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Abstract. This is a report on data presented at the Blind test 3" Workshop organized
jointly by Nowitech and Norcowe in Bergen, December 2013. A number of research
groups were invited to predict the performances and the wake development behind
two model wind turbines that have been extensively tested at the Department of
Energy and Process Engineering, NTNU. The turbines were arranged in-line, but
slightly offset so that the wake of the upstream turbine only affected roughly half the
area swept by the second rotor. This is a common event in most wind parks and
produces flow fields that are both complicated and harmful for the downstream
turbine. Contributions were received from five different groups using a range of
methods, from fully resolved Reynolds averaged Computational Fluid Dynamics
(CFD) models to Large Eddy Simulations (LES). The range of results was large but
the overall trend is that the current methods predict the power generation as well as the
thrust force reasonably well. But there is a large uncertainty in the prediction of the
turbulence field in the wake.

Keywords: Wind turbines, prediction method comparison, blind test

1. The experiment

The models were mounted in-line, with a separation of only 3 diameters and tested in the
wind tunnel that has a test section almost 12m long. The short distance between the
turbines was necessary to allow a reasonable fetch for the wake to develop downstream of
the second turbine. The test section height is 2m and the width 3m. For full details on the
wind tunnel and instrumentation, see one of the references, [1] or [2]. The upwind turbine
was placed two diameters from the entrance to the tunnel test section. We denote this
turbine T1 (rotor diameter of D1 = 0.944m). When seen from upstream, this turbine was
located Ay = 0.20m off the centre line towards the left. The downwind turbine, denoted
turbine T2, (D2 = 0.894m), was placed three diameters further downstream and shifted Ay =
0.20m off the centre line towards the right from the centre line. This gives a total offset
between the turbines of Ay = 0.40m, and so the projected area of the upwind rotor covers
exactly 50 % of the downwind rotor area. The empty wind tunnel has a low turbulence level
of 0.23 %. In order to make the conditions more similar to the atmospheric conditions,
background turbulence was generated using a large scale bi-planar mesh at the inlet of the
test section (Mesh size 0.24m, Solidity 35 %). This gave a turbulence level at the location of
T1 of 10 %, while the level had dropped to about 5 % at the location of the second turbine.
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Thrust forces were measured by a 6 component balance on which the model was
mounted. The power coefficient was measured using a torque transducer mounted directly
onto the rotor shaft, which also provided pulses to measure the speed of rotation. Velocities
were measured using x-wire hot-wire anemometers. For verification, some of the
measurements were repeated using pitot-static tubes and laser Doppler anemometry. The
uncertainty in the measurements of the mean velocity were estimated to be less than *+ 4.6%
of Uref and # 5.9% of U’for k’ (turbulent kinetic energy).

Fig 1: 2 turbines and turbulence grid seen from downstream. Details of turbine T1

2. Participants and methods

Calculations were submitted by five groups. In order to start the wake calculations, the
power and the thrust coefficients of the turbines must first be estimated. This was therefore
compulsory output. Two participants resolved the flow down to the boundary layer on the
turbine blades, while the rest relied to some extent on a Blade Element Momentum method
calculation. For the other methods that use some imbedded force method, estimates of the
airfoil performance were needed, e.g. using software such as XFOIL [5]. However, suggested
values of airfoil lift and drag coefficients from unpublished experimental data were also
provided. Below is a short list of the participants and the essences of their methods.

2.1. Alcona Flow Technology
E. Manger of Alcona Flow Technology, Skien, Norway, modeled the entire experimental
setup, including the towers and nacelles with the turbines located inside the test section.
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The rotors were included in a short cylindrical sliding mesh within a fixed grid. The
boundary layers on the blades were resolved down to y = 5. The flow was solved using the
Ansys Fluent v.14-5 software and the k = w SST turbulence model was used to model the
turbulent field. The final mesh used approximately 12 million cells. The computations were
rather time consuming and therefore only Case A was completed in time for the meeting.

2.2. DTU Mechanical Engineering

The group of Professor Sgrensen at DTU, Lyngby, Denmark, delivered data for a combined
actuator line / Large Eddy Simulation (LES) using a program called EllipSys3D. This uses a
block structured finite volume approach. The time increment was sufficiently small so that
the tip of the blade advanced less than half a cell per step. The blades are represented by
forces along rotating lines and the loads were estimated from their own unpublished
measurements for the NREL S826 airfoil. The computational domain is a regular Cartesian
grid divided into 750 blocks using a total of 24.5 million mesh points. The tunnel walls are
included in the calculations, but the towers and nacelles are missing. The tunnel turbulence
was simulated by inserting synthetic turbulence 1.5 diameters upstream of the first turbine
and the level was adjusted to match the experimental conditions at the T1 rotor plane. Four
grid resolutions were tested to find the required density for grid independency.

2.3. GexCon

M. Khalil of GexCon, Bergen, Norway, performed calculations using the software package
FLACS - Wind which is developed by GexCon. This is a transient CFD solver which in this
case used the standard k - t turbulence model. The computational domain was similar to the
wind tunnel dimensions, but the increase in tunnel height to compensate for the growth of
side wall boundary layers was not included. The rotor was represented as an actuator disk
and the disk data was obtained using a BEM method. The effects of the towers and nacelles
were not included in the simulations.

2.4. CD-adapco

S. Evans from CD-adapco, London, UK, provided predictions using their own software Star-
CCM+. Around the rotors, cylindrical domains were created so that the arbitrary sliding
interface functionality of STAR-CCM+ could be used to model the rotor motion. A polyhedral
mesh was created containing 14 million mesh elements with the boundary layer on the
blades being resolved down to a Y " value of less than 2, dependent on the operating
conditions. Predictions were provided using the k - w SST DES model. The mesh was
created in such a way that the DES model operated in LES mode in the wake regions of the
flow. The simulation ran in a two-step approach. Firstly, the case was run using a steady
approach with multiple rotating frames. After the simulation was considered to be
sufficiently initialised, it was switched to transient simulation.

2.5.CMR

A. Hallanger and I.@. Sand of CMR Instrumentation, Bergen, Norway, used a CFD code called
Music developed in-house. The rotors, including the hubs, were modeled in the wind tunnel
confinement, but the rest of the nacelle, as well as the towers, were omitted. The forces on
the blades were estimated using a generalized Blade Element Momentum model with
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rotation and included as source terms in the axial and rotational momentum conservation
equations. A total of 30 elements were distributed along the radial direction of the blade and
a total of 0.5 million grid nodes were used to represent the wind tunnel test section with the
turbine rotors. The turbulence was described using the standard k - t model with a sub-grid
model. The turbulence intensity and length scales for the two test cases were applied as
specified in the case description.

3. Results
3.1. Turbine performance
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Fig. 2. Cp and Ct for low turbulence case A.

We start by presenting the results for the turbine performances for Case A, i.e. with the low
background turbulence level. The power coefficients are shown in Figure 2(a) and the thrust
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coefficients in Figure 2(b). The symbols used will always have the same colour and shapes in
all figures, with filled symbols for the upstream turbine and open symbols for T2. The
measurements will always be presented as black circles.

Even though the two turbines have the same blades, the shape of the CP curves are seen
to be different for the two turbines. The upstream turbine shows a rapid drop when TSR
falls below 4. This is due to the sudden onset of stall. For T2, this development appear to be
less dramatic. One may therefore speculate that this is due to a much higher turbulence level
felt in the incoming flow to T2 which has generated a more gradual separation development.

The data for the second turbine predictions vary by more than 50 % in some regions, but
this is understandable, since we here have a complicated test case. However, some of the
predictions for T2 are in fact very good, e.g. the curves obtained by DTU, CMR
Instrumentation and CD-adapco for TSR > 6.
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Fig. 3. Cp and Ct for high turbulence case B
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For the very low TSRs, where the flow over the blades are severely stalled, the deviation
from the measurements is mostly small, while there is significant spread in the predictions
for high tip speed ratios. It was expected that one of the principal problems would be to
predict the onset of stall. The first signs of stall were found to occur around TSR=4 when the
T2 turbine operates alone and this is where the largest differences are found. But for the
deep stall region for TSR < 3, all methods behave well. The fully resolved predictions of
Alcona and CD-adapco do not agree. Alcona predicts consistently the highest CP while the
predictions by CD-adapco are generally low. This points to sensitivities to the turbulence
models used or significant differences in the numerical grids constructed.

Looking at the thrust coefficient (Figure 2(b)), the measurements of the upstream
turbine again show that something happens to the flow as TSR is reduced below 4. Except
for a short region here, the CT data for both turbines are very similar. This is puzzling, since
the velocity fields seen by the two rotors are very different. Despite this, the coefficients are
the same when scaled with the same parameters, showing that the physical forces are in fact
almost identical even though the momentum available at T2 ought to be less than for T1.

The general trend is that CT is mainly over-predicted for the T1 turbine, but under-
predicted for T2. GexCon has matched the force on turbine T1 very well, but underpredicts
the forces on T2 dramatically at TSR=8.

Next we present the performance data for the case with high turbulence level, Case B.
The measurements indicate that the peak performance of the upstream turbine has been
slightly reduced (Figure 3(a)) and the shape is seen to be smoother, again suggesting that
the free stream turbulence significantly affects the onset of stall on the blades. None of the
performances predicted for T1 appear to be sensitive to the freestream level. The same
applies to the T2 predictions. However, the measured performance of T2 is slightly
increased by the turbulence. This is consistent with the reduction in energy extraction by
T1. The turbulence effect shows even more clearly on the measurements for CT (Figure
3(b)), which indicate a dramatic sensitivity to the freestream turbulence for both turbines.
Compared to Case A, CT for T1 is reduced by between 10 and 15 %, and thus T2 has
increased CT by about the same amount.

3.2. Wake data

3.2.1. Operation at peak performance, TSR1=6, TSR2=4.75. The participants were asked to
predict the wake development behind turbine T2 when T1 was operating at its design TSR
and T2 was operating at TSR = 3.5, 4.75, and 8.0. TSR = 4.75 is close to the peak performance
for T2 and will be presented first. This should be the operating condition that generates the
most homogeneous wake and therefore be the simplest case to predict. However, only part
of the wake from T1 hits the rotor of T2, so Tz will see a very inhomogeneous inflow and
therefore the wake becomes quite complicated also in this case.

Output of mean velocities and kinetic energy were requested for both case A and B at X/D
=1 and 3 downstream of T2. We present only the streamwise normal component <u2X> here.
The mean velocity profiles at X/D=1 along a horisontal diagonal are shown in Figure 4(a),
for Case A and Figure 4(b) for Case B, respectively. There are a few obvious observations
that may be made immediately. Compared to the wake behind a single turbine operating at
its best performance, this is a much more complicated wake. The outer edges of
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CaseA, X/D=1, TSR=4.75
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Fig. 4. Mean velocity profiles for TSR1= 6, TSR2=4.75 at X/D=1. (a) case A, (b) case B
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the two individual wakes are quite evident, but the central part is a mix of influences from
the two wakes. As expected, the wake for Case B is much smoother than for Case A. This
smoothing effect comes out much clearer in the predictions than in the measurements if we
compare e.g. the predictions by GexCon and CMR with the measurements (Figure 4(b)).
Acona did not provide predictions for Case B. The LES predictions by DTU appear to have
captured all the details of the wakes very well for both cases and are followed closely by the
CD-adapco DES predictions.

The differences in the mean velocity profiles are reflected in the turbulent stresses as
well. These are shown in Figure 5(a), for Case A and Figure 5(b) for Case B, respectively.
While the methods of Acona, CD-adapco and DTU appear to have captured most of the
details of the stress distributions for both cases, the level of detail in the GexCon and CMR
predictions are not good. The energy level predicted by DTU is mostly close to the
measurements, but computations by the Acona and CD-adapco methods are predominantly
low.
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Fig. 5. Turbulent stress <u’ > for TSR1= 6, TSR2=4.75 at X/D=1. (a) case A, (b) case B

Next we move downstream to X/D=3. The mean velocity profiles along a horisontal
diagonal are shown in Figure 6(a), for Case A and Figure 6(b) for Case B, respectively.
Diffusion has now significantly modified the flows and so the measured mean velocity
profiles show very little detail in both cases. The effect of diffusion appear to be
overestimated by CMR for both cases, while Acona seems to have the opposite problem with
a profile that are very similar to those at X/D = 1. While the method by GexCon performs
quite well in Case A, diffusion is much too strong in Case B. However, the DES of CD-adapco
produces profiles that are very close to the LES by DTU for both cases.
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Fig. 6. Mean velocity profiles for TSR1= 6, TSR2=4.75 at X/D=3. (a) case A, (b) case
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Fig. 7. Turbulent stress <u2X> for TSR1= 6, TSR2=4.75 at X/D=3. (a) case A, (b) case B
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Figure 7(a) shows the turbulent stresses for Case A and Figure 7(b) for Case B,
respectively. The figures show that the LES method of DTU and the DES of CD-adapco
perform best, although the fine details near the centre in Case A are missing in both
predictions. Again the results for Case A and B are very different in the predictions by the
GexCon method. But the predictions of CMR are now at the correct level for both cases
although the finer details of the tip vortices are missing. Acona produced the correct stress
distribution for Case A, but again the level is much too low.

4. Some concluding remarks
The comparison between the model tests and predictions of the turbine performances and
the wake development behind the second turbine have been presented in this report. Five
research groups delivered simulation results. The methods ranged in complexity from
standard CFD methods to Large Eddy Simulations. It is surprising that even the performance
data of the upstream turbine in a uniform, low turbulence flow appear to be a challenge with
results differing by about +10% near the design condition. Obviously, if the performance of
the upstream turbine is not correctly predicted, the results for the performance of the
second turbine must be even more uncertain. And so the predictions of CP for the
downstream turbine showed a spread of about 50 % of the measured values near the peak
performance. Similar uncertainties were found for the predictions of the thrust coefficients.
For all cases investigated the upstream turbine was always operated at the same conditions,
which was its best performance point (TSR= 6). This is the condition where the wake
produced is the least complicated. But even when the second turbine is also operated at its
best performance point the wake produced is very non-uniform with complicated
interactions between the two wakes.

Most methods captured this surprisingly well in the low turbulence case. However, it was
a trend that the effects of turbulent diffusion were over-predicted by the methods using the
k - t turbulence model in the high turbulence cases, giving a much smoother profile than in
the measurements. Only the LES method did faithfully reproduce the data for both free
stream conditions. Two groups used commercial CFD packages, while the other groups used
software developed in-house. Two of these incorporated a k - t turbulence model but
produced very different results. This indicates that the choice of turbulence model is less
critical than the implementation of grids etc. which relies heavily on the judgement of the
model operator.

The overall conclusion for this blind test was that the LES method produces the most
reliable predictions and when the cases are set up properly, the results are very consistent
when the boundary conditions are changed
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