuscript is as follows. In Section 2 we discuss the
geometry of D and certain perturbations of it. Section 3 introduces weighted
Lebesgue and Sobolev spaces together with some basic properties. A more
detailed study of weighted Sobolev spaces is presented in Section 4. Here
we present a trace and an embedding theorem for weighted Sobolev spaces
and we show that the corresponding estimates are stable with respect to ε.
Moreover, we prove Poincaré and Poincaré-Friedrichs inequalities for these
spaces again with constants independent of ε. Approximation properties
of the diffuse integrals are presented in Section 5. The volume integrals
are investigated in Section 5.1, and corresponding results for the diffuse
boundary integral are subsequently shown in Section 5.2. Section 6 deals
with the approximation of elliptic equations by the diffuse domain method
for Robin, Dirichlet and Neumann type boundary values, and proofs of
Theorem 1.1 and Theorem 1.2 are given. Our results are supported by
numerical results which are presented in Section 7. We conclude in Section 8
and discuss briefly some open questions.
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2 Some geometric preliminaries

2.1 Domain

Throughout the manuscript we assume that D ⊂ Rn is a domain with C1,1

boundary. Associated to D we define its oriented distance function dD by

dD(x) = dist(x,D)− dist(x,Rn \D) for x ∈ Rn.

Since ∂D is of class C1,1 we have that dD is C1,1 in a neighborhood of ∂D
[11]. For t ∈ R let us define the sublevel sets of dD as follows

Dt = {x ∈ Rn : dD(x) < t}.

We clearly have the inclusions Dt1 ⊂ D0 = D ⊂ Dt2 for all t1 < 0 < t2.
Moreover, we fix a domain Ω ⊂ Rn such that D ⊂ Ω. In applications Ω is a
domain with a “simple” geometry, for instance a ball or a bounding box.

2.2 The tubular neighborhood Γε

Let us define the ε-tubular neighborhood of ∂D by

Γε = Dε \D−ε. (7)

Due to C1,1 regularity of ∂D, the projection of z ∈ Γε onto ∂D is unique for
ε sufficiently small, i.e., for each z ∈ Γε there exists a unique x ∈ ∂D such
that z = x + dD(z)n(x) [11, Chapter 7, Theorem 3.1, Theorem 8.4]. Here,
n(x), x ∈ ∂D, denotes the outward unit normal field which is related to the
oriented distance function via the formula n(x) = ∇dD(x). This shows

Γε = {z ∈ Ω : ∃x ∈ ∂D, |t| < ε, z = x+ tn(x)}.

In the whole manuscript we fix ε0 so small such that the just described
projection Γ2ε0 → ∂D is single-valued. Thus, for each ε ≤ ε0, Dε = Γε ∪D,
and for every x ∈ Γε, there holds dist(x, ∂D) ≤ ε and for every x ∈ Ω \ Γε,
there holds dist(x, ∂D) ≥ ε. Moreover, for some constant C > 0 independent
of ε

|Γε| ≤ CHn−1(∂D)ε. (8)

Here, |Γε| = Ln(Γε) is the n-dimensional Lebesgue-measure of Γε and
Hn−1(∂D) is the n− 1-dimensional Hausdorff-measure of ∂D.

2.3 Transformations of the geometry

Let t ∈ (−ε0, ε0). Let us first consider transformations of boundaries ∂D →
∂Dt. To do so, we introduce a family of transformations Φt : ∂D → ∂Dt
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defined by Φt(x) = x+tn(x). The Jacobian satisfies DΦt(x) = I+tD2dD(x),
with I being the identity matrix on Rn×n and D2dD being the Hessian of
dD, and thus,

|detDΦt(x)− (1 + t∆dD(x))| ≤ C‖D2dD‖L∞(∂D)t
2 for |t| ≤ ε ≤ ε0. (9)

Decreasing ε0 if necessary, there holds 1
2 ≤ detDΦt(x) ≤ 2 and

|detDΦt(x)− detDΦ−t(x)| ≤ C|t|‖D2dD‖L∞(∂D). (10)

Denoting by nt the unit outer normal vector field of ∂Dt, we see that
nt(Φt(x)) = n(x) for all x ∈ ∂D by the choice of the tubular neighbor-
hood Γε0 . Thus, here and in the following, we will just write n(x) for the
unit outer normal at some x ∈ ∂Dt. In particular, Φt can be extended to
the whole of Γε0 , and for this extension we have that

Φt(Φs(x)) = Φs(x) + tn(Φs(x)) = x+ (s+ t)n(x)

= Φs+t(x), s, t ∈ (−ε0, ε0),

particularly, Φt(Φ−t(x)) = x. For h ∈ L1(Γε), −ε < a < b < ε and s ∈ (a, b)
we then have

∫

{a<dD<b}
h(x) dx =

∫ b

a

∫

∂Ds

h(x+ (t− s)n(x))| detDΦt−s(x)| dσs(x) dt.

(11)

Note that x − sn(x) ∈ ∂D for x ∈ ∂Ds, and hence, x + (t − s)n(x) ∈ ∂Dt

for x ∈ ∂Ds. Here, σs = Hn−1x∂Ds is the surface element of ∂Ds, i.e.

σs(Ω̃) = Hn−1(Ω̃ ∩ ∂Ds) for Ω̃ ⊂ Rn.

For the volume transformation D → Dt, we define ψt : [0,∞) → R by
ψt(s) = 0 for s ≥ ε0, and ψt(s) = t

ε20
s2 − 2t

ε0
s + t for s < ε0. Then ψt ∈

C1([0,∞)), and ‖ψt‖C1([0,∞)) → 0 as t → 0. Moreover, ψt maps [0, ε0]
one-to-one onto [0, t]. We then define the diffeomorphism

Ψt : D → Dt, Ψt(x) =

{
x+ ψt(|dD(x)|)n(x), x ∈ D ∩ Γε0 ,

x, x ∈ D \ Γε0 .

Since ∇dD(x) = n(x), the Jacobian of Ψt is given by

DΨt(x) = I − ψ′t(|dD(x)|)n(x)⊗ n(x) + ψt(|dD(x)|)D2dD(x),

and supx∈Dε0 ‖DΨt(x) − I‖ → 0 as t → 0 by construction of ψt. We note
that Ψt|∂D = Φt.
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3 Weighted Sobolev spaces

In order to construct the weighted spaces mentioned in the introduction let
us begin with defining another level set function for the domainD resembling
a sign function smoothed in Γε, namely

ϕε(x) = S

(−dD(x)

ε

)
,

where the function S is a regularization of the sign function. Hence, ϕε(x) >
0 if and only if x ∈ D. To be precise, we assume that S verifies the following
assumptions.

(S1) S : R → R is Lipschitz continuous, S(t) = t/|t| for |t| ≥ 1, and
S′(t) > 0 for |t| < 1. Moreover, S(t) = −S(−t) for all t ∈ R.

(S2) There exist ζ1, ζ2 > 0 and α > 0 such that for all t ∈ (0, 2)

ζ1t
α ≤ (1 + S(t− 1))/2 ≤ ζ2t

α.

(S3) S′(t) ≤ S′(s) for all 0 ≤ s ≤ t < 1.

(S3) asserts concavity of S on (0, 1) and this assumption is only needed
in Theorem 5.6 below. Assumption (S2) ensures that that the phase-field
function ωε is proportional to dist(·, ∂Dε)

α on Γε, where ωε is defined as a
regularization of the indicator function χD of D as follows

ωε(x) =
1

2
(1 + ϕε(x)) .

Obviously, we have that Dε = {x ∈ Ω : ωε(x) > 0}, and ωε(x) = 1 for x ∈ D
with dist(x, ∂D) > ε. Let us clarify (S2) in the following. We observe that
dist(x, ∂Dε) = ε− dD(x) for x ∈ Γε. Thus, by (S2) with t = dist(x, ∂Dε)/ε

ζ1

(
dist(x, ∂Dε)

ε

)α
≤ ωε(x) ≤ ζ2

(
dist(x, ∂Dε)

ε

)α
(12)

Before proceeding, let us give a few examples which may serve as prototypes
for S.

Example 3.1. (i) Let S(t) = t for |t| < 1. Obviously (S1) and (S3) are
satisfied. Moreover, 1 + S(t − 1) = t, and we can choose α = 1, and
ζ1 = ζ2 = 1/2 in (S2).
(ii) Let S(t) = (3t − t3)/2. Thus, S ∈ C1(R) and S′(t) = 3(1 − t2)/2 > 0
for |t| < 1. Since S′′(t) = −3t < 0 for t > 0, (S3) is satisfied. Moreover,
1 +S(t− 1) = (3t2− t3)/2, and (S2) is satisfied for α = 2 and ζ1 = 1/4 and
ζ2 = 3/4.
(iii) Let S(t) = 15t/8 − 5t3/4 + 3t5/8. Thus, S ∈ C2(R) and S′(t) =
15/8− 15t2/4 + 15t4/8 > 0 for |t| < 1. Since S′′(t) = −15t/2 + 15t3/2 < 0
for t > 0, (S3) is satisfied. Moreover, 1 +S(t− 1) = 5t3/2− 15t4/8 + 3t5/8,
and (S2) is satisfied for α = 3 and ζ1 = 1/8 and ζ2 = 5/2.
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Proceeding with the construction of weighted Lebesgue spaces, let us intro-
duce the measure

ωε(Ω̃) =

∫

Ω̃
ωε(x) dx, Ω̃ ⊂ Rn measurable,

which is absolutely continuous with respect to the Lebesgue measure. Asso-
ciated to ωε let us further introduce for 1 ≤ p <∞ the weighted Lp-spaces

Lp(Dε;ω
ε) = {v : Dε → R : |v|pωε ∈ L1(Dε)}

with norm

‖v‖pLp(Dε;ωε)
=

∫

Dε

|v|p dωε.

For p = ∞, we set L∞(Dε;ω
ε) = L∞(Dε), i.e. L∞(Dε;ω

ε) is the class of
Lebesgue-measurable functions being essentially bounded. In the following
we will use also the notation Lp(Dε; δ) where δ is an appropriate weight
function. The following statement provides some basic relations between
the weighted Lp-spaces.

Lemma 3.2. Let 1 ≤ p ≤ ∞ and let ε > 0. Then Lp(Dε) ⊂ Lp(Dε;ω
ε),

and for every v ∈ Lp(Dε;ω
ε) there holds v|D ∈ Lp(D). Moreover,

(i) for ε > ε̃ ≥ 0 we have

‖v‖Lp(Dε̃;ωε̃) ≤ 21/p‖v‖Lp(Dε;ωε) for all v ∈ Lp(Dε;ω
ε).

(ii) for 0 < γ < ε/2 we have

‖v‖Lp(Dε−2γ ;ωε+γ) ≤
(

3αζ2

ζ1

)1/p

‖v‖Lp(Dε−2γ ;ωε−γ) for all v ∈ Lp(Dε;ω
ε).

Proof. (i) For v ∈ Lp(Dε;ω
ε) we obtain

∫

Dε̃

|v|p dωε̃ =

∫

Dε̃\D
|v|pωε̃ dx+

∫

D
|v|pωε̃ dx.

For x ∈ Dε̃ \D we have ωε̃(x) ≤ ωε(x), and on D there holds 1/2 ≤ ωε̃ ≤
1 ≤ 2ωε. The fact that Dε̃ ⊂ Dε yields the assertion.
(ii) Similar to (i) we have ωε+γ ≤ ωε−γ on D, whence

‖v‖p
Lp(Dε−2γ ;ωε+γ)

≤
∫

D
|v|p dωε−γ +

∫

Dε−2γ\D
|v|p dωε+γ .

For z ∈ Dε−2γ \ D, we can write z = x − tn(x) with x ∈ ∂Dε−2γ and
0 ≤ t ≤ 2ε, see Section 2.2. Then, using (12), we have

ωε+γ(z) ≤ ζ2

(
dist(z, ∂Dε+γ)

ε+ γ

)α
= ζ2

(
t+ 3γ

ε+ γ

)α
, and

ωε−γ(z) ≥ ζ1

(
dist(z, ∂Dε−γ)

ε− γ

)α
= ζ1

(
t+ γ

ε− γ

)α
.
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This implies

ωε+γ(z)

ωε−γ(z)
≤ ζ2

ζ1

(
t+ 3γ

t+ γ

ε− γ
ε+ γ

)α
=
ζ2

ζ1

((
1 +

2γ

t+ γ

)
ε− γ
ε+ γ

)α
≤ ζ23α

ζ1
,

from which we easily obtain the assertion.

Associated to the weighted spaces Lp(Dε;ω
ε), let us define the weighted

Sobolev spaces

W 1,p(Dε;ω
ε) = {v ∈ Lp(Dε;ω

ε) : ∂xiv ∈ Lp(Dε;ω
ε), 1 ≤ i ≤ n}

with norm

‖v‖p
W 1,p(Dε;ωε)

=

∫

Dε

|v|p + |∇v|p dωε.

In view of (12), several results of Kufner [21] concerning power-type weights
can be applied. This is due to the fact that the proofs of [21] need the
power-type property of the weight only in a vicinity of the boundary; in the
remaining subset of Dε, say D, uniform boundedness away from zero and
boundedness of the weight is used, which in turn allows to use results for un-
weighted spaces. We will employ similar techniques in the next section. We
have the following. For 1 ≤ p <∞, the spaces Lp(Dε;ω

ε) and W 1,p(Dε;ωε)
are separable Banach spaces [21, Theorem 3.6], and C∞(Dε) is dense in
W 1,p(Dε;ω

ε) [21, Theorem 7.2]. In case p = 2, the spaces L2(Dε;ω
ε) and

W 1,2(Dε;ω
ε) are Hilbert spaces with obvious definition of the inner product.

4 Properties of Sobolev spaces for diffuse inter-
faces

In this section we establish basic results for weighted Sobolev spaces for
diffuse interfaces which are crucial for the analysis of variational boundary
value problems. We particularly investigate the dependence on the param-
eter ε. As shown below, our results yield constants independent of ε, for
instance the trace constant or the Poincaré constant in weighted Sobolev
spaces, see Theorem 4.2 or Theorem 4.9. These results may be of interest
in their own.

4.1 Trace lemma

The following auxiliary lemma is a slight adaptation of [3, Lemma 2.1]. It
states that the trace operator for unweighted Sobolev spaces is uniformly
bounded for certain perturbations of the domain, and it is the key observa-
tion in proving a similar statement also for weighted Sobolev spaces. For
convenience of the reader, we sketch a proof.
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Lemma 4.1. Let ε0 be sufficiently small. Then there is a constant C > 0
such that for each t ∈ (−ε0, ε0) and v ∈W 1,p(Dt), 1 ≤ p <∞,

∫

∂Dt

|v|p dσ ≤ C
∫

Dt

|∇v|p + |v|p dx. (13)

Proof. Let ε0 > 0 be sufficiently small and let t ∈ (−ε0, ε0). Let us first
consider the case p = 1. Denote by Ψt : D → Dt and Φt : ∂D → ∂Dt

the transformations defined in Section 2.3. By a change of variables u(x) =
v(Ψt(x)) for x ∈ D and u(x) = v(Φt(x)) for x ∈ ∂D, it follows that

inf
x∈D

det(DΨt(x))

∫

D
|∇u|+ |u| dx ≤

∫

Dt

|∇v|+ |v| dx

≤ sup
x∈D

det(DΨt(x))

∫

D
|∇u|+ |u|dx,

inf
x∈∂D

det(DΦt(x))

∫

∂D
|u| dσ ≤

∫

∂Dt

|v|dσ

≤ sup
x∈∂D

det(DΦt(x))

∫

∂D
|u|dσ.

In view of Section 2.3, as t→ 0

C1(t) = min{ inf
x∈D

det(DΨt(x)), inf
x∈∂D

det(DΦt(x))} → 1, and

C2(t) = max{sup
x∈D

det(DΨt(x)), sup
x∈∂D

det(DΦt(x))} → 1.

Denote by C a bound for the norm of the trace operator W 1,1(D)→ L1(∂D).
We then obtain

∫

∂Dt

|v|dσ ≤ CC2(t)

C1(t)

∫

∂Dt

|∇v|+ |v|dx.

For the general case p > 1, we apply the latter estimate to ṽ = |v|p. We ob-
serve that |∇ṽ| = p|v|p−1|∇v|, and, using Young’s inequality, p|v|p−1|∇v|+
|v|p ≤ |∇v|p + |v|p, which concludes the proof.

Theorem 4.2 (Trace lemma). Let ε0 > 0 be sufficiently small. Then there
exists a constant C > 0 such that for ε ∈ (0, ε0) and for v ∈ W 1,p(Dε;ω

ε),
1 ≤ p <∞,

∫

Dε

|v|p|∇ωε| dx ≤ C‖v‖p
W 1,p(Dε;ωε)

.

Proof. According to the coarea-formula there holds

∫

Dε

|v|p|∇ϕε|dx =

∫ ∞

−∞

∫

(ϕε)−1(s)
|v|p dσ ds =

∫ 1

−1

∫

{ϕε=s}
|v|p dσ ds.
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Since {ϕε = s} = ∂{ϕε > s} = ∂Dt for t = −εS−1(s), we can use (13) to
obtain

∫ 1

−1

∫

{ϕε=s}
|v|p dσ ds ≤ C

∫ 1

−1

∫

{ϕε>s}
|∇v|p + |v|p dx ds

= C

∫

Dε

∫ ϕε(x)

−1
ds(|∇v|p + |v|p) dx,

where we used Fubini’s theorem in the last step. The assertion follows from
|∇ωε| = 1

2 |∇ϕε|.

The trace theorem 4.2 shows that for g ∈W 1,p(Dε;ω
ε) the diffuse boundary

integral introduced in (5) actually exists.

4.2 Embedding theorem

The following embedding theorem uses the representation (12) of the weight
near the boundary as a power of the distance function δ(x) = dist(x, ∂Dε).
Let us define the Sobolev conjugate p∗α for weighted spaces

p∗α =
p(n+ α)

n+ α− p for p < n+ α, and p∗α =∞ for p ≥ n+ α.

(14)

We observe that p∗0 is the “usual” Sobolev conjugate for unweighted Sobolev
spaces, see [1], and p∗α is strictly decreasing with respect to α on (0,∞).

Theorem 4.3 (Embedding). Let 0 < ε < ε0, and let α > 0 be the constant
from (S2). Then the following embeddings are continuous

W 1,p(Dε, ω
ε) ↪→ Lq(Dε, ω

ε), 1 ≤ q ≤ p∗α and q <∞.
Moreover, there exists a constant C independent of ε such that for u ∈
W 1,p(Dε;ω

ε)

‖u‖Lq(Dε;ωε) ≤ C‖u‖W 1,p(Dε;ωε). (15)

The first part of the theorem can be found in [20, Theorem 3], see also
[28, Theorem 19.9] for the case q < p∗α. To show that the embedding is
independent of ε, we will give a proof in the spirit of [28]. To do so, we employ
the following two lemmata. The first of which uses Sobolev’s embedding
theorem on balls and a covering argument, and is similar to the arguments
of [28]. The second is a Hardy-inequality-type argument for diffuse interfaces
which seems to be new. We let δ(x) = dist(x, ∂Dε) in the following.

Lemma 4.4. Let ε > 0 and α > 0. Furthermore, let 1 ≤ q < ∞ such that
n+ α ≥ (n+ α− 1)q. Then there exists a constant C > 0 independent of ε
such that for every u ∈W 1,1(Dε; δ

α)

‖u‖Lq(Dε\D;δα) ≤ C
(
‖u‖L1(Γε;δα−1) + ‖∇u‖L1(Γε;δα)

)
.
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Proof. We proceed as in [28]. Let r(x) = δ(x)/3. According to the Besi-
covitch covering theorem, cf. [28, Lemma 18.3], there exists a sequence
{xk} ⊂ Dε \D and an integer θ depending only on n such that

Dε \D ⊂
∞⋃

k=1

Bk ⊂ Γε, Bk = Br(xk)(xk) and

∞∑

k=1

χBk(x) ≤ θ for all x ∈ Rn.

Employing the Sobolev embedding theorem for balls [1], we obtain as in [28,
Theorem 18.6]

‖u‖Lq(Bk;δα) ≤ Cδ(xk)
n+α
q
−n+1−α (‖u‖L1(Bk;δα−1) + ‖∇u‖L1(Bk;δα)

)
(16)

for all q ≤ n/(n− 1). Note the different powers of the weight on the right-
hand side of (16). Assuming, without loss of generality, that ε0 ≤ 1 and
thus δ(xk) ≤ 1, we can bound the right-hand side of (16) as long as α and q
are such that n+α ≥ (n+α− 1)q. Hence, by summation over k, we obtain
the assertion with a constant C depending on n and the Sobolev embedding
constant for the unit ball, but not on ε.

Lemma 4.5 (Hardy-type inequality). Let 0 < ε < ε0 and let α > 0. Then
there exists a constant C > 0 independent of ε such that for every u ∈
W 1,1(Dε; δ

α)

‖u‖L1(Γε;δα−1) ≤
C

α

(
εα‖u‖W 1,1(D) + ‖∇u‖L1(Γε;δα)

)
.

Proof. Let u ∈ C∞(Dε) ∩W 1,1(Dε; δ
α). We obtain by using (11), 1/2 ≤

|detDΦ−t| ≤ 2, and one-dimensional integration-by-parts

∫

Γε

|u|δα−1 dx =

∫

∂Dε

∫ 2ε

0
|u(x− tn(x))|tα−1|detDΦ−t| dt dσε(x)

≤ 2

α

∫

∂Dε

|u(x− 2εn(x))|(2ε)α dσε(x)

+
2

α

∫

∂Dε

∫ 2ε

0
|∇u(x− tn(x))|tαdtdσε(x). (17)

To treat the first integral in (17), we employ the transformation Φ2ε :
∂D−ε → ∂Dε defined in Section 2.3, i.e.

∫

∂Dε

|u(x− 2εn(x))| dσε(x) ≤ 4

∫

∂D−ε
|u(x)| dσ−ε(x).

From u|D ∈ W 1,1(D), and D−ε ⊂ D, and the trace lemma 4.1 we deduce
that there exists a constant C > 0 independent of ε such that

∫

∂D−ε
|u(x)|dσ−ε(x) ≤ C‖u‖W 1,1(D),
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i.e.
∫
∂Dε
|u(x− 2εn(x))|dσε(x) ≤ C‖u‖W 1,1(D). The assertion follows from

∫

∂Dε

∫ 2ε

0
|∇u(x− tn(x))|tα dtdσε(x) ≤ 2

∫

Γε

|∇u|δα dx,

and a density argument.

Remark 4.6. Let us state that the arguments of [21] are based on partition
of unity {ϕi} subordinate to {Bj} ∪ {D} where {Bj} is a finite cover of
Γε. Then the Hardy-type argument of the latter proof is applied to vi = uϕi
which is zero on the boundary of Bi. Hence, the first term in (17) vanishes.
However, ∇vi = ϕi∇u + u∇ϕi, and |∇ϕi| ∼ 1/ε. Thus, the techniques of
[21] are not directly applicable as we strive for constants uniformly bounded
in terms of ε.

Proof of Theorem 4.3. We split the norm into the diffuse interface part and
the interior part

‖u‖qLq(Dε;ωε) =

∫

Dε\D
|u|qωε dx+

∫

D
|u|qωε dx.

From the Sobolev embedding theorem [1], we have that W 1,p(D;ωε) ↪→
Lq(D;ωε) is continuous for each q ≤ p∗0 = np/(n − p) if p < n, and for
q <∞ if p ≥ n. Since p∗α ≤ p∗0 and D is bounded, we only have to estimate
the Lq-norm of u on Dε \D.

First consider the case p = 1, q ≤ p∗α = (n + α)/(n + α − 1). For this
choice, the condition n+α ≥ (n+α− 1)q is obviously satisfied. Combining
Lemma 4.5 and Lemma 4.4 yields

∫

Dε\D
|u|qδα dx ≤ C

(∫

Γε

|u|δα−1 + |∇u|δα dx

)q

≤ C
(
εα‖u‖W 1,1(D) + ‖∇u‖L1(Γε;δα)

)q
.

Multiplication of the latter inequality with 1/εα, taking the qth root and
using (12), i.e. δα/εα ≈ ωε, further gives,

‖u‖Lq(Dε\D;ωε) ≤ Cεα(1−1/q)
(
‖u‖W 1,1(D) + ‖∇u‖L1(Γε;ωε)

)
.

Summarizing, we have shown that for each 1 ≤ q ≤ (n + α)/(n + α − 1)
there holds

‖u‖Lq(Dε;ωε) ≤ C‖u‖W 1,1(Dε;ωε).

For the general case p > 1, we apply the previous results to v = |u|1+q(p−1)/p

and q̃ = (1 − 1
p + 1

q )−1. One easily verifies that q ≤ p(n + α)/(n + α − p)
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is equivalent to q̃ ≤ (n + α)/(n + α − 1). Moreover, |v|q̃ = |u|q and |∇v| =
(1 + q(p−1)

p )|u|q(p−1)/p|∇u|. Whence, Hölder’s inequality yields

‖v‖W 1,1(Dε;ωε) =

∫

Dε

|u|1+
q(p−1)
p +

(
1 +

q(p− 1)

p

)
|u|

q(p−1)
p |∇u|dωε

≤
(
‖u‖Lp(Dε;ωε) +

(
1 +

q(p− 1)

p

)
‖∇u‖Lp(Dε;ωε)

)
‖u‖

q(p−1)
p

Lq(Dε;ωε)
.

This together with the identity

‖v‖Lq̃(Dε;ωε) = ‖u‖1+
q(p−1)
p

Lq(Dε;ωε)

yields the assertion.

Remark 4.7. As already noted, p∗α is strictly decreasing with respect to α
on (0,∞). Loosely speaking, compared to the unweighted Sobolev embedding,
we loose α spatial dimensions. For instance, if α = 1, we have that 2∗1 = 6
for n = 2, and 2∗1 = 4 for n = 3. This fact is intimately related to the Hardy
inequality and isoperimetric inequalities, cf. [20] where also counterexamples
are given showing that the restriction q ≤ p∗α cannot be improved in general.
However, embedding in certain Hölder spaces is possible [20, 28]. Adapting
the above proofs it should be possible to show that even in this situation the
embedding constants are independent of ε.

Proposition 4.8 (Compactness). Let 0 < ε < ε0, α be the constant in (S2),
and let 1 ≤ p <∞. Then the following embeddings are compact

W 1,p(Dε, ω
ε) ↪→ Lq(Dε, ω

ε), 1 ≤ q < p∗α.

Proof. Let q < p∗α and let {uk} ⊂ W 1,p(Dε;ω
ε) be bounded; say by a

constant Cp > 0. Furthermore denote by Ce the constant of the embed-
ding W 1,p(Dε;ω

ε) → Lp
∗
α(Dε;ω

ε). Since Lq(Dε;ω
ε) is complete, we have

to show that a subsequence of {uk} is Cauchy in Lq(Dε;ω
ε). Therefore,

let ι > 0 and choose γ = min{ε, (CpCe)qp/(q−p∗α)ι/2}. Since the embedding
W 1,p(Dε−γ ;ωε) ↪→ Lq(Dε−γ ;ωε) is compact [1], we can extract a subse-
quence, again denoted by {uk}, which is Cauchy in Lq(Dε−γ ;ωε). Hence,
there exists N = N(ι) ∈ N such that ‖uk − ul‖Lq(Dε−γ ;ωε) < ι/2 for all
k, l ≥ N . Let k, l ≥ N in the following. Thus, using the triangle inequality,
we have that

‖uk − ul‖Lq(Dε;ωε) ≤ ‖uk − ul‖Lq(Dε\Dε−γ ;ωε) +
ι

2
. (18)

Since 1 ≤ q < p∗α, we obtain by using Hölder’s inequality and the embedding
theorem

‖uk − ul‖Lq(Dε\Dε−γ ;ωε) ≤ ‖uk − ul‖Lp∗α (Dε\Dε−γ ;ωε)γ
1
q
− 1
p∗α

≤ Ce‖uk − ul‖W 1,p(Dε;ωε)γ
1
q
− 1
p∗α ≤ ι

2
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by choice of γ. This in combination with (18) shows that {uk} is Cauchy in
Lq(Dε;ω

ε).

The idea of the proof of the previous compactness result can already be
found in [28].

4.3 Diffuse Poincaré-Friedrichs inequalities

The last issue concerning basic results in weighted Sobolev spaces are Poincaré-
Friedrichs inequalities, which we again want to derive with constants inde-
pendent of ε. We start with a quite general result:

Theorem 4.9 (Poincaré-type inequality). Fix 1 ≤ p <∞. Assume that Dε

is connected for each ε ∈ [0, ε0], and let Kε ⊂ W 1,p(Dε;ω
ε), be a family of

closed cones, i.e. for u ∈ Kε there holds λu ∈ Kε for all λ > 0, such that
Kε contains only the zero function as a constant function. Then there exists
a constant C > 0 independent of ε such that

‖u‖Lp(Dε;ωε) ≤ C‖∇u‖Lp(Dε;ωε) for all u ∈ Kε. (19)

Proof. Assume (19) is not true. Then there exist sequences
{uk} ⊂ W 1,p(Dεk ;ωεk) ∩ Kεk with ‖uk‖Lp(Dεk ;ωεk ) = 1 and {εk} ⊂ [0, ε0]
such that

‖∇uk‖Lp(Dεk ;ωεk ) ≤
1

k
. (20)

Since εk ∈ [0, ε0] the Bolzano-Weierstraß theorem implies the existence of a
ε̃ ∈ [0, ε0] such that for a subsequence, relabeled if necessary, εk → ε̃ as k →
∞. Hence, for all γ > 0 there exists N(γ) ∈ N such that εk ∈ (ε̃− γ, ε̃+ γ)
for all k ≥ N(γ). In the following let 0 < γ < ε̃/2 and k ≥ N(γ). By
Hölder’s inequality and the embedding theorem for q = p∗α, we have

‖uk‖Lp(Dεk\Dε̃−2γ ;ωεk ) ≤ ‖uk‖Lq(Dεk\Dε̃−2γ ;ωεk )(2γ)
1

n+α

≤ C‖uk‖W 1,p(Dεk ;ωεk )γ
1

n+α . (21)

Furthermore, since ε̃− γ ≤ εk, by Lemma 3.2 (i)

‖uk‖W 1,p(Dε̃−γ ;ωε̃−γ) ≤ ‖uk‖W 1,p(Dεk ;ωεk ) ≤ C.

In view of Proposition 4.8, we can therefore extract a subsequence, relabeled
if necessary, such that uk → u in Lp(Dε̃−γ ;ωε̃−γ). Moreover, we deduce from
(20) and Lemma 3.2 (i) that

‖∇uk‖Lp(Dε̃−γ ;ωε̃−γ) ≤ ‖∇uk‖Lp(Dεk ;ωεk ) ≤
1

k
,
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and hence uk → u in W 1,p(Dε̃−γ ;ωε̃−γ) and ∇u = 0. Since Kε̃−γ is closed
and Dε̃−γ is connected, u ∈ Kε̃−γ and u = 0 on Dε̃−γ . In view of Lemma 3.2
(ii), we further obtain

‖uk‖Lp(Dε̃−2γ ;ωεk ) ≤ 2‖uk‖Lp(Dε̃−2γ ;ωε̃+γ) ≤ C‖uk‖Lp(Dε̃−2γ ;ωε̃−γ)

≤ C‖uk‖Lp(Dε̃−γ ;ωε̃−γ).

This in combination with (21) implies

1 = lim
k→∞

‖uk‖Lp(Dεk ;ωεk ) ≤ Cγ
1

n+α + lim
k→∞

‖uk‖Lp(Dε̃−2γ ;ωεk ) = Cγ
1

n+α .

Since γ > 0 was arbitrary, this is the desired contradiction.

Let us remark that in [8] a similar result has been obtained for unweighted
spaces, i.e. a Poincaré inequality with a constant which is independent of
certain perturbations of ∂D. For illustration of the previous result let us
state the “usual” Poincaré and Friedrichs inequality in their weighted form.

Corollary 4.10. Let ε ∈ [0, ε0], 1 ≤ p <∞, and let Dε be connected. Then
there exists a constant C independent of ε such that

‖u− ūDε‖Lp(Dε;ωε) ≤ C‖∇u‖Lp(Dε;ωε) for all u ∈W 1,p(Dε;ω
ε).

Here ūDε =
∫
Dε
udωε/‖1‖L1(Dε;ωε) is the weighted mean value.

Proof. Define Kε = {u ∈W 1,p(Dε;ω
ε) : ūDε = 0} and use Theorem 4.9.

Corollary 4.11 (Poincaré-Friedrichs-type inequality). Let ε ∈ [0, ε0], 1 ≤
p <∞, and let Dε be connected. Then there exists a constant C independent
of ε such that for every ε ∈ (0, ε0) and v ∈W 1,p(Dε;ω

ε) there holds

‖v‖pLp(Dε;ωε)
≤ CP

(
‖∇v‖pLp(Dε;ωε)

+

∫

Dε

|v|p|∇ωε| dx
)
.

Proof. Define Kε = {v ∈ W 1,p(Dε;ω
ε) :

∫
Dε
|v|p|∇ωε| dx = 0} and use

Theorem 4.9.

Remark 4.12. In Corollary 4.11 one can make the constant explicit if one
applies the “classical” Poincaré-Friedrichs inequality [1, 6.26] to |v|pωε ∈
W 1,1

0 (Ω).

Remark 4.13. Theorem 4.9 also holds for the case p = ∞: By Rellich’s
theorem [1] the embedding W 1,∞(Dε̃−γ) ↪→ C0,1(Dε̃−γ) ↪→ L∞(Dε̃−γ) is
compact. Then, with similar arguments as above, the assumption (20) with
p = ∞ leads to ‖uk‖L∞(Dε̃−γ) → 0. Then, for x̃ = x + tn(x) ∈ Dεk \Dε̃−γ
with x ∈ ∂Dε̃−γ and t ≤ γ, we obtain as k →∞

|uk(x̃)| ≤ |uk(x)|+ γ‖∇uk‖Lp(Dεk ) ≤ |uk(x)|+ γ/k → 0,

where we have chosen a Lipschitz continuous representative of uk. Hence,
‖uk‖L∞(Dεk ) → 0 which contradicts ‖uk‖L∞(Dεk ) = 1.
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5 Convergence of diffuse integrals

In the following two subsections we investigate the approximation properties
of the diffuse integrals introduced in (5).

5.1 Convergence of diffuse volume integrals

We start with the case of volume integrals, for which we want to estimate
the error

EV =

∫

Ω
h(x) dωε(x)−

∫

D
h(x) dx

between the volume integral and the diffuse volume integral in terms of ε
and h. We will provide estimates for the cases h ∈ Lp(Dε;ω

ε) and h ∈
W 1,p(Dε;ω

ε) which gives stronger results improved by one order of ε.

Theorem 5.1. Let 1 < p ≤ ∞ and h ∈ Lp(Dε;ω
ε). Then there exists a

constant C > 0 independent of ε such that

|EV | ≤ Cε1− 1
p ‖h‖Lp(Γε;ωε).

Moreover, if p = 1 and h ∈ L1(Ω), then EV → 0 as ε→ 0+.

Proof. L1-regularity: Let h ∈ L1(Ω). Using dominated convergence, we
infer from ωε(x)→ χD(x) as ε→ 0+ a.e. x ∈ Ω and hωε ≤ h that

lim
ε→0+

EV = 0.

Let h ∈ Lp(Dε;ω
ε) for fixed but arbitrary 1 < p ≤ ∞. Using (7) and ωε = 1

on D \ Γε, we obtain the representation

EV =

∫

Γε

h(x) dωε(x)−
∫

D∩Γε

h(x) dx.

Using Hölders inequality and 1 ≤ 2ωε on D ∩ Γε we can estimate the two
terms as follows
∫

Γε

h(x) dωε(x) ≤ ‖h‖Lp(Γε;ωε)‖ωε‖
1− 1

p

L1(Γε)
,

∫

D∩Γε

|h(x)| dx ≤ 2

∫

D∩Γε

|h(x)|ωε(x) dx ≤ 2‖h‖Lp(Γε;ωε)‖ωε‖
1− 1

p

L1(D∩Γε)
.

Since |ωε| ≤ 1, we deduce from (8) that

‖ωε‖1−
1
p

L1(Γε)
≤ Cε1− 1

p ,

which concludes the proof.
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Theorem 5.1 for Lp-functions relies basically on the fact that |Γε| ≤ Cε.
This is due to the fact that Lp(Dε;ω

ε)-functions can have singularities in
Γε. Note that in the case p = 1 we expect no rate of convergence in terms of
ε, and the assumption h ∈ L1(Ω) is stronger than those for p > 1. Resorting
to W 1,p-functions we can exploit extensively symmetry of the phase-field
function ωε leading to a much stronger result.

Theorem 5.2. Let 0 < ε ≤ ε0, and let h ∈ W 1,p(Dε;ω
ε) for some 1 ≤ p ≤

∞. Then there exists C > 0 independent of ε such that

|EV | ≤ Cε2− 1
p ‖h‖W 1,p(Γε;ωε).

Proof. Using a change of variables s = S(−t/ε) and Fubini’s theorem, we
observe that∫ ε

−ε

1

2ε
S′(− t

ε
)

∫

{dD(x)<t}
h(x) dx dt =

∫

Ω
h(x)

1 + ϕε

2
dx.

Since
∫ ε
−ε

1
2εS
′(− t

ε) dt = 1, we further obtain

EV =

∫ ε

−ε

1

2ε
S′(− t

ε
)

(∫

{dD(x)<t}
h(x) dx−

∫

{dD(x)<0}
h(x) dx

)
dt.

Observing that
∫

{dD(x)<t}
h(x) dx−

∫

{dD(x)<0}
h(x) dx = −

∫

{t<dD(x)<0}
h(x) dx for t < 0

and∫

{dD(x)<t}
h(x) dx−

∫

{dD(x)<0}
h(x) dx =

∫

{0<dD(x)<t}
h(x) dx for t > 0,

and splitting the integration over (−ε, ε) to (−ε, 0) and (0, ε) and employing
a change of variables t 7→ −t for the integral over (−ε, 0), we further obtain

EV =

∫ ε

0

1

2ε
S′(− t

ε
)

(∫

{0<dD(x)<t}
h(x) dx−

∫

{−t<dD(x)<0}
h(x) dx

)
dt.

(22)

For the last computation, we used S(−t) = −S(t), i.e. S′(−t) = S′(t). To
compare the difference on the right-hand side of the latter equation we use
the transformations Φs introduced in Section 2.3, and the transformation
formula, namely

∫

{0<dD(x)<t}
h(x) dx−

∫

{−t<dD(x)<0}
h(x) dx

=

∫ t

0

∫

∂D

(
h(x+ sn(x))− h(x− sn(x))

)
| detDΦs(x)|dσ(x) ds

+

∫ t

0

∫

∂D
h(x− sn(x))(| detDΦs(x)| − | detDΦ−s(x)|) dσ(x) ds.
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The two integrals can be treated separately. Using h(x + sn(x)) − h(x −
sn(x)) =

∫ s
−s∇h(x + τn(x)) · n(x)dτ , and 1

2 ≤ |detDΦs(x)| ≤ 2 we obtain
using Fubini’s theorem and the transformation formula

∫ t

0

∫

∂D

(
h(x+ sn(x))− h(x− sn(x))

)
|detDΦs(x)|dσ(x) ds

≤ 2

∫ t

0

∫ s

−s

∫

∂D
|∇h(x+ τn(x)) · n(x)| dσ(x)dτ ds

≤ 4t

∫ t

−t

∫

∂D
|∇h(x+ τn(x))||detDΦτ (x)| dσ(x)dτ

= 4t

∫

Γt

|∇h(x)|dx.

For the second integral we obtain

∫ t

0

∫

∂D
h(x− sn(x))(| detDΦs(x)| − | detDΦ−s(x)|) dσ(x) ds

≤ Ct
∫

Γt

|h(x)| dx (23)

which can be seeen with (10) as

∫ t

0

∫

∂D
h(x− sn(x))(|detDΦs(x)| − | detDΦ−s(x)|) dσ(x) ds

≤ C‖D2dD‖L∞(∂D)

∫ t

0
s

∫

∂D
|h(x− sn(x))| dσ(x) ds

≤ 2C‖D2dD‖L∞(∂D)t

∫ t

0

∫

∂D
|h(x− sn(x))||detDΦ−s(x)|dσ(x) ds

≤ 2C‖D2dD‖L∞(∂D)t

∫

Γt

|h(x)| dx.

Using these estimates we obtain from (22)

|EV | ≤ C
∫ ε

0

1

2ε
S′(− t

ε
)t

∫

Γt

|h(x)|+ |∇h(x)|dx dt.

Setting p′ = p/(p− 1), an application of Hölder’s inequality thus yields

|EV | ≤
C

2ε

(∫ ε

0
S′(− t

ε
)tp
′
dt

) 1
p′

(∫ ε

0
S′(− t

ε
)

(∫

Γt

|h(x)|+ |∇h(x)| dx
)p

dt

) 1
p

.

5. PAPER IV

142



Using boundedness of S′ the first integral can be computed explicitly. To
treat the second integral, we use Hölder’s inequality for the inner integral
which gives

|EV | ≤
C

ε
ε

2− 1
p

(∫ ε

0
S′(− t

ε
)|Γt|

p
p′
∫

Γt

|h(x)|p + |∇h(x)|p dx dt

) 1
p

.

Note, that C is a universal constant depending only on S, D and p but not
on ε or h which may change from to line. Using |Γt| ≤ Ct|∂D|, t ≤ ε and
1
p + 1

p′ = 1, we therefore have

|EV | ≤ Cε2− 1
p

(
1

ε

∫ ε

0
S′(− t

ε
)

∫

Γt

|h(x)|p + |∇h(x)|p dx dt

) 1
p

.

Since Γt = {x ∈ Dε : −t < dD(x) < t} = {x ∈ Dε : −s < ϕε(x) < s} for
s = −S(− t

ε), a corresponding transformation yields

1

ε

∫ ε

0
S′(− t

ε
)

∫

Γt

|h(x)|p + |∇h(x)|p dx dt

=

∫ 1

0

∫

{−s<ϕε<s}
|h(x)|p + |∇h(x)|p dx ds

=

∫

Γε

∫ 1

|ϕε(x)|
ds
(
|h(x)|p + |∇h(x)|p

)
dx ≤ 2‖h‖p

W 1,p(Γε;ωε)

where we used that 1− |ϕε| ≤ 2ωε on Γε, and

{(x, s) ∈ Rn+1 : 0 < s < 1, −s < ϕε(x) < s}
= {(x, s) ∈ Rn+1 : |ϕε(x)| < s < 1}.

This yields the assertion.

For sake of completeness, let us state a corresponding approximation re-
sult for Hölder continuous function, i.e. we say that h ∈ C0,ν(Ω), if h is
continuous on Ω and if

|h|ν = sup
x 6=y

h(x)− h(y)

|x− y|ν <∞.

We write ‖h‖C0,ν(Ω) = supx∈Ω |h(x)|+ |h|ν .

Lemma 5.3. Let 0 < ε ≤ ε0, and let h ∈ C0,ν(Γε) for some 0 < ν ≤ 1.
Then there exists C > 0 independent of ε such that

|EV | ≤ C‖h‖C0,ν(Γε)
εν+1.
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Proof. It is easy to show the estimates

∫ t

0

∫

∂D

(
h(x+ sn(x))− h(x− sn(x))

)
|detDΦs(x)| dσ(x) ds

≤ Ctν‖h‖C0,ν(Γε)

and
∫ t

0

∫

∂D
h(x− sn(x))(| detDΦs(x)| − | detDΦ−s(x)|) dσ(x) ds

≤ Ct‖h‖C0(Γε)
.

The proof is completed by integration over t with similar arguments as in
the proof of Theorem 5.2.

5.2 Convergence of diffuse boundary integrals

In this section we investigate the accuracy of the diffuse boundary integral
approximation. For this sake consider

EB =

∫

Ω
g(x)|∇ωε(x)| dx−

∫

∂D
g(x) dσ(x).

In the following we reduce the treatment of EB to that of EV from the
previous section. Using ∇dD(x) = n(x) and the divergence theorem, we see
that
∫

∂D
g(x) dσ(x) =

∫

∂D
g(x)∇dD(x) · n(x) dσ(x) =

∫

D
div(g(x)∇dD(x)) dx.

Note that, g|D ∈ W 1,p(D) for any g ∈ W 1,p(Dε;ω
ε), and thus g has a

trace on ∂D. To treat the diffuse boundary integral, we first observe that
|∇ωε| = −∇dD · ∇ωε on Γε. For the definition of Γε see (7). Therefore,
integration-by-parts shows that

∫

Ω
g(x)|∇ωε(x)|dx = −

∫

Ω
g(x)∇dD(x)∇ωε(x) dx

=

∫

Ω
div(g(x)∇dD(x))ωε(x) dx.

Notice, that due to supp(ωε) ⊂ Ω there are no boundary integrals. Thus,
we have that

EB =

∫

Ω
div(g(x)∇dD(x)) dωε(x)−

∫

D
div(g(x)∇dD(x)) dx.

Setting h = div(g∇dD), we can use Theorem 5.1, Theorem 5.2 and Lemma 5.3
of the previous section.
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Lemma 5.4. Let ∂D be of class C1,1 and let 1 ≤ p ≤ ∞. Moreover, let
g ∈ W 1,p(Dε;ω

ε) for some 0 < ε < ε0. Then there exists a constant C > 0
independent of ε such that

|EB| ≤ C‖g‖W 1,p(Dε;ωε)ε
1− 1

p .

Proof. If ∂D ∈ C1,1, then dD ∈ C1,1 [11] and, in this case, g ∈W 1,p(Dε;ω
ε)

implies h ∈ Lp(Dε;ω
ε) for 1 ≤ p ≤ ∞, which in turn implies EB = O(ε1−1/p)

by Theorem 5.1.

Lemma 5.5. Let ∂D be of class C2,1. Moreover, let g ∈ W 2,p(Dε;ω
ε) for

some 0 < ε < ε0 and 1 ≤ p ≤ ∞. Then there exists a constant C > 0
independent of ε such that

|EB| ≤ C‖g‖W 2,p(Dε;ωε)ε
2− 1

p .

Proof. If ∂D ∈ C2,1, then dD ∈ C2,1 [11] and, in this case, g ∈W 2,p(Dε;ω
ε)

implies h ∈ W 1,p(Dε;ω
ε), which in turn implies EB = O(ε2−1/p) by Theo-

rem 5.2.

The estimate of Lemma 5.5 assumes W 2,p-regularity of the whole integrand.
For our analysis we will also need a slightly different statement:

Theorem 5.6. Assume ∂D is of class C1,1, let (S3) hold and let 1 ≤ p ≤
q ≤ ∞. Furthermore, let u ∈ W 2,q(Dε;ω

ε) satisfy u = 0 on ∂D and let
v ∈ W 1,p′(Dε;ω

ε) with p′ = p/(p − 1). Then there exists a constant C
independent of ε, u and v such that for q′ = q/(q − 1)
∫

Γε

uv|∇ωε| dx ≤ C(ε
1+ 1

q′ ‖u‖W 2,q(Dε;ωε) + ε
1+ 1

p ‖u‖W 2,p(Dε;ωε))‖v‖W 1,p′ (Dε;ωε).

The higher integrability of u improves the first part of the estimate whereas
the higher integrability of v improves the second part. For q = p the rate is

O(ε
1+ 1

p′ + ε
1+ 1

p ) which is optimal for p = 2. For q = p′ we obtain the best

possible rate O(ε
1+ 1

p ).

Proof. We start with an inequality for w ∈W 1,1(Dε;ω
ε). An application of

(11), (9) and Theorem 4.2 yields

∣∣
∫

Γε

w|∇ωε|dx−
∫ ε

−ε

1

2ε
S′(− t

ε
)

∫

∂D
w(x+ tn(x))(1 + t∆dD(x)) dσ(x) dt

∣∣

(24)

≤ C
∫ ε

−ε

1

2ε
S′(− t

ε
)

∫

∂D
|w(x+ tn(x))|ε2 dσ(x) dt

≤ Cε2

∫

Γε

|w||∇ωε| dx

≤ Cε2‖w‖W 1,1(Dε;ωε),
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with C independent of ε.
Now let w ∈W 2,q((−ε, ε)), then there exists a constant C such that

|
∫ ε

−ε
S′(− t

ε
)

∫ t

0
w′(s) ds dt| ≤ ε3− 3

qC

(∫ ε

0
S′(− t

ε
)

∫ t

0

∫ s

−s
|w′′(r)|q dr ds dt

) 1
q

.

(25)

This can be seen as follows: By change of variables and application of the
fundamental theorem of calculus, we obtain

∫ ε

−ε
S′(− t

ε
)

∫ t

0
w′(s) ds dt =

∫ ε

0
S′(− t

ε
)

∫ t

0
w′(s)− w′(−s) dsdt

=

∫ ε

0
S′(− t

ε
)

∫ t

0

∫ s

−s
w′′(r) dr ds dt.

Repeated application of Hölder’s inequality gives

|
∫ ε

0
S′(− t

ε
)

∫ t

0

∫ s

−s
w′′(r) dr dsdt|

≤ 2
1
q′
(∫ ε

0
S′(− t

ε
)

∫ t

0
s dsdt

) 1
q′
(∫ ε

0
S′(− t

ε
)

∫ t

0

∫ s

−s
|w′′(r)|q dr ds dt

) 1
q

.

Using boundedness of S′ and calculating
∫ ε

0

∫ t
0 s ds dt = ε3/6 yields the

assertion.
We are now in the position to give a proof of the theorem. By setting w = uv
in (24), we have that

∫

Γε

uv|∇ωε|dx

−
∫ ε

−ε

1

2ε
S′(− t

ε
)

∫

∂D
u(x+ tn(x))v(x+ tn(x))(1 + t∆dD(x)) dσ(x) dt

≤ Cε2‖u‖W 1,p(Dε;ωε)‖v‖W 1,p′ (Dε;ωε).

Thus, to prove the theorem, it is sufficient to estimate the second integral
on the left-hand side of the latter inequality. Using v(x + tn(x)) = v(x) +∫ t

0 ∇v(x+ sn(x)) ·n(x) ds and u(x+ tn(x)) =
∫ t

0 ∇u(x+ sn(x)) ·n(x) ds, we
see that

u(x+ tn(x))v(x+ tn(x)) = v(x)

∫ t

0
∇u(x+ sn(x)) · n(x) ds

+

∫ t

0
∇v(x+ sn(x)) · n(x) ds

∫ t

0
∇u(x+ sn(x)) · n(x) ds.

We treat the two terms on the right-hand side separately. For the first one,
we will use (25) with w(s) = u(x + sn(x)), Hölder’s inequality and q ≥ p
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which yields

∣∣∣∣
1

2ε

∫

∂D
v(x)

∫ ε

−ε
S′(− t

ε
)

∫ t

0
∇u(x+ sn(x)) · n(x) dsdt dσ(x)

∣∣∣∣

≤ C ε
3− 3

q

2ε

∫

∂D
v(x)

(∫ ε

0
S′(− t

ε
)

∫ t

0

∫ s

−s
|n(x) ·D2u(x+ rn(x)) · n(x)|qdr dsdt

) 1
q

dσ(x)

≤ Cε2− 3
q

(∫

∂D
|v|p′ dσ)

) 1
p′
(∫ ε

0
S′(− t

ε
)

∫ t

0

∫

Γs

|D2u|q dx ds dt

) 1
q

≤ Cε2− 1
q

(∫

∂D
|v|p′ dσ)

) 1
p′
(∫ ε

0

1

2ε
S′(− t

ε
)

∫

Γt

|D2u|q dx dt

) 1
q

≤ Cε2− 1
q ‖v‖W 1,p′ (Dε;ωε)‖u‖W 2,q(Dε;ωε),

where we have used Lemma 4.1 to treat the term involving v and the trans-
formation formula to treat the term involving u, see the last lines of the
proof of Theorem 5.2. For the second term we first use Hölder’s inequality
twice

∣∣ 1

2ε

∫

∂D

∫ ε

0
S′(− t

ε
)

(∫ t

0
∇v(x+ sn(x)) · n(x) ds

∫ t

0
∇u(x+ sn(x)) · n(x) ds

)
dt dσ(x)

∣∣

≤ 1

2ε

∫

∂D

∫ ε

0
tS′(− t

ε
)

(∫ t

0
|∇v(x+ sn(x))|p′ ds

) 1
p′

(∫ t

0
|∇u(x+ sn(x))|p ds

) 1
p

dtdσ(x)

≤ ε

2

(∫

∂D

1

ε

∫ ε

0
S′(− t

ε
)

∫ t

0
|∇v(x+ sn(x))|p′ ds dtdσ(x)

) 1
p′

(∫

∂D

1

ε

∫ ε

0
S′(− t

ε
)

∫ t

0
|∇u(x+ sn(x))|p ds dtdσ(x)

) 1
p

.

Then, using (11), we obtain similarly as in the proof of Theorem 5.2

∫

∂D

1

ε

∫ ε

0
S′(− t

ε
)

∫ t

0
|∇v(x+ sn(x))|p′ ds dt dσ(x) ≤ C‖v‖p′

W 1,p′ (Dε;ωε)
,
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and by (11), (S3), and by Theorem 4.2

∫

∂D

1

ε

∫ ε

0
S′(− t

ε
)

∫ t

0
|∇u(x+ sn(x))|p ds dtdσ(x)

≤ ε
∫

∂D

∫ ε

0

1

ε
S′(−s

ε
)|∇u(x+ sn(x))|p dsdσ(x)

≤ Cε
∫

Γε

|∇u|p|∇ωε|dx

≤ Cε‖u‖p
W 2,p(Dε;ωε)

.

The integrals over (−ε, 0) as well as the ones involving t∆dD can be treated
similarly. Collecting all terms yields the assertion.

Up to now, we have always assumed the boundary data g to be regular.
For completeness, let us also consider the case g ∈ Lp(∂D) only. Then g is
defined a.e. on ∂D, and we can define an extension a.e. on Γε by

g̃(x+ tn(x)) = g(x), −ε ≤ t ≤ ε, x ∈ ∂D. (26)

Lemma 5.7. Let g ∈ Lp(∂D) and let v ∈ W 1,p′(Dε;ω
ε) with 1 ≤ p ≤ ∞,

p′ = p/(p− 1), and 0 < ε ≤ ε0. Then there exists a constant C independent
of ε such that

|
∫

Γε

g̃v|∇ωε|dx−
∫

∂D
gv dσ| ≤ Cε1/p‖g‖Lp(∂D)‖v‖W 1,p′ (Dε;ωε)

with g̃ being the extension defined in (26).

Proof. Using
∫ ε
−ε S

′(−t/ε) dt = 2ε and the transformation formula, we ob-
tain

∫

Γε

g̃v|∇ωε| dx−
∫

∂D
gv dσ

=

∫ ε

−ε

1

2ε
S′(− t

ε
)

∫

∂D

(
v(x+ tn(x)) detDΦt(x)− v(x)

)
g(x) dσ(x) dt.

Thus, using (9), there exists C > 0 independent of ε such that

∣∣∣∣
∫

Γε

g̃v|∇ωε| dx −
∫

∂D
gv dσ

∣∣∣∣

≤
∣∣∣∣
∫

∂D
g(x)

∫ ε

−ε

1

2ε
S′(− t

ε
)
(
v(x+ tn(x))− v(x)

)
dtdσ(x)

∣∣∣∣

+ C

∣∣∣∣
∫

∂D
g(x)

∫ ε

−ε

1

2ε
S′(− t

ε
)tv(x+ tn(x)) dt dσ(x)

∣∣∣∣ .
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We treat the two integrals on the right-hand side separately. Repeated use
of Hölder’s inequality and ∇v(x+ tn(x))−v(x) =

∫ t
0 ∇v(x+ sn(x)) ·n(x) ds

yields similarly as in the proof of Theorem 5.2

|
∫

∂D
g(x)

∫ ε

0

1

2ε
S′(− t

ε
)
(
v(x+ tn(x))− v(x)

)
dtdσ(x)|

≤ ‖g‖Lp(∂D)

(∫

∂D

(∫ ε

0

1

2ε
S′(− t

ε
)

∫ t

0
|∇v(x+ sn(x))|ds dt

)p′
dσ(x)

) 1
p′

≤ ‖g‖Lp(∂D)|Γε|
1
p

(∫ ε

0

1

2ε
S′(− t

ε
)

∫

Γt

|∇v(x)|p′ dx dt

)p′
.

An analogue estimate hold for the integral over (−ε, 0). Since, |Γε|
1
p ≤ Cε1/p

this is the desired estimate for the first integral. The second can be estimated
similarly, i.e.

∣∣∣∣
∫

∂D
g(x)

∫ ε

−ε

1

2ε
S′(− t

ε
)tv(x+ tn(x)) dt dσ(x)

∣∣∣∣

≤ ε‖g‖Lp(∂D)

(∫

Γε

|v|p′ |∇ωε| dx
) 1
p′

The last term can be estimated using the trace theorem 4.2.

For the sake of completeness, we also state an analog to Lemma 5.3.

Lemma 5.8. Let ∂D be of class C2,ν for some 0 < ν ≤ 1. Moreover, let
g ∈ C1,ν(Γε) for some 0 < ε < ε0. Then there exists a constant C > 0
independent of ε such that

|EB| ≤ C‖g‖C1,ν(Γε)
ε1+ν .

Proof. Since dD ∈ C2,ν(Γε), we have g∇dD ∈ C1,ν(Γε). The assertion fol-
lows from Lemma 5.3.

6 Diffuse elliptic problems

In this section we investigate three typical second order elliptic boundary
value problems. We start with Robin-type problems, which build the basis
for further investigations. For rather irregular data, we obtain a weak sublin-
ear convergence result in terms of ε. Superlinear convergence is achieved by
requiring smooth data. In Section 6.2 we treat Dirichlet boundary conditions
which can be reduced to the analysis of a Robin problem by means of the
well-known penalty method. In Section 6.3 we consider Neumann bound-
ary conditions and establish well-posedness of the diffuse domain method.
Apart from the well-posed the convergence results can be derived as in the
Robin case.
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6.1 Robin boundary conditions

Consider the following second order elliptic equation with Robin-type bound-
ary condition: Find u such that

−div(A∇u) + cu = f in D, (27)

n ·A∇u+ bu = g on ∂D. (28)

In order to obtain (weak) solutions to (27)–(28), let us consider the following
weak formulation: Find u ∈W 1,2(D) such that

a(u, v) = `(v) for all v ∈W 1,2(D), (29)

with bilinear and linear form

a(u, v) =

∫

D
A∇u · ∇v + cuv dx+

∫

∂D
buv dσ,

`(v) =

∫

D
fv dx+

∫

∂D
gv dσ.

In order to prove well-posedness of the weak form (29) via the Lax-Milgram
lemma we make the following assumptions:

(C1) 0 < b0 ≤ b ∈W 1,∞(Ω), 0 ≤ c ∈ L∞(Ω).

(C2) A ∈ L∞(Ω)n×n is a symmetric positive definite matrix, i.e. there exists
κ > 0 such that for a.e. x ∈ Ω

κ−1|ξ|2 ≤ ξ ·A(x)ξ ≤ κ|ξ|2 for all ξ ∈ Rn.

Lemma 6.1. Let (C1)–(C2) hold. Moreover, let f ∈ L2(D) and g ∈
W 1,2(D). Then there exists a unique u ∈ W 1,2(D) satisfying (29), and
there exists C > 0 such that

‖u‖W 1,2(D) ≤ C(‖f‖L2(D) + ‖g‖L2(∂D)).

The diffuse approximation of (29) is now: Find uε ∈W 1,2(Dε;ω
ε) such that

aε(uε, v) = `ε(v) for all v ∈W 1,2(Dε;ω
ε), (30)

where the corresponding bilinear and linear form are given by

aε(uε, v) =

∫

Ω
A∇uε · ∇v + cuεv dωε +

∫

Ω
buεv|∇ωε|dx

`ε(v) =

∫

Ω
fv dωε +

∫

Ω
gv|∇ωε| dx.
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Lemma 6.2. Let (C1)–(C2) hold. Moreover, let f ∈ L2(Dε;ω
ε) and g ∈

W 1,2(Dε;ω
ε). Then there exists a unique uε ∈W 1,2(Dε;ω

ε) satisfying (30),
and there exists C > 0 independent of ε such that

‖uε‖W 1,2(Dε;ωε) ≤ C(‖f‖L2(Dε;ωε) + ‖g‖W 1,2(Dε;ωε)).

Proof. Continuity of aε and `ε with respect to the W 1,2(Dε;ω
ε)-topology

follows from boundedness of the coefficients and Theorem 4.2. Coercivity
of aε on W 1,2(Dε;ω

ε) is a direct consequence of the positivity of A and
the Poincaré-Friedrichs inequality, see Corollary 4.11. An application of the
Lax-Milgram lemma yields the assertion.

Denoting by u and uε the corresponding solutions to (29) and (30), re-
spectively, we next want to estimate the error u − uε with respect to the
W 1,2(Dε;ω

ε)-norm which directly implies estimates in the W 1,2(D)-norm as
well. By regularity of ∂D, we can assume that u : D → R is extended to Ω
preserving W 1,2(Ω)-regularity. Hence, the error u− uε satisfies

aε(u− uε, v) = aε(u, v)− a(u, v) + `(v)− `ε(v) for all v ∈W 1,2(Dε;ω
ε).
(31)

6.1.1 Sublinear convergence

In order to obtain a first estimate for the error u − uε, we estimate the
right-hand side of (31) by employing the embedding theorem 4.3. We recall
the definitions p∗α = (n+ α)p/(n+ α− p), see (14), and

‖`‖W 1,2(Dε;ωε)′ = sup
v∈W 1,2(Dε;ωε)

`(v)

‖v‖W 1,2(Dε;ωε)
,

which is the norm of ` as an element of the dual space of W 1,2(Dε;ω
ε).

Lemma 6.3. Let f ∈ L2(Dε, ω
ε) and g ∈ W 1,2(Dε;ω

ε). Then there exists
a constant C independent of ε such that

‖`ε − `‖W 1,2(Dε;ωε)′ ≤ C
(
‖f‖L2(Dε;ωε) + ‖g‖W 1,2(Dε;ωε)

)
ε

1
n+α .

Proof. Let v ∈ W 1,2(Dε;ω
ε). Due to the weighted Sobolev embedding (15)

we have v ∈ Lp(Dε, ω
ε) for p = 2∗α. Hence, fv ∈ Lq(Dε, ω

ε) with q =
2p/(2 + p) due to Hölder’s inequality. Similarly, since ∇(gv) = g∇v +
∇gv ∈ Lq(Dε, ω

ε) with q as before, we have that gv ∈ W 1,q(Dε, ω
ε). Using

Theorem 5.1 and Lemma 5.4 we obtain

|`ε(v)− `(v)| ≤ C
(
‖f‖L2(Dε;ωε) + ‖g‖W 1,2(Dε;ωε)

)
‖v‖W 1,2(Dε;ωε)ε

1− 1
q

The assertion follows from 1− 1
q = 1

2 − 1
2∗α

= 1
n+α .
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In order to obtain convergence rates, we need some regularity of u.

Lemma 6.4. Let u ∈ W 1,p(Dε;ω
ε) for some p > 2. Then there exists a

constant C independent of ε such that

‖aε(u, ·)− a(u, ·)‖W 1,2(Dε;ωε)′ ≤ C‖u‖W 1,p(Dε;ωε)ε
1
2
− 1
p .

Proof. Let v ∈ W 1,2(Dε;ω
ε) be arbitrary. Since A is bounded and u ∈

W 1,p(Dε;ω
ε), it is A∇u · ∇v ∈ Lq(Dε;ω

ε) with q = 2p/(2 + p). Similarly
cuv ∈ Lq(Dε;ω

ε). Using α ∈ W 1,∞(Ω), we see that αuv ∈ W 1,q(Dε;ω
ε)

with q as before. The result now follows by applying Theorem 5.1 and
Lemma 5.4 similar as in the proof of Lemma 6.3.

Having estimated the errors in right-hand side and bilinear form we can
proceed to the main approximation results in this section:

Theorem 6.5. Let (C1)–(C2) hold. Moreover, assume that u ∈ W 1,p(D)
with 2 ≤ p ≤ 2∗α is a solution to (29) and uε ∈W 1,2(Dε;ω

ε) is a solution to
(30). Then there exists a constant C > 0 independent of ε such that

‖u− uε‖W 1,2(Dε;ωε)

≤ C
(
‖u‖W 1,p(Dε;ωε) + ‖f‖L2(Dε;ωε) + ‖g‖W 1,2(Dε;ωε)

)
ε

1
2
− 1
p .

Proof. Coercivity of aε and (31) imply

‖u− uε‖W 1,2(Dε;ωε)

≤ C(‖aε(u, ·)− a(u, ·)‖W 1,2(Dε;ωε)′ + ‖`ε − `‖W 1,2(Dε;ωε)′),

and the assertion follows from Lemma 6.3 and Lemma 6.4.

Remark 6.6. Note that, according to [18], see also [12], there always exists
a p > 2 such that u ∈ W 1,p(D), whence u ∈ W 1,p(Dε;ω

ε) by extension. If
p = 2∗α, we obtain the best possible rate O(ε1/(n+α)), i.e. O(ε1/3) in two
space dimensions and S as in Example 3.1 (i).

Remark 6.7. (i) Assuming g = 0 and f ∈ L2(D) extended by zero to Ω an
inspection of the proof of Theorem 5.1 shows that for each v ∈W 1,2(Dε;ω

ε)
∫

Dε

fv dωε −
∫

D
fv dx ≤ Cε 1

n ‖v‖W 1,2(D)‖f‖L2(D)

which is due to the embedding W 1,2(D) ↪→ L2∗0(D) and the fact that v|D ∈
W 1,2(D). This immediately leads to a stronger result in Lemma 6.3 inde-
pendent of ωε. However, for proving Lemma 6.4, we have to estimate the
term

∫

Dε

A∇u · ∇v dωε −
∫

D
A∇u · ∇v dx.
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Here, on the one hand, to preserve regularity of u, setting u = 0 on Dε \D
is not possible. On the other hand setting A = 0 on Dε \D is not allowed
since then (6) is not well-posed anymore.

(ii) If f ∈ L∞(Ω), g ∈ W 1,∞(Ω) and u ∈ W 1,∞(Ω), then using the tech-
niques from above, we would obtain the bound

‖u− uε‖W 1,2(Dε;ωε) = O(ε
1
2 )

as ε → 0 since the test function v is merely W 1,2(Dε;ω
ε). For smooth test

functions v and f ∈ Lp(Dε;ω
ε) and u, g ∈ W 1,p(Dε;ω

ε), the right-hand
side of (31) is bounded by a constant multiple (depending on f , g and u) of
ε1−1/p‖v‖W 1,∞(Dε). This estimate, however, does not lead to W 1,2(Dε;ω

ε)-
estimates for the error anymore. We will return to these type of estimates in
the next section. We also mention that an inspection of several proofs above
shows that crucial terms drop out if the involved functions are symmetric
with respect to ∂D (mirrored along the normal direction). Thus, using sym-
metric extensions of data and solutions as well as a restriction to a Sobolev
space of functions symmetric with respect to ∂D could give higher order
rates. However, since this does not correspond to the computational prac-
tice and would extremely complicate the numerical solution, this seems not
of particular practical relevance and hence we do not pursue this direction
further.

6.1.2 From linear to quadratic convergence

In literature there exist very recent formal results for the diffuse domain
method that state a rate of convergence for the L2-norm of O(ε2) for the
Poisson equation with Robin boundary conditions [22]. To give a precise
and rigorous statement of such a better rate we need additional regularity
of the domain, the data and the solutions. Furthermore, we resort also to
other functions spaces. For a smooth function v and 1 ≤ p ≤ ∞ we let
p′ = p/(p− 1) and define

‖v‖X εp = ‖aε(v, ·)‖W 1,p′ (Dε;ωε)′

= sup{aε(v, φ) : φ ∈ C∞(Dε), ‖φ‖W 1,p′ (Dε;ωε) ≤ 1}.

We let X εp = {v ∈ C∞(Dε) : ‖v‖X εp < ∞} denote the completion of

C∞(Dε) with respect to ‖ · ‖X εp . Then (X εp , ‖ · ‖X εp ) is a Banach space.
Due to the Riesz representation theorem, Corollary 4.11, and assumptions
(C1)-(C2) on the coefficients, we see that X ε2 = W 1,2(Dε;ω

ε) with equiva-
lent norms. Furthermore, due to Theorem 4.2 we easily see that ‖u‖X εp ≤
C‖u‖W 1,p(Dε;ωε). For the other direction, we need a solvability result. If for

any ` ∈ W 1,p′(Dε;ω
ε)′ there exists u ∈ W 1,p(Dε;ω

ε) such that aε(u, v) =
`(v) for all v ∈ W 1,p′(Dε;ω

ε) and ‖u‖W 1,p(Dε;ωε) ≤ C‖`‖W 1,p′ (Dε;ωε)′ for
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some constant C, then ‖u‖W 1,p(Dε;ωε) ≤ ‖u‖X εp . Let us emphasize that such
a result is not known to us for the case p 6= 2; we refer to [12, 18] for a
corresponding result in the unweighted case.
Let us thus start with an error estimate in X εp . For simplicity, we will
assume smooth data. It should become clear from the proof how to lower
these regularity assumptions.

Theorem 6.8. Let ∂D be of class C∞, and let f, g ∈ C∞(Ω) and let (C1)–
(C2) hold. Moreover, let A ∈ C∞(Ω)3×3, c ∈ C∞(Ω), b ∈ C∞(Ω), and
let uε ∈ W 1,2(Dε;ω

ε) denote the solution to (30), and let u ∈ W 1,2(D)
denote the solution to (29). Then, for 1 ≤ p ≤ ∞ there exists a constant C
independent of ε such that

‖u− uε‖X εp ≤ Cε
1+ 1

p .

Proof. Due to [17, Thm. 2.4.2.7, Rem. 2.5.1.2] and the smoothness of the
data, we have that u ∈ W k,2(D) for any k ∈ N, i.e. u ∈ C∞(D) by embed-
ding, and u is a classical solution to (27)–(28). Therefore, integrating by
parts on the right hand side of (31), we deduce that for any v ∈W 1,p′(Dε;ω

ε)
the error satisfies

aε(u− uε, v) =

∫

D
div(A∇u)v dx−

∫

Dε

div(A∇u)v dωε +

∫

Dε

cuv dωε

−
∫

D
cuv dx−

∫

Dε

A∇u · ∇ωεv dx+

∫

Dε

buv|∇ωε| dx

−
∫

Dε

gv|∇ωε| dx+

∫

D
fv dx−

∫

Dε

fv dωε.

In view of Theorem 5.2 we have the estimates

|
∫

Dε

div(A∇u)v dωε −
∫

D
div(A∇u)v dx|

≤ Cε2− 1
p′ ‖div(A∇u)‖W 1,∞(Dε)‖v‖W 1,p′ (Dε;ωε),

|
∫

Dε

cuv dωε −
∫

D
cuv dx| ≤ Cε2− 1

p′ ‖cu‖W 1,∞(Dε)‖v‖W 1,p′ (Dε;ωε),

|
∫

D
fv dx−

∫

Dε

fv dωε| ≤ Cε2− 1
p′ ‖f‖W 1,∞(Dε)‖v‖W 1,p′ (Dε;ωε).

Since ∇ωε = −n|∇ωε|, the remaining terms can be estimated as follows
∫

Dε

(n ·A∇u+ bu− g)v|∇ωε| dx

≤ Cε1+ 1
p ‖n ·A∇u+ bu− g‖W 2,max{p,p′}(Dε;ωε)‖v‖W 1,p′ (Dε;ωε)

where we used n ·A∇u+ bu− g = 0 on ∂D and Theorem 5.6. Hence, taking
the supremum over all v ∈W 1,p′(Dε;ω

ε) and observing that 2− 1
p′ = 1 + 1

p
yields the assertion.
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Corollary 6.9. Let the assumptions of Theorem 6.8 hold true. Then, there
exists a constant C independent of ε such that

‖u− uε‖W 1,2(Dε;ωε) ≤ Cε
3
2 .

Proof. Set p = 2 in Theorem 6.8. The assertion follows from the fact that
X ε2 = W 1,2(Dε;ω

ε) with equivalent norms.

Remark 6.10. Setting p = 1 in Theorem 6.8, we obtain ‖u − uε‖X ε1 ≤
Cε2. Let us assume that the norms of W 1,1(Dε;ω

ε) and X ε1 are equivalent
(uniform with respect to ε). Then continuity of the embedding W 1,1(D) ↪→
L

n
n−1 (D) implies the existence of a constant C independent of ε such that

‖u− uε‖
L

n
n−1 (D)

≤ Cε2.

In particular for n = 1, we obtain ‖u−uε‖Lp(D) = O(ε2) for any 1 ≤ p ≤ ∞,
and for n = 2 we obtain ‖u− uε‖L2(D) = O(ε2), thus we recover the formal
results of [22].

6.2 Dirichlet boundary conditions

In this section we consider the diffuse domain approximation of second order
elliptic equations with Dirichlet boundary conditions: Find u such that

−div(A∇u) + cu = f in D, (32)

u = g on ∂D. (33)

In order to obtain (weak) solutions to (32)–(33), let us consider the following
weak formulation: Find u ∈W 1,2(D) such that

a(u, v) = `(v) for all v ∈W 1,2
0 (D) such that u = g on ∂D, (34)

with bilinear and linear form

a(u, v) =

∫

D
A∇u · ∇v + cuv dx, `(v) =

∫

D
fv dx.

Here W 1,2
0 (D) is the kernel of the trace operator on W 1,2(D). The weak

form (34) is well-posed under assumptions (C1)–(C2) which is shown by
using the Lax-Milgram lemma. It is well-known that the solution u to (34)
is characterized as the solution of the minimization problem

a(v, v)− `(v)→ min
v∈W 1,2(D)

such that v = g in W 1/2,2(∂D).

Using the Lagrange formalism this constrained optimization problem is
equivalent to finding a saddle-point (u, λ) ∈ W 1,2(D) × W−1/2,2(∂D) of
the Lagrangian

L(v, µ) = a(v, v)− `(v)− 〈µ, g − v〉 with v ∈W 1,2(D), µ ∈W−1/2,2(∂D).
(35)
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Here, W−1/2,2(∂D) is the topological dual space of the W 1,2(D)-trace space
W 1/2,2(∂D), and 〈·, ·〉 denotes the duality pairing between W−1/2,2(∂D) and
W 1/2,2(∂D). The variational characterization of the saddle-point problem
is the following: Find (u, λ) ∈W 1,2(D)×W−1/2,2(∂D) such that

a(u, v) + 〈λ, v〉 = `(v) for all v ∈W 1,2(D), (36)

〈µ, u〉 = 〈µ, g〉 for all µ ∈W−1/2,2(∂D). (37)

We have by definition of the norm on W−1/2,2(∂D) that

‖µ‖W−1/2,2(∂D) = sup
v∈W 1/2,2(∂D)\{0}

〈µ, v〉
‖v‖W 1/2,2(∂D)

which asserts an inf-sup condition for the bilinear form (µ, v) 7→ 〈µ, v〉. Well-
posedness of the latter saddle-point problem can then be shown by using
Brezzi’s splitting theorem [10], cf. [9, Chapter III]. Next, let us introduce
a penalized version of (36)–(37) which establishes a connection to elliptic
problems with Robin boundary condition discussed in Section 6.1: Let β >
0. Find (uβ, λβ) ∈W 1,2(D)×W−1/2,2(∂D) such that

a(uβ, v) + 〈λβ, v〉 = `(v) for all v ∈W 1,2(D), (38)

〈µ, uβ〉 − β〈λβ, µ〉 = 〈µ, g〉 for all µ ∈W−1/2,2(∂D). (39)

In slight abuse of notation, 〈λ, µ〉 denotes the inner product on W−1/2,2(D),
and is defined as 〈λ, µ〉W−1/2,2(∂D) = 〈Jλ, Jµ〉W 1/2,2(∂D). Here,

J : W−1/2,2(∂D)→W 1/2,2(∂D)

is the Riesz isomorphism and Jλ is given as the trace of the solution to the
Neumann problem

−∆w + w = 0 in D, ∂nw = λ on ∂D.

We have that

‖µ‖W−1/2,2(∂D) = 〈µ, µ〉1/2
W−1/2,2(∂D)

= sup
v∈W 1,2(D)\{0}

〈w, v〉W 1,2(D)

‖v‖W 1,2(D)
= ‖w‖W 1,2(D).

Well-posedness of (38)–(39) can be shown with a penalty version of Brezzi’s
splitting theorem, cf. e.g. [9]. In particular (uβ, λβ) is bounded in W 1,2(D)×
W−1/2,2(∂D) independent of β.
Since uβ depends Lipschitz-continuously on β, the error between the solution
to (36)–(37) and (38)–(39) is O(β); for a proof let us refer to [9, Ch. III,
Thm 4.11, Cor. 4.15].
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Lemma 6.11. Let (u, λ), (uβ, λβ) ∈ W 1,2(D) ×W−1/2,2(∂D) be solutions
to (36)–(37) and (38)–(39), respectively. Then there exists a constant C
independent of β such that

‖u− uβ‖W 1,2(D) + ‖λ− λβ‖W−1/2,2(D) ≤ Cβ.

Using µ = v/β with v ∈W 1,2(D) in (39) and adding the resulting equation
to (38) yields the following reduced problem: Find uβ ∈W 1,2(D) such that

a(uβ, v) +
1

β

∫

∂D
uβv dσ = `(v) +

1

β

∫

∂D
gv dσ for all v ∈W 1,2(D).

This is a weak form of a Robin-type problem with boundary condition
n · A∇uβ + 1

βuβ = 1
β g on ∂D.This method of relaxation of the Dirichlet

boundary condition is widely known as the penalty method [4]. Let uεβ
denote the diffuse approximation to uβ as defined in Section 6.1, i.e. uεβ
satisfies

∫

Ω
A∇uεβ · ∇v + cuεβv dωε +

1

β

∫

Ω
uεβv|∇ωε|dx

=

∫

Ω
fv dωε +

1

β

∫

Ω
gv|∇ωε|dx (40)

for all v ∈ W 1,2(Dε;ω
ε). Combining the estimates in Lemma 6.11 and

Theorem 6.5, we have

‖u− uεβ‖W 1,2(D) ≤ ‖u− uβ‖W 1,2(D) + 2‖uβ − uεβ‖W 1,2(Dε;ωε)

≤ C(β +
1

β
ε

1
2
− 1
p ) (41)

for p ≤ 2∗α, and u ∈W 1,p(D). Choosing β = εσ, σ > 0, yields

‖u− uεβ‖W 1,2(D) ≤ C(εσ + ε
1
2
− 1
p
−σ

).

Balancing the exponents on the right-hand side, we obtain the optimal choice
σ = 1

4 − 1
2p . The corresponding estimates are then given by the next theo-

rems:

Theorem 6.12. Let (C1)–(C2) hold. Moreover, assume that u ∈ W 1,p(D)
with 2 ≤ p ≤ 2∗α is a solution to (34) and uεβ ∈ W 1,2(Dε;ω

ε) is a solution

to (40). Then for β = εσ and σ = 1
4 − 1

2p there exists a constant C > 0
independent of ε such that

‖u− uεβ‖W 1,2(D) ≤ Cε
1
4
− 1

2p .
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Theorem 6.13. Let ∂D be of class C∞, and let f, g ∈ C∞(Ω) and let
(C1)–(C2) hold. Moreover, let A ∈ C∞(Ω)n×n, c ∈ C∞(Ω), and let uεβ ∈
W 1,2(Dε;ω

ε) denote the solution to (40), and let u ∈ W 1,2(D) denote the
solution to (34). Then, for β = εσ and σ = 3

4 there exists a constant C
independent of ε such that

‖u− uεβ‖W 1,2(D) ≤ Cε
3
4 .

Remark 6.14. Due to the regularity of ∂D, we can extend u − uβ to Rn
such that ‖u− uβ‖W 1,2(Rn) ≤ C‖u− uβ‖W 1,2(D) [1]. In view of (41) and the
following chain of inequalities

‖u− uβ‖W 1,2(Dε;ωε) ≤ ‖u− uβ‖W 1,2(Dε) ≤ ‖u− uβ‖W 1,2(Rn)

≤ C‖u− uβ‖W 1,2(D) ≤ Cβ

the W 1,2(D)-norm in Theorem 6.12 and Theorem 6.13 can be replaced by
W 1,2(Dε;ω

ε)-norm. Note, however, that for v ∈W 1,2(Dε;ω
ε) we have v|D ∈

W 1,2(D), but for the extension ṽ of v|D from D to Rn in general ṽ|Dε 6= v.

Remark 6.15. In order to obtain an analogous statement of Theorem 6.8
for the Dirichlet case, we would need an analog of Lemma 6.11 for the W 1,p-
norm. Hence, for illustration let us assume that ‖u− uβ‖W 1,p(D) ≤ Cβ for
1 ≤ p ≤ ∞. Moreover, by regularity of ∂D, we can assume stability of the
extension of u and uβ to Ω, i.e. ‖u−uβ‖W 1,p(Ω) ≤ C‖u−uβ‖W 1,p(D). Then,
we arrive at the estimate

‖u− uεβ‖X εp ≤ ‖u− uβ‖X εp + ‖uβ − uεβ‖X εp
≤ C‖u− uβ‖W 1,p(Ω) + ‖uβ − uεβ‖X εp
≤ C(β + ε

1+ 1
p /β) ≤ Cε

1
2

+ 1
2p

using β = ε
1
2

+ 1
2p and Theorem 6.8. Assuming furthermore that the norms of

W 1,1(Dε;ω
ε) and X ε1 are equivalent (uniform with respect to ε), and using

continuity of the embedding W 1,1(D) ↪→ L
n
n−1 (D) we infer that

‖u− uεβ‖L n
n−1 (D)

≤ Cε.

In particular for n = 1, we obtain ‖u−uεβ‖Lp(D) = O(ε) for any 1 ≤ p ≤ ∞,
and for n = 2 we obtain ‖u− uεβ‖L2(D) = O(ε). The reader should compare

this to the results of [14] where for n = 1 a rate O(ε1−δ) for any δ > 0
in the L∞-norm is shown. Moreover, in [34] an L2-rate O(ε) for Poisson’s
equation in three dimensions has been obtained numerically. There, it is also
suggested to choose β = ε, which complies with our analysis. Let us note
however that the diffuse domain method in [34] is somewhat different from
ours.
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6.3 Neumann boundary conditions

Consider the following second order elliptic equation with Neumann-type
boundary condition: Find u such that

−div(A∇u) + cu = f in D, (42)

n ·A∇u = g on ∂D. (43)

In order to obtain (weak) solutions to (42)–(43), let us consider the following
weak formulation: Find u ∈ W 1,2

� (D) = {v ∈ W 1,2(D) :
∫
D vdx = 0} such

that

a(u, v) = `(v) for all v ∈W 1,2
� (D), (44)

with bilinear and linear form

a(u, v) =

∫

D
A∇u · ∇v + cuv dx, `(v) =

∫

D
fv dx+

∫

∂D
gv dσ.

In view of the usual Poincaré inequality for W 1,2(D), the weak form (44) is
well-posed under the assumptions (C1)-(C2).

Lemma 6.16. Let (C1)–(C2) hold. Moreover, let f ∈ L2(D) and g ∈
W 1,2(D). Then there exists a unique u ∈ W 1,2

� (D) satisfying (44), and
there exists C > 0 such that

‖u‖W 1,2(D) ≤ C(‖f‖L2(D) + ‖g‖L2(∂D)).

The diffuse approximation of (44) is then: Find uε ∈ W 1,2
� (Dε;ω

ε) = {v ∈
W 1,2(Dε;ω

ε) :
∫
Dε
vdωε = 0} such that

aε(uε, v) = `ε(v) for all v ∈W 1,2
� (Dε;ω

ε), (45)

where the corresponding bilinear and linear form are given by

aε(uε, v) =

∫

Ω
A∇uε · ∇v + cuεv dωε,

`ε(v) =

∫

Ω
fv dωε +

∫

Ω
gv|∇ωε|dx.

Lemma 6.17. Let (C1)–(C2) hold. Moreover, let f ∈ L2(Dε;ω
ε) and g ∈

W 1,2(Dε;ω
ε). Then there exists a unique uε ∈W 1,2

� (Dε;ω
ε) satisfying (45),

and there exists C > 0 independent of ε such that

‖uε‖W 1,2(Dε;ωε) ≤ C(‖f‖L2(Dε;ωε) + ‖g‖W 1,2(Dε;ωε)).

Proof. Continuity of aε and `ε with respect to the W 1,2(Dε;ω
ε)-topology

is obvious. Coercivity of aε on W 1,2
� (Dε;ω

ε) is a direct consequence of
the positivity of A and the Poincaré inequality, see Corollary 4.10. An
application of the Lax-Milgram lemma yields the assertion.
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Having established existence of solutions to the Neumann problems, conver-
gence results can now be derived as in the Robin case above when setting
b = 0. We leave this to the reader. Let us mention that the restriction from
W 1,2(Dε;ω

ε) to the space W 1,2
� (Dε;ω

ε) is only necessary if infx∈Ω c(x) = 0.
In this case the algebraic condition

∫
Ω udωε = 0 has to be treated with care

in a numerical implementation. We do not want to go into details here,
but let us refer the reader to [7]. If otherwise infx∈Ω c(x) > 0, we could
equally well pose (45) in the space W 1,2(Dε;ω

ε) and the implementational
details are similar to those of the Robin case. We thus will not dwell on the
Neumann case in our further discussion.

7 Numerical Results

In the following we report the results of numerical tests related to the above
investigations used conformal first order finite elements. Our particular
interest here is not the efficient solution of realistic problems, but rather to
test the sharpness of error estimates in different situations by computational
experiments. In order to have an ”exact“ solution u we solve the original
problem with sharp interface on a very fine mesh such that the numerical
error is negligible. Moreover, in the computation of the diffuse domain
solution we make sure that the largest mesh parameter, i.e. hmax, is for all
computations smaller than ε2 such that the numerical accuracy does not
pollute the experimental order of convergence. The error eε = u − uε will
always be measured in the relative norms

‖u− uε‖Wk,p(D)

‖u‖Wk,p(D)

,

whereW 0,p = Lp. We provide several log-log plots of errors vs. ε, which shall
be comparable to the theoretical orders represented by lines in those plots,
see Figure 1, 3, 6 and 8. Since the constants in the estimates cannot be made
explicit, we have to fix one value and hence decide to plot the theoretical
rates in all log-log plots such that they coincide with the experimental rates
for the largest value of ε, see Figure 1, 3, 6 and 8.

For most simulations (Case A-D below) we work with the domain D =
{(x1, x2) : x2

1 + x2
2 < 0.5}, which obviously satisfies all regularity require-

ments. The mesh representation of this domain D consists of 3, 336, 340
vertices. The mesh representation of the domain Dε is simply a scaling of
the mesh representation of D with 1 + ε. Finally we present an example
with the domain D = (0, 1) × (0, 1), i.e. the unit square (Case E), which
indicates that the same rates still hold for piecewise smooth domains. In all
test cases we use the function S from Example 3.1 (i).
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7.1 Case A: Robin BC with smooth parameters

In our first simulations, we consider the boundary value problem (27)-(28),
with the smooth parameters

A(x1, x2) = c(x1, x2) = 1, f(x1, x2) =10 sin(πx1)− 5x2
2,

g(x1, x2) = 0, α(x1, x2) =1.

From Theorem 6.8, Corollary 6.9 and Remark 6.10, we expect the error eε

to converge with a rate O(ε2) in W 1,1(D) and L2(D) and a rate of O(ε3/2)
in W 1,2(D). Furthermore we expect rates of order O(ε) in W 1,∞(D). We
mention that except the rate in W 1,2(D) these expectations rely on assump-
tions we cannot verify rigorously. From Table 1 and the log-log plot of
Figure 1 we observe that the numerical results reproduce these rates very
accurately, indicating the sharpness of our estimates and the validity of the
assumptions. In Figure 2, the solutions u and uε|D for the Robin boundary
problem are presented. From a visual perspective, these solution are almost
identical.

ε ‖eε‖L2 ‖eε‖W 1,2 ‖eε‖W 1,1 ‖eε‖W 1,∞

2−1 0.65477 0.75516 0.93812 0.68035
2−2 0.19912 (1.71) 0.33747 (1.16) 0.38123 (1.30) 0.44465 (0.61)
2−3 0.04953 (2.01) 0.12668 (1.41) 0.11738 (1.70) 0.24280 (0.87)
2−4 0.01176 (2.07) 0.04475 (1.50) 0.03217 (1.87) 0.12474 (0.96)
2−5 0.00281 (2.06) 0.01563 (1.52) 0.00846 (1.93) 0.06284 (0.99)

Table 1: The error eε = u−uε for different norms in Case A. In paranthesis,

we see the log2-ratio of
‖eεk‖
‖eεk+1‖

.

7.2 Case B: Robin BC with discontinuous A matrix

If the parameter A is no longer smooth, but instead A ∈ L∞(Ω)2×2, the
assumptions for Theorem 6.8 are no longer satisfied. In the second example,
we choose a discontinuous A ∈ L∞(Ω)2×2 as

A(x1, x2) =

[
k1(x1, x2) 0

0 k2(x1, x2),

]

where k1, k2 are piecewise constant functions with a jump discontinuity close
to ∂D. All other parameters are the same as in Case A.

From Table 2 and the log-log plot in Figure 3, we see that the convergence
rate of the error is one order worse than in Case A. In particular, we obtain
linear convergence in W 1,2, which is still better than the theoretical result
of order ε

1
2 we obtain in the non-smooth case for u ∈ W 1,∞. However we
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(c) Convergence in W 1,1-norm. (d) Convergence in W 1,∞-norm.

Figure 1: A log-log plot of the convergence rates in Case A. In each subplot
we see the actual convergence rate (experimental), compared to the theo-
retical rate of order O(εr). In subplots (a) and (c) r = 2, in (b) r = 1.5 and
in (d) r = 1.

(a) The solution u of (30) (b) The solution uε of (30)
for ε = 2−1. for ε = 2−5.

Figure 2: Comparison of two diffuse domain solutions in Case A. The solu-
tion displayed in (b) is visually identical to the exact solution of (29).
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Figure 3: A log-log plot of the W 1,2-convergence in Case B. We see the
actual convergence rate (experimental), compared to the theoretical rate of
order O(ε).

observe clearly the influence of non-smooth A on the convergence rate when
comparing to case A. For the L2-convergence, the rate is more inconsistent,
as it appears to jump from quadratic to linear when ε = 2−3. Although the
convergence rate in W 1,2 is only linear in this case, a visual inspection of the
solutions shown in Figure 4 reveals that the solution by the diffuse domain
method is still almost identical to the exact solution for ε = 2−5.

ε ‖eε‖L2 ‖eε‖W 1,2

2−1 0.465577 0.622542
2−2 0.127344 (1.87) 0.282197 (1.14)
2−3 0.026850 (2.25) 0.114941 (1.30)
2−4 0.014065 (0.93) 0.053956 (1.09)
2−5 0.007958 (0.82) 0.027376 (0.98)

Table 2: The error eε = u−uε for different norms in Case B. In paranthesis,

we see the log2-ratio of
‖eεk‖
‖eεk+1‖

.

7.3 Case C: Robin BC with non-smooth parameters

Furthermore, in Case C, we also refine the mesh around the discontinuity
to increase accuracy.
In Case A, we obtained a convergence rate in W 1,2 of order O(ε3/2). Here,
everything were smooth. In Case B, when working with a discontinuous
matrix A, the convergence rate in W 1,2 drops to order O(ε). If, however,
the function f in (27) is in L2, but not in Lp for p� 2, Theorem 6.5 yields
W 1,2-convergence of, in worst case, order O(ε1/3).
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(a) The solution u of (29). (b) The solution uε of (30).

Figure 4: Comparison of exact solution and diffuse domain solution in Case
B. Both solution restricted to D. Here ε = 2−5.

To explore this issue numerically, we define

f(x1, x2) =
1

|x− y|µ , where y ∈ ∂D is fixed. (46)

Thus, we get that f ∈ Lp(D) whenever 2
µ > p. All other parameters are

given as in Case A. With a similar reasoning as in Lemma 6.3, using n = 2
and α = 1, we expect a rate of convergence of O(ε5/6−1/p).
In Figure 5, we see the convergence rate as a function of the parameter µ in
(46). As expected, the convergence rate becomes worse when µ increases.
The experimental rate deteriorates more, however, than the theory suggests.
We believe this to be linked to the challenge of the numerical implementation
of such a singular function. Although of practical importance, we find that
dealing with this particular implementation issue is beyond the scope of this
article, and leave it therefore to future research.

7.4 Case D: Dirichlet BC with smooth parameters

We will now study the diffuse domain method for a Dirichlet problem. More
particularly, we will compare the solutions u and uε of (34) and (40), re-
spectively. The parameters are given as in case A, with the exception

α(x1, x2) =
1

εσ

in order to realize the penalty method. From Theorem 6.13 and Remark
6.15, the choice of β = ε−1 should provide a L2-convergence of order O(ε),
whereas the choice of β = ε−3/4 should yield a W 1,2-convergence of order
O(ε3/4).
In Table 3(a), we see the convergence rate of the error when β = ε−3/4. As
expected, the rate is of order O(ε3/4) in W 1,2 norm. Furthermore, in Table
3(b), we obtain the expected linear convergence in L2 norm. The rates can
also be seen in Figure 6.
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Figure 5: A plot of the W 1,2-convergence in Case C. The x-axis displays
the parameter µ in (46), while the y-axis shows the theoretical and experi-
mental convergence rate of corresponding function in Lp . The theoretical

convergence rate follows from Theorem 6.5, and is of order O(ε
5
6
− 1
p ).

In Figure 7, we see a solution of (34) and (40), respectively. Although the
shape of the solution is visually similar, there is a much larger quantitative
difference compared to Case A and B.

ε ‖eε‖L2 ‖eε‖W 1,2

2−1 4.4342 2.4391
2−2 2.3011 (0.95) 1.3949 (0.81)
2−3 1.3653 (0.75) 0.8237 (0.76)
2−4 0.8787 (0.64) 0.5091 (0.69)
2−5 0.5669 (0.63) 0.3181 (0.68)

(a) σ = 0.75.

ε ‖eε‖L2 ‖eε‖W 1,2

2−1 4.1093 2.2947
2−2 1.8443 (1.16) 1.1888 (0.95)
2−3 0.8689 (1.09) 0.6165 (0.95)
2−4 0.4322 (1.01) 0.3318 (0.89)
2−5 0.2179 (0.99) 0.1863 (0.83)

(b) σ = 1.00.

Table 3: The error eε = u − uε for different norms. In paranthesis, we see

the log2-ratio of
‖eεk‖
‖eεk+1‖

.

7.5 Case E: Dirichlet BC with smooth parameters

To guarantee a quadratic convergence in L2, Theorem 6.8 requires the do-
main to be C1,1. In this final example, we work with the mesh D =
(0, 1) × (0, 1), which is only a Lipschitz domain. All parameters are oth-
erwise identical to in Case A. We see from Figure 8 that the convergence
rates are unchanged compared to case A despite the lower regularity of the
domain. This gives some hope that our results can be extended to general
Lipschitz domain or at least piecewise smooth domains, which remains an
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(a) W 1,2 convergence. σ = 0.75.
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(b) L2 convergence. σ = 1.0.

Figure 6: A log-log plot of the convergence rates in Case D. In each sub-
plot we see the actual convergence rate (experimental), compared to the
theoretical rate of order O(εr).
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(a) The solution u of (34). (b) The solution uε of (40).

Figure 7: Comparison of exact solution and diffuse domain solution in Case
D. Both solution restricted to D. Here ε = 2−5 and σ = 1.

open question.

8 Conclusions

In this work we presented a systematic approach for deriving diffuse domain
approaches for second order elliptic problems with usual type of boundary
conditions. The advantage of our method is that based on standard vari-
ational formulations it readily leads to a relaxed variational formulation,
which can be implemented easily, in a straight-forward manner. We pre-
sented a self-contained analysis of the error introduced by the diffuse domain
method. Depending on the regularity of the data, we could rigorously prove
convergence rates. These rates seem to be sharp as shown by numerical ex-
periments. As a by-product of our analysis, we derived trace and embedding
theorems as well as Poincaré inequalities for weighted Sobolev spaces which
are stable with respect to the relaxation parameter ε. It remains open to
fill a gap to transfer our quadratic convergence results to quadratic conver-
gence results in the L2(D)-norm which have been proposed in literature.
Furthermore, a thorough analysis of numerical methods for the diffuse do-
main method is left for future work. We are optimistic that time-dependent
problems could be treated in a similar manner, further modifications will be
needed in the case of evolving surfaces.
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(c) Convergence in W 1,1-norm. (d) Convergence in W 1,∞-norm.

Figure 8: A log-log plot of the convergence rates in Case E. In each sub-
plot we see the actual convergence rate (experimental), compared to the
theoretical rate of order O(εr).
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Abstract

Many inverse problems have to deal with complex, evolving and
often not exactly known geometries, e.g. as domains of forward prob-
lems modeled by partial differential equations. This makes it desirable
to use methods which are robust with respect to perturbed or not well
resolved domains, and which allow for efficient discretizations not re-
solving any fine detail of those geometries. For forward problems in
partial differential equations methods based on diffuse interface rep-
resentations gained strong attention in the last years, but so far they
have not been considered systematically for inverse problems. In this
work we introduce a diffuse domain method as a tool for the solution of
variational inverse problems. As a particular example we study ECG
inversion in further detail. ECG inversion is a linear inverse source
problem with boundary measurements governed by an anisotropic dif-
fusion equation, which naturally cries for solutions under changing ge-
ometries, namely the beating heart.

We formulate a regularization strategy using Tikhonov regulariza-
tion and, using standard source conditions, we prove convergence rates.
A special property of our approach is that not only operator perturba-
tions are introduced by the diffuse domain method, but more important
we have to deal with topologies which depend on a parameter ε in the
diffuse domain method, i.e. we have to deal with ε-dependent forward
operators and ε-dependent norms. In particular the appropriate func-
tion spaces for the unknown and the data depend on ε. This prevents
to apply some standard convergence techniques for inverse problems,
in particular interpreting the perturbations as data errors in the orig-
inal problem does not yield suitable results. We consequently develop
a novel approach based on saddle-point problems.
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The numerical solution of the problem is discussed as well and re-
sults for several computational experiments are reported. In particular
investigations of convergence rates support our theoretical findings.

Keywords: Diffuse domain method, inverse problems, variational regular-
ization, convergence analysis, ECG inversion, Cauchy problem.

AMS subject classifications: 35R30, 35J20, 65N85, 65K10

1 Introduction

Mathematical models based on differential and integral equations to be
solved on complex or time-varying domains play an important role in many
applications, in particular in biomedicine due to the complexity and in-
herent motion of living systems. A straight-forward approach towards the
numerical solution of such problems is to resolve the geometries by build-
ing appropriate grids and subsequent computation on those e.g. via finite
element or finite volume methods. Due to the high complexity of build-
ing grids and interpolation issues between different time steps several ap-
proaches have emerged that avoid the explicit resolution of the geometry
and rather work on a fixed grid, either directly by adapting the discretiza-
tion scheme (cf. [3, 15, 20]) or by implicitly representing the geometry in
terms of characteristic functions, level set functions or diffuse interfaces (cf.
[4, 6, 14, 18, 19, 17, 25]). In the latter approach the interface is encoded
via a function ϕε that takes values close to +1 in the interior and −1 in the
exterior of the domain to be represented, with an interfacial layer of smooth
transition, which has a size of order ε. This approach is highly motivated
by Cahn-Hilliard and phase-field models in materials science (cf. [2, 9, 8]).
Analogous issues related to complex geometry frequently and increasingly
arise in many inverse problems, e.g. in medical imaging shapes are ob-
tained from segmentation of an anatomical imaging via MR or CT and
subsequently used for other inversion tasks such as emission tomography or
electromagnetic inversion (like EEG, MEG, ECG, MCG). Diffuse interface
methods have however hardly been considered (cf. [10]), and in particular
their convergence analysis has not been worked out in relation to regulariza-
tion methods, which introduce another small parameter. To be more precise
consider canonical inverse problems of the form

A(u) = f, (1)

where A : X → Y is the forward operator between function spaces and f are
noisy data. Those are to be solved by variational regularization techniques,
which consist in minimizing

J(u) = ‖A(u)− f‖qY + α‖u− u∗‖rX , (2)
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with q, r ≥ 1 and u∗ being a prior for the variable u, potentially equal to
zero. There are three potential dependencies on the domain D. The first
as direct dependence of the operator upon D, e.g. via partial differential
equations to be solved on D in order to evaluate A. The diffuse interface
method will introduce an approximation of the form

Jε(u) = ‖Aε(u)− f ε‖qYε + α‖u− u∗‖rX ε , (3)

with appropriate perturbations of operator, data, and norms. In particular
the last fact creates novel theoretical questions, since the topologies of the
ε-dependent space might not be equivalent to the ones of the original spaces
X and Y as we shall see below. The convergence analysis thus needs to
go beyond the current state of the theory and in this paper we use a novel
approach based on saddle-point formulations. We also mention that our
analysis does not mainly target the case of ε → 0 for fixed α, which could
be derived with similar techniques as used here and in [7].
We mention that from a practical point of view there are further reasons that
can make diffuse interface methods attractive. A quite peculiar property is
that due to the ill-posedness of most inverse problems and the consequently
limited resolution of regularization methods high frequency information is
lost. Intuitively this should also concern fine details in the geometry, hence
smearing out the geometry information might not harm the quality of re-
constructions or even further stabilize the problem. Another aspect is un-
certainty in geometries, which may concern the domain (e.g. from incorrect
segmentations) as well as the measurement locations (e.g. electrode po-
sitions on the body surface in EEG and ECG). A diffuse interface that
averages the model over different possible domain shapes seems hence more
appropriate than an exact treatment of the interface. A detailed study of
these aspects is left to future research.
In the construction of diffuse interface methods we follow the approach in
[7]. During the whole paper we shall assume to have a representation of an
unknown shape D ⊂ Ω via its signed distance function dD, i.e.,

dD(x) =

{
+ dist(x, ∂D) if x ∈ Ω \D,
− dist(x, ∂D) if x ∈ D. (4)

The diffuse interface is then constructed via

ϕε = S

(
−dD
ε

)
(5)

for ε > 0 small and S being a sigmoidal function, i.e., increasing with
limt→±∞ S(t) = ±1. As ε tends to zero, S converges to the sign function,
and hence ϕε formally converges to

ϕ0(x) =

{
−1 if x ∈ Ω \D,
+1 if x ∈ D. (6)
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Indeed this convergence can easily be made rigorous in Lp-spaces. In this
work we use the sigmoidal function S : R → R defined by S(t) = t/|t| for
|t| ≥ 1 and S(t) = t for |t| < 1; more general choices are allowed and we
refer the reader to [7]. Note that the support of ∇ϕε is restricted to an ε-
neighborhood of ∂D and that ϕε is a Lipschitz-continuous function bounded
by ±1.

In order to obtain a representation with diffuse interfaces, we mainly need
to discuss the approximation of integrals over the domain and its boundary.
With such we can obviously treat most relevant issues: integral equations,
inverse problems for partial differential equations via weak formulations,
data fidelities and regularization terms in variational regularization methods.
The only relevant case that needs additional considerations seems to be the
different use of tangential and normal derivatives on curves or surfaces,
which we postpone to future considerations. The key idea to approximate
such integrals is a weighted averaging of the integrals on {dD < t} instead
of the original domain {dD < 0} only (and similar for boundary integrals).
Since 1

2εS
′( ·ε) approximates a concentrated distribution at zero, we expect

∫

D
g(x) dx =

∫

{dD<0}
g(x) dx =

∫ ∞

−∞

1

2ε
S′(− t

ε
)

∫

{dD<0}
g(x) dx dt

≈
∫ ∞

−∞

1

2ε
S′(− t

ε
)

∫

{dD<t}
g(x) dx dt

=
1

2

∫ 1

−1

∫

{ϕε>s}
g(x) dx ds,

where we have used the substitution s = S(− t
ε) in the last term. Now

the layer cake-representation can further be used for given integrable g to
rewrite

∫ 1

−1

∫

{ϕε>s}
g(x) dx dt =

∫

Ω

∫ ϕε(x)

−1
dsg(x) dx =

∫

Ω
(1 + ϕε)(x)g(x) dx.

By an analogous computation we obtain for the boundary integral

∫

∂D
g(x) dσ(x) ≈ 1

2

∫ 1

−1

∫

{ϕε=s}
g(x) dσ(x) ds,

which can be simplified via the co-area formula to

∫ 1

−1

∫

∂{ϕε=s}
g(x) dσ(x) dt =

∫

Ω
g(x)|∇ϕε(x)| dx.

Detailed convergence results for these kind of integrals can be found in [7]
and are recalled in the appendix.
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Thus, integral functionals in (2) of the form

Fdom(v) =

∫

D
Ψ(v,∇v, . . . ,∇mv) dx (7)

are approximated in a straight-forward way as

Fεdom(v) =

∫

Ω
Ψ(v,∇v, . . . ,∇mv)(1 + ϕε) dx. (8)

Functionals on surfaces are less straight-forward with the exception of simple
Lp-type regularization functional

Fbound(v) =

∫

∂D
Ψ(x, v) dσ(x),

which have an obvious approximation

Fεbound(v) =

∫

Ω
Ψ(·, v)|∇ϕε(x)|dx.

Gradient or higher-order derivative based regularization on surfaces is usu-
ally formulated in terms of tangential derivatives, whose diffuse approxima-
tion solely based on ϕε is more involved. In this paper we will however
restrict our attention to L2-norms on the boundary of a domain, which can
be approximated as Fbound above. From the construction we see however
that the diffuse version of an L2-norm (defined as the square root of Fbound
with square Ψ) has an important topological difference to the L2-norm on
the sharp interface. Note that the latter roughly corresponds to an H1/2-
norm on the domain via trace theorems, hence the diffuse norm induces a
weaker topology.
In the remainder of the paper we work out the convergence analysis of the
diffuse interface approximation (3) in the example of ECG inversion, i.e.
the solution of an elliptic Cauchy problem. This problem is well-studied
on the one-hand from a theoretical point of view, but on the other hand
leaves a clear practical challenge of efficient solution on different complex
domains (moving hearts). More importantly, it includes a lot of the potential
challenges for the convergence analysis: Both the unknown as well as the
data are functions on parts of the boundary to be approximated by diffuse
interfaces and the forward operator is also defined via a partial differential
equation on the (diffuse) domain. We discuss the problem and its diffuse
approximation in Section 2, before we proceed to the convergence analysis
in Section 3. We show that the diffuse regularized solution converges to the
correct solution as α, ε and the noise level δ tend to zero under standard
conditions on α and roughly for ε ∼ α (or some higher power of α). In the
case of correct solutions satisfying a standard source condition (cf. [12]) and
a standard choice α ∼ δ we obtain an optimal convergence rate if ε ∼ δ2/3.
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This confirms our intuition that ε can be chosen rather large for inverse
problems in presence of noise. Finally we discuss the numerical solution
of the problem in Section 5 and provide a collection of experiments, whose
results support our theory respectively indicate that one might obtain even
better convergence rates with respect to ε.

2 Motivating Example: ECG Inversion

In order to clarify the application of the diffuse domain method to the so-
lution of an inverse problem, we study the following setup encountered in
the reconstruction of epicardial potentials from ECG body surface potential
measurements. Given data f , which are samples of the potential v (more
precisely its Dirichlet trace on the body surface ∂B) we want to reconstruct
the epicardial potential, i.e., the trace of v on ∂H, where H ⊂ B is the
heart volume. Here we use a so-called flux-based formulation, i.e., we use
the Neumann boundary value u on ∂H as the unknown for the inversion,
i.e., the forward model in weak form is

∫

D
M∇v · ∇w dx =

∫

∂H
uw dσ for all w ∈ H1

� (D). (9)

with D = B \H and

H1
� (D) = {w ∈ H1(D) :

∫

∂H
w dσ = 0}.

This formulation has been found to be quite appealing in the ECG-inversion
problem, in particular when variational regularization is formulated on u
rather than the Dirichlet trace of v (cf. [13, 16, 26]). The epicardial potential
can be computed subsequently from the forward model. Note that (9) is the
weak formulation of the anisotropic Laplace equation ∇ · (M∇v) = 0 with
Neumann boundary conditions, with zero flux on ∂B. The latter is natural
due to the insulation of the body.

In the whole manuscript we will assume the following ellipticity condition:
There exists a constant m > 0 such that

m|ξ|2 ≤ ξ ·M(x)ξ ≤ 1

m
|ξ|2 for all x, ξ ∈ Rn. (10)

Moreover, we will always assume the following regularities: ∂D ∈ C3,1,
M ∈W 2,∞(Ω) and v ∈W 3,∞(D) being the solution of (9). Thus, n·M∇v ∈
W 2,∞(∂D). These regularity assumptions can be weakened at the cost of
worse approximation properties of the diffuse domain method, see some
remarks below and [7].
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Lemma 2.1. Let (10) hold. Then, for any u ∈ L2(∂H), there exists a
unique v ∈ H1

� (D) such that (9) holds. In particular, there exists a constant
C > 0 such that

‖v‖H1(D) ≤ C‖u‖L2(∂H).

Proof. Due to the Poincaré inequality the bilinear form on the left-hand side
of (9) defines an inner product on H1

� (D). For u ∈ L2(∂H) the right-hand
side of (9) defines a bounded linear functional on H1

� (D). An application of
the Lax-Milgram lemma yields the assertion.

2.1 Forward map and inverse problem.

We define a linear operator

F : L2(∂H)→ L2(∂B), Fu = v|∂B (11)

with v ∈ H1
� (D) being the solution to (9) with u ∈ L2(∂H). The inverse

problem we are concerned with is the following. For given f ∈ L2(∂B)
determine u ∈ L2(∂H) such that

Fu = f in L2(∂B). (12)

The following lemma collects some basic properties of the forward map F .

Lemma 2.2. The forward map F : L2(∂H) → L2(∂B) defined by (11) is
linear, injective, bounded and compact.

Proof. Linearity is obvious. Compactness, and hence boundedness, follows
from compactness of the trace operator H1(D)→ L2(∂B) and Lemma 2.1.
To show injectivity, let u1, u2 ∈ L2(∂H) such that Fu1 = f = Fu2, and
denote by v1, v2 the corresponding solutions to (9). Then the difference
w = v1 − v2 is a weak solution to the Cauchy problem

−div(M∇w) = 0 in D, n ·M∇w = 0 on ∂B, w = 0 on ∂B.

Since M is Lipschitz, the Cauchy problem is uniquely solvable [23], i.e.,
w = 0 and u1 = u2.

In view of Lemma 2.2 and since it is easy to see that the range of F is infinite-
dimensional, the inverse problem (12) is ill-posed, and some sort of regular-
ization is needed for a stable inversion of (12). In the whole manuscript, we
denote by f †, v† and u† the exact data and solutions respectively.
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2.2 Variational Regularization with Sharp Interfaces

As basic regularization method we consider the following Tikhonov type
functional

J(u, v) =
1

2
‖v − f δ‖2L2(∂B) +

α

2
‖u‖2L2(∂H) subject to (9), (13)

where f δ ∈ L2(∂B) represents noisy data for which we assume that

‖f † − f δ‖L2(∂B) ≤ δ. (14)

As pointed out in the introduction, in applications we have in mind the sharp
interfaces ∂B and ∂H are not known exactly, and we aim at employing the
diffuse integrals introduced above. The quadratic case seems to be sufficient
to understand the main difficulties arising from the diffuse approximation,
extensions to other Lp-norms can be made with analogous arguments as in
the sharp interface case.

Remark 2.3. Considering the reduced functional Ĵ(u) = J(u, F (u)), which
is quadratic and strictly convex, we obtain from [12, Thm 5.2] that the min-
imizers uα,δ of Ĵ with f † replaced by f δ converge to u† in L2(∂H) as long as
u† ∈ L2(∂H), ‖f † − f δ‖L2(∂B) ≤ δ and α→ 0 is chosen such that δ2/α→ 0

as δ → 0, i.e., limδ→0 uα,δ = u†.

2.3 Variational Regularization with Diffuse Interface

In the following we discuss a diffuse approximation of the variational prob-
lems introduced above. In order to distinguish the two different parts of the
boundary ∂D = ∂B∪∂H we choose a weight γH that equals one in a neigh-
borhood of ∂H and zero in a neighborhood of ∂B. Vice versa, we choose a
second weight γB, which equals one in a neighborhood of the measurement
locations on ∂B and vanishes in a neighborhood of ∂H.

2.3.1 Sobolev Spaces

To define a suitable function space, let us introduce the scalar product

〈v, w〉Hε = 〈∇v,∇w〉ωε + 〈v, w〉ωε =

∫

Ω
(∇v · ∇w + vw)ωε dx,

where ωε = (1 + ϕε)/2, and the corresponding weighted Sobolev space de-
fined by

Hε := {v ∈ L2(Ω)|‖v‖2Hε = 〈v, v〉Hε <∞}.

Note that we tacitly identify functions v and w if v = w on supp(ωε) in order
to make ‖ · ‖Hε a norm. Moreover, we denote by Lp(ωε) = Lp(Ω;ωε) and
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W k,p(ωε) = W k,p(Ω, ωε) the corresponding weighted Lebesgue and Sobolev
spaces; see [7] for details. In particular Hε = W 1,2(ωε). We will also write
Lp(Ω̃; γ) with some weighting function γ and Ω̃ ⊂ Ω to denote the corre-
sponding weighted Lebesgue space. One observes that due to the properties
of ωε, we have

√
2‖v‖Hε ≥ ‖v‖H1(D). Thus, any uniform estimate and con-

vergence in the norm of Hε can be transfered immediately to the norm of
v in H1(D), which is a relevant quantity to understand the approximation
properties; for further details on the spaces Hε see also [7]. For the interface
variable u we consider the space Uε = L2(γH |∇ωε|) with corresponding in-
ner product 〈·, ·〉Uε ; and for the measurements f we useMε = L2(γB|∇ωε|)
with corresponding inner product 〈·, ·〉Mε ; i.e. for u, q ∈ Uε and f, v ∈Mε

〈u, q〉Uε =

∫

Ω
uq|∇ωε|γH dx, 〈v, f〉Mε =

∫

Ω
vf |∇ωε|γB dx.

As above, we identify functions u, q ∈ Uε if u = q on supp(|∇ωε|γH). The
diffuse trace lemma A.3 shows that the embedding Hε ↪→ Uε is continuous.
For appropriate normalization, we will also consider space

Hε� = {v ∈ Hε : 〈v, 1〉Uε = 0}. (15)

As ∂D is smooth, there exists a continuous extension ED,Ω : H1(D) →
H1(Ω) [1], and we will write v instead of ED,Ωv to evaluate functions in
H1(D) in Ω.

2.3.2 Extensions constant off the interface

We consider extensions constant off the interfaces ∂H and ∂B, respectively.
Note that for 0 < ε ≤ ε0, with ε0 sufficiently small, which we will assume
throughout the paper, and for each x ∈ supp(|∇ωε|) there exists a unique
x̄ ∈ ∂D such that x = x̄ + dD(x)n(x̄); see [11]. We can then define EH :
L2(∂H)→ Uε by

EHu(x) = ũ(x) = u(x̄), x = x̄+ dD(x)n(x̄) ∈ supp(γH |∇ωε|), x̄ ∈ ∂H,

and similarly for the measurements, EB : L2(∂B)→Mε given by

EBf(x) = f̃(x) = f(x̄), x = x̄+ dD(x)n(x̄) ∈ supp(γB|∇ωε|), x̄ ∈ ∂B.

If the context is clear, we will write in abuse of notation ũ and f̃ instead of
EHu and EBf . Some properties of the extensions EB and EH are compiled
in the appendix.

2.3.3 Diffuse forward operator

We approximate (9) via

〈M∇v,∇w〉ωε = 〈u,w〉Uε for all w ∈ Hε�, (16)
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where u ∈ Uε. We have the following well-posedness result for (16); see [7,
Lemma 6.17].

Lemma 2.4. For each u ∈ Uε there exist a unique v ∈ Hε� verifying (16)
and a constant C > 0 independent of ε such that

‖v‖Hε ≤ C‖u‖Uε .

In order to use u† in (16), we will use the extension ũ† = EHu
† ∈ Uε. This

will introduce errors quantified by the following

Lemma 2.5. Let vε ∈ Hε� be a solution to (16) with data u replaced by
EHu

†. Then there exists C > 0 such that

‖v† − vε‖Hε ≤ Cε3/2‖v†‖W 3,∞(D).

Proof. The difference vε − v† satisfies

〈M∇(vε − v†),∇w〉ωε = 〈ũ†, w〉Uε − 〈M∇v†,∇w〉ωε .

Integration by parts and −n|∇ωε| = ∇ωε yields

〈ũ†, w〉Uε − 〈M∇v†,∇w〉ωε = 〈ũ† − n ·M∇v†, w〉Uε
− 〈n ·M∇v†, w〉Mε − 〈div(M∇v†), w〉ωε .

To treat the first term we use n ·M∇v† = u† on ∂H and Lemma A.4 (iv)
to obtain

〈EH(n ·M∇v†)− n ·M∇v†, w〉Uε ≤ Cε3/2‖v†‖W 3,2(Ω)‖w‖Hε

for some C > 0. Since n · M∇v† = 0 on ∂B, the second term can be
treated similarly. To treat the third term we use div(M∇v†) = 0 in D and
Lemma A.4 (i) to obtain

|〈div(M∇v†), w〉ωε | ≤ Cε3/2‖div(M∇v†)‖W 1,∞(Ω)‖w‖Hε .

The a priori estimate of Lemma 2.4 yields the assertion.

Since in applications we have in mind both ∂B and ∂H are unknown or
difficult to approximate, we will employ diffuse approximations of ∂B and
∂H. Hence, we are concerned with solving the following (diffuse) operator
equation

F εu = f̃ δ in Mε, (17)

where F ε : Uε → Mε is a bounded linear operator mapping u onto the
diffuse trace of the solution v of (16). The data f̃ δ = EBf

δ is obtained by
extending the measured data f δ. In view of the possible extensions of the
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interface data u and f , there are of course many different possibilities to
define a forward operator. Since these investigations will be similar to ours,
we leave the modifications to the reader. Notice that, for each ε > 0 fixed,
the injection Hε ↪→Mε is compact, and hence (17) is ill-posed as well.
As EB is bounded, see Lemma A.1, measuring in the weaker diffuse interface
norm will not alter the noise level significantly, i.e.,

‖EBf † − EBf δ‖Mε ≤ C(ε)δ, (18)

with C(ε) → 1 as ε → 0. Using the diffuse domain method as underlying
governing equation will however have an impact, which might be interpreted
as an operator perturbation, namely

‖F εEHu† − EBf δ‖Mε ≤ C(δ + ε3/2).

The latter estimate is a direct consequence of the triangle inequality and
Lemma 2.5. The Tikhonov functional (13) is approximated by the following
functional

Jε(u, v) =
1

2
‖v − f̃ δ‖2Mε +

α

2
‖u‖2Uε subject to (16). (19)

Note that we not only have to deal with perturbed forward operators but
also with perturbed data misfit and regularization functionals. As the diffuse
boundary norms are weaker than their counterparts for the sharp interfaces,
this choice of topologies makes our investigations non-standard and requires
adapted arguments to be detailed in the next section.

3 Analysis of the Diffuse Domain Regularization

In the following we provide an analysis of the variational models with diffuse
interfaces. We begin with the existence of minimizers of (19) by investigating
the associated saddle-point problem. Then we show stability and conver-
gence of minimizers of the diffuse Tikhonov functional. Under a standard
source condition we then also obtain convergence rates.

3.1 Saddle-Point Formulation

In the following we consider variations of the Lagrangian corresponding to
(19)

Lε(u, v, p) = Jε(u, v) + 〈M∇v,∇p〉ωε − 〈u, p〉Uε . (20)

Therefore, let us define two bilinear forms, namely aε : (Uε × Hε�) × (Uε ×
Hε�)→ R given by

aε(u, v; q, w) = 〈v, w〉Mε + α〈u, q〉Uε ,
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and bε : (Uε ×Hε�)×Hε� → R given by

bε(u, v; p) = 〈M∇v,∇p〉ωε − 〈u, p〉Uε .

Saddle-points of Lε are then characterized as solutions of

aε(u, v; q, w) + bε(q, w; p) = f ε(q, w) for all (q, w) ∈ Uε ×Hε�,
bε(u, v; r) = gε(r) for all r ∈ Hε�.

(21)
Here, we use the linear functionals gε : Hε� → R, gε(r) = 0, and f ε :
Uε × Hε� → R, f ε(q, w) = 〈f̃ δ, w〉Mε . For the analysis of the saddle-point
problem, let us define

‖(u, v)‖2α = α(‖u‖2Uε + ‖∇v‖2L2(ωε)) + ‖v‖2Mε ,

which is a norm equivalent to the natural norm on Uε×Hε� for fixed α > 0;
cf. Lemma A.5.

Let us first collect some basic properties of the saddle-point problem and
the associated bilinear forms:

Lemma 3.1 (Continuity). Let 0 < α ≤ α0. Then there exists a constant
Cc independent of ε and α such that

|aε(u, v; q, w)| ≤ Cc‖(u, v)‖α‖(q, w)‖α and

|bε(u, v; p)| ≤ 1√
α
Cc‖(u, v)‖α‖p‖Hε

for all (u, v), (q, w) ∈ Uε ×Hε� and p ∈ Hε�.

Proof. The estimates follow from Lemma A.3 and a standard Cauchy-Schwarz
argument.

Lemma 3.2 (Kernel ellipticity). Let 0 < α ≤ α0. Then there exists a
constant Ce independent of ε and α such that

aε(u, v;u, v) ≥ Ce‖(u, v)‖2α (22)

for all (u, v) ∈ Uε ×Hε� such that bε(u, v; v) = 0.

Proof. Using bε(u, v; v) = 0 we obtain for any κ > 0

aε(u, v;u, v) = aε(u, v;u, v) + κbε(u, v; v)

≥ ‖v‖2Mε + α‖u‖2Uε + κm‖∇v‖2L2(ωε) − κ‖u‖Uε‖v‖Uε

≥ ‖v‖2Mε +
α

2
‖u‖2Uε + κm‖∇v‖2L2(ωε) −

κ2

2α
‖v‖2Uε ,
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where we have used (10) and Young’s inequality. With Lemma A.3 and
Lemma A.5 there exists a constant c > 0 independent of ε such that

‖v‖2Uε ≤ c(‖∇v‖2L2(ωε) + ‖v‖2Mε).

Increasing c if necessary, we may assume that c ≥ α0m
2. Hence, we arrive

at the estimate

aε(u, v;u, v) ≥ ‖v‖2Mε +
α

2
‖u‖2Uε + κm‖∇v‖2L2(ωε)

− κ2c

2α
(‖∇v‖2L2(ωε) + ‖v‖2Mε).

Choosing κ = mα/c we have that

aε(u, v;u, v) ≥ (1− m2α

2c
)‖v‖2Mε +

αm2

2c

(
‖u‖2Uε + ‖∇v‖2L2(ωε)

)
.

By choice of c, 1− m2α
2c ≥ 1

2 , and the assertion holds with
Ce = min{1,m2/c}/2.

Lemma 3.3 (Inf-sup stability). Let 0 < α ≤ α0. Then there exists a
constant Ci independent of ε and α such that

sup
(u,v)∈Uε×Hε�

bε(u, v; p)

‖(u, v)‖α
≥ Ci‖p‖Hε for all p ∈ Hε�. (23)

Proof. Let p ∈ Hε� be given. By Lemma A.3 the embedding Hε� ↪→ Uε is
continuous, and thus we can choose v = p and u = −p. Using Lemma A.5
we further obtain another constant C > 0, which possibly depends on α0

but not on ε or α, such that ‖(u, v)‖α ≤ C‖p‖Hε . The assertion then follows
from

bε(u, v; p) ≥ m‖∇p‖2L2(ωε) + ‖p‖2Uε ≥ c‖p‖2Hε ,
where we also applied (10) and Lemma A.5 with γ = γH .

As a consequence of Brezzi’s splitting theorem [5], we obtain the follow-
ing result. Note that the a priori estimates derived in [5] do not use the
continuity constant of bε.

Theorem 3.4 (Existence of saddle-points). Let 0 < α ≤ α0. Then for
each f ε ∈ (Uε ×Hε�)′ and gε ∈ (Hε�)′ there exist a unique solution (uε, vε) ∈
Uε×Hε� and pε ∈ Hε� of (21) and there exists a constant CE independent of
ε and α such that

α(‖uε‖2Uε + ‖∇vε‖2L2(ωε)) + ‖vε‖2Mε + ‖pε‖2Hε ≤ CE(‖f ε‖2(Uε×Hε�)′ + ‖g
ε‖2(Hε�)′).

As usual (Uε×Hε�)′ and (Hε�)′ denote the respective dual spaces of Uε×Hε�
and Hε�, which we endow with the norms

‖f ε‖(Uε×Hε�)′ = sup
(u,v)∈Uε×Hε�\{0}

f ε(u, v)

‖(u, v)‖α
, ‖gε‖(Hε�)′ = sup

p∈Hε�\{0}

gε(p)

‖p‖Hε
.
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3.2 Convergence and Regularization properties

In this section we will investigate the regularization properties of the diffuse
domain method when used in combination with Tikhonov regularization in
more detail.

Theorem 3.5 (Stability). Let f1, f2 ∈ Mε. Then, for CE from Theo-
rem 3.4, we have that

‖(uε1 − uε2, vε1 − vε2)‖α ≤
√
CE‖f1 − f2‖Mε ,

where (uεi , v
ε
i ), i = 1, 2, denotes the solution to (21) with right-hand side

gε = 0 and f ε(q, w) = 〈fi, w〉Mε.

Proof. (uε1 − uε2, vε1 − vε2) is a solution to (21) with right-hand side gε = 0
and f ε(q, w) = 〈f1− f2, w〉Mε . Since ‖f ε‖(Uε×Hε�)′ ≤ ‖f1− f2‖Mε the result
follows directly from Theorem 3.4.

In order show convergence of the minimizers of the diffuse Tikhonov func-
tional as α→ 0, we need the following technical statement, which gives some
sort of compactness.

Proposition 3.6. Let {(uε, vε)} ⊂ Uε ×Hε� be a sequence such that
bε(uε, vε; r) = 0 for all r ∈ Hε� and such that there exists a constant C > 0
with ‖uε‖Uε ≤ C. Then there exists a subsequence {vεk} of {vε} and v ∈
H1(Ω) such that

lim
k→∞

‖
√
ωεk∇vεk − χD∇v‖L2(Ω) = 0 and lim

k→∞
‖vεk − v‖H1(D) = 0.

Here, χD denotes the indicator function of D.

Proof. Using Lemma 2.4, we obtain ‖vε‖H1(D) ≤ 2‖vε‖Hε ≤ C‖uε‖Uε ≤ C.
Thus, we can extract a subsequence {vε}, relabeled if necessary, such that
vε ⇀ v in H1(D) as ε → 0 for some v ∈ H1(D). Now let ϕ ∈ L2(Ω)n be
arbitrary. Since 0 ≤ ωε ≤ 1, we obtain |ϕ

√
ωε| ≤ |ϕ| ∈ L2(Ω). Moreover,

since
√
ωε → χD a.e. in Ω as ε → 0, we have ϕ

√
ωε → ϕχD a.e. in Ω as

ε→ 0. Hence, using dominated convergence, ϕ
√
ωε → ϕχD in L2(Ω)n, and

∫

D

√
ωεL∇vε · ϕdx→

∫

D
L∇v · ϕdx as ε→ 0,

using the Cholesky factorization M = L>L. Since ‖
√
ωεL∇vε‖L2(Ω) ≤

C‖vε‖Hε is bounded (uniformly in ε), and |(Ω \ D) ∩ supp(ωε)| → 0 as
ε→ 0, absolute continuity of the integral implies

∫

Ω\D

√
ωεL∇vε · ϕdx ≤ ‖

√
ωεL∇vε‖L2(Ω)‖ϕ‖L2((Ω\D)∩supp(ωε)) → 0,
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as ε→ 0, i.e.,
√
ωεL∇vε ⇀ χDL∇v in L2(Ω)n as ε→ 0. It remains to show

that ‖
√
ωεL∇vε‖L2(Ω) → ‖χDL∇v‖L2(Ω) as ε→ 0. Testing bε(uε, vε, r) = 0

with r = vε−v−〈vε−v, 1〉Uε/〈1, 1〉Uε ∈ Hε�, and applying Cauchy-Schwarz’s
and Young’s inequality yields

‖
√
ωεL∇vε‖2L2(Ω) = 〈M∇vε,∇v〉ωε + 〈r, uε〉Uε

≤ 1

2
‖
√
ωεL∇vε‖2L2(Ω) +

1

2
‖
√
ωεL∇v‖2L2(Ω) + ‖r‖Uε‖uε‖Uε .

Since ‖r‖Uε ≤ 2‖vε − v‖Uε , this reads as

‖
√
ωεL∇vε‖2L2(Ω) ≤ ‖

√
ωεL∇v‖2L2(Ω) + 4‖vε − v‖Uε‖uε‖Uε . (24)

First, we observe by using Lebesgue’s dominated convergence theorem that

‖
√
ωεL∇v‖2L2(Ω) →

∫

D
M∇v · ∇v dx = ‖χDL∇v‖2L2(Ω) as ε→ 0.

Next, we will show that ‖vε − v‖Uε vanishes as ε → 0. By compactness
of the embedding H1(D) ↪→ L2(∂H), vε − v ⇀ 0 in H1(D) implies vε −
v → 0 in L2(∂H) by extracting another subsequence if necessary. Applying
Theorem A.2 (i) to vε − v we obtain

‖vε − v‖Uε ≤ C
√
ε‖vε − v‖Hε + ‖vε − v‖L2(∂H) → 0 as ε→ 0.

By assumption {uε} is bounded in Uε, and hence it follows from (24) that

lim sup
ε→0

‖
√
ωεL∇vε‖2L2(Ω) ≤ ‖χDL∇v‖2L2(Ω). (25)

Weak lower semicontinuity of the norm further implies

‖χDL∇v‖L2(Ω) ≤ lim inf
ε→0

‖
√
ωεL∇vε‖L2(Ω),

i.e., ‖
√
ωεL∇vε‖L2(Ω) → ‖χDL∇v‖L2(Ω) as ε → 0, which yields the first

assertion together with the ellipticity of M (and consequent uniform bounds
on the eigenvalues of L).
To show the second assertion, we infer from the first assertion that there
exists another subsequence {ωε∇vε} which converges to χD∇v a.e. in Ω as
ε → 0. As ωε ≥ 1/2 on D we further have that for this subsequence ∇vε
converges to ∇v a.e. in D. Moreover, with the same argument |∇vε|2 ≤
2ωε|∇vε|2 on D. As ωε|∇vε|2 converges to |∇v|2 in L1(D) by the first part,
we obtain ∇vε → ∇v in L2(D) by dominated convergence. Compactness
of the embedding H1(D) ↪→ L2(D) further yields vε → v in L2(D) (for a
subsequence), which concludes the proof.

The next lemma basically resembles the a priori estimates of [5]. We state
it explicitly since the structure of the estimate will be of importance below.
The proof is omitted.
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Lemma 3.7. Let (uεα,δ, v
ε
α,δ, p

ε
α,δ) be a saddle-point of Lε. Then there exists

C > 0 such that

‖vεα,δ − f̃ δ‖2Mε + α‖uεα,δ‖2Uε ≤ C(δ2 + α‖u†‖2L2(∂H) + ε3‖v†‖2W 3,∞(D)).

Using similar assumptions as in the standard inverse problem theory [12],
we obtain the following convergence result.

Theorem 3.8 (Convergence). Let {(uεα,δ, vεα,δ, pεα,δ)} be a sequence of saddle-
points of Lε for ε, α, δ > 0. If α and ε are chosen such that ε(α, δ)→ 0 and
α(δ) → 0 as δ → 0, and δ2/α and ε3/α are bounded. Then there exists a
constant C independent of ε, δ and α such that

lim
δ→0
‖uεα,δ − ũ†‖(Hε�)′ = 0, ‖vεα,δ − f̃ †‖Mε ≤ C√α and

‖vεα,δ − f †‖L2(∂B) ≤ C
√
α+ ε.

Proof. Applying (18) and Lemma 3.7 yields

‖vεα,δ − f̃ †‖Mε ≤ ‖vεα,δ − f̃ δ‖Mε + ‖f̃ δ − f̃ †‖Mε ≤ C√α (26)

by choice of α and ε. The a priori estimate of Lemma 3.7 further asserts
that

‖uεα,δ‖2Uε ≤ C(
δ2

α
+ ‖u†‖2L2(∂H) +

ε3

α
‖v†‖2W 3,∞(D)).

Since δ2/α and ε3/α are bounded, ‖uεα,δ‖Uε is bounded (uniformly in ε). By

Lemma 3.6 there exists v ∈ H1(D) such that for a subsequence, relabeled
if necessary, vεα,δ → v in H1(D) as δ → 0. Moreover, applying (26) and
Lemma A.4 (ii) yields

‖vεα,δ − f †‖L2(∂B) ≤ C‖ṽεα,δ − f̃ †‖Mε ≤ C√ε‖vεα,δ‖Hε + C
√
α→ 0

as δ → 0. In particular, v = f † = v† ∈ ran(F ) ⊂ L2(∂B). Hence, there
exists u ∈ L2(∂H) such that Fu = v. Lemma 2.2 implies u = u†. The
definition of F and unique solvability of (9) implies v = v† in D. To show
uεα,δ → ũ† in (Hε�)′ let w ∈ Hε�, and let vε ∈ Hε� denote the solution to (16)

with right-hand side ũ†; cf. Lemma 2.5. Then

〈uεα,δ − ũ†, w〉Uε = 〈M∇(vεα,δ − vε),∇w〉ωε
= 〈M∇(vεα,δ − v†),∇w〉ωε + 〈M∇(v† − vε),∇w〉ωε
≤ C(‖

√
ωε∇(vεα,δ − v†)‖L2(Ω) + ‖v† − vε‖Hε)‖w‖Hε .

In view of Proposition 3.6 and Lemma 2.5, the right-hand side vanishes as
δ → 0. The uniqueness result, Lemma 2.2, further allows to transfer the
convergence to the whole sequence.
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3.3 Convergence rates

In order to show convergence rates recall that u† is the minimum-norm
solution of Fu = f †, i.e. a minimizer of

min ‖u‖2L2(∂H) such that v|∂B = f † and b(u, v; r) = 0 for all r ∈ H1
� (D).

The associated Lagrangian writes as

L(u, v, λ, p) = ‖u‖2L2(∂H) − 〈v − f †, λ〉+ b(u, v; p). (27)

Assuming that there exists (λ†, p†) such that (u†, v†, λ†, p†) is a saddle-point
of L, the following optimality conditions hold true

〈u†, hu〉∂H − 〈hu, p†〉∂H = 0 for all hu ∈ L2(∂H), (28)

−〈hv, λ†〉∂B + 〈M∇hv,∇p†〉D = 0 for all hv ∈ H1
� (D), (29)

〈v† − f †, hλ〉∂B = 0 for all hλ ∈ L2(∂B), (30)

b(u†, v†;hp) = 0 for all hp ∈ H1
� (D). (31)

Eq. (28) implies u† = p† on ∂H, where p† satisfies the adjoint equation (29),
i.e.

u† = F ∗λ†, (32)

which is the usual source condition. Vice versa, if (32) holds true, then
(28)–(29) are satisfied, and (u†, v†, λ†, p†) is a saddle-point of L. In order
to simplify the presentation, we will assume that n(x) is an eigenvector of
M(x) for x ∈ ∂D, i.e.

M(x)n(x) = a(x)n(x) for x ∈ ∂D (33)

for some scalar function a satisfying m ≤ a(x) ≤ 1/m for all x ∈ ∂D by
(10).

Remark 3.9. Formally, p† is a solution to

−div(M∇p†) = 0 in D,

n ·M∇p† = 0 on ∂H, n ·M∇p† = λ† on ∂B.
(34)

Since n ·M∇v† = u† = p† on ∂H if (32) holds, regularity assumptions on
u† or v† can be translated to p† and λ†. Similar to the assumptions on u†

and v†, we will assume that p† ∈ W 3,∞(D) in this paper. In particular, p†

is a strong solution to (34).
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Assuming (32) holds true, there exists a saddle-point (u†, v†, λ†, p†) of the
Lagrangian defined in (27). The error (uεα,δ−ũ†, vεα,δ−v†, pεα,δ−αp†) satisfies
the saddle-point problem (21) with right-hand side

f ε(q, w) = 〈f̃ δ, w〉Mε − aε(ũ†, v†; q, w)− bε(q, w;αp†), (35)

gε(r) = −bε(ũ†, v†; r) (36)

with (q, w) ∈ Uε×Hε� and r ∈ Hε�. In order to obtain error estimates we will
estimate the right-hand side of the latter saddle-point problem and employ
Theorem 3.4.

Lemma 3.10. Let (14), (33), and (32) hold and let f ε be defined by (35).
Then there exists a constant C > 0 independent of ε, α and δ such that

‖f ε‖(Uε×Hε�)′ ≤ C(δ + ε3/2‖v†‖W 3,∞(D) + ε3/2α1/2‖p†‖W 3,∞(D) + α‖λ†‖L2(∂B)).

Proof. Let (q, w) ∈ Uε × Hε�. Using the source condition, i.e. p† = u† on
∂H, we have that

f ε(q, w) = 〈f̃ δ − f̃ † + ṽ† − v†, w〉Mε − α〈M∇w,∇p†〉ωε + α〈p† − p̃†, q〉Uε .

Using (18), Cauchy-Schwarz inequality and Lemma A.4 (iii) we obtain

〈f̃ δ − f̃ †, w〉Mε + 〈v† − ṽ†, w〉Mε ≤ C(δ + ε3/2‖v†‖W 2,2(D))‖w‖Mε ,

where we used ∂nv
† = 0 on ∂B by (33). Since ∂np

† = 0 on ∂H by (33) and
(34), we similarly obtain with Lemma A.4 (iii)

〈p† − p̃†, q〉Uε ≤ Cε3/2‖p†‖W 2,2(D)‖q‖Uε .

Integration by parts and −∇ωε = n|∇ωε| yield

〈M∇w,∇p†〉ωε =− 〈div(M∇p†), w〉ωε
+ 〈n ·M∇p†, w〉Mε + 〈n ·M∇p†, w〉Uε

An application of Lemma A.4 (i) yields

〈div(M∇p†), w〉ωε ≤ Cε3/2‖p†‖W 3,∞(Ω)‖w‖Hε ,

and, since n ·M∇p† = 0 on ∂H, Lemma A.4 (iv) gives

〈n ·M∇p†, w〉Uε ≤ Cε3/2‖p†‖W 3,2(Ω;ωε)‖w‖Hε ,

as well as, using n ·M∇p† = λ† on ∂B and Lemma A.1,

〈n ·M∇p†, w〉Mε = 〈n ·M∇p† − EB(n ·M∇p†), w〉Mε + 〈EBλ†, w〉Mε

≤ C(ε3/2‖p†‖W 3,2(Ω;ωε)‖w‖Hε + ‖λ†‖L2(∂B)‖w‖Mε).

Collecting the above estimates and using the definition of ‖(q, w)‖α yields
the assertion.
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Using Lemma 3.10 and Lemma 2.5, we infer from Theorem 3.4 the following
error estimate.

Theorem 3.11. Let 0 < α ≤ α0 and ε > 0. Moreover, let (14), (33) and
(32) hold. Then there exists C > 0 independent of ε and α such that

α‖uεα,δ − ũ†‖2Uε + α‖∇vεα,δ −∇v†‖2L2(ωε) + ‖vεα,δ − v†‖2Mε + ‖pεα,δ − αp†‖2Hε
≤ C

(
δ2 + ε3‖v†‖2W 3,∞(D) + ε3α‖p†‖2W 3,∞(D) + α2‖λ†‖2L2(∂B)

)
.

With an appropriate choice of ε and α in terms of δ we obtain the overall
optimal order of convergence:

Corollary 3.12. Let the assumptions of Theorem 3.11 hold true. For the a
priori choice α ≈ δ and ε ≈ δ2/3 we obtain the following convergence rates

‖uεα,δ − ũ†‖Uε + ‖∇vεα,δ −∇v†‖L2(ωε) = O(
√
δ) and

‖vεα,δ − v†‖Mε = O(δ).
(37)

Remark 3.13. If v†, p† ∈ W 1,∞(D) only, we have to replace ε3 in the
previous estimates by ε, cf. Lemma A.4. The choice α ≈ δ and ε ≈ δ2 then
yields (37).

Remark 3.14. Assumption (33) can be bypassed, if one defines the ex-
tension off the interface EMnv to be constant along the straight line t 7→
x + tM(x)n(x), x ∈ ∂D. Moreover, the estimates in the appendix have to
be adapted in a similar way.

We finally mention that a generalization of (32) to more general source
conditions of the form u† = (F ∗F )µλ† (with 0 < µ ≤ 1) can be carried out
in a similar way. The main change then concerns the last two terms on the
right-hand side of the estimate in Lemma 3.10, which yield different orders
in terms of α. Interestingly the optimal choice ε3 ≈ δ2 is unaffected by the
specific source condition.

4 Numerical Solution

For the numerical solution we discretize the saddle-point system (21) with
standard piecewise linear finite element methods on triangular grids not re-
solving the interface but adaptively refined based on the gradient of ϕε.
Note that this is equivalent to the optimality system for a direct finite ele-
ment discretization of the minimization problem for (19). In the following
we discuss some further aspects arising in the solution of the linear system.
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4.1 Preconditioning of the Saddle-point System

In order to solve the saddle-point system (21) in reasonable time, we rely
on efficient preconditioners. We concluded that all the constants in the
stability estimates were independent of the parameter ε, cf. Lemma 3.1 and
Theorem 3.4. Consequently, to obtain an ε-robust preconditioner becomes
a matter of applying the proper Riesz maps, denoted by RUε : Uε → (Uε)′
and RHε� : Hε� → (Hε�)′. Furthermore, let us introduce the operators

Qε : Uε → (Hε�)′, u 7→ −〈u,w〉Uε ,
P ε : Hε� → (Hε�)′, v 7→ 〈M∇v,∇w〉ωε ,
T ε : Hε� → (Hε�)′, v 7→ 〈v, w〉Mε ,

T̃ ε : Mε → (Hε�)′, f 7→ 〈f, w〉Mε ,

with w ∈ Hε�. Using these operators, we can write (21) in the form



αRUε 0 [Qε]′

0 T ε [P ε]′

Qε P ε 0




︸ ︷︷ ︸
Âεα



uε

vε

pε




︸ ︷︷ ︸
qε

=




0

T̃ εf
0




︸ ︷︷ ︸
b

, (38)

where we have

Âεα : Uε ×Hε� ×Hε� → (Uε)′ × (Hε�)′ × (Hε�)′. (39)

Since this operator Âεα maps from a (product) Hilbert space onto its dual
space, Krylov subspace methods are not readily available. However, assum-
ing that an operator Bε : (Uε)′× (Hε)′× (Hε)′ → Uε×Hε×Hε is available,
Krylov subspace methods can be employed to solve

BεÂεαqε = Bεb.

To obtain an efficient solution, the preconditioner Bε must be an isomor-
phism, see [22]. We propose to apply inverse Riesz maps to derive such a
preconditioner, which lead to the preconditioned system



R−1
Uε 0 0

0 R−1
Hε� 0

0 0 R−1
Hε�




︸ ︷︷ ︸
Bε



αRUε 0 [Qε]′

0 T ε [P ε]′

Qε P ε 0




︸ ︷︷ ︸
Âεα



uε

vε

pε




︸ ︷︷ ︸
qε

=



R−1
Uε 0 0

0 R−1
Hε� 0

0 0 R−1
Hε�






0

T̃ εf
0




︸ ︷︷ ︸
b

.

(40)
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We observe that

Aεα = BεÂεα : Uε ×Hε� ×Hε� → Uε ×Hε� ×Hε�, (41)

and consequently, since Aεα is a symmetric indefinite operator, the MINRES
algorithm can be applied to solve the optimality system.

Remark 4.1. For our numerical examples we will use a norm induced by
the inner product

〈M∇v,∇v〉ωε + 〈v, v〉ωε (42)

on Hε�. This influences the preconditioner Bε, resulting in a slightly differ-
ent stiffness matrix from the discretization of the Riesz map RHε�. From a
numerical investigation, this gave better iteration counts, and we therefore
apply this alternative norm in the numerical section.

4.2 Spectrum of the preconditioned system

Operators similar to Aεα were thoroughly analyzed in [24]. Under given
assumptions, an efficient and robust solution of the saddle-point system
(40) can be guaranteed. More specifically, the authors of [24] show that
for a sound discretization of Aεα defined in (40)-(41), the spectrum of the

associated discretized operator Aε,hα satisfied

sp(Aε,hα ) ⊂ [−b,−a] ∪ [cα, 2α] ∪ {τ1, τ2, ..., τN(α)} ∪ [a, b], (43)

where N(α) = O(ln(α−1)) and the constants a, b, c are independent of α
(and here also of ε).
To guarantee this spectrum, the following assumptions must be satisfied:

A1 : P ε : Hε� → (Hε�)′ is bounded, linear, and invertible.

A2 : Qε : Uεβ → (Hε�)′ is bounded and linear.

A3 : T ε : Hε� → (Hε�)′ is bounded and linear.

A4 : The operator equation (17) is ill-posed.

Assumptions A1-A4 follow immediately from the analysis in Section 3.

4.3 Implementation

We implemented the code using cbc.block, which is a FEniCS-based Python
implemented library for block operators. See [21] for details. The PyTrili-
nos package was used to compute an approximation of the preconditioner
Bε in (40). We approximated Bε using AMG with a symmetric Gauß-
Seidel smoother with three smoothing sweeps. All tables containing itera-
tion counts for the MINRES method were generated with this approximate
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preconditioner. On the other hand, the eigenvalues of Aεα = BεÂεα were com-
puted with the exact preconditioner Bε in Octave. The MINRES iteration
process was stopped as soon as

‖rn‖
‖r0‖

=
‖Bε[Âεαqn − b]‖Uε×Hε×Hε
‖Bε[Âεαq0 − b]‖Uε×Hε×Hε

< ρ. (44)

Here, ρ is a small positive parameter. The exact data u† was computed
from an appropriate source condition, i.e. F ∗w = u†, for some w ∈ L2(∂B).
Then, we computed Fu† = f †. Noise was then added to f †, and the noisy
data was extended to supp(γB|∇ωε|) by the extension operator EB, see
Section 2.3.2.

4.4 Examples

In our simulations, we use a “circle in circle” domain. The domain D is
defined as

D = {(x, y) ∈ R2 : 0.3 <
√
x2 + y2 < 1}.

The diffuse domain Dε is then simply the scaling

Dε = {(x, y) ∈ R2 : 0.3− ε <
√
x2 + y2 < 1 + ε}.

Furthermore, the conductivity tensor M(x, y) is defined as

M = L̄ΣL̄>,

where

L̄ =
1

‖(x, y)‖

[
y x
−x y

]
, Σ =

[
1 0
0 0.3

]
.

One easily verifies that (33) holds for this choice of M . In Table 1, we
see the iteration numbers for different values of α and ε. As expected,
there is no dependency on the diffuse domain parameter ε, cf. Section
4.2. Furthermore, for the regularization parameter α, we get the expected
logarithmic growth in iteration numbers when α → 0. For example, when
ε = 2−6, the growth is well modeled by the function

α 7→ 55− 24 log10(α).

Figure 1 shows the eigenvalues of Aα. The band structure is in accordance
with the analysis in [24], with three bands of eigenvalues, and a limited
number of isolated eigenvalues.
We recall Assumption A4, i.e. that the operator equation (17) is ill-posed.
In Figure 2, logarithmic plots of the absolute values of the eigenvalues of
Aε0 are displayed. The clustering of eigenvalues around 0 is an effect of the
ill-posed nature of (17).
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ε \α 1 .1 .01 .001 .0001

2−2 57 100 143 186 238

2−3 57 91 126 157 195

2−4 64 102 126 144 183

2−5 57 83 115 143 159

2−6 55 79 105 123 155

Table 1: The number of MINRES iteration required to solve the discretized
system associated with (40). The stopping criterion ρ = 10−10, see (44).

0 500 1000 1500 2000 2500 3000 3500

-2

-1

0

1

2

3

Figure 1: Plot of the eigenvalues associated with Aεα in Example 1. Here
α = 10−4 and ε = 0.125. The eigenvalues are computed on a course mesh
with 1 605 vertices.

From a practical point of view, we are concerned with the performance of the
diffuse domain method in comparison to the standard inverse formulation,
i.e. with the optimization performed on the exact domain. We will compare
the solutions both visually and in norm sense.

In Figure 3, the exact source function is displayed along with inverse solu-
tions on both the exact and diffuse mesh. Similar comparisons are displayed
in Figures 4 and 5 for the state and adjoint functions, respectively. The
functions defined on a surface, i.e. either on ∂H or ∂B, are extended by the
appropriate constant extension operator, see Section 2.3.2.

For the control functions, the inverse solution uα,δ displayed in Figure 3b)
is visually identical to the exact source function u†. These are also visually
identical to uεα,δ displayed in Figure 3c), where ε = 0.03125 =

√
δ. With a

larger choice of ε, however, the solution is quite different from the source
u†, see Figure 3d) where ε = 1/4. If we consider the state functions, the
choice of ε is less important. All solutions displayed in Figure 4 are basically
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(a) All eigenvalues.
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(b) Zoomed in on the smallest eigen-
values.

Figure 2: Logarithmic plots of the absolute values of the eigenvalues of Aε0.

(a) The input source ũ†. (b) Inverse solution ũα,δ
on the exact mesh D.

(c) Diffuse solution uεα,δ (d) Diffuse solution uεα,δ
for ε = 0.03125 = δ1/2. for ε = 1/4.

Figure 3: A comparison of different control functions and the input source in
a). In a) and b), the control is only defined on ∂H, so we therefore applied
the constant extension EH for the visualization, see Section 2.3.2. In b), c)
and d), δ = 2−10 and α = δ/2.
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(a) The exact data f̃ †. (b) The state f̃α,δ = EB(vα,δ|∂B)

on the exact mesh D.

(c) Diffuse state vεα,δ (d) Diffuse state f εα,δ
for ε = 0.03125 = δ1/2. for ε = .25.

Figure 4: A comparison of different state functions and the exact data in
a). In a) and b), the state is only defined on ∂B, so we therefore applied
the constant extension EB for the visualization, see Section 2.3.2. In b), c)
and d), δ = 2−10 and α = δ/2

identical from a visual perspective. For the adjoint functions, there seem
to be some visual difference between pα,δ and pεα,δ, i.e. for the adjoint on
the exact mesh and on the diffuse mesh for ε = 0.03125, but the order of
magnitude of these functions is only 10−3.
The final issue we will investigate numerically is the convergence rates of

‖uεα,δ − ũ†‖Uε ,

for choices of α = Cδµ and ε = cδν . In Figure 6 we see convergence rates
for the choice α = δ/2. In a), the convergence rate on the exact mesh is
displayed. The rate seems, on average, to be of order O(δ1/2), but it is
quite inconsistent from step to step. This leads us to believe that a stronger
source condition holds true and better convergence rates may be obtained,
see Section 3.3. If the smoother source condition is satisfied, we can choose
α = Cδ2/3. The convergence rates for this choice of α is displayed in Figure
7. In a), we now see a much more consistent convergence rate of order
O(δ2/3).
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(a) The adjoint pα,δ (b) The diffuse adjoint pδα,ε
on the exact mesh D. for ε = .03125 = δ1/2.

Figure 5: A comparison of the adjoint on the exact mesh and the diffuse
mesh. Here, δ = 2−10 and α = δ/2.

For the convergence rates associated with the diffuse domain method, we
have more inconsistent rates. Generally, the convergence rates can only be
guaranteed for small choices of δ and ε, and particularly the latter is diffi-
cult to handle numerically, due to mesh limitations on standard computers.
However, we see in Figure 6b) that the choices ε = δ1/2/4 and ε = δ2/3/4
yield roughly the same convergence rate, while ε = δ1/3/4 yields a worse
rate.

For the case α = Cδ2/3, displayed in Figure 7, the numerics become more
challenging. We observe from the rates associated with the inverse solu-
tions on the exact mesh that we only obtain the theoretical convergence
‖uα,δ − u†‖L2(∂H) = O(δ2/3) for small values of δ. Hence, choosing ε = δν

might be numerically challenging for these values of δ. However, the con-
stant in Theorem 3.11 is not explicit, and we therefore select heuristically C
in ε = Cδν . From Figure 7b), we observe that the choice ε = 35δ2/3 yields a
better rate than choosing ε = 10δ1/2, which again yields a better rate than
ε = 2.8δ1/3. Furthermore, for the smallest noise values, the convergence
rate associated with the choices ε = 35δ2/3 and ε = 10δ1/2 actually seems
to be of order O(δ2/3), which is the optimal rate from standard theory, see
[12]. The choice ε = Cδ1/2 is better than our theory suggests. Roughly, this
may be explained as follows. Measuring in a norm similar to a weighted
W 1,1-norm gives approximations of order ε2 instead of ε3/2, see [7] and The-
orem A.2. Using this in Theorem 3.11, the optimal choice in Corollary 3.12
is actually ε ≈ δ1/2. As for coarse discretizations all norms are equivalent
with moderate constants this may explain the observed behavior.
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Figure 6: A log-log plot of the convergence rates for different choices of dif-
fuse domain parameter ε. In both subplots we see the actual convergence
rates (experimental), compared to the theoretical rate of order O(ε1/2).
Here, α = δ/2.
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Figure 7: A log-log plot of the convergence rates for different choices of
diffuse domain parameter ε. In both subplots we see the actual convergence
rates (experimental), compared to the theoretical rate of order O(δ2/3). All
errors in b) are scaled to be equal at the largest noise value. The notation
ε = 0 means computations on the exact mesh, i.e. as in a).
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5 Discussion and conclusions

We applied a diffuse domain method to variational regularization methods.
This allowed us to handle complex geometries in a computationally efficient
way. The additional error introduced by the diffuse domain method can be
made arbitrarily small such that the overall error in the method is domi-
nated by modeling errors and measurement noise. As a model problem we
chose ECG inversion for which we could show that Tikhonov regularization
is indeed a regularization method. Extensions to other inverse problems
governed by an elliptic partial differential equation of second order seem to
be straightforward. The main difference to standard Tikhonov regulariza-
tion in Hilbert spaces, where simple operator perturbations can be handled
in a straightforward manner, is the choice of topology which depends on ε,
the parameter in the diffuse domain method. As this topology is weaker
than the standard Hilbert space norm, we could show convergence in a dual
norm only. A key ingredient for our convergence result is the reformula-
tion of Tikhonov regularization as a constraint optimization problem, which
gives additional control over the state, which in turn gave some compact-
ness. Under the usual source conditions we could prove convergence rates
in the stronger standard Hilbert space norm when an a priori parameter
choice rule is used. Using the methods present here, it should be possible to
analyze also other parameter choice rules, and the use of nonlinear forward
problems should also be feasible. Extending the results of [7] to parabolic
problems, one can also deal with time-dependent inverse problems. Here,
the diffuse domain method is particularly suited when dealing with time-
dependent geometries as e.g. a beating heart. Another interesting point,
which is not in the scope of this paper, is how errors in the distance func-
tion will influence the diffuse domain method. On the continuous level noisy
distance functions will lead to rough surfaces and new challenges come up.
Of particular interest is the case when only finitely many measurements,
and hence measurement locations, are available, which makes it necessary
to construct a distance function in a way that the noise is not dominant.
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A Basic Properties of Diffuse Approximations

In this appendix we collect and extend some results of [7]. We let E be
one of the extensions EB or EH defined in Section 2.3.2 and γ be one of
the weighting functions γB or γH , and assume that ε0 is sufficiently small.
Moreover let Γ = ∂D∩ supp(γ). The constants C are independent of ε. For
t ∈ (−ε, ε), we define the mapping Φt(x) = x + tn(x), x ∈ ∂D, and note
that Φt(∂D) = {x ∈ Ω : dD(x) = t}. Moreover, cf. [7, Eq. (9)],

lim
t→0

sup
x∈Γ
|detDΦt(x)− 1− t∆dD(x)| = 0. (45)

For any integrable v the transformation formula implies

∫

Ω
v(x)|∇ωε|γ dx =

1

2ε

∫

Γ

∫ ε

−ε
v(x+ tn(x))| detDΦt(x)|dtdσ(x). (46)

Let us begin with deriving some basic properties of the extensions constant
off the interface defined in Section 2.3.2.

Lemma A.1. There exists constant c(ε), C(ε) > 0 such that for any v ∈
L2(Γ)

c(ε)‖v‖L2(Γ) ≤ ‖Ev‖L2(γ|∇ωε|) ≤ C(ε)‖v‖L2(Γ)

and c(ε)→ 1 and C(ε)→ 1 as ε→ 0.

Proof. According to (46) and (Ev)(x+ tn(x)) = v(x), x ∈ Γ, we have

∫

Ω
|EBf(x)|2|∇ωε|γB dx =

1

2ε

∫

∂B
|f(x)|2

∫ ε

−ε
detDΦt(x) dtdσ(x),

and the assertion follows from (45).
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Lemma A.1 implies that EB and EH are bounded, injective and have closed
range.
The next issue, concerns the approximation of diffuse integrals. We set

Γt = {x ∈ Ω : dist(x,Γ) < t}.

The following is a central estimate.

Theorem A.2. Let 1 ≤ p <∞. There exists a constant C > 0 such that
(i) if v ∈W 1,p(Ω;ωε), then

‖v‖pLp(Γε;|∇ωε|γ) ≤ C(‖v‖pLp(Γ) + εp−1‖∂nv‖pLp(Γε;ωε)
).

(ii) if v ∈W 2,p(Ω;ωε), then

‖v‖pLp(Γε;|∇ωε|γ) ≤ C(‖v‖pLp(Γ) + εp‖∂nv‖pLp(Γ) + ε2p−1‖∂2
nv‖pLp(Γε;ωε)

).

Proof. (i) Using the basic inequality (a+ b)p ≤ 2p−1(|a|p+ |b|p), a, b ∈ R, we
obtain by using the fundamental theorem of calculus and Hölders inequality

|v(x+ tn(x))|p ≤ 2p−1(|v(x)|p + |t|p−1

∫ |t|

−|t|
|∂nv(x+ sn(x))|p ds).

Using the latter in (46) and using (45), we obtain

‖v‖pLp(Ω;|∇ωε|γ)|) ≤ 2p−1(‖v‖pLp(Γ) + εp−2

∫

Γ

∫ ε

0

∫ t

−t
|∂nv(Φs(x))|p dsdtdσ).

Using Fubini’s theorem we further may write

1

ε

∫

Γ

∫ ε

0

∫ t

−t
|∂nv(Φs(x))|p dsdt dσ ≤ C 1

ε

∫ ε

0

∫

Γt

|∂nv(x)|p dx dt.

As in [7, Section 5.1] using the transformation s = −S(t/ε), one completes
the proof showing

1

ε

∫ ε

0

∫

Γt

|∂nv(x)|p dx dt ≤
∫

Γε

|∂nv(x)|pωε dx.

(ii) Applying twice the fundamental theorem of calculus yields

v(x+ tn(x)) = v(x) + t∂nv(x) +

∫ t

0

∫ s

0
∂2
nv(x+ rn(x)) dr ds.

The proof is then finished with similar arguments as in (i).

With the usual modifications one shows that Theorem A.2 also holds for
p =∞. We start with a diffuse trace lemma, cf. [7, Theorem 4.2]. We give
a different proof.
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Lemma A.3. There exists a constant C > 0 such that

‖v‖L2(γ|∇ωε|) ≤ C‖v‖Hε for all v ∈ Hε. (47)

Proof. The usual trace theorem [1] assures that ‖v‖L2(Γ) ≤ C‖v‖H1(D) ≤
C‖v‖Hε . The result then follows from Theorem A.2 (i).

Operator perturbations induced by the diffuse integrals can be treated using
the following.

Lemma A.4. Let 1 ≤ p ≤ ∞ and v ∈ W k,p(Ω, ωε), k ∈ {0, 1, 2}. Then
there exists a constant C > 0 independent of ε such that
(i) if k ≤ 1 there holds

|
∫

Ω
vωε dx−

∫

D
v dx| ≤ Cε1+k− 1

p ‖v‖Wk,p(Ω;ωε),

(ii) if k = 1, then

‖v − Ev‖Lp(|∇ωε|γ) ≤ Cε1− 1
p ‖v‖W 1,p(Ω;ωε),

(iii) if k = 2, then

‖v − Ev‖Lp(γ|∇ωε|) ≤ C(ε‖∂nv‖Lp(Γ) + ε
2− 1

p ‖∂2
nv‖Lp(Γε;ωε)).

(iv) if k = 2, v = 0 on Γ and w ∈W 1,2(Ω;ωε), then

|
∫

Ω
vw|∇ωε|γ dx| ≤ Cε 3

2 ‖v‖W 2,2(Ω;ωε)‖w‖W 1,2(Ω;ωε).

Proof. Assertions (i) and (iv) are proven in [7, Theorem 5.1, Theorem 5.2,
Theorem 5.6]. To prove (ii) we apply Theorem A.2 (i) to v − Ev. As
v − Ev = 0 on Γ and ∂n(v − Ev) = ∂nv, we obtain

‖v − Ev‖Lp(Γε;|∇ωε|γ) ≤ Cε1− 1
p ‖∂nv‖Lp(Γε;ωε).

This yields the assertion. (iii) is a direct consequence of Theorem A.2 (ii).

A further tool in studying the diffuse domain method is the following lemma
[7, Lemma 4.9].

Lemma A.5 (Poincaré-Friedrichs-type inequality). There exists a constant
C > 0 such that

‖v‖2Hε ≤ C(‖∇v‖2L2(Ω;ωε) + ‖v‖2L2(Ω;γ|∇ωε|)) for all v ∈ Hε. (48)
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