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The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in

parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing

evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal

microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and

converges toward an adult-like microbiota by the end of the first 3�5 years of life. Perinatal factors such as

mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial

colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult

life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-

term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease.

Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the

risk of disease in early and late life. This review discusses recent studies on the early colonization and factors

influencing this process which impact on health.
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T
he microbiota is composed of a significant number

of different bacteria, approximately 160 species

per person per fecal sample, and this ecosystem

plays an important role in human health. The microbial

colonization of the infant gut is known to play a key role

in immunological and metabolic pathways impacting on

human health. Disruptions during this complex process

of microbial colonization have been shown to increase

the disease susceptibility during life. Alteration in the

compositional development of the gut microbiota of a

newborn has been demonstrated in a few studies to

predispose to diseases later in life. This review highlights

the recent observations on the importance of micro-

bial exposition during early life and the microbial

development throughout life. This microbial coloniza-

tion process promotes short- and long-term health

benefits and different factors that modify the microbial

composition.
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Microbial colonization of the infant gut
Colonization of the infant gastrointestinal (GI) tract by

microbes is an essential process in our life cycle since

microbiota�host interactions have an important influence

on human health and disease. Since the studies of Tissier

(1) concerning the acquisition of the infant gut micro-

biota, the idea that fetuses are sterile in utero and that

microbial colonization of the newborn starts during and

after birth has been widely accepted. More than a century

later, the hypothesis that the placenta barrier keeps fetuses

sterile throughout a healthy pregnancy still remains a

general dogma and, as a consequence, the presence of any

bacteria in the uterus is generally considered as a potential

danger for the fetus. This view arises from the fact that,

during decades, microbiological analyses of pregnancy-

related biological samples (chorioamnion, amniotic fluid,

and meconium) were only performed in cases where an

intrauterine infection was evident or suspected. Indeed,

several studies have found a strong correlation between

preterm deliveries and intrauterine infections (2, 3), the

leading cause of infant mortality worldwide (4).

In contrast, relatively few studies have examined the

uterine microbiota associated with healthy term pregnan-

cies, partly because of the enduring influence of the sterile

womb paradigm, and also due to the technical and ethi-

cal issues of collecting samples from healthy pregnancies

before birth. However, investigations into the potential

for bacterial transmission through the placental barrier

have detected bacteria in placenta tissue (5), umbilical

cord blood (6), amniotic fluid (7�9), and fetal membranes

(9, 10) from healthy newborns without any indication of

infection or inflammation.

Prenatal microbial contact: is there a fetal gut
microbiota?
Meconium is not sterile, as was previously assumed, since

it harbors a complex microbial community (8, 11�14).

A recent study characterized the microbiota of meconium

and fecal samples obtained from preterm babies during

the first 3 weeks of life using culture-dependent and

culture-independent techniques (12). Both approaches

provided similar results and showed that spontaneously

released meconium of such neonates contains a specific

microbiota that differs from those observed in early fecal

samples. Firmicutes was the main phylum detected in

meconium while Proteobacteria was abundant in feces.

Culture-based techniques showed that staphylococci pre-

dominated in meconium while enterococci and certain

gram-negative bacteria, such as Escherichia coli, Klebsiella

pneumoniae, or Serratia marcescens, were more abundant

in fecal samples. In addition, 16S rRNA gene-based mic-

roarrays revealed the high prevalence of bacteria related

to Streptococcus mitis and Lactobacillus plantarum in

meconium, whereas those related to E. coli, Enterococcus,

and K. pneumoniae predominated in the infant feces.

In another study, the diversity of the meconium micro-

biome was assessed by multi-barcode 16S rRNA gene

sequencing using samples collected from 23 newborns

stratified by maternal diabetes status (13). All meconium

samples contained a diversified microbiota, which was

not affected by the mode of delivery; in comparison with

adult feces, meconium samples showed a lower species

diversity and a higher sample-to-sample variation. Taxo-

nomic analyses suggested that the overall bacterial content

in meconium significantly differed by maternal diabetes

status. Specifically, the phyla Bacteroidetes and the genus

Parabacteroides were enriched in those samples of the

diabetes group (13). It has also reported that meconium

microbiota types dominated by lactic acid or enteric

bacteria are differentially associated with maternal eczema

and later respiratory problems in infants (11).

While vaginal microbes associated with preterm birth

can get access to the uterine environment through an

ascending route, the mechanisms by which gut bacteria

reach this human niche are not well understood. It has

been suggested that bacteria travel to the placenta via

the bloodstream after gut epithelium translocation. While

the intestinal epithelial barrier generally prevents micro-

bial entry into the circulatory system, dendritic cells can

actively penetrate the gut epithelium, take up bacteria

from the intestinal lumen, and transport the live bacteria

throughout the body as they migrate to lymphoid organs

(15, 16). To test whether maternal gut bacteria can

be transferred to fetuses in utero, two pioneer studies

investigated if oral administration of a genetically labeled

Enterococcus faecium to pregnant mice resulted in its

presence in amniotic fluid and meconium of term off-

spring after sterile cesarean section (C-section) (6, 8).

Remarkably, E. faecium with the genetic label was cul-

tured from the amniotic fluid and meconium of pups from

inoculated mothers, but not from pups of control mice.

Thus, these studies provided foundational evidence for

maternal microbial transmission in mammals. Interest-

ingly, physiological bacterial translocation is highly in-

creased during pregnancy and lactation in rodents (17).

Globally, the dogma that the fetus resides in a sterile

environment is being challenged by recent findings, and

clearly, the question has arisen whether microbes that

colonize the fetus may be related to a better or worse

pregnancy outcome and to the future health status of

the neonate. Thus, some microorganisms colonizing the

placenta, such as Prevotella and Gardnerella, may provoke

distinctive newborn inflammatory responses while others,

such as Lactobacillus, may suppress these responses (18, 19).

Moreover, a previous study carried out in pregnant women

focused on the influence of oral microbiota composi-

tion in the pregnancy outcome and showed that some

bacteria, such as Actinomyces naselundii, were associated
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with lower birth weight and earlier delivery, while others,

such as lactobacilli, were linked with a higher birth

weight and later delivery date (20). Thus, it is possible

that oral bacteria can enter the uterine environment

through the bloodstream and may influence the delivery

process. These findings are also supported by recent exten-

sive deep sequencing studies in normal healthy term

pregnancies, identifying a low abundance, but metaboli-

cally rich placental microbiome, with a composition

resembling the oral microbiome more than the vaginal,

fecal, skin, or nasal microbiomes (5). In a recent review,

maternal microbial transmission has been reported to

occur in all animal kingdoms (21). ‘Heirloom’ microbes

received from the mother may be uniquely evolved to

the offspring’s genotype and vertical as compared with

horizontal transmission may increase the chance for

optimal mutualism (21).

We still know very little about the identity and number

of microbes that traverse the placenta, whether they persist

in the infant or whether their presence has short- or long-

term health consequences. The advent of high-throughput

system biology approaches will lead to a characterization

of the ‘fetal microbiome’ in utero and its health connota-

tions, including effects on immune imprinting.

Infant microbial colonization process
Microbial contact during prenatal life may imprint the

offspring microbiota and immune system in preparation

for the much larger inoculum transferred during vaginal

delivery and breastfeeding. A remarkably wide diversity

of bacteria can colonize the child when exposed to the

postnatal environment � being reflected by a high inter-

individual diversity in the gut microbiota composition of

newborns (22, 23). Advances in metagenomic technolo-

gies have revealed the composition of the human gut

microbiota from early infancy (22) through to old age (24).

Following birth, the human intestine is rapidly colo-

nized by an array of microbes and factors known to

influence colonization include gestational age, mode of

delivery (vaginal birth vs. assisted delivery), diet (breast

milk vs. formula), sanitation, and antibiotic treatment

(25, 26). First colonizers, facultative anaerobes, create a

new environment that promotes the colonization of strict

anaerobes as Bacteroides, Clostridium, and Bifidobacterium

spp. The intestinal microbiota of neonates is characterized

by low diversity and a relative dominance of the phyla

Proteobacteria and Actinobacteria, with the microbiota

becoming more diverse with the emergence and domi-

nance of Firmicutes and Bacteroidetes as time after birth

increases (27�29). By the end of the first year of life,

infants possess an individually distinct microbial profile,

converging toward the characteristic microbiota of an

adult, such that by 2�5 years of age, the microbiota fully

resembles that of an adult in terms of composition and

diversity (22, 30, 31). Therefore, the first 3 years of life

represent the most critical period for dietary interventions

to improve child growth and development. This is the

period when the intestinal microbiota, a vital asset for

health and neurodevelopment (32) is established and

its alteration during this period has the potential to pro-

foundly affect host health and development. Gut micro-

biome development has been studied far more than that in

other body habitats and oral, skin and respiratory infant

microbial colonization processes are still being uncovered.

Gut microbiota development is affected by different

factors such as mode of delivery, diet, genetics, health

status, gestational age, etc. (Fig. 1).

Fig. 1. Factors influencing the infant gut microbiota development and the adult and elderly microbiota. The first 3 years of life

represents the most critical period for dietary interventions aimed at microbiota modulation to improve child growth and development

and positively affect health.
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Factors influencing infant microbiota
development

Mode of delivery
Initial postnatal microbial exposure occurs during and

shortly after birth. Vaginally delivered infants are colo-

nized by maternal vaginal and fecal bacteria, including

Lactobacillus and Bifidobacterium spp. (33). Infants born

via C-section are not directly exposed to maternal mic-

robes and are instead colonized with microbes associated

with the skin and the hospital environment. It is sug-

gested that the microbiota composition in these infants

may remain disturbed for months or even years (34, 35).

During vaginal delivery there is an extensive transmission

of vaginal bacteria from the mother to the child. The

vaginal microbiota has a low diversity, being mainly

composed of lactobacilli (36). During the first few days

of life there is a relatively high load of lactobacilli in the

neonatal gut, probably reflecting the vaginal microbiota

(23). Human anatomy also supports that exposure to

the mother’s fecal microbiota is an important transmis-

sion route during delivery (37). The facultative anaerobic

Enterobacteriaceae represents one of the bacterial groups

with the most probable direct transmission from mother

to child through feces (38). It has also been suggested that

Bacteroides fragilis is transmitted during, or just after,

delivery (39). Vaginally delivered infants, but not infants

born by C-section, shared a significantly higher propor-

tion of gut microbiota 16S rRNA gene sequences with

their own mother than with other mothers for up to

2 years of age, particularly within the Bacteroidetes and

Firmicutes phyla (35). As these anaerobic phyla do not

appear to grow outside the gut, it is probable that they

are transmitted between human hosts (40).

It has also been argued that strictly anaerobic clostridia

are unlikely to be transmitted directly during delivery

due to the oxygen tension in the gut at birth. Although

vegetative cells of human-derived clostridia are highly

sensitive toward oxygen, the spore form survive harsh

conditions � such as treatment with 3% chloroform �
and are still able to colonize the gut of gnotobiotic mice

(41). Spores would therefore provide an avenue for

transmission at a later stage. Further support for lack of

direct transmission of strictly anaerobic clostridia comes

from the finding that clostridia were highly overrepre-

sented in mothers, but not in their children up to the age

of 4 months (23, 42).

It has been known from the mid-1980s that breaking

the fecal and vaginal transmission route by C-section has

a major impact on the infant gut microbiota (43). Despite

major methodological changes and improvements, the

main conclusion that C-section delays Bacteroidetes

colonization still holds true (35). In recent reports, it has

also been shown that microbiota diversity is decreased

with C-section, compared to vaginal delivery (35).

Another important early source of colonizing micro-

biota is through the contact with the mother’s skin (44).

Skin-associated bacteria belonging to the Staphylococcus

genus, which is also widespread among different human

mucosal surfaces, are one of the earliest colonizers of the

human infant (45); they are rapidly outcompeted by other

bacteria with age.

Infant diet
Another relevant and strong influence in the infant

gut microbial development is the mode of feeding. In a

single case study, the infant microbiota development

was followed from birth to 2.5 years of age and results

demonstrated a clear dietary influence on the microbiota

composition (30). A major source for bacterial coloniza-

tion of the infant gut is through bacteria in the mother’s

milk, and it has been proposed that this mode of colo-

nization plays a major role in the child’s health status

(46). The mother’s milk microbiota mainly includes

streptococci and staphylococci followed by other bacteria

(47), which are among the earliest colonizers of the infant

gut (22, 23). Breast-fed infants are exposed to the milk

microbiota which has been reported to contain more than

700 species of bacteria (48). A higher maternal body mass

index (BMI) was associated with lower microbial diver-

sity in this study, as was emergency C-section compared

with planned C-sections and vaginal birth. Breast milk

also contains an abundance of complex oligosaccharides

with prebiotic activity, stimulating the growth of specific

bacterial groups such as staphylococci (47) and bifido-

bacteria (49). Gut microbiota diversity increases fol-

lowing weaning and introduction of solid food, with

enhanced colonization of butyrate producers, including

Bacteroides and certain Clostridium species (30, 50). The

oral microbiota consists of a highly diverse assemblage

of microorganisms (51). The child’s gut microbiota is

also exposed to the mother’s and its own oral microbiota �
either directly or indirectly through mother’s milk (48).

Recent evidence suggests that oral bacteria can colonize

the gut of infants, and as an example, oral Bifidobacterium

dentium has been found to be both highly abundant and

prevalent in the infant gut (52).

Antibiotics and preterm birth
Perturbation of optimal microbiota development, arising

from preterm birth or antibiotics has likely long-term

implications for microbial diversity and consequent

health. In preterm infants, the microbiota is characterized

by reduced diversity and higher levels of potentially

pathogenic bacteria and lower numbers of Bifidobacterium

and Bacteroides compared with full-term infants (53).

Even short-term antibiotic treatment can significantly

affect the evolution of the infant gut microbiota; in fact,

the colonization pattern of Bifidobacterium seems to be

particularly disturbed up to 8 weeks after treatment while

Proteobacteria are increased (54). Preterm delivery is
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often confounded with both C-section and antibiotic

usage since these three factors are often associated. Inde-

pendent of these confounders, however, the microbiota of

preterm infants is distinct to that of infants delivered

at term. The main patterns are increased Enterococcus,

together with Proteobacteria. In addition, there are lower

levels of bifidobacteria compared to that expected for

children delivered at term (12). Preterm birth is also

associated with neonatal necrotizing enterocolitis (NEC),

a severe inflammatory intestinal disorder. NEC has re-

cently been linked to the microbiota, where high levels

of Proteobacteria are predictive of the disease (55).

Environment and lifestyle
The family members and close relatives (siblings) have also

been described as a relevant environmental factor influen-

cing infant gut microbiota colonization. Thus, siblings

have higher proportion of Bifidobacterium spp. than single

infants (56). Geographical location also has an impact

on the microbiota, as microbiota differences are related

to dietary patterns and lifestyle in a specific area (city,

town, country, religion, etc.). It has been reported that

a ‘geographical gradient’ exists in the European infant

microbiota where infants from Northern areas have higher

levels of Bifidobacterium spp. and some Clostridium spp.

and Atopobium spp., while Southern infants had a higher

abundance of Eubacteria, Lactobacillus, and Bacteroides

(50). Significant differences between the microbiota of

Finnish and German infants (57) or between that of

Estonian and Swedish ones (58) have been also reported.

In the first study, the proportion of Bifidobacterium

spp. was higher in the Finnish than in the German infants,

who showed a higher abundance of the Bacteroides�
Prevotella group and Akkermansia muciniphila. Another

study reported higher levels of Bifidobacterium spp.,

Bacteroides�Prevotella, and Clostridium histolyticum in

Malawi infants than Finnish infants at the age of 6 months

(59). Furthermore, the gut microbiota of infants from

Burkina Faso (rural village) was characterized by an

enrichment of Bacteroides, while Enterobacteriaceae was

predominant in Italian children (60). In a recent study,

the healthy infant microbiota from the Amazonas of

Venezuela, rural Malawi and US metropolitan was com-

pared (31). Shared patterns of gut microbiome develop-

ment were identified during the first year of life in all

populations, and bifidobacteria was the most prevalent

group, dominating the infant microbiota of all three

groups during this period.

Host genetics
The relative contribution of the host genetics in shaping

the gut microbial structure and function is not yet clearly

defined and remains a subject of ongoing debate. Our

understanding of the importance of host genetics in this

regard is derived from studies in humans, animals, and

comparative species analysis (61).

In humans, the most valuable information is derived

from studies of twins and family relatedness. A DNA-

based finger-print analysis of the microbiota of human

adults with varying degree of relatedness ranging from

parents and children, non-twin siblings, monozygotic

twins, and unrelated subjects confirmed that host geno-

type has a significant effect on the composition of the

dominant bacteria, with monozygotic twins demonstrat-

ing the highest similarity in their microbiota (62). These

results were later substantiated by reanalysis using mole-

cular profiling methods (63). A study with children under

the age of 10 indicated that the degree of similarity in the

bacterial community was higher in identical compared

with non-identical twins and was lowest in the unrelated

control group (64). In contrast, a metagenomics study

using deep sequencing of samples from 31 monozygotic

and 23 dizygotic twin pairs and their parents did not

identify significant differences in bacterial diversity be-

tween the two types of twins, although the members of

the same family were found to share a higher numbers

of bacterial phylotypes (65, 66). It has been suggested

that if the impact of host genotype on microbiota is less

pronounced, detection of significant differences in healthy

populations may require analysis of larger cohorts (67).

Defining host genotype�microbiota interactions in

humans is complicated due to the well-established influ-

ence of diet and other environmental and maternal factors

on the structure of the microbiota (see ‘Factors influen-

cing infant microbiota development’ section). The use

of genetically inbred lines of animals and germ-free and

specific knock-out mice can overcome such confounding

factors (68, 69). Eight different recombinant inbred lines,

reflecting the genetic diversity found in humans, were

profiled using ARISA-based fingerprinting methods (70).

This study showed that genetic background significantly

altered the composition of the microbiota but indepen-

dently of the mouse gender, a somewhat surprising finding

since differences in hormonal types and levels would

be expected to have an influence on the gut microbiota.

Using parental BALB/c and C57BL/6J mice and their

reciprocal cross F1 hybrid, Buhnik-Rosenblau et al. (71)

showed that host genetics had a major impact on the

composition and level of colonization of the mouse gut by

Lactobacillus johnsonii, a potential probiotic bacterium.

However, the molecular mechanisms by which specific

host genes are responsible for shaping the gut micro-

biota are so far mainly derived from single gene studies

although several genome-wide association studies are be-

ginning to provide detailed insights into host genotype�
microbiota interactions (67, 72). In another study, an

Apoe-I knockout mouse with impaired glucose tolerance

was used to assess the interaction between host genetics,

diet, and the development of metabolic syndrome. Mole-

cular profiling with pyrosequencing of 16S rRNA genes

revealed that the Apoe-I genetic mutation contributed
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to 12% of the total structural variation in the gut micro-

biota, whereas dietary changes contributed 57% of the

observed microbiota modulation (73). The effect of leptin

deficiency resulting in obese phenotype has been exten-

sively studied and shown to have a major impact on the

gut microbiota composition, with the obese mice showing

deceased levels of Bacteroides spp. (74). Understanding

specific host traits associated with microbial interac-

tions provides invaluable clues to identify the underlying

mechanisms of microbiota modulation. Modulation via

the immune system has already been suggested, but other

host-genome polymorphisms leading to an alteration

of the gut microbiota structure and function in a host-

dependent manner also need to be considered. These

include, among others, mucus production and mucin

glycan modification (see next section ‘Mucin glycosyla-

tion’), bile metabolism (75), host-derived antimicrobial

peptides (76), and mammalian hormones (77, 78).

There is now clear evidence that the host genotype

influences the structure of the gut microbiota and even

single gene mutations can lead to alterations of the

microbiota composition. Detailed genome-wide associa-

tion studies in humans are needed to provide a greater

understanding of the mechanisms underlying gut micro-

biota and host genotype interactions and guide future

microbiota-targeted intervention strategies.

Mucin glycosylation
The mucus layer overlies the intestinal epithelium and

forms the anatomical site at which the microbiota first

encounters the host. In addition to its association with

the protection, lubrication and hydration of the intesti-

nal epithelium, mucus plays a critical role in the main-

tenance of intestinal homeostasis by promoting microbial

interactions with commensal bacteria, acting as decoys

for pathogens and enhancing immune regulation (79).

The thickness, composition, organization, and glycosyla-

tion pattern of the mucus layer varies along the GI tract

and correlates with the association of distinct microbial

communities with the mucosal surface (80). The major

structural components of mucus are mucins, a family of

high-molecular-mass glycoproteins (81, 82). To date, 22

human mucins have been identified and can be classified

into two main categories, secreted and membrane-bound

mucins (83). In the intestine, MUC2 is the predominant

secretory mucin produced by goblet cells. Eight core

structures of the mucin O-glycan chain have been iden-

tified (84), with core-1-4 glycans most commonly found

in intestinal mucins (Fig. 2).

The mucus-binding capacity of microbes increases

their colonization ability at the mucosal interface and

prolongs intestinal residency of beneficial microbes (85).

Furthermore, bacterial adhesion to mucin glycans may be

a mechanism by which the host selects bacterial species

that present the complementary set of adhesins (86). The

link between glycosylation of the intestinal mucus layer

and microbiota composition has been highlighted in

studies using mouse models deficient in specific mucin

glycosyltransferase genes (87�93). Furthermore, recent

work showed that host-derived fucose signaling, activated

through the microbiota, can modulate pathogenic intest-

inal colonization (94, 95) indicating that mucin glycosy-

lation has a selective capacity on microbial ecology. The

loss of the a-1,2-fucosyltransferase FUT2, and therefore

fucosylated host glycans, leads to a decreased diversity

and differences in community composition in mice (87),

whereas an association between the composition of the

intestinal microbiota and the ABO blood group or

Fig. 2. (a) Classification of human mucins into secreted (gel-forming and non-gel-forming) and membrane-bound mucins (MUCs).

(b) The four common mucin type O-glycans (core-1-4) found in the GI.
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FUT2 secretor status was reported in humans (96, 97).

Host glycan-mediated alteration in the microbiota is

also associated with increased susceptibility to infection

and inflammatory bowel diseases (IBD) (98�100). These

findings may explain the region-specific colonization of

the GI tract and the likely influence of mucin glycosyla-

tion in selecting successive colonization of the intestine

by gut bacteria throughout life. Earlier work investigat-

ing mucin gene expression in human embryonic and fetal

intestine showed that mucin genes are expressed from the

early mid-trimester of gestation and aberrations in ex-

pression may play a role in the development of intestinal

disease (101�103).

More recently, MUC2 was implicated in the etiology

of NEC, the most common GI cause of morbidity in

premature infants (104). Goblet cells are significantly

decreased in NEC, and the presence of functional MUC2

plays a critical role in the prevention of this disease (105).

It is also important to note that abnormal gut coloniza-

tion is a hallmark of NEC (106, 107), and that human

milk (whose oligosaccharide structures are similar to

mucin glycans) is associated with reduced NEC risk

compared to formulas (108, 109), supporting a particular

role for mucin-type O-glycans in microbial colonization.

Both human adult and fetal intestinal samples have

been shown to contain the sialic acid Neu5AC as their

most abundant component, with the level of expression

of Neu5,8Ac2 in fetuses being higher compared to the

adult intestine (110). In contrast to human adult intestinal

mucins, an increasing gradient of sialic acid or decreasing

gradient of fucose was not observed from ileum to distal

colon in the fetal intestine (110�112). These findings

suggest that region-specific glycosylation of the human

intestine is acquired after birth, probably due to bacterial

colonization and gut postnatal absorptive and digestive

functions. Indeed, several studies have reported the in-

fluence of major commensal bacteria on the production of

mucus, mucin glycans, and the development of goblet

cells (113�115). Microbial profiling during the process of

microbial colonization in germ free mice showed that the

abrupt increase in the ratio of fucosylated to sialylated

glycans during the initial stage of colonization correlates

with the establishment of Bacteroidetes members (116)

known to sense and regulate fucose (94, 95, 117).

Further studies in germ free animals suggested that the

simultaneous establishment of lactate-producing (e.g.

Bifidobacterium adolescentis) and sulfate-liberating (e.g.

Bacteroides spp.) bacteria during the initial stage of

microbial colonization, as well as the availability of

sulfated mucins, promoted a bloom in sulfate-reducing

bacteria (118, 119), as reviewed recently by El Aidy et al.

(120). Altogether these studies provide an insight into how

bacterial communities adapt to changing mucin glycan

profiles throughout life, and a possible mechanism of

niche-development. However, a substantial amount of

research is necessary to define the causal relationship

between mucus development and bacterial succession

at a mechanistic level. This link is of particular impor-

tance to increase our understanding of intestinal diseases

where alterations in mucus secretion, mucin glycosylation,

and microbial involvement are apparent, in particular in

IBD and pre-malignant and malignant lesions.

Impact on development of child health
The world is experiencing a progressive increase of

metabolic and immune mediated diseases, with a drama-

tically high increase in infant populations. This increase

may be related to a parallel increase in the rates of

C-section deliveries, which has exponentially increased

far beyond the 15% recommended by the World Health

Organization. Indeed, birth by C-section has been asso-

ciated with the development of allergy and asthma, as

well as type I diabetes, celiac disease and obesity

(121�124). Allergic diseases comprise the most common

chronic disease in childhood while obesity is the most

prevalent nutritional problem in Western countries.

Allergic diseases
Allergic diseases have become a major public health

problem in affluent societies (125). As changes in the

genotype cannot explain such a rapid increase in the

allergy prevalence, loss of protective factors or/and new

risk environmental factors may contribute to the in-

creased prevalence of these diseases since the middle of

the last century (125). A reduced intensity and diversity

of microbial stimulation may have resulted in an abnor-

mal immune maturation in early childhood (126, 127).

The developing neonatal immune system may depend

on anticipated diverse inputs to mature normally, much

like the central nervous system does (128). As other

immune-mediated diseases such as multiple sclerosis, type

I diabetes, and Crohn’s diseases also show rising in-

cidences in economically developed countries (126, 128,

129), a theory of ‘microbial deprivation syndromes of

affluence’ has been proposed (126, 127). A limited

microbial pressure, resulting in insufficient T cell induc-

tion with regulatory and/or Th1-like properties to coun-

teract allergy-inducing Th2 responses, may underlie this

allergy epidemic (126, 130, 131).

The Th2-skewed state of the neonatal immune system

(126, 132) is likely a consequence of the fetal immune

environment during pregnancy (133). The fetal�maternal

interface is characterized by high levels of Th2-like

(134, 135) and anti-inflammatory (136) cytokines, as

well as enrichment of T regulatory cells (137), most likely

functioning to divert the maternal immune response

away from damaging Th1-mediated immunity (138, 139).

This neonatal Th2-skewing is even more marked in infants

later developing allergic disease (132, 140, 141), support-

ing the notion that the prenatal immune environment
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can influence allergy development (133, 142). The neona-

tal Th2-bias should then develop toward a more balanced

immune phenotype, including appropriate development

of regulatory T cell responses (126) and maturation of

Th1-like responses (131, 132). A failure of Th2-silencing

during immune system maturation may underlie develop-

ment of Th2-mediated allergic disease (126, 132, 143).

Appropriate pre- and postnatal microbial stimulation may

be needed to avoid this pathophysiological process

(144, 145). In this respect, the gut microbiota is quantita-

tively the most important source of microbial stimulation

and may provide a primary signal for the maturation

of a balanced postnatal innate and adaptive immune

system (126, 127, 146�150).

Early gut microbiota differences between infants who

later do or do not develop allergic disease have been

reported (151�160). There is considerable inconsistency

between the results from the different studies and large

differences in the microbiological techniques employed,

however (151�161). It is also important to bear in mind

that assessments of stool samples reflect luminal colonic

microbiota and not necessarily the colonization of the

small intestine, where the major part of the gut immune

system is situated (162, 163). No specific microbes with

consistently harmful or allergy protective roles have

yet been identified; however, some studies have found

associations between low rates of bifidobacteria (151, 152,

156, 164) or lactobacilli (156, 164) colonization during

infancy and later allergy development. In addition, some

studies have found evidence for early Clostridium difficile

colonization as a risk factor for later allergy development

(151, 153, 165, 166). As C. difficile is an opportunistic

pathogen, expanding when gut microbiota niches are

vacant (44), the increased detection rate of this bacterium

in infants later developing allergy suggest that disrup-

tions in infant gut microbial ecology precede disease

development.

Early establishment of a diverse gut microbiota may

be more important than the distribution of specific

microbial species in shaping a normal immune matura-

tion, with repeated exposure to new bacterial antigens

enhancing the development of immune regulation (44,

126, 127, 167). In support of this theory, studies using

cultivation-independent molecular techniques such as de-

naturing gradient gel electrophoresis (155, 157) or term-

inal restriction fragment length polymorphism (154, 159)

of bacterial 16S rRNA phylotypes, demonstrated a low

gut microbiota diversity during infancy in children devel-

oping eczema (154, 155, 159) or sensitization (157).

The diversity within specific microbial phyla or genera

cannot be identified with these types of molecular

methods, however, and the sensitivity appears low as the

median number of peaks/bands was much lower than

the expected number of bacterial species (154, 155, 157,

159). Employing more sensitive and powerful next-

generation high-throughput barcoded 16S rRNA gene

454-pyrosequencing, we could demonstrate that develop-

ment of atopic eczema was preceded by a low diversity

of the total microbiota at 1 month and a low diversity

of the bacterial phylum Bacteroidetes and the genus

Bacteroides at 1 month (158). Interestingly, a Western

lifestyle with a low dietary fiber intake has been asso-

ciated with a gut microbiota depleted of Bacteroidetes (60).

Mice that fed a high-fiber diet had increased Bacteroidetes

abundance, leading to enhanced circulating short-chain

fatty acid levels and protection against allergic inflamma-

tion in the lung (168). Furthermore, delivery by C-section,

a risk factor for allergy development (124, 127), was asso-

ciated with decreased relative abundance and diversity

within the Bacteroidetes phylum during the first year

of life and less frequent detection of the major genus

Bacteroides (35). We also demonstrated that the presence

of the genus Bacteroides at 1 month was associated with

high levels of the Th1-associated chemokines CXCL10

and CXCL11 during infancy (35). Further supporting the

concept of the importance of early gut microbiota diver-

sity in driving normal immune maturation, we recently

found that children developing asthma at school age had a

lower diversity of the total microbiota than non-asthmatic

children at 1 week and 1 month of age (169). Speculatively,

as viral lower respiratory tract infections (LRTIs) are

particularly linked to asthma development among atopic

children (125), a reduced mucosal barrier function could

be a consequence of a less diverse microbial stimulation.

This may be linked to high susceptibility of LRTIs, am-

plification of Th2 responses, and subsequent asthma

development (125).

The continuously decreasing cost/throughput ratio of

current sequencing platforms will allow analysis of the

gut microbiota in larger pediatric cohorts with increased

sensitivity and depth to further establish how the infant

gut microbiota shapes immune and allergy development

(127). Novel next-generation probiotic candidates may

be identified in such studies, for example, indigenous

gut bacteria-producing Treg-promoting short-chain fatty

acids (170�172) and immunomodulatory Bacteroides

strains (173). Probiotic interventions have so far failed

to prevent asthma (174�177), although promising pre-

ventive effects have been observed for atopic eczema (127,

178�180). The preventive effects on eczema have primarily

been observed in studies with combined pre- and post-

natal administration with probiotic lactobacilli, although

prenatal probiotic supplementation has not been given

until the last trimester of pregnancy (127, 145, 178�181).

If prenatal microbial exposure is vital for the preventative

effect, the use of probiotics during the last trimesters of

pregnancy, when circulating fetal T cells have developed,

may have a relevant role in allergy and asthma prevention

(145, 181). Such studies using traditional probiotics
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are now ongoing and similar interventions with next-

generation probiotics may be tested in the future.

Obesity and related disorders
Obesity is among the major current health problems,

which are increasing rapidly worldwide. Obesity is asso-

ciated with a heightened risk of Western lifestyle diseases

such as type 2 diabetes, cardiovascular diseases, sleep,

and apnea, and also increases the mortality risk (182).

The role of the gut microbiota in the development

of these conditions (also known as metabolic syndrome)

is discussed in a separate review in this supplement

(dysbiosis of the gut microbiota in disease). However,

there is evidence that the development of metabolic

syndrome is affected by the gut microbiota early in life.

Excessive weight increments during the first month

of life have been associated with a high risk of obesity

development at 3 years of age (183). These results link with

observations of early microbial differences in infants

developing obesity at school age (184). This study reported

lower Bifidobacterium levels and a higher prevalence of

Staphylococcus during the first year of life in obese infants

compared to those with a normal weight at 7 years of age.

Excessive weight gain may begin during the fetal

period, as overweight mothers supply excessive energy to

the fetus and problems with weight often persist from

childhood to adulthood (185, 186). In obese pregnant

women, a vicious circle of non-favorable metabolic de-

velopment maybe generated if their altered gut micro-

biota composition is transferred to the infant (187�189).

Furthermore, specific shifts in microbial composition

were also associated with maternal factors such as BMI,

weight, and weight gain over pregnancy (188�189). Infants

from women with normal weight gain over pregnancy

show higher levels of bifidobacteria than women with

excessive weight gain, suggesting the potential role of

Bifidobacterium group on infant microbiota and weight

development (189). A relationship between the gut micro-

biome and maternal nutritional status during pregnancy

has been reported (189, 190). Interestingly, both studies

are supportive of the view that a gut microbiota profile

favoring a higher number of Bifidobacterium spp. and

a lower proportion of Staphylococcus spp. may provide

protection against maternal excess weight development.

Furthermore, a lower abundance of Bifidobacterium spp.

in the milk microbiota of mothers with atopic disease

compared with healthy mothers has been observed (191),

and a similar difference is seen between healthy and

obese mothers (188). The higher levels of bifidobacteria

found in healthy infants are also in accordance with the

protective role attributed to breast-feeding against devel-

oping obesity and other diseases later in life (192) and

the predominance of bifidobacteria in the gut of breast-

fed babies (193). The administration of probiotics during

pregnancy is under consideration because of the positive

effects that some strains exert on certain clinical condi-

tions. It has been reported that probiotic consumption

reduced the risk of central adiposity during the following

6 months after delivery (194). Other studies have provided

clinical evidence of improved plasma glucose concentra-

tions and insulin sensitivity during pregnancy and also

12 months after delivery when advantageous dietary intake

is combined with probiotics (195). Maternal administra-

tion of Lactobacillus rhamnosus GG before and after

delivery has been reported to induce specific changes

in the initial neonatal colonization of bifidobacteria and

also influences the breast milk microbiota compared

with those receiving placebo (196). Interestingly, nutrition

counseling and probiotic intervention were shown to

reduce the risk of fetal overgrowth associated with gesta-

tional diabetes (197). Perinatal probiotic intervention

was able to moderate the increased weight gain mainly in

infants who later became overweight during the first

years of life (198).

Therefore, microbiota modulation by probiotics early

in life is receiving great interest. There is a ‘window of

opportunity’ during the first months of life where the

microbial colonization and immune system maturation

are still in progress. Taken together, long-term health

benefits for mothers and children may be conferred by

balanced maternal nutrition during pregnancy influencing

the infant microbiota and immune system development

which impact on early and late health.

The composition and stability of the adult gut
microbiota
The specific microbial diversity present in healthy adult

subjects plays an important role in maintaining immune

homeostasis. This links with the fact that microbiota

alterations are related to gut-related diseases (199). Due

to the important role of the microbiota in health, studies

using next-generation sequencing methodologies are

aimed at identifying and characterizing microbial diver-

sity and functionality. While different projects have

attempted to identify and describe the microbial compo-

sition in healthy subjects, this has been really difficult

due to the high variation between individuals, the studied

samples, and also, the methodology applied for that

purpose. Furthermore, the composition that is typically

measured is that which can be isolated from fecal

samples, and this does not truly reflect the full diversity

of the GI tract. This disconnects between fecal sample

analysis, and the true composition of the different niches

in the GI tract will need to be bridged if we are to better

understand the role of the gut microbiota in human

biology. Until we have technologies to bridge this gap,

fecal samples and limited biopsy samples will still be used

as proxies for the large intestinal microbiota. So as

we enter the second decade of research into the gut

microbiota, we are still faced with the reality that the
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descriptions that we provide of the composition and the

functions may be misleading, but are currently our best

guesses.

The current census, which is collated from numerous

studies mainly based in developed countries, is that the

gut microbiota in the large intestine is a two-phylum

coalition comprising members of the Firmicutes and

Bacteroidetes (24, 65). The next most abundant phylum

is the Actinobacteria, which is mainly comprised of the

genus Bifidobacterium. This consensus has been derived

from thousands of fecal samples using inventories of the

16S rRNA gene, generated mainly on next-generation

sequencing platforms such as the Roche 454 and Illumina

systems. Hence, they represent snapshots in time of the

composition of a stool sample, which may or may not have

been residing in the rectum prior to sampling. Addition-

ally, this approach can only really robustly identify

bacteria down to the genus level and in some instances

the species level, and does not capture fully the com-

plete species or strain diversity within a sample or an

individual. However, the striking conclusion is that an

individual’s large intestinal gut microbiota sits on a con-

tinuum, which at one end is predominantly composed

of members from the phylum Bacteroidetes, and at the

other end is predominantly composed of Firmicutes.

Additionally, when an individual’s large intestinal gut

microbiota has reached its stable climax community, it

appears to be stable for a significant period of time as

Faith and colleagues showed (200). This study followed

37 health adults and reported that after 5 years 60%

of the original strains were still present. One can spe-

culate on the value of such stability as it benefits the host

to provide a niche which ensures that important functions

of the microbiome are always present. Moreover, this

stability may also be of benefit to the innate immune

system, as it will also be sensing the same microbiota

and thus not respond to it.

While there are many studies on the diversity of the

large intestine, few studies have attempted to investigate

the diversity of the small intestine. These studies show

that the small intestine contains mainly members of the

streptococci and variable numbers of bacteria belong-

ing to the genera Clostridium and Veillonella (201, 202).

Additionally, unlike the large intestine, the bacterial

composition shows temporal fluctuations, with the morn-

ing and afternoon profiles being significantly different.

This dynamic nature will be driven in part by the frequent

input of dietary components and will vary between

individuals depending on the diet (203).

The gut microbiota in the elderly
The gut microbiota in the aging population has been the

focus of much attention in recent years. Several studies

(e.g. ELDERMET in Ireland and CENIT in Spain) are

aimed at characterizing the microbiota of individuals

as they progress into old age so that changes in micro-

bial populations that are associated with aging can be

determined. Such changes may be related to a decline

in general health and well-being in the elderly and as

such, the results of these studies may shed light on how

we can manipulate the gut microbiota (using better

nutrition and/or probiotics) to promote improved health.

The microbiota of elderly people (�65 years old) has

been reported to show greater inter-individual variation

than adults (204). This study also reported a link between

gut microbiota composition, diet, and living in institution

or community. Furthermore, centenarians had a different

and less diverse microbiota than adults and younger

elderly people (205). A large group of volunteers over

100 years old had increased facultative anaerobes, such

as Proteobacteria and Bacilli, and a decrease in specific

bacteria, such as Faecalibacterium prauznitzii and Clos-

tridium cluster XIVa bacteria. It was also reported

that centenarian’s microbiota show a decreased levels

of Bacteroides, Bifidobacterium and Enterobacteriaceae,

while Clostridium spp. levels were increased compared with

younger adults (206). The relevance of these observed

changes during aging are not yet fully understood and

future studies (particularly dietary-intervention studies)

are required to investigate whether changing the dietary

pattern of elderly individuals can alter their gut microbiota

in a way that is beneficial to their general health.

Strategies for microbiota modulation
During infancy the intestinal microbiota is less stable

and more variable in its composition than in older children

and adults. As diet plays a major role in the development

of microbiota during this period, there is an opportunity

for its manipulation. Generally the microbiota composi-

tion of the large intestine is considered to be quite stable

(200, 207), although long-term metabolic effects can be

observed even after transient perturbations of the micro-

biota in early life (208), while the composition of the

small intestine is very dynamic and this reflects the daily

input of dietary components into the system. In both

cases, it is relatively easy to perturb the composition of

the gut microbiota, for example, by diet, antibiotics, and

GI surgery. Since it is difficult to investigate the small

intestine, we are still unsure as to what impact dietary

supplements, such as probiotics, have on the composition

in this area of the intestinal tract. In the area of antibiotics,

there is well-documented evidence that non-specific anti-

biotics, when taken orally, will cause collateral damage

and kill off many of the organisms within the large

intestine (209), but the gut microbiota shows remarkable

resilience and can re-attain its original composition within

a short period of time once the antibiotic intervention

has been removed. However, subtle and long-term changes

in the gut microbiota have been observed in response
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to antibiotic treatment (210, 211), although the effect on

health of such changes is so far unclear.

Two of the most common approaches are interventional

and involve an individual taking live organisms, probio-

tics, or a non-digestible carbohydrate, a prebiotic. The

probiotic approach has been shown to be efficacious

only in a few diseased cases, for example, in reducing the

rates of NEC in preterm infants (212) and diarrhea (213).

There is little evidence that they make any impact on the

large intestinal composition, however. But one must not

lose sight of the fact that these organisms may be having

a significant impact in the small intestine, where they

will be a significant proportion of the total community.

The other dietary intervention, known as prebiotics, can

have a major impact on the large intestine, when taken

in significant quantities. However, many of these studies

are in animal models and fail to translate through to real-

world instances, for example, the equivalent dose of the

prebiotic in humans equates to 50 g a day, which can

result in many unpleasant side effects. Modification of the

diet without a direct intervention, for example, changing

the proportions of protein, carbohydrates, and fat, also

changes the composition of the gut microbiota in the

large intestine (200, 214). As we understand more about

the establishment of the gut microbiota in healthy infants,

it may be possible to determine which core bacterial

species are required for the establishment of a ‘healthy’

microbiota. In future, we may be able to identify infants

at risk of developing microbial dysbiosis (e.g. infants

delivered by C-section, or infants with a history of

antibiotic treatment) and manipulate their microbiotas

during a window of opportunity (e.g. with cocktails of

probiotics) to help establish a stable, healthy microbiota

throughout life.

Conclusions
In the past 10 years, our understanding of the com-

position of the adult gut microbiota has undergone a

significant change. We have moved from a position in

which the predominant organisms in the gut microbiota

were thought to be those that were grown easily on

laboratory media, to one in which we now know that

the gut microbiota is complex and host-specific (214).

Furthermore, we now understand that while the majority

of the most abundant bacteria can be grown in the

laboratory, the bulk of the organisms cannot (214).

Thus, if we are to understand the contribution of these

organisms to host biology and move medicine into the 21st

century, we need to be able to not only understand ‘who

is there’, but also be able to determine ‘what they are

doing’ and how these functions interact with the host.

Therefore, the ecological and functional properties of a

healthy gut microbiome in infants, children and adults

still need to be identified.

While the infant gut microbiota seems to influence

immune development and metabolic pathways, further

studies on the appropriate timing of interventions and the

complex interactions between the infant immune system

and the gut microbiota are required to translate these

findings into preventive strategies required to reduce the

risk of disease. Strategies to treat conditions associated

with a disrupted gut microbial ecology and inflamma-

tion in adults also represent important areas of future

research. While the area of gut microbiology is not new

and has received serious interest for over 100 years,

technological advancements in the last decade have really

allowed us to interrogate it in a manner which was

unforeseen 20 years ago.
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Alakulppi N, et al. Faecal microbiota composition in adults

is associated with the FUT2 gene determining the secretor

status. PLoS One 2014; 9: e94863.

98. Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber

S, et al. Colonic mucosa-associated microbiota is influenced

by an interaction of Crohn disease and FUT2 (Secretor)

genotype. Proc Natl Acad Sci U S A 2011; 108: 19030�5.

99. Tong M, McHardy I, Ruegger P, Goudarzi M, Kashyap PC,

Haritunians T, et al. Reprograming of gut microbiome energy

metabolism by the FUT2 Crohn’s disease risk polymorphism.

ISME J 2014. doi: 10.1038/ismej.2014.64.

100. Larsson JM, Karlsson H, Crespo JG, Johansson ME, Eklund
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