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“No problem can be solved from the same level of consciousness that created it.”

Albert Einstein





Abstract

The thesis is dedicated to the background linking tasks for news articles, utilizing the
deep neural network models. The goal is to retrieve similar articles based on the news
story currently viewed. We examined neural and non-neural representations for raw text
and discussed notions of similarity a good model should identify and retrieve. We covered
various deep neural network models and highlighted their advantages and disadvantages.

Inspired by deep neural architectures in the area of Information Retrieval we adjusted
the Deep Semantic Similarity model to the background linking task. Our refactored
DSSM architecture employs a convolutional neural network with multiple filters and
regularization techniques. This convolutional network acts as an auto-encoder and learns
the compressed representations of news articles and news stories. Cosine similarity is
used as the proximity metric to retrieve related news articles. Experimental results
prove that our adjusted DSSM model is applicable for the background linking task, and
overperforms the baseline SVM model.

We discovered that corpora distributions affect the performance of the model. A model
trained on news corpus containing mostly political and social news will perform poorly
on news corpus about sport and entertainment news. Grid search and hyperparameter
tuning are also important. Deep neural network architectures are powerful tools which
can be used to solve complicated tasks and approximate nearly any function. Having a
good quality dataset is half of the success. The DSSM model is planned to be adjusted
to various news corpora and applied to different tasks; such as automatic linking of news
articles to Wikipedia pages and linking news articles to news events. We assume this
model can be extended to learn representations of a sequence of events for the task of
linking background events.
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Chapter 1

Introduction

1.1 Motivation

Every day hundreds of thousands of news articles from various categories such as politics,
economy, sports, natural disasters, science and technology are consumed by hundreds of
millions of internet users across the world. In the past decade news is being increasingly
consumed online and consequently, print media is on the decline. We were interested to
see if we could streamline the process of receiving news by speeding it up for consumers,
which would provide agencies a competitive edge and therefore be marketable.

News sources are accessible at all hours of the day and readers have access to different
sources of information including the ever popular worldwide sources, national, as well
as local or municipal. Readers have the opportunity to take a deeper look at the event,
about which they are reading, by accessing news sources from different countries. Usually,
different news agencies present the same news events with different takes on it. Some
events keep happening in the country of their origin, but vanish from international
news feeds because this event is no longer considered newsworthy or significant by the
international community.

Readers are able to retrieve full content of the news by analyzing different news articles
from different sources. Nowadays historical facts can be verified by conducting research
via online media. As such, one can now subscribe to a specific news agency or news
service, select categories or events of interest about which to be informed, and get a
notification on a mobile device or get emails about new articles as soon as they are
being released. Since news agencies and news providers are competing with each other
in getting more subscribers they should propose something unique.

1



2 Chapter 1 Introduction

We also observed that document classification is no longer a task that should be performed
manually by people. The amount of information available is huge, hence, manual
classification and categorization can take a significant amount of time, which is basically
counter-intuitive to the whole concept of having current and relevant information, not to
mention costly.

Document classification is, however, necessary to divide content by theme, category, and
relation to certain news events as well as to propose readers relevant reading topics.
Classifying news articles creates a common semantic space for conducting research and
journalist investigations.

Deep neural networks are gaining popularity due to their ability to perform different
tasks with a human level of accuracy. Indeed, sometimes they show even higher accuracy.
Deep neural networks learn on their own without the need to select features manually. By
using deep learning in the online news industry we can make categorization, classification
and news event identification seamless through automation. We believe we can create
a marketable tool for industry leaders to use to better serve their clients by enhancing
deep neural network capabilities.

1.2 Problem Definition

The online media industry is highly competitive. News agencies constantly look for new
ways to attract readers and keep current customers satisfied. Good journalistic skills
are only part of producing new online media. In order to keep readers interested, news
agencies should propose something different like new services, good prices and efficient
searching. Proposing related background articles or recommended reading is a good
and very effective trick to satisfy readers’ need for news and propose more news to read
within the user’s area of interest. The goal of retrieving related background articles is to
provide similar articles, though not necessarily current, that correspond to the topic of
the paragraph or entire article being read. Based on the story, similar news articles will
be recommended.

We believe automated evaluation is more beneficial than manual. While accurate, manual
evaluation is cumbersome and time-consuming. Something that catches the eye of
evaluator can be irrelevant to reader’s taste. Process automation is beneficial because it
removes biases and saves time.

Readers often see links in between the paragraphs of news article or sections after it
with text “Related training”, “You may also be interested in the following related posts”,
“Related articles”, etc. Some popular news agencies already have recommended reading
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sections. For example, The Washington Post has “The Post Recommends” and “Read
more” sections, and BBC has “More on this story” and “Related Topics” sections on
their web pages. There is, however, always room for improvement.

For instance, not all online news media outlets have such systems. Many of them just
have recommended reading from the category, or ‘top stories’ retrieved based on user’s
history. In other words, manually constructed features are used to generate the list of
background articles. For example, SkyNews from the United Kingdom has an article with
the title “Hawaii eruption: ‘Pele, the goddess of fire and volcanoes, is showing herself’ ”1

about the volcanic activity in Hawaii, USA. At the end of the article there is a “More from
Hawaii” recommended reading section with a list of the following articles: “’Sulphur and
caramelised foliage’: Living on Hawaii under the threat of Kilauea”, “Hawaii’s Kilauea
volcano spews toxic glass cloud as lava reaches ocean”, “Fresh lava flow could block
Hawaii escape route”, “Hawaii volcano spews lava and ash”, “Kilauea volcano: Hawaiians
warned of ‘powerful’ eruptions within hours” and “Volcanic activity still rocking Hawaii”.
It is easy to notice that all of these articles come from category “Hawaii”. What if the
user wants to read about current volcanic activity worldwide or eruptions caused by
volcanic activity in other countries? This example shows that not all proposed results
are good and precise; errors happen. We all know posting irrelevant or false content can
harm a news agency’s reputation, but so can not posting relevant and related stories.
In practice, it is useful to retrieve related background articles to provide readers with
interesting reading. As in the example above, the scope of related articles has many
more possibilities.

Another issue we face is that news articles as text documents have a hierarchical structure.
Each word is composed of characters, sentences are composed of words, articles are
composed of sentences. Various words contribute differently. In other words, not all
words are as important as others. The same applies to sentences. Not all sentences are
of the same importance to a news article’s content.

The goal of this work is to build a model with deep neural architecture for retrieving
relevant background articles which will recommend more relevant articles by utilizing
the hierarchical structure to identify useful semantics and create connections to more
material.

1https://news.sky.com/story/hawaii-eruption-pele-the-goddess-of-fire-and-volcanoes-
is-showing-herself-11382374

https://news.sky.com/story/hawaii-eruption-pele-the-goddess-of-fire-and-volcanoes-is-showing-herself-11382374
https://news.sky.com/story/hawaii-eruption-pele-the-goddess-of-fire-and-volcanoes-is-showing-herself-11382374
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1.3 Usecases/Examples

Our model can be used by news agencies to suggest related, interesting news articles to
readers. Journalists can retrieve similar articles to produce more meaningful content,
displaying and highlighting some information, facts, and evidence that is missing in other
articles. This model can be used by researches to research information in the sphere of
news. This model can be also used by everyday internet users who want to find similar
news articles or research the event in more depth.

Usages of the model:

1. Event classification - whether a given article is a political or technological event.

2. Event similarity - retrieve all similar events. For example, get events which are
similar to NBA Championship like other sports tournaments.

3. News article similarity - retrieving related background articles. For example, suggest
news about global warming while reading the article about vanishing population of
polar bears.

1.4 Challenges

The original idea of neural networks comes from neural science - the science about
the human brain. The goal of artificial intelligence and machine learning is to build a
program (model) which will show the same or a higher level of accuracy when compared
to predictions made or results created by actual human beings.

Think of a child who has not been in school yet. You cannot expect the child to tell you
about programming and calculus because the child has never learned anything about it.
Same applies to machine learning and artificial intelligence. In order to build a model we
first need to teach it on a large training set. The size of the training set matters. The
more examples the model learns, the more accurate predictions it can make.

Here comes the first challenge - obtaining a ”good” training dataset. By saying ”good”
we mean utilizing news articles that span a long period of time and are from reliable
sources and are about different news events. This need to be done without noise from
web crawlers. In case of small training dataset, we have a high probability of over-fitting
the model. To address the over-fitting problem, regularization techniques should be used
such as L1 and L2 regularization, dropout, bagging (ensemble), early stopping, data
augmentation, etc.
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To get the training dataset we need to use web crawlers: special programs which visit
page by page and retrieve useful information. There are some datasets available on
the global net retrieved manually by researches. However, those datasets are usually
outdated by the time they are released.

We must, therefore, create new datasets by building new parameters in relation to article
length and dates of coverage. Some news articles are very short and consist of 4-5
sentences, while others consist of 20+ sentences. At the same time, it is hard to predict
how many sentences are really useful. The amount of news articles provided to cover the
news event also matters as does the time period of coverage. For example, if we have a
dataset with news articles from the same news event from 2009 until 2018, with a gap
from 2011-2012 that means that our model is likely to misclassify the news article from
2012 about the same event. As such, we need to build datasets carefully. The second
challenge faced is resources and time consumption. Most machine learning algorithms are
not new and come from the 1990s [1]. Due to a lack of computational power (resources),
these algorithms could not be tested. Even today training the model is a time and
resources consuming process. For example, training one model on CPU can take days
or even months. Model architecture and parameter tuning require many training and
validation runs. Recently it has been discovered that simple mathematical operations
can be done efficiently by graphics cards (GPUs) and faster than on CPU. However, the
speed of the training process still depends on the memory of GPU and the number of
GPUs which are synchronized. By using modern GPUs, the training process can be
shortened to minutes and hours. We trained our model on Nvidia Tesla GPUs with 12-16
GB of memory (credits to the University of Stavanger for provided resources). Indeed,
GPUs are located on the remote server, which means we need to remotely connect to the
server. As a result, there is a delay and some discomfort in maintaining the code on the
remote server.

Another problem we are faced with is how to evaluate the results. If the training had
been done on the outdated big dataset, we do not believe it would be useful as it would
not correlate to new current testing data. The current model is adjusted to news articles
in English with a limited number of news events. It is hard to predict how the model
will behave on the unseen news events. Some problems can arise when news events are
correlated and are the part of the bigger news event.

1.5 Contributions

Deep learning had been used to classify documents, but no approaches are known for
news articles. We propose the usage of the Deep Semantic Similarity Model originally
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designed for information retirement tasks for the retrieval of related background news
articles. The idea is to learn news article vector representation and by means of similarity
teach the model to differentiate articles within the same stories.

We make the following contributions:

1. We use Deep Neural Networks to solve news background linking task.

2. We apply Support Vector Machine as a baseline model for solving background
linking task.

3. We use different sampling techniques to generate news articles & new event pairs
by utilizing Deep Similarity Semantic Model.

4. We present experimental results which demonstrate the benefits of using deep
neural architectures over standard machine learning algorithms.

1.6 Outline

The remainder of this thesis has the following structure. Chapter 2 contains a short
overview of text categorization approaches in machine learning word. We also point out
differences between neural networks and deep neural networks and describe some popular
deep neural network architectures. Chapter 3 is dedicated to raw text representations
in machine learning, notions of similarity and similarity metrics, as well as traditional
and neural approaches in Information Retrieval. In Chapter 4, we introduce the Deep
Semantic Similarity Model adjusted for the linking of news articles based on background
information. In Chapter 5, we describe the datasets, present experimental results and
discuss some issues on the topic. Chapter 6 summarizes the outcome of research and
highlights future work directions.



Chapter 2

Background concepts

Before we tackle the problem of background linking task, we should have some basic
understanding of machine learning principles. In Section 2.1, we demonstrate why
machine learning is important by the document classification example and introduce
different types of learning. In Section 2.2, we list some popular feature-based classifiers,
and put emphasis on Support Vector Machine, as we will use it as the baseline model.
We describe neural network and deep learning paradigm in Section 2.3. We are giving
some insight on feedforward, convolutional and recurrent neural networks in Sections 2.4,
2.5 and 2.6 correspondingly.

2.1 Document classification

Document classification is a problem of assigning a label, a class, a category to a text
document. The problem of document classification became more popular in the digital
era. With the fast growth of digital information, the number of electronic documents
stored online increases exponentially. Document classification can be performed manually
or automatically (algorithmically).

Manual document classification is done by people, researches, and a qualified staff.
There are governmental organizations which manually classify documents for information
retrieval, for example, Text Retrieval Conference (TREC) Assessors from the National
Institute of Standards and Technology (NIST). Manual document classification is a
rather expensive process, especially when done by experts. In the search for cheaper
and still reliable ways of manual document classification, crowdsourcing platforms have
been introduced. A crowdsourcing platform allows users with different backgrounds and
education, to manually classify text documents for a small fee. Example platforms are

7
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Amazon Mechanical Turk in USA and Crowdflower in European Union1. Crowdsourcing
platforms use large crowds of people to speed up the classification process.

Automatic document classification is performed by computers, and other electronic
computational devices based on some algorithms. Digital society nowadays moves form
algorithmic classifiers to AI (Artificial Intelligence). AI approaches are very attractive
because they scale well and tend to provide a human level of accuracy in classification
tasks. Automatic document classification can be divided into supervised, unsupervised,
and semi-supervised document classification [1].

Supervised document classification uses labeled training data. The result and classification
accuracy mostly depend on the quality and amount of entries in the training dataset and
the amount and quality of features. A part of a dataset is preserved for validation and
testing purposes. The outcome of the model is predictable, inner relations in data can be
predicted and estimated with manual features. For example, if pressure is low there is a
high chance of rain. Unsupervised document classification is based on cluster analysis
techniques and does not require human interaction. Usually, we use unsupervised learning
when we have unlabeled training data, but the assumption is that the data is correlated,
and there are some inner relations. Semi-supervised document classification uses both
labeled and unlabeled training examples. Semi-supervised learning is a combination of
both supervised and unsupervised learning.

Comparison analysis1 of document classification techniques is summarized in Table 2.1.

Table 2.1: Comparison of document classification approaches

Expert judgments Crowdsourcing Machine learning
Classification Manual Manual Automatic
Quality Excellent Good Noisy
Cost Very expensive Moderately expensive Moderately cheap
Scalability Do not scale well Scale to some extent (budget) Scale very well

2.2 Feature-based classifiers

Feature-based classifiers use features in supervised learning. Most popular learning
algorithms are:

• Support Vector Machines (SVM)

• Linear regression
1 K. Balog. Retrieval Evaluation. DAT630.
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• Logistic regression

• Naive Bayes

• Linear discriminant analysis

• Decision trees

• K-nearest neighbor algorithm

Some neural network models use manual features in the learning process as well. On
average, features based algorithms are effective on small datasets, where data correlation
and data relation can be expressed in a definite number of manually designed features.

Many algorithms had been originally designed for binary classification problems. In a
binary classification problem, we are deciding between only two classes. For example, we
decide either the person is female or male, or we check if the person is eligible for getting
a tax return or insurance payment. Another example is the game outcome: win or loss.
Binary classification problems can be answered with simple, ”Yes” or ”No” statements.

Most real-life situations tend to solve multi-class problems. By multi-class classification
problem, we understand the problem with more than two possible outcomes. For example,
by provided ingredients predict the meal: breakfast, lunch or dinner. Another example
is to identify a single written digit from 0 to 9, ten classes in total. In order to solve
the multi-classification problem predictions should be combined. There are two known
approaches to solve a multi-classification problem: one-against-one and one-against-rest.

In one-against-one approach, we construct the binary classifier for each pair of classes in
a class set (k(k−1)

2 binary classifiers in total). The positive class will receive a vote in
each pairwise comparison. As a result, target class is a class with a majority of votes.

In one-against-rest approach, we have a set of possible outcomes (classes). For each class,
instances which belong to specific class yi are positive examples. All other classes in a
set are treated as negative examples. If an instance has been classified as positive, the
positive class gets a vote. Otherwise, all classes except for the positive class receive a
vote. The class with a majority of votes is being selected and returned.

Support Vector Machines (SVM) Support Vector Machine is a machine learning
model for data classification. SVM works best with binary classification tasks, however,
it can be used to solve multi-class problems. The goal of SVM is to find (design) the
hyperplane which separates two classes with a maximum margin. It is possible to find
multiple hyperplanes for the same training data, however, the best hyperplane has the
maximum margin from both classes. The class examples closest (have minimum distance)
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to the hyperplane, are called support vectors. Only support vectors are important, other
data points can be ignored. The Figure 2.1 illustrates the principle of SVM. In order to
define a hyperplane, classes should have some qualities or numerical presentations called
features. In the document classification problem, SVM uses TF-IDF vectors as features.

Figure 2.1: State Vector Machines logic

Support vectors are used to define the hyperplane equation. The hyperplane is used to
classify data later on. Non-linear functions, such as; polynomial, radial basis function
(RBF), or sigmoid; help to find the hyperplane in the non-linear space. These functions
are known as kernels.

SVMs had proven the ability to handle large feature spaces without feature selections.
Support Vector Machine also tends to be robust to over-fitting [2].

2.3 Neural networks and deep learning

Neural networks are often denoted as an Artificial Neural Networks is an Artificial
Intelligence paradigm inspired by Neuroscience; science about human brain functioning [1].
The human brain can efficiently identify patterns and solve complicated tasks. Scientists
had an idea of transferring human brain functionality, to machines, to create smart
computers. Inspired by Neuroscience researches and scientists, have been mapped neurons
in the human brain to input, hidden and output units, and connections between units to
synapses. Neurons are connected with each other, their job is to pass information further.
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They aggregate all synapses and apply activation function. Multiple neurons form input,
hidden, or output layers. Activations in one layer determine activations in the next layer.

Neuroscientists still do not know completely how the human brain works. For that reason,
Artificial Intelligence science had to find other sources of inspirations, but the structure
and basic idea of the human brain find reflection in the neural network architectures.

There are three types of units in neural networks: input units, hidden units, and output
units [1]. Groups of units form input layer, hidden layer, and an output layer. Networks
with more than one hidden layer are called deep neural networks. Deep neural networks
tend to identify more complicated patterns comparing to neural networks. The amount
of hidden layers is not limited, and there are no guidelines on how many hidden layers
should be used. The general structure of Deep Neural Network is illustrated in Figure 2.2.

Figure 2.2: General structure of Deep Neural Network

Units are connected with other units via weights. Weights are represented by weight
matrix W . Weight matrix determines how features affect the prediction. There is one
additional parameter b, called bias. Bias is an intercept term which reflects how close is
the estimate to the true value [1]. Hidden units are responsible for processing incoming
data. Hidden units take a weighted sum of inputs along with biases. The activation
function is applied on top of hidden units to determine the output which is passed further
to the next layer. There is a variety of activation functions.

The cost function analyzes the output predictions of a neural network and tells how
good the network performs. The cost function provides the feedback which is used to
optimize the weights. The model computes series of derivatives to compute the gradient
and updates the weights and biases. This process is called back-propagation.
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DNNs perform operations on tensors. Tensors are multi-dimensional data structures which
can be thought of as a generalized matrix. Training of DNN involves weights optimization,
and loss minimization during back-propagation. Back-propagation DNN operations
include linear operations and non-linear operations such as Tanh or ReLu (rectified linear
units). DNNs have many architectures and hyperparameters. Theoretically, DNN can
approximate any function [3]. DNNs are data-hungry and need large-scale training data
corpus [4].

Trained neural network models are expected to perform well on unseen data. Since text
representations commonly are learned from training set distribution, testing the model
on a new corpus with a different distribution, may lead to poor model evaluation and
performance. Different corpora have specific patterns learned by a neural network. DNNs
suffer from corpus variance problem, this is also known in the literature as adversarial
examples [1]. For example, we have a model which identifies handwritten digits from 0
to 9 with 98% accuracy. After applying, almost invisible for a human eye noise to the
images in the testing set, the accuracy of the model can drop to 10-15%. Generative
adversarial networks [5] are called to deal with adversarial examples. To address the
problem of different corpora distributions model can be retrained on different datasets.

The neural model should be able to handle inputs of various length, since news articles
have different lengths. Some articles are 750 characters long, other articles are 3000
characters long. Not all content is equally meaningful, sometimes one section or paragraph
expresses the meaning of the whole article (document). Training data is always noisy
and contains errors. The model should still learn good representations from noisy inputs.
Another approach is to ignore error inputs.

Challenges (or good model must handle) [4]:

1. Semantic understanding

2. Robustness to rare inputs

3. Robustness to corpus variance

4. Robustness to variable lengths inputs

5. Robustness to errors in the input

6. Sensitivity to contexts

The main advantage of neural networks and deep neural networks is a feature free design.
These networks do not need manually designed features to identify patterns, estimate
functions and provide accurate predictions. The smart neural network architecture is a
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key to success. We can consider each neural network as a building block. Those building
blocks can be used to build different models. The combination of different network
architectures can provide unique solutions.

2.4 Feedforward neural networks

Feedforward network is a neural network architecture without loops (cycles). Feedforward
networks support a single flow of information: from the input to output [1]. Feedforward
network classifier general formula:

yi = g(
∑
j

Wijxj + bi)

Each hidden unit h takes input x , multiplies it by weights W , sums it up with bias b and
passes through the activation function g to yield the output y. Feedforward networks
work with fixed size inputs. It is also assumed that training examples are independent.
The general structure of feedforward network is illustrated in Figure 2.3.

Figure 2.3: Feedforward neural network structure

2.5 Convolutional neural networks

Convolutional neural networks (CNNs) are neural networks designed to handle data with
known deterministic grid topology and involve convolution operation. Convolution is
a special linear operation on two functions in algebra. One of the functions is called
weighting function w(a), known as a kernel, while another one is a regular function which
we assume to be noisy, known as an input. By combining these two functions we get
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a smoothed estimate. Usually, the kernel is much smaller than input which gives us
sparse output. In literature convolution operation is denoted with asterisk (∗). The
output of convolution operation is commutative and is often called the feature map [1].
Convolution neural network structure is shown in Figure 2.4.

Figure 2.4: Convolutional neural network structure

General convolution formula:
s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a)

Where s(t) is a state at the timestamp t, x is the input, w is the weighting function or
kernel, a is the age of the measurement.

For single dimension, a slightly different notation formula is:

S(i) = (I ∗K)(i) =

∑
m

I(m)K(i−m)

Where S(i) is the state at timestamp i , I is the input and K is the kernel.

For two-dimensional input case:

S(i, j) = (I ∗K)(i, j) =

∑
m

∑
n

I(m,n)K(i−m, j − n)

Convolutional neural networks are associated with sparse iterations, parameter sharing,
and equivariant representations [1].

Sparse iterations
In traditional neural networks, each output unit interacts with each input unit. These
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networks are called fully-connected. Due to the sparse representation of convolution
output, CNNs are more computational and memory effective.

Parameter sharing
Parameter sharing allows using the same parameters for multiple functions in a model.
In CNN each element in the kernel is used at each position of the input.

Equivariant representations
Parameter sharing property in CNN leads to equivariance to translation. Equivariance
property refers to immunity to small changes in input. In other words, small changes
in input cause small changes in output. If the task of the model is to find some shape
on the image despite the location of that shape, the equivariant property becomes very
useful.

CNN layer consists of three steps: convolution operation, rectified linear unit (ReLU)
activation and finally pooling. Specified steps are not bounded to one specific layer, each
step can be a separate layer in a model. Convolutions are usually performed in parallel.
Feeding linear activation through nonlinear activation function such as ReLU is called
detector. Pooling function aims to replace the output with some summary statistics.
There is a variety of pooling functions: max pooling, the average of a rectangular
neighborhood, the L2 norm of a rectangular neighborhood and the weighted average.
Max pooling is the most popular pooling technique. In max pooling, we select and return
the maximal value of a rectangular neighborhood.

CNNs can be used to produce low-dimensional, structured object representations. We
know that convolutional networks produce a shrunken output which has lower dimen-
sionality compared to an input.

CNN benefits: processes inputs of variable size, fast, easy on memory, robust to transla-
tions in the input, uses fewer computations and demonstrates statistical effectiveness.
CNN disadvantages: does not remember the previous state (does not have memory).

2.6 Recurrent neural networks

Recurrent neural networks (RNNs) were designed for learning (remembering) sequences:
a sequence of pictures to represent video, a sequence of characters or terms (words) to
represent a document. RNN remembers previous events and pays attention to important
parts of the past. Unlike feedforward networks, hidden units in RNN depend not only on
the input but also on the output of the previous timestamp multiplied by a recurrent
network weight matrix. Unrolled in time RNN forms a feedforward neural network.
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Chain-rule is used to back-propagate the gradients. The recurrent network structure is
illustrated in Figure 2.5.

Figure 2.5: Recurrent neural network structure

Hidden unit calculations:

h(t) = gh(WIx
(t) +WRh

(t−1) + bh)

The output is calculated by the formula:

y(t) = gy(Wyh
(t) + by)

RNN has different architectures depending on a number of inputs and outputs: one
to one, one to many, many to one and many to many variations. One to one solves
categorization problems, given static input get a category or classify it. One to many
describes the input with multiple outputs, for example, we feed the image as input and
expect to get a textual description (caption) of objects on the image. Many to one
is used to recognize an action, get sentiment from a sequence of text. Many to many
architectures are used for video summarization and language translation tasks. RNNs
are used for sequence generation, text generation, stock prediction, voice recognition,
language translation, etc.

RNN benefits: works with variable length input sequences and remembers its state. RNN
disadvantages: struggles from long-term dependencies (fail to remember long sequences).
Since weight matrix of RNN is shared across all the layers, we have back-propagate to the
very beginning of the sequence. This causes vanishing gradient and exploding gradients
problems. In vanishing gradient problem, weight product of small weights decreases
rapidly and network loses the ability to remember. In exploding gradient problem, weight
product of large weights increases exponentially causing learning process to be unstable.

Possible solutions to vanishing/exploding gradient problems include clipping gradients
at the threshold, using adaptive learning rate algorithms, applying ReLU activation
function or using another recurrent neural network architectures such as Long short-term
memory (LSTM) and Gated Recurrent Units (GRUs) [1].
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News articles are strings of characters which have to be transformed into a representation
suitable for the learning network. Machine learning algorithms and neural networks do
not process raw text input. In news background linking task, we work with news articles
and news stories contents. In Section 3.1, we discuss local, distributed text representations
and pre-trained embeddings. Background linking task involves retrievement of relative
(similar) news articles/stories. In Section 3.2, we mention several notions of similarity
which our model should detect and, in Section 3.3, go through popular similarity metrics.

We notice some similarities between background linking and information retrieval tasks.
In information retrieval field given a query, we should select relevant documents. In news
background linking task given a news article, we should retrieve relevant news articles
(stories). In Section 3.4, we review traditional IR models, while in Section 3.5, we talk
about existing neural approaches.

3.1 Raw text representations in Machine Learning

Neural networks as any other machine learning algorithm cannot process raw text input.
Raw text should be represented in a numerical form to perform mathematical calculations
and manipulations. Typically, the smallest meaningful unit in machine learning is a term
(single word). Different vector representations generalize data in different ways focusing
either on distinct terms or common attributes. Since data is represented as vector, simple
vector math operations can be applied to it. Each term can be expressed using local or
distributed representations. There are several ways to represent the news article content:

1. Manually design features which can represent a news article.

17



18 Chapter 3 Related Work

2. Use a news article one-hot encoded term vector.

3. Generate a news article embedding.

3.1.1 Local representations

Usually, one-hot encoded vectors are used to generate a local representation of term.
One-hot encoded vectors are binary vectors used to represent objects in a fixed size
vocabulary. The one-hot encoded vector contains only one 1 value, the rest of the values
are zeros. Each position of 1 corresponds to a unique term.

For example, assume we have a dataset which describes meals of the day V = (“breakfast”,
“lunch”, “dinner”), where V is a vocabulary represented as a set of values. By marking the
value as one, we give it a notion of presence. Hence, local representation for “breakfast”
is [1, 0, 0], for “lunch” - [0, 1, 0] and for dinner - [0, 0, 1]. The graphical representation
is shown in Figure 3.1. Each term as the unique entity is highlighted with green color.
Each term outside of the vocabulary has no representation or denoted with special “UNK”
symbol [4].

Figure 3.1: Local representations for meals of the day

3.1.2 Distributed representations

In distributed representation, each term is represented by a dense or sparse vector of its
attributes. Distributed representation is a vector of hand-crafted features or a learned
representation in which the individual dimensions are not interpretable in isolation [4].
Each term in distributed representation has a list of properties (attributes). Presence or
absence of those properties describes the term.

Distributed vector representations can be retrieved by aggregating and combining local
representations. For example, we have a vocabulary with dishes: V = (“oatmeal”,
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“scrambled eggs”, “sandwich”, “salad”, “steak”). Local representations of terms in the
dishes vocabulary are illustrated in Figure 3.2.

Figure 3.2: Local representations for dishes of the day

Combination of two local can give us distributed representation for all terms, check
Figure 3.3. Oatmeal and scrambled eggs are two different dishes, however, they share
one common property: both dishes are usually served for breakfast.

Figure 3.3: Distributed representations for dishes of the day

Term vectors can be represented as a space model in high dimensional space. The
example in Figure 3.4 shows that Term 1 and Term 4 are closer in space to each other,
this indicates that they are more relevant to each other.

3.1.3 Embeddings

Embeddings are low-dimensional dense vector representations. Term embeddings show
good results term analogy tasks. Explicit (distributed) vector representations are based
on distributional features. Explicit vectors are sparse and high dimensional. The number
of dimensions depends on the number of documents or vocabulary size. Sparse vector
representations are not practical for big data corpora. Embeddings represent data
in lower dimensional space and preserve properties of data and relationships between
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Figure 3.4: Vector space model

terms. Embedding can be retrieved from explicit vectors. Terms in embeddings are more
generalized and more practical.

Embeddings can be retrieved from neural and non-neural computations.

Latent Semantic Analysis (LSA) builds embeddings by performing singular value
decomposition (SVD) over term-document matrix where rows correspond to terms and
columns to documents. LSA is a part of global matrix factorization methods. These
methods decompose large matrices to capture statistical information about the corpus.
LSA groups different terms that occur in a similar context into the same semantic cluster,
hence, low-dimensional representations of documents can have high similarity without
sharing common terms. LSA effectively leverages statistical information but performs
poorly on word analogy task [4, 6].

Inword2vec, term features are extracted by sliding fixed size window over term neighbors
in a text of training corpus. Word2vec implements the skip-gram model which is a one
hidden layer neural network based on the product of two term vectors. Word2vec
generates IN embedding which corresponds to all input terms and OUT embedding
which corresponds to output terms. Only IN embeddings are used, OUT embeddings
are discarded after training. Word2vec performs well on word analogy task but does not
take advantage of full utilization of global statistics from the corpus due to training on
local context windows. Hence, word2vec does not capture repetitions in the data [4, 6].

GloVe (GlobalVectors) also implements the skip-gram model and is trained on in-
dividual term-neighbor pairs. The GloVe also has IN and OUT embeddings but sums
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them up to retrieve a term embedding [4]. The GloVe combines advantages of LSA and
word2vec approaches. The GloVe is trained on global term-term co-occurrence counts.
The GloVe performs well on word analogy task. Word analogy task answers questions
like: “x to y as z to __?” The goal of word analogy task is to fill the gap with the most
appropriate word. On the mathematical side, we are looking at word representations w
and trying to find word representation which is the closest to wy − wx + wz by means of
cosine similarity measure [6].

We will demonstrate some word analogy examples retrieved by performing vector opera-
tions on the GloVe term embeddings. We will show top 10 results for each equation and
use GloVe 6B 300 dimensional term representations1.

Standard “king” - “man” + “woman” equation results are shown in Figure 3.5. Man to
woman as king to queen.

Figure 3.5: Word analogy for equation: “king” - “man” + “woman”

Another word analogy example for equation “football” - “field” + “ice” results are shown
in Figure 3.6. Football is associated with a field, while hockey is associated with ice.

Figure 3.6: Word analogy for equation: “football” - “field” + “ice”

GloVe pre-trained term embeddings show good results on word analogy task. For some,
not common term vector equations we got the following results. The example, “engineer”
+ “developer” results are shown in Figure 3.7. The output vector indicates that person
with engineering and software development skills is very likely to be an entrepreneur.

1https://github.com/brannondorsey/GloVe-experiments

https://github.com/brannondorsey/GloVe-experiments
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Figure 3.7: Word analogy for equation: “engineer” + “developer”

Term embeddings are good at deriving summary term vectors out of the content. For
example, “infant” - “crying” results are shown in Figure 3.8. It is clear that when the
newborn infant is not crying, then there is a high chance that there is something wrong
with the baby.

Figure 3.8: Word analogy for equation: “infant” - “crying”

Some terms cause confusions and protest in human minds. The “love” - “feelings”
equation results are shown in Figure 3.9. Usually love is associated with warm feelings
and attraction. Love without feelings is rather a contradiction and causes the note of
protest.

Figure 3.9: Word analogy for equation: “love” - “feelings”

Paragraph2vec is similar to word2vec and is used to create an embedding for para-
graphs [4].



Chapter 3 Related Work 23

LSA, word2vec, and GloVe term embeddings are popular and widely used. LSA and
paragraph2vec capture topical similarities while word2vec and GloVe capture both:
topical and typical notions of similarity.

3.2 Notions of similarity

In semantic representation the evidence of aboutness is important. Aboutness links
terms to contextually related terms. For example, pumpkins, costumes, and candies are
relative to Halloween. Semantic representations should also capture the synonyms of
terms; “nice” and “good”, “man” and “boy’ are similar. Latent representation of intent is
important [4]. The model should be robust to rare inputs. Most learned representations
are based on limited vocabulary. Hence, the poorly designed model will fail to perform
well on unseen terms.

Notions of similarity:

1. Typical
Terms are considered similar if they share a common attribute or property type.
For example, Norway and Spain are both countries. The typical similarity is more
likely to map Norway to Spain than Norway to Vikings.

2. Topical
Terms are considered similar if they are related to some common topic. For example,
Norway is more similar to Vikings, Fjords and, Trolls than to the USA.

3. Linguistic Considers the linguistic style of a document. For example, news articles
style is different from government reports or lawsuits.

A good model should be able to catch multiple notions of similarity.

3.3 Similarity metrics

To measure the distance between objects in space different similarity metrics are used.
Similarity metrics used to calculate proximity between two objects have following prop-
erties [7, 8]:

1. sim(x, y) = 1 only if x = y (0 ≤ sim ≤ 1)

2. sim(x, y) = sim(y, x) for ∀x, y (symmetry)
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Prior to using similarity metrics, some actions are required. Prerequisites:

1. Data should be normalized. For example, min-max normalization (feature scaling)
can be used 2.

2. Data should be binarized if similarity metric works only with binary values.

3.3.1 Euclidean Distance

The output of Euclidean distance is a distance between two data objects shorter distance
indicates higher similarity [7]. Euclidean distance is calculated by the formula below:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2 =

√√√√ n∑
i=1

(xi − yi)2

3.3.2 Pearson Coefficient

Pearson Coefficient computes similarity by drawing a line between attributes of two
objects. Correlation between two objects results in positive slope line. Pearson Coefficient
is more robust to unnormalized data [7]. Pearson Coefficient is calculated by the formula
below:

ρX,Y = cov(X,Y )
σXσY

=

E[(X − µX)(Y − µY )]
σXσY

3.3.3 Jaccard Coefficient

Jaccard Coefficient works with objects with binary attributes and is based on calculating
the proportion of total matching elements versus the sum of partly matching and a total
matching [7, 8]. Jaccard Coefficient is a good metric to work with sparse vectors. Jaccard
Coefficient is calculated by the formula below:

J = f11
f01 + f10 + f11

where: f11 indicates that x = 1 and y = 1, f01 - x = 0 and y = 1, f10 - x = 1 and y = 0.
2https://en.wikipedia.org/wiki/Feature_scaling

https://en.wikipedia.org/wiki/Feature_scaling
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3.3.4 Cosine similarity

Cosine similarity is measured as the angle between two vectors [7, 8]. Commonly used to
find similarity between text documents. Effective similarity metric in semantic space.
Cosine similarity is calculated by the formula below:

cos(θ) = A ·B
||A|| · ||B||

where A ·B =
∑n
i=1 xiyi is a vector dot product, ||X|| and ||Y || are lengths of vectors X

and Y .

3.3.5 Tanimoto Coefficient (Extended Jaccard Coefficient)

Tanimoto Coefficient measures the similarity between document data. If documents have
binary representations Tanimoto Coefficient turns into Jaccard Coefficient [7]. Tanimoto
Coefficient is calculated by the formula below:

T (X,Y ) = X · Y
||X||2 + ||Y ||2 −X · Y

3.4 Traditional models in IR

3.4.1 TF-IDF and BM-25

Term Frequency-Inverse Document Frequency (TF-IDF) represents a proportion of a
number of occurrences of each term in one document and document collection overall.
BM-25 is a probabilistic ranking function built on of TF-IDF. The formula:

BM25(q, d) =
∑
tq∈q

IDF (tq) ·
TF (tq, d) · (k1 + 1)

TF (tq, d) + k1 · (1− b+ b · |d|avgdl )

Where avgdl is average document length in the collection D, k1 and b are parameters that
should be tuned. Defaults value for k1 = [1.2, 2.0] and b = 0.75. The IDF is computed
by the formula:

IDF (t) = log
|D| − df(t) + 0.5

df(t) + 0.5

Where df is a document frequency.

BM25 only considers contributions of individual terms, hence, implies direct term
matching approach.
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3.4.2 Language modeling

Language modeling (LM) is based on posterior probability P (D|Q).

TF-IDF based approaches and LM are based on terms count and do not catch positional
and relational connections within terms and content.

3.4.3 Learning to rank

Learning to rank (L2R) train models over a set of hand-crafted (manually selected)
features. Traditional information retirement model is Latent Semantic Analysis (LSA).
LSA learns dense vector representations of terms and documents. RankNet is a pairwise
loss function [4].

3.5 Existing Neural Approaches

Neural networks work with character-level or term-level text data.

In character-level, each character is represented as the one-hot encoded vector. Length of
the one-hot encoded vector is equal to the length of the vocabulary. Dimensions are also
known as channels. Sentences, paragraphs, and texts can be represented by combining
(aggregating) character vectors. Character level vector representations have no prior
knowledge about language specific and learn patterns.

One of the simple approaches used in machine learning is mapping unique charac-
ters in total vocabulary to integer numbers. For example, our vocabulary consists
of “Hello world!” phrase. We ignore case sensitive structure and treat all charac-
ters as lower case. After tokenizing the vocabulary we get following unique charac-
ters: voc = [h, e, l, o, w, r, d, !], where len(voc) = 8. In second step we map
characters to integers: charToInt = {h : 1, e : 2, l : 3, o : 4, w : 5, r : 6, d : 7, ! : 8} and
intToChar = {1 : h, 2 : e, 3 : l, 4 : o, 5 : w, 6 : r, 7 : d, 8 : !} for fast backward conversion.
On the output, we have the phrase “Hello world!” represented as the vector= <1 2 3 3 4
5 4 6 3 7 8>. Finally, integers should be converted to one-hot encoding. Letter ‘h’ for
instance has one-hot vector <1 0 0 0 0 0 0 0>. The current way of converting text to
integers only valid for models which do not retrieve any meaning of the word from the
context. Before-mentioned set up can be used for predicting text sequences with RNN
LSTM3.

3https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-
python-keras/

https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
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To retrieve term-level text data (words) raw text is tokenized into terms. Each vector is
then represented as sparse (explicit vector representation) or dense (pre-trained word
embeddings) vector. Explicit vector representation can be retrieved from local represen-
tation, aggregated local representations or distributed representations. Aggregated term
representations can form sentence, paragraph or document representation.

Popular DNN architectures:

• Input-invariant models
CNNs and RNNs are used as input-invariant models because they are robust to
input-invariants. Such networks catch words and language meaning independently
from the position of their occurrence in the document [4]. These architectures have
fixed size windows which slide across input content with some fixed step. The filter
(kernel function) is applied to each window position with shared parameters to
extract some features and patterns. The filter is also denoted as a cell in machine
learning literature [1].

In CNN architecture each cell is multiplied by the weight matrix. Pooling operation
is applied to cell output to aggregate some features. Global pooling operation
across all aggregated features produces fixed size output (fully-connected layer -
dense vector representation). In CNNs convolution and pooling operations are
performed within independent (unique) window. In RNN output of the previous
cell is also considered. LSTM is popular RNN architecture with 4 gates which
control what is kept into the memory and what should be forgotten [1].

• Auto-encoders
Auto-encoders are neural network architectures which tend to learn compressed
representations of objects out of their high dimensional representations. Compressed
representations are later decoded to approximate initial input. Model is trained
to minimize the difference between input and output. Good auto-encoders can
reproduce initial input with minor changes. Compressed representations of objects
can be used as training data for other neural network architectures. Auto-encoders
are used to create summaries of text documents, rewrite comments and reviews.
There is a trade-off between the level of compression and a quality of decoded data.

• Siamese networks
Siamese networks were initially designed for comparing signatures and finger-
prints [4]. Later Siamese networks had been adjusted to work with short texts.
Siamese network consists of one model which performs the auto-encoder function -
retrieve the compressed representation of short texts. Siamese networks are trained
on pairs of similar and not similar inputs. Usually, Siamese networks share the
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same model for both inputs. Pairs of input are fed into the designed model to
retrieve dense vector representations. Vector representations are fed into cosine
similarity function to measure relativeness. The goal is to optimize parameters of
the model in such a way that similar objects are closer to each other in semantic
space and not similar object have larger distance. The model has auto-encoder
architecture is input representation is compressed, otherwise other architectures
are used.

Deep Semantic Similarity Model (DSSM) is a Siamese network used in IR to retrieve
relevant document titles by short queries. The DSSM consists of two models: one
for query, another for document title. Cosine similarity is used as a similarity
metric between low-dimension vector representations [9].

The DSSM is widely used for short texts, our goal is to adapt DSSM for background
article linking task.
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Solution Approach

In this chapter, we introduce our solution approach. In Section 4.1, we talk about news
background linking task. In Section 4.2, we analyze similarity between information
retrieval and background linking tasks. Finally, in Section 4.3, we introduce Deep
Semantic Similarity Model designed for solving background linking task.

4.1 Introduction

The goal is given a news articles retrieve related (similar) news stories. Real life example
is illustrated in Figure 4.1. We manually highlighted some keywords which contributed
to the current selection choice. Keywords “automation”, “technical”, “robots” and
“technology” led to linking of an article within “AI” topic.

Figure 4.1: Background linking example from The Washington Post

Our model should be able to produce a list of candidate news stories with similarity scores.
News stories with highest similarity scores are considered relevant to the background
context of the news article. The high-level idea of what the model should do is illustrated
in Figure 4.2.

29
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Figure 4.2: Background linking task high-level idea

4.2 Analysis

The problem we are trying to solve is close to IR task when given a short query relevant
documents should be retrieved. In our case query is a news article and relevant news
stories should be retrieved. Neural approaches to solving IR task described in Section 3.5,
work with short text strings. Indeed, convolutional neural networks are able to extract
key topics and key phrases as features from long texts as well. CNN can produce a
high-level dense representation of news articles and news stories. The relevance of two
articles can be estimated via proximity measures. The idea is to generate news article
representation which catches the distribution over information in it. The high-level is
shown in Figure 4.3.
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Figure 4.3: The high-level solution idea

4.3 Proposed Solution

4.3.1 Deep Semantic Similarity Model

Deep Semantic Similarity Models also called Deep-Structured Semantic Models denoted
as DSSM. Deep Semantic Similarity Models had been proposed in 2013 in [9]. Researches
proposed DSSM to solve information retrieval problem: map queries to relevant docu-
ments. Since 2013 Deep Semantic Similarity Models had been developed and adjusted to
the variety of tasks such as: web search [10], information retrieval [11, 12], question an-
swering [13, 14], modeling interestingness [15], automatic textual image descriptions [16],
natural language processing [17], machine translation, etc. Different tasks solved by Deep
Semantic Similarity Models are summarized in Table 4.1.

Table 4.1: DSSM tasks

Task X Y
Web search Query Web document
Automatic highlighting Document Phrases to highlight
Contextual entity search Key phrase and context Entity and corresponding page
Machine translation Sentence to translate Translation
Ad selection Query Ad keywords
Entity ranking Mention Entities
Recommendation Document Relevant documents
Nature User Interface Command (text/speech) Action
Summarization Document Summary
Query rewriting Query Rewritten query
Image captioning Text string Images
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Deep Semantic Similarity Models are called deep because they use Deep Neural Networks
to obtain the low-level representations of raw input vectors. As we remember in DNN
features are trainable, not manually designed. Various implementations of DSSMs belong
to Siamese networks family. In DSSM network we take the input and represent it as
an encoding vector (feature vector). The neural architecture which is responsible for
generating a representation of textual information does not use softmax function, there
is no need to classify anything. Feed different inputs to the same deep neural network
to retrieve encoding vectors. Cosine similarity metric is used to measure the similarity
between two vectors. If two inputs are the same or very similar cosine similarity score is
high. The DSSM original structure is illustrated on in Figure 4.4.

Figure 4.4: DSSM original structure

To learn the representation of news articles and to map news articles and new events
we propose using Deep Structured Semantic Models. The DSSM had been used for web
search and information retrieval, but to best of our knowledge, no one has applied it to
news articles. The relevance of a news article given a news story is computed as a cosine
similarity between them. We formulate the task as follows: map news articles to news
event (Wikipedia page) to learn news event representation.

Regular neural networks are mainly used for classification with target represented as the
one-hot encoded vector. The DSSM is used for ranking, not classification tasks. Target
in DSSM is represented as continuous-valued vectors.
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General Deep Semantic Similarity Model structure [18]:

1. Convert target from one-hot encoded vector to continuous-valued vector.

2. Compute target vector using Deep Neural Network.

3. Normalize two vectors and compute the distance between them.

The standard DSSM takes word sequence as input, generates term vector representation
in convolutional and max-pooling layers and produces abstract semantic vector represen-
tations at semantic layer. A convolutional layer is used to extract local features where a
max-pooling layer is used to generate global features such as key topics and keywords.

DSSM is learning from labeled X and Y pairs. Lets assume X is a news article and Y + -
relevant news event (story, Wikipedia page), usually called positive example (pair), Y − -
irrelevant news event, usually called negative example (pair). Y + is more relevant than
Y − . Pairwise structure of the model is shown in Figure 4.5.

Figure 4.5: The DSSM pairwise structure

simθ(X,Y ) - cosine similarity of X and Y in the semantic space mapped by DSSM and
parametrized by θ. A change of state between positive and negative pairs is calculated
by the formula:

∆ = simθ(X,Y +)− simθ(X,Y −)

Cost function formula:
Loss(∆, θ) = log(1 + exp(−γ∆))
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The goal of the standard DSSM is to maximize ∆. The larger the ∆ the better represen-
tation is learned.

We construct positive pairs from Wikipedia dataset. Negative pairs are either randomly
sampled or retrieved via Elasticseach. We describe sampling techniques in detail in
Section 5.4. Positive Wikipedia stories are closer to news articles in semantic space than
negative Wikipedia pages.

Posterior probability of a news event given a news article from cosine relevance score
between them is computed with softmax function calculated by the formula below [9]:

P (Ne|Na) = exp(γR(Na|Ne)∑
N ′

eεNe
exp(γR(Na|N ′

e)

Where γ is a smoothing factor in softmax function, Ne is a set of candidate news events
(new stories, Wikipedia pages), Na is a news article, R is relevance and N ′

e is a news
event from candidate pairs events. Relevance R is a cosine similarity and in our case is
calculated by the formula:

R(Na|Ne) = cosine(VNa , VNe) =

V T
Na
VNe

||VNa || · ||VNe ||

Where VNa and VNe are semantic vector representations of news articles and news events.

In DSSM parameters are estimated to maximize the likelihood of the relevant news event
given a news article. In our case following loss (cost) function should be minimized:

L(∧) = − log
∏

(Na|N+
e )

P (N+
e |Na)

Where ∧ is a set of parameters in neural networks Wi, bi.

The general structure of the adjusted DSSM model is illustrated in Figure 4.6.

4.3.2 Model input

We use GloVe 6B pre-trained embeddings to represent terms in news articles and
Wikipedia news events. GloVe embeddings tend to capture typical and topical notions
of similarity [4]. Prior to extracting pre-trained embeddings we tokenize constructed
positive and negative pairs and pad sequences which are shorter than manually set
minimum content length.
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Figure 4.6: The DSSM compact structure

GloVe 6B pre-trained embeddings are trained on Wikipedia 2014 and Gigaword 5
corpora with 6 billion tokens with selected most frequent 400.000 words and symmetric
content window size 10 [6]. GloVe 6B contains 50, 100, 200 and 300 dimensional term
representations. In other words, each word is represented as a vector with size 50, 100, 200
or 300. During grid search, we did not notice any major differences between the number
of dimensions and the accuracy. Indeed, training time grows with the use of higher
dimensional representations. We stopped our choice on 100-dimensional representations.
For example, the word “truth” in GloVe 6B 50 dimensions is represented by vector in
Table 4.2.

Table 4.2: GloVe 6B 50 dimensional embedding of word “truth”

Word/term Vector representation

truth

0.26273 0.36559 -0.32112 -0.070719 1.3342
0.14024 0.8449 -0.024236 0.12839 0.47655
-0.6505 0.44669 -0.87428 -0.47665 0.76827
-0.0071115 0.52933 0.012882 0.40672 -0.083567
-0.22072 0.97598 0.63861 -0.02576 0.92497
-1.8469 -1.5878 0.21688 0.51778 -0.49787
1.854 -0.59643 -1.0354 -1.0856 -0.73812
-0.49966 -0.14243 -0.60574 0.058185 -0.60367
0.11467 -0.63144 -0.18695 0.49218 -0.39359
0.30666 -0.034556 0.25362 0.22597 -0.34386
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4.3.3 CNN architecture

Convolution operation applies a filter to a window of n words to produce a new feature.
We apply the filter to all possible windows in the news article text representation to
produce a feature map. Max-over time pooling operation over features maps produces
the compressed representation of the news article. The convolutional neural network
structure is illustrated in Figure 4.7.

Weights in the convolutional network are randomly initialized.

Figure 4.7: CNN with multiple filters

CNN gets pre-trained GloVe 6B 100-dimensional term embeddings on the input. Pre-
trained embeddings are good performing feature extractors suitable for various cor-
pora [19].

One filter allows extracting one feature. The idea is to apply multiple filters with different
window sizes to extract multiple features. We use Rectified Linear Unit (ReLU), filter
windows of size 1, 2 and 3 respectively with 128 filters. Merged features are twice
processed with 256 filters with window size 5. The final output of CNN is a dense
representation vector of size 256.

The block diagram of adjusted DSSM model with CNN for the case with 3 pairs is shown
in Figure 4.8.
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Figure 4.8: Keras model visualization





Chapter 5

Experimental Evaluation

In this chapter, we present the experimental results. We start by introducing datasets
in Section 5.1. In Section 5.2, we list the metrics used to evaluate the performance
of our model. Experimental setup and model parameters are described in Section 5.3.
In Section 5.4, we present experimental results after training the model on Wikipedia
dataset with different sampling scenarios. We compare our solution with baseline Support
Vector Machine model in Section 5.5. Section 5.6 contains discussions on the topic.

5.1 Datasets

5.1.1 Wikipedia Dataset

Wikipedia extracts dataset consist of two parts: wiki extracts and news articles. Wiki
extracts contain 6843 news stories (news events) crawled from Wikipedia. Each entry
consists of Title and Content fields, see Table 5.1.

Table 5.1: Wikipedia news events

Field Definition
Title Title of Wikipedia page.
Content Content of wikipedia page.

Each section is separated with
‘==’ symbols.

News articles part contains news articles obtained from external source links in Wikipedia
news stories. There is 34565 total number of news articles. News articles entry consist
of Title, URL, Content, WikiStoryName, WikiStorySectionName, PublicationDate, see
Table 5.2. The dataset includes articles majority of which are from 2006 to 2017. 1018

39
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news stories contain at least 10 articles per event, 440 news stories contain at least 20
articles per event.

Table 5.2: News articles from Wikipedia news events

Field Definition
Title Title of a news article.
URL URL of a news article.
Content Content of a news article.
WikiStoryName Title of linked Wikipedia page.
WikiStorySectionName Section name of linked

Wikipedia page.
PublicationDate Publication date of a news ar-

ticle.

The Wikipedia page is a ground truth page for the news event. Wikipedia pages are
written manually and evaluated by Wikipedia staff and users. All external sources used
in Wikipedia story are referenced and easy to check. The high-level explanation of
Wikipedia stories with linked news articles is illustrated in Figure 5.1. Different news
articles related to the topic with different chronology are linked to Wikipedia news story
about Falcon Heavy test flight.

Figure 5.1: The high-level of Wikipedia stories and linked news articles

In another example, Wikipedia page for 5G1 describes insights of 5th generation wireless
systems. Figure 5.2 shows Wikipedia page structure, where Wikipedia page URL is
denoted by 1, Title of the story is denoted by 2, and sections of the story by 3.

1https://en.wikipedia.org/wiki/5G

https://en.wikipedia.org/wiki/5G


Chapter 5 Experimental Evaluation 41

Figure 5.2: Wikipedia page structure

Figure 5.3 shows Wikipedia page references. All references are enumerated, most of them
contain active links to view content online.

Figures 5.4 and 5.5 show contents of references number 102 and 333 in Wikipedia reference
list 5.3.

Wikipedia has a Current News Portal4 where current stories are added manually every
day from different news media outlets [20]. News stories in Current News Portal are
grouped into categories and linked to Wikipedia pages (long-running events).

2https://www.networkworld.com/article/2941362/wireless/next-generation-5g-speeds-will-
be-10-to-20-gbps.html

3https://www.telegraph.co.uk/technology/mobile-phones/9595641/Britain-aims-to-join-
mobile-broadband-leaders-with-35m-5G-research-centre.html

4https://en.wikipedia.org/wiki/Portal:Current_events

https://www.networkworld.com/article/2941362/wireless/next-generation-5g-speeds-will-be-10-to-20-gbps.html
https://www.networkworld.com/article/2941362/wireless/next-generation-5g-speeds-will-be-10-to-20-gbps.html
https://www.telegraph.co.uk/technology/mobile-phones/9595641/Britain-aims-to-join-mobile-broadband-leaders-with-35m-5G-research-centre.html
https://www.telegraph.co.uk/technology/mobile-phones/9595641/Britain-aims-to-join-mobile-broadband-leaders-with-35m-5G-research-centre.html
https://en.wikipedia.org/wiki/Portal:Current_events
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Figure 5.3: Wikipedia page external references

Figure 5.4: “Next-generation 5G speeds will be 10 to 20 Gbps” news article
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Figure 5.5: “Britain aims to join mobile broadband leaders with £35m ‘5G’ research
centre” news article

5.1.2 News Aggregator Dataset

News Aggregator Dataset is a dataset from the UCI Machine Learning Repository5 [21].
The dataset contains 422937 news articles from 5-month interval: from March 10th to
August 10th 2014. The original dataset does not contain content of news articles, hence
content was crawled by web crawlers. Since articles come from 2014 majority of URLs
had been outdated, content removed or moved to web archives. We managed to crawl
75% out of the total number of articles. Half of the retrieved articles were crawled from
Wayback Machine Internet Archive6.

Articles are from four categories: Business, Science & Technology, Entertainment, and
Health. News articles in News Aggregator dataset had been collected from various online
media sources (9311 unique sources). On average, each news story contains 58 news
articles [22].

News Aggregator dataset does not contain news stories contents, except for alphanumeric
ID of the cluster reflecting the news story. 82 news stories contain at least 200 articles
(total 20041), 713 news stories contain 100 or more news articles (total 103957), 2202

5http://archive.ics.uci.edu/ml/datasets/News+Aggregator
6https://web.archive.org

http://archive.ics.uci.edu/ml/datasets/News+Aggregator
https://web.archive.org
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news stories contain at least 50 articles (total 208505), 6129 news stories contain at least
10 articles (total 312755). News Aggregator dataset structure is shown in Table 5.3.

Table 5.3: News Aggregator Dataset structure

Field Definition
ID Numeric ID of a news article.
Title Title of a news article.
URL URL of a news article.
Publisher Publisher of a news article.
Category Category of a news article.

Four categories in total: busi-
ness (b), science and technol-
ogy (t), entertainment (e) and
health (m).

Story The alphanumeric ID of a news
story.

Hostname The hostname where a news
article had been published.

Timestamp The publication date of a news
article as an approximate Unix
timestamp.

5.2 Experimental Metrics

To evaluate the performance of SVM and DSSM models we use following metrics.

1. Accuracy

2. Confusion matrix

3. Specificity

4. Precision

5. Recall

6. F1-score

7. Support

All these metrics are used in machine learning, as well as, in information retrieval,
document classification, query classification and statistical analysis.

Confusion matrix
Confusion matrix, also known as confusion table or matching matrix, is used to visually



Chapter 5 Experimental Evaluation 45

present classification results for each class in one table (matrix). Classification matrix
contains information about correctly classified and misclassified instances. Each row
in classification matrix represents instances of the predicted class, while each column
represents instances of an actual class7.

Classical confusion matrix for binary classification task is summarized in Table 5.4.

Table 5.4: Confusion Matrix for binary classification problem

Actual class

Predicted class True Positive False Positive
False Negative True Negative

True Positives (TP) indicate the number of correctly classified positive instances. True
Negatives (TN) indicate the number of correctly classified negative instances. False
Positives (FP), also known as type I error, indicate the number of negative instances
which had been mistakenly classified as positive. For example, false fire alarm. False
Negatives (FN), also known as type II error, indicate the number of positive instances
which had been mistakenly classified as negative7. For example, fire alarm did not trigger
when the fire started. For binary classification problem values of TP, TN, FP, and FN
can be taken from the table, no other computations involved.

For multiclass problem the confusion matrix has a slightly different view, it is summarized
in Table 5.5.

Table 5.5: Confusion matrix for mulitclass classification problem

Actual class
Class 1 Class 2 Class n

Predicted class
Class 1 val 1,1 val 1,2 val 1,n
Class 2 val 2,1 val 2,2 val 2,n
Class n val n,1 val n,2 val n,n

TP, TN, FP and FN metrics for each class can be calculated as followed:

1. TP is a diagonal element of the confusion matrix.

TPclassX
= CM [Xi, Xi]

7https://en.wikipedia.org/wiki/Confusion_matrix

https://en.wikipedia.org/wiki/Confusion_matrix
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2. TN is a sum of all values in the confusion matrix excluding row and column
corresponding to the target class.

TNclassX
=

m∑
i=1

n∑
j=1

ai,j − (rowXi − columnXj − TPX)

3. FP is a sum of all values in a column of the confusion matrix corresponding to the
target class excluding TP value.

TPclassX
=

∑
columnX − TPX

4. FN is a sum of all values in a raw of the confusion matrix corresponding to the
target class excluding TP value.

TNclassX
=

∑
rawX − TPX

5. The total number of class instances is a sum of a column corresponding to the
target class.

NclassX
=

∑
columnX

Accuracy
Accuracy is used to measure the proportion of correctly classified instances. Accuracy is
calculated by using the formula:

ACC = TP + TN

TP + TN + FP + FN

In some cases, accuracy is not reliable in measuring real performance of the classifier.
Accuracy metric produces misleading results in case of imbalanced dataset 7. For example,
we have the dataset which consists of 10 entries of class A and 90 entries of class B. If
all entries of class A are misclassified, the overall accuracy will be 90%. On practice,
classifier shows 100% recognition rate for class B and 0% recognition rate for class A.

During our experiments, the training data is balanced and should contain the equal
number of classes. The number of classes varies based on the selected number of positive
and negative pairs.

Precision
Precision metric is also known as positive predictive value. Precision indicates the fraction
of relevant instances out of total amount of retrieved instances8. In other words, precision

8https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall
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shows how useful the results are or the ability of the classifier to not label negative
instances as positive9. Precision can be calculated by using the following formula:

Precision = TP

TP + FP

Recall
Recall metric is also known as sensitivity, the true positive rate or probability of detection.
Recall metric indicates the fraction of relevant instances out of total amount of relevant
instances8. In other words, recall shows how complete the results are or the ability of
the classifier to retrieve all positive elements9. Recall can be calculated by using the
following formula:

Recall = TP

TP + FN

Specificity
Specificity metric is also known as true negative rate. Specificity measures the proportion
of correctly identified actual negative instances10. In other words, specificity indicates
how many selected negative elements are truly negative. Specificity can be calculated by
using the following formula:

Specificity = TN

TN + FP

F1-score
F1-score is a metric which measures the harmonic average of precision and recall11. The
minimum value of F1-score is 0 and the maximum value is 1. F1-score is calculated by
using the formula:

F1 = 2
1

Precision + 1
Recall

=

2TP
2TP + FP + FN

Disadvantages of F1-score:

• F1-score is not a reliable metric for the imbalanced dataset7.

• F1-score does not consider true negatives11.
9http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_

fscore_support.html
10https://en.wikipedia.org/wiki/Sensitivity_and_specificity
11https://en.wikipedia.org/wiki/F1_score

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/F1_score
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5.3 Experimental Setup

We create the DSSM model in Keras12 neural network API and run it on TensorFlow13

backend - the open source machine learning framework. The model is trained on Tesla
P100-PCI-E GPUs. All parameters used are summarized in Table 5.6.

Table 5.6: Model parameters

Parameter Value Description
num_articles 20 We select Wikipedia pages

with at least 20 linked news
articles.

k_folds 5 The number of folds used in
K-fold cross-validation.

epochs 10 The number of epochs.
min_content_length 300 The minimum length of the

content in characters. Shorter
length articles will be dis-
carded.

max_content_length 1000 The maximum length of the
content in characters. Longer
length articles will be trimmed,
shorter ones will be sequence
padded.

max_nb_words 20000 The maximum number of
words.

embedding_dim 100 Embedding dimension from
GloVe 6B.

validation_split 0.2 20% of data is used for valida-
tion.

J 3 For each news article, we gen-
erate 1 positive and J - 1 neg-
ative pairs.

optimizer adadelta Optimization algorithm used.
loss categorical_crossentropy Loss (cost) function used.

We test our model on the subset of data with at least 20 news articles linked to each
Wikipedia page. We use 5-fold cross-validation (80% of data is reserved for training
and 20% for testing), each fold is trained for 10 epochs. Minimum content length is 300
characters, maximum content length is 1000 characters, the maximum number of words is
20.000, embedding dimension is 100, validation split is 0.2 (20%). For each news article,
we create one positive pair and two negative pairs (J = 3). We use “adadelta” optimizer
and “categorical cross entropy” loss (cost) function. All the described parameters were
chosen after performing a grid-search.

12https://keras.io/
13https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/
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Adadelta is an adaptive learning rate method for gradient descent introduced by Zeiler [23].
Adadelta was built on top of Adagrad with some improvements over the continual decay
of learning rates and manual selection of global learning rate value. Different optimizers
have one hyperparameter in common - learning rate. In practice, the learning rate is
tuned manually. If learning rate is high, then performance will diverge. If learning rate
is very small learning is becoming slaw with high error rate. Adadelta automatically
computes the learning rate for each dimension by using first-order information, hence no
manual tuning or grid search is required. Adadelta is not sensitive to hyperparameters,
robust to large gradients and noise architectures and requires minimal computations over
gradient descent.

Lately, Adam optimizer had been widely used, but for our model Adadelta reaches higher
accuracy in less number of epochs without over-fitting.

We plot the accuracy and loss for each fold to visualize the training process. Accuracy
and loss plots help to control training process, identify over-fitting and discard poor
hyperparameter choices at early stages. An example of accuracy visualization is shown
in Figure 5.6.

Figure 5.6: Accuracy visualization for the training process

If training loss keeps decreasing, but validation loss increases then model over-fits training
data. The example of over-fitting visualized on loss plot is shown in Figure 5.7. After
epoch number 15 model starts over-fitting. To achieve the best performance, the model
should be trained for 15 epochs or early stopping mechanism should be implemented.
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Figure 5.7: Over-fitting on loss plot

5.4 Experimental Results

5.4.1 Wiki Experiment

We test our model on the Wikipedia dataset. First, we select only news stories (events)
which contain some minimal number of articles per event. Further, we go through all
news articles and pair them up with news stories (Wikipedia pages, news events) to
create training pairs.

5.4.2 Positive and negative pairs sampling

We consider multiple scenarios to sample positive and negative pairs.

Scenario 1
Wikipedia page content is used as a positive example. Negative examples consist of
randomly selected Wikipedia pages the news article does not relate to.

Precision scores are presented in Table A.1, recall scores in Table A.2, specificity scores
in Table A.3, F1-scores in Table A.4, and accuracy scores in Table A.5.

Scenario 2
From the Wikipedia dataset, we can extract sections of Wikipedia stories summarizing
news articles. The Wikipedia page which summarizes a long-term event may contain
different sub-topics. By using Wikipedia sections, as positive examples, we might improve
the performance of the model. Negative examples are sampled randomly.
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Not all news articles have Wikipedia section field filled, hence, we will use the section
if the field is not empty. Otherwise, we use the whole content of Wikipedia story as a
positive example.

Precision scores are presented in Table A.6, recall scores in Table A.7, specificity scores
in Table A.8, F1-scores in Table A.9, and accuracy scores in Table A.10.

Scenario 3
Mitra et al. [24] suggest using similar documents as negative examples rather than
sampling the negative documents uniformly. These documents would be classified by
data assessors as not relevant. Positive examples are retrieved as described in Scenario 2.

We test two query setups for retrieving negative examples from Elasticsearch. Elastic-
search is an open-source, distributed, RESTful search and analytics engine14. Elastic-
search supports many types of search queries via provided full Query DSL (Domain
Specific Language). Query DSL uses JSON to define the queries15.

We first create Elasticsearch index for Wikipedia stories (pages). Elasticsearch index is
a database which supports Elasticsearch queries. We do not need to create the index
for news articles since we use Wikipedia stories to construct positive and negative pairs.
Elasticsearch index for Wikipedia pages contains fields: index, title, and content. We use
BM25 similarity model with default parameter values of b = 0.75 and k1 = 1.2.

The logic is as follows:

1. Send search query to Elasticsearch Wikipedia stories index.

2. Retrieve top n search results (in the experiment we retrieve top 50).

3. Use last J (total number of positive and negative pairs) search results as negative
examples.

We used two types of DSL search queries:

1. Bool search query
Bool query matches documents based on the boolean combinations of other queries.
Elasticsearch bool query uses boolean clauses: must, filter, should and must not16.
See the query structure in 5.1.

14https://www.elastic.co/products/elasticsearch
15https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl.html
16https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-

query.html

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
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query_json = {

" query ": {

"bool": {

" must_not ": [

{

" match ": {

" title ": story

}

}

],

" should ": [ alternatives ]

}

}

}

Listing 5.1: Bool query structure

Where each alternative is defined in 5.2.

{

" multi_match " : {

" query ": " key_phrase ",

" fields ": [" title ", " content ^2"]

}

}

Listing 5.2: Key phrases multi-field queries

We ignore the Wikipedia story used as the positive example, hence, Elasticsearch
must not return Wikipedia pages with the same title. We use news article title
as a search query, but do it in a smart way. We extract the keywords and key
phrases from news article title, add Wikipedia section name to key phrases list if it
is available, and perform a multi-field search by values in the list. Multi-field search
is performed by search in both: the title and the content fields with emphasis on
the content field. All key search phrases are searched via should clause.

2. Query string query
Query string query parses query string and analyses each part of the query inde-
pendently17. We again search in title and content fields with an emphasis on the
content field. We use the title of a news article as a query. See the query structure
in 5.3.

17https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-
string-query.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
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query_json = {

" query ": {

" query_string " : {

" fields " : [" title ", " content ^2"],

" query " : query

}

}

}

Listing 5.3: Query string query structure

Bool query precision scores are presented in Table A.11, recall scores in Table A.12,
specificity scores in Table A.13, F1-scores in Table A.14, and accuracy scores in Table A.15.

Query string query precision scores are presented in Table A.16, recall scores in Table A.17,
specificity scores in Table A.18, F1-scores in Table A.19, and accuracy scores in Table A.20.

Scenario 4
We consider the scenario when Elasticsearch is not always able to provide search results
or return the necessary amount of documents. If negative pairs cannot be retrieved via
Elasticsearch, we sample them randomly from the Wikipedia dataset.

Bool query precision scores are presented in Table A.21, recall scores in Table A.22,
specificity scores in Table A.23, F1-scores in Table A.24, and accuracy scores in Table A.25.

Query string query precision scores are presented in Table A.26, recall scores in Table A.27,
specificity scores in Table A.28, F1-scores in Table A.29, and accuracy scores in Table A.30.

All scenarios are summarized in Table 5.7.

Macro-averaged metric scores are shown in Table 5.8. Scenario 2 outperforms other
scenarios. The DSSM was originally designed for short texts, mapping sections of the
Wikipedia pages as positive examples gives a performance boost. We should keep in
mind that Wikipedia sections are relatively long, several times longer than queries or
document titles.

Elasticsearch query string query outperforms bool query by 1.8% in Scenario 3. In a
hybrid mode (Scenario 4) for sampling negative examples, both queries perform equally,
however, do gain 3.9% and 2.1% in accuracy correspondingly. Other metrics remain high
scores as well.

We tried constructing the various number of negative pairs: from 2 to 15. When the
number of negative pairs increases metric scores slightly drop. There is a trade-off
between the number of negative pairs and training process speed.
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Table 5.7: Summary of sampling scenarios

Positive pairs Negative pairs
Scenario 1 The full content of the

Wikipedia story.
Randomly sampled from other
Wikipedia stories.

Scenario 2 The section from the
Wikipedia story if it is
available, whole content
otherwise.

Randomly sampled from other
Wikipedia stories.

Scenario 3 bool The section from the
Wikipedia story if it is
available, whole content
otherwise.

Sampled from Elasticsearch
via bool query.

Scenario 3 qstring The section from the
Wikipedia story if it is
available, whole content
otherwise.

Sampled from Elasticsearch
via query string query.

Scenario 4 bool The section from the
Wikipedia story if it is
available, whole content
otherwise.

If possible, are sampled from
Elasticsearch via bool query,
random Wikipedia story oth-
erwise.

Scenario 4 qstring The section from the
Wikipedia story if it is
available, whole content
otherwise.

If possible, are sampled from
Elasticsearch via query string
query, random Wikipedia
story otherwise.

Table 5.8: Macro-averaged metric scores for sampling scenarios

Precision Recall Specificity F1-score Accuracy
Scenario 1 0.897 0.888 0.944 0.889 0.888
Scenario 2 0.977 0.975 0.988 0.975 0.975
Scenario 3 bool 0.902 0.875 0.931 0.877 0.875
Scenario 3 qstring 0.912 0.893 0.946 0.895 0.893
Scenario 4 bool 0.927 0.914 0.956 0.915 0.914
Scenario 4 qstring 0.927 0.914 0.957 0.915 0.914

Confusion matrix for Fold 5 in Scenario 2 with total 963 test entries is shown in Table 5.9.

Table 5.9: Confusion matrix for Fold 5 Scenario 2

Actual
Class 1 Class 2 Class 3

Predicted
Class 1 345 1 0
Class 2 5 281 0
Class 3 7 0 324
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5.5 SVM baseline setup and results

We use SVM model as the baseline. SVM had proved to be suitable for document
categorization task [2]. For SVM we reformulate the problem into binary. We group
news articles with relevant and irrelevant Wikipedia stories the same way it is done in
Scenario 2. For each text (news article/Wikipedia page content) we compute TF-IDF
sparse vector representation. We aggregate (concatenate) TF-IDF vectors for each pair
and append cosine similarity value computed between two vectors. Each training entry
has binary label 0 or 1: 0 if we have the negative pair, 1 if the pair is positive.

Term frequency-inverse document frequency (TF-IDF) is widely used to describe the
importance of a term in a document in a document collection. Term frequency reflects
the importance of a term in a document. In other words, TF is the number of times
that term t appears in document d divided by a number of documents which contain
term t. Some words are more frequent than other. These words are called stop words.
Stop words are less important than words that are not so frequent. Inverse Document
Frequency (IDF) reflects the importance of the term in the collection of documents. IDF
is calculated as a logarithm of a total number of documents in the collection divided by
a number of documents which contain term t. By multiplying TF and IDF we receive
combined TF-IDF weight as a feature [8].

We use SVC18 implementation of SVM from the scikit-learn python machine learning
library19. The SVC is initialized with “linear” kernel and “ovo” (one-against-one) decision
function.

We use 3600 TF-IDF features for each content. Each training instance contains 3600 +
3600 + 1 features. SVM experimental results are shown in Table 5.10.

Table 5.10: Macro-averaged metric scores for SVM

Precision Recall F1-score Accuracy
SVM 0.558 0.648 0.554 0.648

As we can see, the best performing DSSM model for background linking task outperforms
baseline SVM by 32.7% in accuracy, 41.9% in precision and 32.7% in recall. We should
mention that all DSSM scenarios perform significantly better than the baseline model.

18http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
19http://scikit-learn.org/stable/index.html

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/index.html
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5.6 Discussions

5.6.1 Regularization

Deep neural architectures tend to over-fit on smaller datasets. Regularization techniques
are used to prevent a model from over-fitting [1]:

• L1 weight decay (least absolute deviations)

• L2 weight decay (least squared error)

w∗ = argminw
∑
j

(t(xj)−
∑
i

wihi(xj))2 + λ
k∑
i=1

w2
i

Where λ is a regularization term.

• Early stopping

• Bagging (ensemble)

• Dropout
Dropout prevents co-adaption of hidden units by removing hidden units stochasti-
cally.

When running the training process for 10 epochs the DSSM does not over-fit. After
running the model for more than 10 epochs the model starts over-fitting (Wikipedia
dataset is not very large in terms of modern datasets). We apply dropout with a
probability of 0.5 and L2 regularization with λ = 0.001 when model tends to over-fit. For
example, when running our best performing scenario for 30 epochs with regularization
techniques, the model does not over-fit and shows the slight improvement in metrics,
check Table 5.11.

Table 5.11: Macro-averaged metric scores Scenario 2 with regularization

Precision Recall Specificity F1-score Accuracy
Scenario 2 0.977 0.975 0.988 0.975 0.975
Scenario 2
regularized 0.98 0.978 0.989 0.978 0.978

5.6.2 DSSM Applicability

The DSSM uses semantic similarity between two objects (query and document, news
article and news event, etc.) to learn representations. Indeed, it is not suitable for



Chapter 5 Experimental Evaluation 57

learning representations in non-semantic space. In other words, mapped objects should
contain meaningful text.

Traditional IR approaches such as TF-IDF and BM25 only consider term counts (number
of exact term matching) to rank documents by relevance (similarity) to the search query.
They are not able to catch topical and typical notions of similarity.

Auto-encoders get compressed representations of text documents. The lengths of news
articles vary, highly compressed representations fail to catch all the keywords and topics
of news article content.

5.6.3 Challenges

One of the problems with news articles and events research field is the data itself. Other
research topics have experimental datasets on which researchers can build benchmarks,
perform experiments and compare results from other papers. For example, common
datasets include MR (movie reviews), SST-1 (Stanford Sentiment Treebank with labeled
movie reviews), SST-2 (movie reviews without neutral reviews), Subj (subjectivity dataset
with subjective and objective sentences), TREC (TREC question dataset), CR (customer
reviews) [19], Yelp reviews, IMDB reviews, Yahoo answers, Amazon reviews [25], etc.

There are no commonly accepted, balanced and publicly available news datasets. For
example, News Aggregator dataset has news articles from 2014, does not contain contents
of the news articles and news stories are not available. TREC challenge news datasets
usually have data from one news media outlet (Washington Post), are not publicly
available, does not include news events or news stories. In addition, Wikipedia does
not have any dumps with Wikipedia pages and external sources linked to them. Not all
external references are news sources. Many linked sources and external URLs are not
active, had been moved to web archives or removed completely. Also, news contents are
large and storing large datasets necessitates extra space and long processing times. Some
datasets require hundreds of gigabytes of space on a hard drive.

Crawling news articles is a challenging procedure. Since no online media outlets provide
the API for retrieving clean content, the title and content of the article need to be parsed
from the HTML code of the page, which is noisy and inaccurate. News websites add
commercials and advertisements to their pages which are retrieved along with HTML
code. There are some external python libraries which help to automate this process. We
used Newspaper3k20 python library for article scraping as it gave better results than
other alternatives.

20http://newspaper.readthedocs.io/en/latest/

http://newspaper.readthedocs.io/en/latest/
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Another challenge faced was that accessing the same domain multiple times in a short
period of time leads to a ban or connection cut off. Hence, timeouts should be used
to prevent such a behavior. Timeouts slow down the crawling process, making it less
efficient. One of the solutions is to use multiple threads or processes. Many URLs are
not active anymore and can be looked up only in web archives. For example, to crawl
contents of News Aggregator dataset we used 29 parallel processes with distributed
subsets of URLs to proceed, which auto-adjusted timeouts and checked web archives for
missing content. Overall, it took 3 weeks of time to design scripts and crawl 75% of news
contents. In addition, we found that some news online media have limited access and
require the subscription. This means that content of these news articles is unavailable.



Chapter 6

Conclusion and Future Directions

6.1 Conclusions

In this research, we focused on solving background linking tasks for news articles by
utilizing deep neural networks. We reviewed deep neural network structures and popular
architectures. Throughout this work, the toolbox grew larger. We discussed types of
learning, machine learning approaches to text categorization, neural and deep neural
architectures. Since none of the neural networks work with raw text, we covered existing
approaches to represent text with numerical vectors.

Background linking task implies the extraction of “similar” news articles for a given news
article (or news story). To understand term “similar” we discussed similarity metrics
and notions of similarity. We noticed some similarities between the background news
articles linking task and information retrieval problem. Inspired by IR approaches we
adjusted Deep Semantic Similarity Model to enhance the background linking task. We
used GloVe 6B pre-trained word embeddings which catch topical and typical similarities.

We designed a convolutional neural network with multiple filters, convolutional and
max-pooling layers to retrieve news article representations. Word embeddings were input
to the convolutional network. Convolutional layers extracted local features, max-pooling
layers extracted global features such as key topics and keywords. The semantic layer is
the output of the CNN fully connected layer and contains a vector representation of the
news article.

DSSM architecture implies usage of positive and negative pairs. Source article is denoted
as X, positive (similar, within the same news story) articles as Y + and negative (not
relevant, from other news stories) as Y−. Cosine similarity is used to compute similarity
between the articles in semantic space. Similarity values are then passed to the softmax

59
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posterior probability module. The goal of the training was to increase the distance
between positive and negative pairs.

We tested our adjusted DSSM model on the Wikipedia dataset and compared it to
Support Vector Machine baseline. SVM uses TF-IDF from articles as features. In
training process, we tested different scenarios to populate positive and negative training
pairs. In all scenarios, DSSM model proved to be suitable for retrieving background
news articles. The best-case scenario shows 32.7% gain in accuracy, 41.9% in precision,
32.7% in recall in comparison to SVM baseline.

The DSSM model can also be used to find the nearest category or event, and for automated
linking news articles to Wikipedia pages. We discovered that deep neural networks are
suitable architectures which identify complicated patterns and approximate any function.

6.2 Future Work

In Wikipedia dataset, we used linked Wikipedia pages (stories) as positive examples. A
Wikipedia story is a summary of the whole event, short and precise, with a guaranteed
level of quality. News Aggregator dataset does not have such event summaries. The goal
of the News Aggregator dataset is to cluster news articles related to distinct stories [22].
News Aggregator dataset has no ground truth stories content, except alphanumeric string
representing news clusters (stories). Hence, other approaches should be used to apply
DSSM to News Aggregator dataset. The first approach; use random news articles from
the same cluster to construct a positive pair. The second approach; use one news article
within the same cluster as a positive example for all other articles within the same cluster.
Negative pairs should be either sampled randomly or retrieved via Elasticsearch.

Text Retrieval Conference (TREC) conducted by the National Institute of Standards
and Technology (NIST) annually announces research contests called tracks1. One of
the challenges relevant to the research topic is News Track2. News Track has two tasks:
background linking and entity ranking. Background linking task requires the retrieval of
relevant news articles for a given news story. One of the directions for future work is to
adapt and test DSSM model to TREC news dataset. First, it requires some manipulations
with the dataset. We started, but since guidelines had been released late (11-05-20183)
it cannot be performed in this research.

1https://trec.nist.gov/
2http://trec-news.org/
3https://docs.google.com/document/d/e/2PACX-1vSJvm30NV4aT4fRcf6x-J-

AjvZqaWEw8DsjgXP1v3NlcWZZEtxZ9SwmuB-sQvcc_G7ER-BcUKJQoZHn/pub

https://trec.nist.gov/
http://trec-news.org/
https://docs.google.com/document/d/e/2PACX-1vSJvm30NV4aT4fRcf6x-J-AjvZqaWEw8DsjgXP1v3NlcWZZEtxZ9SwmuB-sQvcc_G7ER-BcUKJQoZHn/pub
https://docs.google.com/document/d/e/2PACX-1vSJvm30NV4aT4fRcf6x-J-AjvZqaWEw8DsjgXP1v3NlcWZZEtxZ9SwmuB-sQvcc_G7ER-BcUKJQoZHn/pub
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Another direction of future work is to apply the DSSM to automatically link news articles
to Wikipedia pages. All news articles are linked to Wikipedia pages manually, hence
automating this process can be of significant importance.

In this research, we had been learning news article representation. In practice, it is also
useful to learn the representation of a news event by designing auto-encoder to learn the
representation of news events from the sequence of news articles on a timeline and use it
to retrieve similar news events. The DSSM architecture can be used not only to retrieve
similar news articles within news story (event) but also to find similar events.

First Law of Thermodynamics states that nothing comes from nothing and nothing
vanishes without any marks. In real life, however, many events are consequences resulting
from another related event. Here, we talk about the chain of events. When you start
reading articles on the internet, the question arises: is it a one-time, stand-alone event
or one in the sequence of other events? For example, articles about burned animals in
California 2017 is not a stand-alone event, this event is a part of a long-running event
about California wildfires. Some chains of events have cyclic character, like FIFA World
Cup, Winter and Summer Olympics which take place once in four years. Our goal was
to link similar news events and stories in an expedited manner for the reader. While we
have shown some success in our endeavor, more work needs to be done to solidify the
use of our adjusted Deep Semantic Similarity Model.
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Appendix A

Detailed metrics tables

In this appendix we list detailed tables with metrics for sampling scenarios. Each table
shows micro-average statistics for each fold and macro-average value. For every scenario
we show precision, recall, specificity, F1-score and accuracy metrics results.

1. Scenario 1
Tables A.1, A.2, A.3, A.4 and A.5.

2. Scenario 2
Tables A.6, A.7, A.8, A.9 and A.10.

3. Scenario 3

• Elasticsearch bool query
Tables A.11, A.12, A.13, A.14 and A.15.

• Elasticsearch query string query
Tables A.16, A.17, A.18, A.19 and A.20.

4. Scenario 4

• Elasticsearch bool query
Tables A.21, A.22, A.23, A.24 and A.25.

• Elasticsearch query string query
Tables A.26, A.27, A.28, A.29 and A.30.
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Table A.1: Scenario 1 test Precision

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.806 0.832 0.817 0.799 0.793
2 0.91 0.962 0.984 0.902 0.963
3 0.95 0.882 0.92 0.973 0.968

Micro-average 0.886 0.892 0.905 0.892 0.911
Macro-average 0.897

Table A.2: Scenario 1 test Recall

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.955 0.925 0.968 0.943 0.976
2 0.842 0.822 0.851 0.868 0.879
3 0.83 0.912 0.864 0.833 0.847

Micro-average 0.878 0.886 0.895 0.882 0.899
Macro-average 0.888

Table A.3: Scenario 1 test Specificity

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.874 0.904 0.887 0.878 0.883
2 0.961 0.983 0.994 0.955 0.982
3 0.979 0.941 0.961 0.988 0.986

Micro-average 0.938 0.943 0.947 0.940 0.950
Macro-average 0.944

Table A.4: Scenario 1 test F1-score

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.874 0.876 0.886 0.865 0.875
2 0.875 0.886 0.912 0.885 0.919
3 0.886 0.896 0.891 0.898 0.904

Micro-average 0.878 0.886 0.896 0.883 0.9
Macro-average 0.889

Table A.5: Scenario 1 test Accuracy

Fold1 Fold2 Fold3 Fold4 Fold5
0.878 0.886 0.895 0.882 0.899

Average 0.888
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Table A.6: Scenario 2 test Precision

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.947 0.926 0.946 0.894 0.966
2 1 1 0.994 1 0.996
3 0.997 1 0.996 1 1

Micro-average 0.979 0.975 0.978 0.966 0.987
Macro-average 0.977

Table A.7: Scenario 2 test Recall

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.997 1 0.997 1 0.997
2 0.976 0.945 0.976 0.913 0.983
3 0.958 0.972 0.956 0.97 0.979

Micro-average 0.978 0.973 0.977 0.962 0.987
Macro-average 0.975

Table A.8: Scenario 2 test Specificity

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.967 0.959 0.97 0.943 0.981
2 1 1 0.997 1 0.999
3 0.998 1 0.999 1 1

Micro-average 0.988 0.986 0.989 0.981 0.993
Macro-average 0.988

Table A.9: Scenario 2 test F1-score

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.971 0.962 0.971 0.944 0.982
2 0.988 0.972 0.985 0.955 0.989
3 0.977 0.986 0.976 0.985 0.989

Micro-average 0.978 0.973 0.977 0.962 0.987
Macro-average 0.975

Table A.10: Scenario 2 test Accuracy

Fold1 Fold2 Fold3 Fold4 Fold5
0.978 0.973 0.977 0.962 0.987

Average 0.975
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Table A.11: Scenario 3 bool query test Precision

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.671 0.776 0.762 0.725 0.796
2 0.987 0.981 0.991 0.985 0.985
3 0.961 0.992 0.98 0.994 0.974

Micro-average 0.867 0.915 0.908 0.901 0.919
Macro-average 0.902

Table A.12: Scenario 3 bool query test Recall

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.984 0.983 0.976 0.99 0.971
2 0.657 0.849 0.794 0.781 0.864
3 0.793 0.851 0.879 0.834 0.884

Micro-average 0.817 0.896 0.887 0.869 0.906
Macro-average 0.875

Table A.13: Scenario 3 bool query test Specificity

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.738 0.854 0.84 0.811 0.878
2 0.996 0.992 0..997 0.994 0.993
3 0.984 0.997 0.991 0.997 0.988

Micro-average 0.906 0.948 0.916 0.934 0.953
Macro-average 0.931

Table A.14: Scenario 3 bool query test F1-score

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.798 0.867 0.856 0.837 0.875
2 0.789 0.91 0.882 0.871 0.92
3 0.869 0.916 0.927 0.907 0.927

Micro-average 0.818 0.898 0.889 0.872 0.907
Macro-average 0.877

Table A.15: Scenario 3 bool query test Accuracy

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.817 0.896 0.887 0.869 0.906

Average 0.875
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Table A.16: Scenario 3 query string query test Precision

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.798 0.746 0.792 0.799 0.749
2 0.984 0.978 0.978 0.977 0.99
3 0.972 0.991 0.968 0.992 0.976

Micro-average 0.915 0.904 0.91 0.923 0.906
Macro-average 0.912

Table A.17: Scenario 3 query string query test Recall

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.982 0.988 0.975 0.985 0.979
2 0.866 0.839 0.815 0.875 0.835
3 0.844 0.801 0.888 0.865 0.837

Micro-average 0.9 0.877 0.896 0.908 0.883
Macro-average 0.893

Table A.18: Scenario 3 query string query test Specificity

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.865 0.827 0.865 0.876 0.84
2 0.993 0.991 0.992 0.99 0.996
3 0.988 0.997 0.984 0.997 0.99

Micro-average 0.949 0.938 0.947 0.954 0.942
Macro-average 0.946

Table A.19: Scenario 3 query string query test F1-score

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.881 0.85 0.874 0.882 0.849
2 0.921 0.903 0.889 0.923 0.906
3 0.904 0.886 0.926 0.924 0.901

Micro-average 0.901 0.88 0.897 0.91 0.886
Macro-average 0.895

Table A.20: Scenario 3 query string query test Accuracy

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.9 0.877 0.896 0.908 0.883

Average 0.893
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Table A.21: Scenario 4 bool query test Precision

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.8 0.773 0.799 0.85 0.835
2 0.998 0.996 0.985 0.983 0.994
3 0.979 0.996 0.989 0.973 0.984

Micro-average 0.922 0.92 0.922 0.935 0.938
Macro-average 0.927

Table A.22: Scenario 4 bool query test Recall

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.994 0.995 0.989 0.993 0.993
2 0.856 0.861 0.851 0.874 0.882
3 0.86 0.836 0.875 0.914 0.913

Micro-average 0.906 0.898 0.907 0.928 0.929
Macro-average 0.914

Table A.23: Scenario 4 bool query test Specificity

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.865 0.849 0.869 0.911 0.904
2 0.999 0.998 0.994 0.992 0.997
3 0.991 0.998 0.995 0.987 0.992

Micro-average 0.952 0.948 0.953 0.963 0.964
Macro-average 0.956

Table A.24: Scenario 4 bool query test F1-score

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.886 0.87 0.884 0.916 0.907
2 0.921 0.924 0.913 0.925 0.935
3 0.916 0.909 0.928 0.943 0.947

Micro-average 0.907 0.901 0.908 0.928 0.93
Macro-average 0.915

Table A.25: Scenario 4 bool query test Accuracy

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.906 0.898 0.907 0.928 0.929

Average 0.914
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Table A.26: Scenario 4 query string query test Precision

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.806 0.793 0.824 0.838 0.803
2 0.986 0.986 0.968 0.982 0.99
3 0.99 0.982 0.993 0.989 0.987

Micro-average 0.924 0.919 0.927 0.936 0.928
Macro-average 0.927

Table A.27: Scenario 4 query string query test Recall

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.994 0.987 0.99 0.987 0.985
2 0.859 0.853 0.884 0.905 0.846
3 0.867 0.869 0.87 0.889 0.914

Micro-average 0.909 0.903 0.916 0.927 0.914
Macro-average 0.914

Table A.28: Scenario 4 query string query test Specificity

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.87 0.867 0.889 0.904 0.882
2 0.994 0.994 0.987 0.992 0.996
3 0.996 0.993 0.997 0.995 0.994

Micro-average 0.953 0.951 0.958 0.964 0.957
Macro-average 0.957

Table A.29: Scenario 4 query string query test F1-score

Class Fold1 Fold2 Fold3 Fold4 Fold5
1 0.89 0.879 0.9 0.906 0.885
2 0.918 0.915 0.924 0.942 0.912
3 0.924 0.922 0.927 0.936 0.949

Micro-average 0.91 0.905 0.917 0.928 0.916
Macro-average 0.915

Table A.30: Scenario 4 query string query test Accuracy

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.909 0.903 0.916 0.927 0.914

Average 0.914
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