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i. Abstract 
The main object of this thesis is to investigate if Bitcoin has matured as a financial asset. We 

intend to do this by comparing the volatility of Bitcoin to the volatility of gold and S&P500 

using the best fitting GARCH models. By doing this we can examine whether the volatility is 

decreasing, suggesting a maturing market. We will also look at the correlation between these 

assets.  

As part of this thesis we will provide a clear picture of what Bitcoin is, and how it functions. We 

are also going to uncover some of the opportunities and limitations that faces Bitcoin. This will 

be done by giving a thorough explanation of the technical aspects of Bitcoin to get a clear image 

of the security and reliability of Bitcoin and the blockchain-technology.  

To answer the questions presented in this thesis we used a variety of GARCH models to model 

the volatility of Bitcoin and other assets. This revealed that Bitcoin exhibits an extreme 

volatility, which does not seem to be decreasing or stabilizing. This lead to the conclusion that 

Bitcoin is not yet maturing as a financial asset.  
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iii. Terminology 
 

ACF – Autocorrelation function 

AIC – Akaike information criteria 

AR – Autoregressive  

ARCH – Autoregressive conditional heteroskedasticity  

ARIMA – Autoregressive integrated moving average 

ARMA – Autoregressive Moving Average 

BIC – Bayesian information criteria 

BTC – Bitcoin 

DCF – Discounted cash flow 

eGARCH – Exponential generalized autoregressive conditional heteroskedasticity 

EMH – Efficient market hypothesis 

GARCH – Generalized autoregressive conditional heteroskedasticity  

HQIC – Hannah Quinn information criteria 

IID – Independent and identically distributed 

MA – Moving Average 

PACF – Partial autocorrelation function 

SHA-256 – Secure Hash function 256-bits  

SIC – Shibata information criteria 

S&P500 – Standard & Poor 500 

WACC – Weighted average cost of capital 
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1. Introduction 
In 2007 the USA housing market collapsed, causing a global financial crisis. The stock market 

crashed, and a lot of people lost their investments and life savings. This caused big banks and 

financial institutions to declare bankruptcy. The problem when large financial institutions and 

banks declare bankruptcy is that it does not simply affect the workers of the bank, but everyone 

involved with the bank. This has been popularized as “too big to fail”, implying that we simply 

can’t allow these banks to go bankrupt because of the impact it will have on the economy 

(Goodman, 2008). To save the banks and the economy, the government had to step in and bail 

out the banks, which meant spending taxpayers’ money to save the banks. Given that the 

financial crisis initially started with banks giving out risky loans to reap huge profits, many 

people found it provoking that they had to suffer the consequences of the banks misbehavior, 

while the consequences for the banks were minor (Amadeo, 2017).  

 

In 2008 a person or a group with the pseudonym Satoshi Nakamoto released a paper called 

"Bitcoin: A peer-to-peer electronic cash system" where the idea of a digital currency was 

explained. In a world moving away from cash, meaning that two free individuals would be 

unable to exchange any money without the intermediation of a bank, Satoshi argued that a new 

and digital global currency was necessary. A digital currency without the need of an external 

third party to verify transactions is not a new concept, however. It has been experimented with 

many times in the past, but they all seem to have had one problem in common. Namely the 

“double-spending” problem. In Satoshi’s paper he explained the concept behind a new type of 

technology he called blockchain that allegedly solved this problem. The new digital currency 

called Bitcoin would work, as the title would suggest, as a peer-to-peer electronic cash system 

removing the need of a trusted third party to verify all transactions (Nakamoto, 2008). Since the 

launch of Bitcoin, it has been a disputed subject in the world of finance. Some claim Bitcoin to 

be a revolutionary payment system, while others consider it a bubble exhibiting many traits 

similar to a Ponzi-scheme (Reid, 2018). 

 

In this thesis we intend to answer the following questions: 

-  What are cryptocurrencies and what advantages do they bring to the table compared to 

traditional fiat currencies?  

- Is Bitcoins volatility decreasing, indicating that Bitcoin is maturing as a financial asset?  
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A technical introduction to Bitcoin will be presented followed by some financial framework to 

understand how Bitcoin should be classified. Methodology regarding the analysis of financial 

time series is presented for the reader to understand how we have chosen to examine the maturity 

of Bitcoin through its volatility. Further, our data and findings will be presented and interpreted, 

and this will be used to draw a conclusion about the future of Bitcoin. 

2. Bitcoin 
Bitcoin was first introduced to the world through a white paper titled "Bitcoin: A peer-to-peer 

electronic cash system". The paper was published in 2008 by the pseudonym Satoshi Nakamoto 

(Marr, 2018). The paper described the concept of a digital currency called Bitcoin, and the 

program sustaining Bitcoin was launched in 2009. Since then, the volatility of Bitcoin and the 

massive profit collected by early investors has brought Bitcoin to the spotlight of the media, and 

most people with an interest in finance or technology has an opinion on it. In this section of the 

thesis the authors will give a simple and a technical introduction to Bitcoin with the intent of 

giving the reader an idea of how Bitcoin works, why Bitcoin has gained value, and what 

limitations and possibilities that faces Bitcoin.  

2.1. A technical introduction to Bitcoin 
The technology that enables Bitcoin and other cryptocurrencies is called a blockchain. A 

blockchain is a publicly distributed ledger. This ledger enables transactions to take place in a 

peer-to-peer1 network, without a third party to verify transactions. For this system to work, 

everyone in the network has a copy of the public ledger. If anyone wish to conduct a transaction, 

they must announce this to the rest of the network. Each participant in the network will then 

investigate if there are sufficient funds to complete the transaction and confirm the transaction 

if it is deemed possible. This is to avoid someone spending their funds several times. When the 

transaction is confirmed by the network, every participant updates their ledger with the new 

transaction. All transactions that are confirmed will later be encrypted with other transactions in 

a block. Each block on the blockchain contains information about the previous block, ensuring 

that one cannot alter a single block without altering all the following blocks. Because of this it 

is impractical and very demanding to alter the information that is stored on the blockchain, which 

is paramount for the blockchains security.  

  

                                                           
 

1 A peer-to-peer network is a network without a centralized authority that must approve of actions taken in the 
network 
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In the next section the simplified explanation given above will be elaborated on, and some 

important functions of the Bitcoin system will be examined.  

  

2.1.1. Double-spending 

Blockchain technology solves a challenging issue regarding cryptocurrencies, namely the issue 

of double-spending (Lasn, 2017). Most digital files on a computer can be duplicated or falsified. 

This poses a threat to the concept of a decentralized cryptocurrency, as the opportunity for 

anyone to counterfeit a digital currency would render it useless. Usually when conducting a 

transaction there is an exchange of physical items, or in the case of paying with a credit card, 

there is a third party that will make sure that the transaction is genuine. This system with 

centralized authority gives a lot of power to the banks and credit card companies that keep track 

of the transactions, and it also has transaction costs.  

  

With a decentralized currency exchanges are conducted directly between buyers and sellers. In 

place of relying on a third party to track and keep record of the transaction on a ledger closed 

off to the public, Bitcoin uses a blockchain as a public ledger. Anyone can access this ledger, 

and the balances of every user can be viewed by anyone. Actually, it's more precise to say that 

every user can view every transaction ever registered on the blockchain, and the balances are 

kept by adding all the transactions together. As soon as a transaction is transmitted to the 

network, the active participants will check the balances of the parties in the transaction and 

confirm the transaction if it is feasible. After the transaction is confirmed, the funds in question 

will move from buyer to seller. Because any transaction on the blockchain is checked and must 

be accepted by the peer-to-peer network it is practically impossible to confirm a transaction that 

is not valid, and so the only way to fool the blockchain is to go back in time to delete transactions, 

and thus be able to spend the money several times. This is known as double-spending.  

 

The active participants in the network that confirm or reject the transactions are called miners. 

The miners receive a reward of Bitcoins if they confirm a block of transactions to the blockchain. 

To decide which of the miners will be allowed to add and confirm transactions to the blockchain, 

the public ledger is operated as a democracy based on computing power. This will be explained 

further in chapter 2.1.4. 
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2.1.2. Cryptographic hash function 

To understand the mining prosses and how the miners confirms and reject transactions, it is 

necessary to be introduced to some cryptography. A hash function is a mathematical algorithm 

that converts an input of any size to an unrecognizable output of a fixed size (Fisher, 2018). The 

hash function used when creating Bitcoin addresses is the SHA-256 function developed by the 

NSA. The output of the SHA-256 function consists in every case of 64 digits, consisting of 

numbers and small letters from the English alphabet. (Pacia, 2013) The input can vary from an 

empty space to a long story, or in the case of Bitcoin, a ledger of every transaction made in the 

last 10 minutes on the blockchain. A characteristic of a hash function is that it is easy to calculate 

the output given the input, while it is extremely demanding to calculate the input given the 

output. The only way a computer can do this is to run random guesses to the input to find a 

match for the output. Given the 3664 different combinations that may be the correct output, this 

is extremely time consuming. 

  

2.1.3. Merkel trees 

A Merkle tree is a binary tree where the outermost branches are hashes of original data, and each 

parent node is a hash of the combination of its children nodes. Each transaction (Tx) is used as 

the input of a hash function and the outputs are then combined two and two, before the result is 

hashed again. This is repeated until one ends up with a single hash output called the Merkel root. 

The Merkel root is then hashed, resulting in the root hash, which is placed in the block header 

along with the hash of the previous block and the nonce. The entire block header is then hashed 

with SHA-256 and the output serves as the block identifier. The hashed block header is then sent 

out to the miners of the network whom proceeds with verifying the block as explained in the 

next section. 
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Figure 2.1: Graphical representation of the root hash, or Merkel Root (Nakamoto, 2008) 

  

2.1.4. Miners  

For a peer-to-peer cryptocurrency network to function properly, the network requires people 

with computer power whom are willing to contribute to the system. Every person with a strong 

enough computer and a stable internet connection can sign up and "rent" their computer power 

to the network. In the early days of Bitcoin, every user of the system was also a miner, but due 

to the increase in popularity of Bitcoin, mining now requires specialized hardware and software. 

(Pacia (1), 2013) When you download the mining program and connect to the system, your 

computer becomes part of the infrastructure that sustains the cryptocurrency. All the computers 

in the system receives all the transactions on the blockchain and arrange them into blocks. The 

blocks in the Bitcoin protocol is limited to 1 MB of data to prevent big blocks from clogging the 

system. The list of the recent transactions in the system is then passed through a cryptographic 

hash function together with a number called a "nonce". Nonce is an abbreviation for "number 

used once" and is in the case of Bitcoin an integer between 0 and 4 294 967 296 (Acheson, 

2018). The nonce, the hash of the previous block, and the transaction list is set as the input in 

the cryptographic hash function and produces a corresponding output. The miners in the system 

each receive an individual copy of the transaction list and is given control of the nonce. To verify 

the transactions and accept them as changes to the public global ledger, the miners must solve a 

task. Solving this task and submitting the answer is called Proof of work. The task consists of 

creating an output of the hash function that meets certain criteria. In the example of Bitcoin, the 

criteria are that the output must start with a predetermined number of zeros. The miners then 

proceed to changing the nonce in the block, resulting in a random output for each new number. 
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Once a miner manages to guess a number that results in an output of the hash function, starting 

with the predetermined number of zeros, the block and all the transactions in it is considered 

verified and the result is broadcasted to the rest of the network. The miner that first solves the 

puzzle is rewarded with a predetermined number of Bitcoins, in addition to transaction fees 

payed by the users of the blockchain. The number of Bitcoins rewarded to the miner who is first 

to solve the task is halved every 210 000 blocks. The number of zeros required in solving the 

puzzle determines the difficulty level of solving the blocks. The difficulty level is calibrated 

every two weeks to ensure that the average block confirmation time is 10 minutes. In the start 

of 2009 the reward for solving a Bitcoin block was 50 Bitcoins. Because one block takes on 

average 10 minutes to solve, it takes approximately four years for the reward to be halved. After 

the reward for bitcoin mining has been halved 64 times, the reward is programed to be zero, 

since this is approximately where the function converges. This makes the finite number of 

bitcoins ever to be created equal to 21*106 as shown in equation 2.1. (Skvorc, 2017)  

  

∑
50∗210 000

2𝑛
∞
𝑛=0 ≈ 21 ∗ 106  (2.1) 

  

 The block reward at the time of writing is 12,5 Bitcoins. 

  

As an example of the mining process, one can look at a hash function with the input "Hello 

world!", and a nonce that the computer of a miner would be in control of in figure 2.2. In the 

case of Bitcoin-mining, the input would be 1 MB of transaction history instead of the sentence 

"Hello world!". In this example, the predetermined number of zeros the miner must find to 

confirm the transactions is 4. One can see that by changing the nonce from 0 to 1 the output 

changes completely. It is impossible to know the output, so the only way to find an output that 

matches the criteria given is by systematically changing the nonce until one achieve a correct 

answer. In figure 2.2, the nonce 4250 resulted in an output that matched the criteria. The more 

zeros required in the beginning of the hash. The harder the task becomes (Pacia, 2013). 
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 Figure 2.2: An example of the large changes in output from a small change to the input of a 

hash function (Pacia, 2013). 

  

2.1.5. Blockchain 

Once a miner has broadcasted a valid hash to the network by using the correct nonce, the miners 

will start working on the next block. The block header of the new block contains the Merkel root 

of the latest transaction, the nonce that the miners can edit, a time stamp, and the solved hash 

output of the previous block. The hash output of the previous block links the blocks together, 

hence the name "blockchain". In the case of multiple blocks being solved by different miners 

simultaneously, the individual miners will work on the longest blockchain, resulting in multiple 

chains. This split lasts until someone solves the next block. When this happens, all miners will 

start working on the longest chain. This process is the root of the security in the blockchain. In 

the case of an attacker wishing to edit the ledger to increase his own balance, the hash output of 

the edited block will change. As shown in figure 2.2, this will result in a completely different 

output. This in turn will lead to a change in the next block, because the header of the previous 

block is included in all blocks. The domino-effect of this initial change will change every 

following block on the blockchain, but these blocks will not be validated by the community, 

leaving the change with no impact. The only way an attacker would be able to permanently edit 

their balance would be to calculate the new hash for the next block. The intruder would in 

addition have to do this for every following block. Because all the honest miners in the system 

always works on the longest publicly known blockchain, the attacker would have to solve blocks 

faster than the entire network to get the compromised blockchain validated. The only way to 

successfully attack the network in this way is called a 51% attack and is explained in the next 

section. 
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Figure 2.3: The figure shows what information the blocks on a blockchain contains 

(Nakamoto, 2008). 

  

2.1.6. 51% attack 

A successful attack on Bitcoins blockchain is usually referred to as practically impossible. This 

is because an attack is theoretically possible if one agent were to take control over more than 

50% of the networks computing power. This scenario is commonly referred to as a 51% attack. 

As mentioned in section 2.1.4, the confirmation of new blocks on the blockchain is a race 

between the miners to solve a task before the rest of the network. The way the Proof of work 

system functions is that a miner’s probability of solving the task is proportional to the miners 

relative computing power. In other words, a mining pool2 that controls 10% of the networks 

computing power will have a 10% chance of solving the next block.  

  

As we know from section 2.1.5, a change in a former block will also lead to a change in the 

following blocks. Because the network only accepts the longest blockchain as the true ledger, 

an attacker will have to create new blocks faster than the rest of the network to manipulate the 

ledger. If we examine the case of a mining pool operating 10% of the networks computing 

power, they would face a diminishing chance of beating the network for every block that is 

accepted, illustrated by equation 2.2. 

 

𝑃 = 0,1𝑛  (2.2) 

                                                           
 

2 A mining pool is a group of miners who shares resources to solve blocks in cooperation. The mining pool share 
the rewards based on how much computer power one contributes, securing an even cash flow.  
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Where P is the probability of success, and n is the number of blocks solved by the community 

after the changed block. However, if the attacker is in possession of 51% of the networks 

computing power the game changes. In this case, the attacker could make alterations to 

transactions in an accepted block and find new solutions for the other accepted blocks without 

publishing the solutions to the rest of the network. Because the attacker controls more than 50% 

of the network, he would theoretically solve blocks in private faster than the rest of the network, 

and as soon as the hidden blockchain is longer than the public blockchain, the hidden chain 

would be published. This would lead to the honest miners starting to work on the previously 

hidden blockchain, validating the alterations made by the attacker. The attacker would not be 

able to transfer Bitcoins to himself from other users, but he could use his Bitcoins to buy goods, 

and delete the transactions as soon as he receives the goods, allowing him to spend money 

several times. Obviously, an attack like this would be devastating for the trust people put in 

Bitcoin and deem the coin useless. Fortunately, this is a highly unlikely scenario because of the 

high cost of obtaining this amount of computing power. In addition, it would probably be in the 

interest of any group holding such a large amount of the networks computing power to behave 

honestly to secure the integrity of the blockchain, and thus maximize future profits. In the 

original white-paper, Nakamoto calculated that an attacker with 10% of the computing power 

would have a 0,024% chance of beating the odds and confirm 6 blocks of transactions before 

the rest of the community (Nakamoto, 2008). This is one of the reasons why it is recommended 

for suppliers to wait 6 blocks, which is about an hour, after receiving Bitcoins before sending 

goods. 

  

2.1.7. How to transfer Bitcoins 

To understand how Bitcoins are transferred safely, it is necessary to possess some knowledge of 

data encryption. Cryptocurrencies are secured through key cryptography. There are mainly two 

types of key cryptography, symmetric key cryptography and asymmetric key cryptography. In 

the case of symmetric key cryptography, both the sender and the receiver of a message will have 

an identical cryptographic key. This key is used by the sender to encrypt the message, and by 

the receiver to decrypt it. This is comparable to applying password protection to a file.  
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Figure 2.4: Data encryption/decryption using a symmetric key (IBM knowledge center, 2018). 

  

This is a very effective and easy way of sending private information, but there are negative sides 

to this method. It is safe to exchange information as long as only the sender and the recipient 

has access to the encryption key. Thus, the drawback to the symmetric secret-key ciphers is the 

exchanging of the secret key. If one wishes to safely send a key to a recipient without a physical 

exchange, one must encrypt the key itself, meaning that the person must already own the key to 

decrypt the new key (IBM knowledge center, 2018). Symmetric key cryptography also works 

as a signature for the message. If you can decrypt a message, you know it has been encrypted 

by the matching key. 

  

Bitcoin does not use symmetric key encryption. Instead Bitcoin uses asymmetric key 

cryptography. With this system two keys are used instead of one. This is a private key, and a 

public key. The public key is open for all to see, but the private key is kept secret. In more 

practical terms one can say that that the public key is a user’s address or account. The pair of 

keys associated with an account are related, enabling the private key to decrypt messages 

encrypted by the public key. The hash chain relating the two keys makes it infeasible for an 

attacker to decrypt a message encrypted by a public key without knowing the private key. This 

ensures that each person holding a private key can receive and interpret messages from anyone 

with access to his public key. The combination of a private key and a message also works as a 

signature. Given that all public keys are accessible for anyone, it is possible to use the public 

key to see who has signed a transaction. If someone’s public key can be used to decrypt a 

message, one can be positive that the person holding the corresponding private key has encrypted 

it. The key pair is automatically created when someone becomes part of the Bitcoin network. 

Joining the Bitcoin network does not require any form of identification, though most people will 

create their key pair through a third party that requires identification. It is nonetheless possible 

to participate in the Bitcoin network without revealing your identity to anyone.   
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When Bitcoins are transferred from one user to another, what happens is that the sender will 

publish a message to the network. This message will contain the address of the recipient, and 

the number of Bitcoins the sender wishes to transfer. The message is also signed by the sender 

using the private key. Once the nodes in the network receive the message they will check that 

the signature matches the public key, and if it does the network will also confirm that the sender 

is in possession of sufficient funds to complete the transaction. When this is done, the transaction 

will be pooled with the other confirmed transactions, and the miners will include it in the next 

block on the blockchain (Nakamoto, 2008). 

 

 2.2. Classification of Bitcoin 
The classification of Bitcoin is a subject which there are some disagreement among economists. 

For the authors, and most people who hear of Bitcoin for the first time, it may be natural to think 

of Bitcoin as a currency because of its name and the fact that the creator of Bitcoin intended it 

to be a form of money (Nakamoto, 2008). However, to give a formal classification of Bitcoin it 

is necessary to look at Bitcoins properties.  

  

According to the Merriam Webster dictionary, a currency is something that circulates as a 

medium of exchange. Although this is not limited to money, in our modern society, currency 

and money goes hand in hand. For something to be classified as money it should be generally 

accepted as a medium of exchange, it should store value, and be a unit of account. Examination 

of Bitcoins properties can rise doubts of whether Bitcoin can be classified as either money or a 

currency.  

  

As will be shown in chapter 5, the volatility of Bitcoin is extreme, even compared to stocks. 

Traditional currencies like the Dollar and the Euro also experience volatility, but not anywhere 

near the levels exhibited by Bitcoin. With that being said, there are examples of currencies 

backed by national banks that has experienced extreme inflation, which has made them 

temporarily or permanently unable to function as money (Stoltz, 2018). It can non the less be 

argued that Bitcoin isn’t a good store of value compared to other currencies considering how 

volatile the value of Bitcoin is at the time of writing.  

  

Bitcoin does not provide a perfect unit of account either. Though Bitcoin provides a perfect 

record of all transactions ever conducted through the Blockchain, these transactions only 
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represents the underlying economic transactions, and is thus not complete as a unit of account 

(Jenssen, 2014, p. 40).  

 

Bitcoin has been used as a medium of exchange since its very beginning (Ytterstad, 2017). Since 

then Bitcoin has gained a reputation as a currency used by criminals to conduct untraceable 

transactions. Today there seems to be some problems facing Bitcoin as a medium of exchange. 

One of which has to do with circulation. Since Bitcoins beginning in 2009, the value has 

skyrocketed. There have also been periods of extreme reduction in value, but in general there 

has been an appreciation of Bitcoin. This has led to many people acquiring Bitcoin not to use it, 

but to accumulate it for future economic benefit, or to "HODL"3. The consequence of this 

strategy is that there are few Bitcoins in circulation, and that few people wish to trade Bitcoins 

for other goods in fear of missing out on the expected economic benefit from selling the Bitcoins 

at a higher price in the future. There is some evidence that the price of Bitcoin is correlated with 

news regarding Bitcoin. (Meland & Øyen, 2017, p. 18). This implies that not all investors follow 

the “HODL” philosophy.  

  

There are also some concerns related to the transaction speed of Bitcoin. Blocks are confirmed 

every 10 minutes, and the maximum block size is 1 MB. This puts a constraint on the output of 

the network and may limit transaction speed. This may make Bitcoin impractical for daily use.  

  

Another problem is that few businesses accept Bitcoin as a payment method, thus limiting the 

usage of Bitcoin as a medium of exchange.  

 

2.3. Problems with Bitcoin 
The problems mentioned so far are mostly connected to the technical properties of Bitcoin and 

the short amount of time that Bitcoin has been around. Perhaps the biggest problem for Bitcoin 

is that use of cryptocurrencies requires people to think different about money. With traditional 

fiat currencies your moneys value is guaranteed by the government. There are also sophisticated 

safety nets that to some degree can prevent scams and help recover lost funds or revoke mistakes 

made when transferring money.  

 

                                                           
 

3 HODL is an intentional misspelling of the word hold and refers to the strategy of acquiring Bitcoins with the 
intent of holding on to the coins without regard for negative price shocks.  
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What keeps a currency valuable is mainly trust. People trust that when they trade a good or 

service for money today, they will be able to trade the same money for other goods or services 

tomorrow. Building trust in a system takes time and usually requires multiple positive 

experiences with the system. One example where trust has slowed down the implementation of 

a new type of payment method is the introduction of credit cards. The credit card has several 

advantages over cash as it is easier and safer to store, it can easily transfer large amounts of 

money, and it is possible to stop or revoke transactions. The popularity of credit cards exploded 

in the 1970s and it has become a common way of exchanging value for most people. Yet even 

today, almost 50 years later, after several successful years of proving its trustworthiness and 

reliability there are still people whom prefer to make payments using cash.  

 

It can be argued that Bitcoin possesses advantages over traditional credit card and cash 

payments, some of them are mentioned earlier, but it also has several disadvantages. One of the 

advantages of Bitcoin is that it removes the need for an external third party to verify transactions. 

This of course also means that people will have to take responsibility for their own transactions. 

If one makes a mistake when transferring Bitcoin, the mistake is yours, and there is no one to 

correct it. This means that if you type in an address where you want to send funds and make a 

typing error and send the coins to a non-existing address these funds will be lost forever. This is 

due to the security of the blockchain, which does not allow revoking confirmed 

blocks/transactions. When we look at how long it took before credit cards were adopted by the 

mass majority, a system which is backed by governmental law and requires nothing of the user 

except memorizing a 4 digit code and putting the system to use, one can only try to imagine the 

time it will take before people start placing trust in a new system that offers no warranty that 

your values are safe, and that punishes you for making mistakes. This combined with high 

volatility and lack of user-friendliness can prove to be huge obstacles for the implementation of 

Bitcoin.  

 

Hackers and cybercrime is also a big threat to the mass-adaption of Bitcoin. Cryptocurrencies 

are building on emerging technologies that may have unknown security-holes, and there has 
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been several known cases of theft and security breaches like Mt. Gox 4  and the Ethereum 

hacking5. With the anonymity offered by cryptocurrencies it may be easier than ever to get away 

with large sums of money from crime, because cryptocurrencies often are untraceable.  

 

2.4. Potential of Bitcoin 
As an unregulated and independent money system, Bitcoin provides some advantages and 

opportunities under certain conditions. Bitcoin functions the same way independent of 

geography, and this can prove to be valuable when transferring funds across borders. Especially 

when sending remittances to third world countries, use of Bitcoin could be a way to reduce fees 

and allow people to transfer more money at a lower cost. This offers a way around international 

giants like Western Union and MoneyGram by enabling quick transactions with lower fees and 

would probably force these companies into harder competition (Seth, 2018). In addition, the 

Bitcoin market is never closed, so one does not have to limit transactions to certain days and 

times.  

 

In Venezuela, Bitcoin and other cryptocurrencies are used by some people to maintain their 

purchasing power. Though Bitcoin has high volatility, it still more stable than the national 

currency of Venezuela, the Bolivar, which has experienced extreme inflation during the rule of 

president Maduro (Voge, 2018).  

 

In Zimbabwe, a country that haven’t had a national currency since 2009, Bitcoin has gained 

popularity as a mean to obtain foreign currencies. The country suffers from low currency 

reserves, and on the black-market Bitcoin can be traded for US dollars and other foreign 

currencies that are legal tender (Brand, Latham, Marawaniyka, 2017). Bitcoin is also very 

difficult to counterfeit because of the blockchain technology. This might give cryptocurrencies 

an upper hand versus cash.  

 

In western society some policymakers wish to move toward a cashless society. This has several 

advantages when it comes to stopping crime and ensuring that people pay taxes, but it can also 

                                                           
 

4 Mt. Gox was a large Bitcoin exchange platform until it unexpecdetly shut down in 2014 after an attacker had 
stolen a significant amount of Bitcoins without detection (Jeffries, 2018). 
5 In 2016 an attacker took advantage of a weakness in the cryptocurrency Ethereums code, allowing him to claim 
a large amount of Ether. 
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be used as a mean to surveil the people and put restrictions on civil liberties. The existence of 

Bitcoin and other cryptocurrencies ensures that it will always be possible for two individuals to 

exchange values anonymously without an external third party even as our society becomes more 

and more digitalized.  

3. Financial theory 
In this chapter we will give a brief overview of some of the theories that will be used when 

discussing Bitcoins properties as a financial asset, and how Bitcoin eventually may be made part 

of a modern portfolio.   

 

3.1. The Efficient market hypothesis  

Whether or not it is possible to predict stock prices has been a hot and disputed topic amongst 

economists for decades. Many people and businesses in the financial industry make a living 

from doing technical and fundamental analysis of assets to uncover possible arbitrages or 

profiting by selling information to investors. The efficient market hypothesis (EMH) was first 

formulated by Eugene Fama. His hypothesis was influenced by the work of physicist Louis 

Bachelier and economist Paul Samuelson whom both pioneered within financial mathematics 

(Read, 2013, p. 1-5). In general, the efficient market hypothesis argues that is not possible for 

an investor to "beat the market". This means that all available and relevant information regarding 

a stock or an asset is considered when the market price of the stock or asset is decided (Malkiel, 

2003, p. 59-61). This implies that any form of arbitrage will be impossible, and the only way an 

investor can achieve a higher return than the market is by increasing risk in the portfolio. Burton 

Malkiel illustrates this by saying that a chimpanzee throwing dart at different stocks in the Wall 

Street journal to set up a portfolio would have a similar long-term return as that of a portfolio 

set up by experts. According to the efficient market hypothesis, the value of assets will be 

affected by news regarding the asset directly or indirectly, but news is unpredictable and 

therefore the value of the asset is also unpredictable. EMH is usually classified into 3 different 

versions, weak, semi-strong and strong. The weak EMH suggests that the current asset price 

reflects all previously publicly available information. This implies that analysis of historical data 

can’t predict the future asset price. The semi-strong EMH says that current asset prices reflect 

all historical information, and that any new information immediately will be reflected in the 

price. This means that news about an asset will lead to a new equilibrium price for the asset, 

removing all possibilities for an arbitrage unless one has information that is not publicly 
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available. With a strong EMH, all information, both public and secret, is reflected in a price, and 

thus it is not possible to earn risk-adjusted return that is higher than the market (Maverick, 2015). 

  

Critics of the efficient market hypothesis often points to financial crisis and bubbles, claiming 

that these are evidence that EMH is inaccurate and has flaws. Behavioral economists have in 

recent years shown that psychology is a major influence of stocks value, and that herd mentality 

can undermine the efficiency of a market (Nocera, 2009). If the market truly is effective, it does 

not make sense that the market in the past has dropped by 20% or more in a single day. The 

occurrence of bubbles in a market also implies that the efficient market hypothesis can be 

violated under certain conditions. 

  

3.2. Bubbles  
Bubbles are commonly known as the phenomena where an asset is increasing in value to an 

extreme level above its intrinsic value. This is followed by a correctional drop, referred to as the 

bubble bursting, which returns the value of the asset to a more representative level. In some 

cases, the asset can also be undervalued after the bubble bursts. A bubble often occurs because 

of a boom in a specific market and is fueled by the investors hope that the boom will continue 

further into the future. Bubbles have occurred in financial time series many times and can be 

viewed as a violation of the efficient market hypothesis. What triggers a bubble is often new 

information about an assets intrinsic value and an extreme increase in an assets value compared 

to its historical value (Brunnermeier and Oehmke 2012, p. 12-14). Bubbles often occur within 

markets that investors know little about, and where they are in a hurry to invest to capture some 

of the extreme price increases often associated with bubbles. It can be difficult to detect a bubble, 

which is one of the reasons why they occur, but they are usually very clear after the bubble has 

burst. An example of a bubble is the dot-com bubble of the mid to late 90's. In the 20th century 

investors' expectations of what the internet could offer businesses drove them to invest heavily 

in companies claiming to be the first to take practical advantage of this new phenomena. As a 

result, the stock value of companies who were early to adopt the internet in their business model 

skyrocketed until the start of the 2000's when investors realized the assets were overvalued. This 

resulted in a major drop in the stock prices of these companies leading to many people losing 

their investments (Smith, 2012). Though many companies filed for bankruptcy, and a lot of 

people lost money on internet-stocks, many of the most valuable companies today emerged from 
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this era, showing that it was not all air. Examples of companies that recovered from the dot-com 

bubble is Amazon and Google (Misamore, 2018). 

 

 3.3. Asset valuation 
Asset valuation is the process of determining an assets present value. There are many reasons 

for performing an asset valuation, it can for instance be necessary in the case of bankruptcy, but 

most commonly it is used to value an asset that one wishes to buy or sell (Simkovic, 2016). The 

correct price/value of an asset is supposed to reflect all available information about the assets 

future and present. There are different approaches to valuating assets, and the most used method 

is that of DCF. The following equation is used to determine an assets value by DCF. 

  

𝑉 = ∑
𝑐

(1+𝑟)𝑡

∞

𝑡=1
 (3.1) 

 

Where V is the value of the asset, c is the expected cash flow, t is time, and r is the discount rate. 

This method is based on the time-value of money and use a discount rate in combination with 

the expected future cash flow of an asset to determine its present value. The discount rate can 

be established using WACC. The discount rate will also be affected by the riskiness of the asset. 

The future cash flow can be estimated by historical data, analysis of the asset, expert opinion, 

and all other public information about the asset. V’s value is extremely sensitive to the expected 

value of c. DCF is focused on the intrinsic value of the asset, but the results hinges on good input 

to the model. Without good estimates for the expected cash flow, DCF will yield poor results. 
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4. Methodology 
The theory presented in this chapter is inspired by the book “Analysis of Financial Time Series” 

by R. Tsay. 

 

Analyses of time-series has gained popularity for decades. Some of the reason for this fields 

popularity is the potential to gain an upper hand in predicting the future movement of stocks. 

Evaluation of time series started with stochastic processes, and in the 1920s economists George. 

U. Yule and J. Walker first started applying autoregressive models. As an attempt to remove 

cyclical fluctuations in series due to seasonality and shocks the moving average model was 

introduced. The ARMA models were introduced during the same period by Swedish economists 

Herman Wold, but he was not able to determine a likelihood function to acquire a maximum 

likelihood estimation of the parameters. Much later, in 1970, G. E. P. Box and G. M. Jenkins 

authored the book "Time Series Analysis", introducing the full modelling method for individual 

time series in an applicable sense.  One of the weaknesses of ARMA models were that most of 

them were only applicable to stationary time series. Non-stationarity from a rising trend and 

stochastic volatility is very common in financial time series, hence the field required models that 

were applicable to non-stationarity. This led to further research, and the development of ARMA 

models extended to modeling the variance of data, such as Engle's ARCH model, and the many 

different GARCH models. The new ARCH and GARCH models allowed for parameterization 

and forecasting of non-constant volatility, something that the existing Box-Jenkins models 

would not. These perks of the ARCH and GARCH models have made them very applicable to 

financial time series (Zuobir, 2017). 

  

4.1. Lag-operators, lag-polynomials, and inverses 
A lag-operator is often defined for models that are designed to forecast a result based on 

historical data. A lag-operator can be defined as 𝐿𝑘𝑥𝑡 = 𝑥𝑡−𝑘 where k is number of lags. This 

equation is used to model the process moving forward. Lag-polynomials are defined as 

polynomials in the lag operator and can be defined as 𝜑(𝐿) where: 

  

𝜑(𝐿) = 𝜑0 + 𝜑1𝐿1 + ⋯ + 𝜑p𝐿𝑝  (4.1) 

  

This again is defined as a lag-operator, giving the following equation 
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𝜑(𝐿)𝑥𝑡 = 𝜑0𝑥𝑡 + 𝜑1𝑥𝑡−1 + ⋯ + 𝜑p𝑥𝑡−𝑝  (4.2) 

  

An important feature of the lag-polynomials is that one can add and multiply polynomials in 

complex variables in the exact same way as one can add and multiply lag-polynomials. The 

lag-polynomial notation can be used to more easily determine stationarity in a time series 

process (Sørensen, 2012, p. 2-4) 

  

4.2. Stationarity 
Stationarity is the most important concept of time series analysis and says something about the 

series behavior with respect to time. If all the statistical properties of the series are independent 

of time, the series are stationary. The two main types of stationarity are strictly stationary 

processes, and weakly stationary processes. If, for all t, the joint distribution of (𝑥𝑡1
, … , 𝑥𝑡k

) is 

identical to that of (𝑥𝑡1+t
, … , 𝑥𝑡k+t

) the time series {𝑥𝑡} is strictly stationary. Here 𝑘 is a positive 

integer, and 𝑡 is positive integers. Simply put, a process is strictly stationary if the distribution 

of {𝑥𝑡} doesn’t vary with time. This condition is challenging to verify based on empirical 

observations alone. A series {𝑥𝑡} that is weakly stationary possesses a mean and a covariance 

between 𝑥𝑡  and 𝑥𝑡−𝑙  that is independent of time, 𝑙 being an integer. If a time series  {𝑥𝑡} is 

observed and it can be shown that for all (𝑡 = 1, … , 𝑇) the T values is fluctuating with a constant 

variance revolving around a fixed level, the series is considered weakly stationary. The statistical 

moments of the series depend only on time difference and not upon time of occurrence. In other 

words, the covariance between one value of the series and another value at a different time, 𝛾𝑙 =

𝐶𝑜𝑣(𝑥𝑡, 𝑥𝑡−𝑙) called the lag-𝑙 autocovariance of 𝑥𝑡, will have two important properties; 𝛾0 =

𝑉𝑎𝑟(𝑥𝑡) and 𝛾−𝑙 = 𝛾𝑙.  Weak stationarity can be used to make assumptions about a series future 

value. A normally distributed weak stationary series {𝑥𝑡} can be considered equal to a strictly 

stationary series. Stationarity is assumed to simplify the development of stochastic processes, 

and it is often required for models analyzing time series. (Tsay, 2010, p. 30)  

  

To use time series models such as the ARMA variations, one must assume stationarity. In an 

ARMA(p,q) process consisting of a AR(p) and a MA(q) term, the MA(q) term is irrelevant when 

determining stationarity. A method for checking whether a timeline is stationary or not is to 

examine the roots of the characteristic equation. We can obtain this expression by presenting a 

AR(p) process in a lag-polynomial notation. If we for instance take a random AR(p) expression 

such as: 
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𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙p𝑦𝑡−p + 𝜀𝑡  (4.3) 

  

We can express this using lag-polynomial expression 𝜙(𝐿) and solving for 𝜀𝑡 such that: 

  

𝜀𝑡 = (1 − 𝜙1L − 𝜙2L2 − ⋯ − 𝜙p𝐿𝑝)𝑦𝑡  (4.4) 

  

By replacing the lag operator with a variable (z) and setting the resulting polynomial equal to 

zero we obtain the characteristic roots of the of the process. The roots will be the values of 𝑧 

that results in a solution to the equation: 

  

(1 − 𝜙1𝑧 − 𝜙2𝑧2 − ⋯ − 𝜙p𝑧𝑝) = 0  (4.5) 

  

The AR(p) process is stationary if all the values of 𝑧 that solves this equation lie outside the 

unit circle. Should any of the solutions for 𝑧 turn out to be a complex number, the process is 

experiencing non-stationarity. A root that is equal to one or minus one is called a unit root. To 

say that the AR(p) process is stationary all the absolute values of the roots in the process must 

be larger than one and be a real number (Magee, 2008)  

  

4.3. Moving average models 
A moving average model is a model used to determine the value of a dependent variable based 

on a weighted sample of the historical values of the variables error terms. The model was 

introduced in 1937 by E. Slutsky. A MA(q) process, where we examine observed values 𝑞 

periods back in time, can be written as 

  

𝑦𝑡 = 𝜇 + ∑ 𝜃j𝜀𝑡−j
𝑞
𝑗=0  = 𝜇 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞  (4.6) 

  

Where the 𝜀𝑡  term has a distribution of 𝜀𝑡~𝑖𝑖𝑑(0, 𝜎2)  and is generated as "white noise". 

Conceptionally a MA model is a linear regression based on the current observations of the series 

against the random shocks of prior observations. Where 𝜃0 is fixed as 1. The 𝜇 represents the 

expected value of the series and is the intercept at 𝑡 = 0. One of the assumptions for this model 

to be applicable is that the process is stationary. The label "Moving Average" can be somewhat 
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misleading because the weights 𝜃p may be both positive and negative and does not necessarily 

sum to unity. The label is used by convention (Pankratz, 1983)  

  

4.4. Autoregressive models 
The AR(p) model was first introduced by Yule in 1926. In an AR(p) model an observed value 

at period 𝑡 is weighted by the preceding observations 𝑝 periods back in time and is assumed to 

be a linear combination of 𝑝, a random error term 𝜀𝑡 and a constant term.  A pure AR(p) process 

can be written as 

  

𝑦𝑡 =  𝛿 + 𝜀𝑡 + ∑ 𝜙i𝑦𝑡−i
𝑝
𝑖=1 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙p𝑦𝑡−p + 𝛿 + 𝜀𝑡  (4.7) 

  

Where the 𝜙 coefficients determines the weight given to the observation at period 𝑡 − 𝑝. The 

error term 𝜀𝑡 is also in this model considered “white noise”. If we reduce the AR(p) model to 

AR(1) with 𝜀𝑡 as “white noise” we end up with a simple random walk process. Autoregressive 

models attempt to forecast 𝑦𝑡 by considering and weighting the predeciding observations and 

has proven to be useful in predicting economical time series with higher fit and accuracy than 

naive expectations which is one of the simplest forecasting techniques. The reason why the 

model is labeled autoregressive is because the parameters can be estimated using regression 

analysis where the independent variable is estimated by the weighting and sum of the preceding 

dependent variables (Sørensen, 2012, p. 4-6). 

  

4.5. ACF and PACF 
ACF and PACF are functions designed to analyze time series for autocorrelation and determine 

the terms for the AR and MA processes.  As stated by Box & Jenkins ACF can be used to detect 

those lag orders of which there is significant correlation (Box & Jenkins, 1970). Autocovariance 

of a series, say 𝑥𝑡, is defined as  

  

𝛾𝑘 = cov(𝑥𝑡, 𝑥𝑡−𝑘) (4.8) 

  

These equations can be solved for 𝜙ii given that we know the value of 𝜌i. The way this helps us 

to determine the lag term of an AR process is by setting different null hypotheses of 𝑝 =

1,2, … , 𝑘  and analyzing which values that yield a statistically significant result. Since we 

normally don’t possess or utilize the entire data set for time series, estimated values for ρ and ϕ 
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will be presented. The PACF is a useful tool for determining the  term of autoregressive 

processes. If the actuall term of the autoregressive process is equal to 𝑘 we will observe that the 

PACF will aprox zero for any lags larger than 𝑝 = 𝑘 (Brockwell, 2009) 

  

4.6. ARMA models 
The ARMA(p,q) time series model is a model used to determine heteroscedasticity. The model 

uses a combination of the autoregressive and moving average models. Including both these terms 

in the same model has proven to be a useful tool of analyzing time series data.  The model can 

be written as 

  

𝑌𝑡 = 𝜍 + ∑ 𝛽𝑖𝐸𝑡−𝑗

𝑞

𝑗=0
+ ∑ 𝛼𝑖𝑌𝑡−𝑖

𝑝
𝑖=1  (4.9) 

  

Where the ∑ 𝛼𝑖𝑌𝑡−𝑖
𝑝
𝑖=1  is the AR part, and the ∑ 𝛽𝑖𝐸𝑡−𝑗

𝑞

𝑗=1
 is the MA part with 𝛽0 fixed as 1, 

and 𝐸𝑡−𝑗~𝑁(0, 𝛾)  where 𝐸𝑡 is independent for all t. To benefit from this model, the parameters 

𝜍, (𝛽1, … , 𝛽𝑞),  (𝛼1, … , 𝛼𝑝) and the variance must be estimated by maximizing the likeliehood 

equation for the model. For an estimated forecast of 𝑌̂𝑡 we put the initial value of 𝑗 = 1 and 

derive the equation 

  

𝑌̂𝑡 = 𝜍 + ∑ 𝛽𝑖𝐸𝑡−𝑗

𝑞

𝑗=1
+ ∑ 𝛼𝑖𝑌𝑡−𝑖

𝑝
𝑖=1  (4.10) 

  

This exploits the fact that at every time 𝑡 the error term in the ARMA model will be represented 

by the difference between the forcasted result and the actual result. 

  

𝐸𝑡 = 𝑌𝑡−𝑌̂𝑡 (4.11) 

  

From the definition of ARMA models it is clear that the observable variables represent a 

deterministic variable and that the error terms represent arbitrary variables. When choosing the 

delay in the ARMA models (the p and q) we can use the BIC or the AIC to determine the best 

fit. By testing for different values and comparing the BIC or AIC output we can determine which 

p and q values that will result in a model closest to the true model. The ARMA model is only 

applicable to stationary processes (Thiesson, Chickering, Heckerman and Meek 2004). 
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4.7. ARIMA models 
One of the main issues with the ARMA models is the lack of stationarity in time series. Time 

series models often assume the observed variables to be i.i.d following the normal distribution. 

However, time series more than often follows specific patterns over a long term such as 

seasonality and other cyclical behaviors.  As a response to this, the ARIMA model was 

suggested. The ARIMA model solves the problem of non-stationarity by adding an additional 

parameter d to the ARMA model. The d in the ARIMA model represents the number of times 

we have to difference a series to achieve a stationary trend. A time series that need to be 

differenced to achieve stationarity is said to be an integrated version of a stationary series. The 

model is useful for series that experience non-stationarity and the fluctuations are non-seasonal. 

An ARIMA model for such a case is written as a ARIMA(p,d,q) model where p and q remains 

the same as for the ARMA model and d is the number of non-seasonal differences needed to 

achieve stationarity. Random walk models, autoregressive models and exponentially smoothing 

models are special cases of the ARIMA models. (Thiesson, 2004) 

  

4.8. ARCH models 
The ARIMA model and the different variations of it are based on the Box-Jenkins principle. 

These linear models have proven themselves useful for analyzing time series and have become 

quite popular due to their simplicity and ease of implementing. However, in time series, non-

linearity is a quite common trait. There have been presented a variety of different models 

attempting to analyze time series constrained by non-linearity. Some of the most widely used 

are the models in the ARCH family such as GARCH and eGARCH. There exists several other 

models considering time series with conditional volatility, but they will not be discussed further 

in this thesis. One of the advantages of using a non-linear model to describe a time series is its 

ability to capture volatility clustering. An ARCH model could be used to describe an increase 

or decrease in volatility over time but is most often used to describe volatility in situations 

regarding shocks in a market or short periods with increased variation. An ARCH(p) model 

shows the variance at a given time that is conditional on predeceasing observations and their 

relationship. If we for instance consider an ARCH(1) model. We have the equation 

  

𝑉𝑎𝑟(𝑦𝑡|𝑦𝑡−𝐼) = 𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2                 (4.12) 

  

In this equation 𝑦𝑡  is a set of regressors that varies over = {1, … , 𝑝} and 𝜀𝑡  is a shock or an 

inovation. 𝜀𝑡 in this example can be specified as 𝜀𝑡 = 𝜎𝑡𝑧𝑡. 𝑧𝑡 we consider to be N~i.i.d.(0,1). 
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We also impose the constraints 𝛼0 > 0 and 𝛼1 > 0 to avoid negative variance.  An ARCH 

model is useful for time series where there is an ARCH effect. The ARCH effect implies that 

the volatility of this period is correlated to the last period −𝑙.  This implies that the volatility of 

the series will be larger after a period of relatively large volatility and smaller after periods of 

relatively small volatilities.  The ARCH model is designed to analyze the relationship between 

these volatilities, detect potential trends and try to forecast the volatility for time 𝑡 + 1. As 

shown in eq. 4.12 the ARCH model utilizes the values past squared observations to forecast 

volatility. For observations in the past the ARCH(m) relationship is 

  

𝑣𝑎𝑟(𝑦𝑡|𝑦𝑡−1, … , 𝑦𝑡−𝑚) = 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑦𝑡−1

2 + ⋯ + 𝛼𝑚𝜀𝑡−m
2  (4.13) 

  

The term is determined by the result of either the Box-Ljung test or the Lagrang Multiplier test 

which examines the time series for an ARCH effect. The effect of not assuming the error term 

to have constant variance have proven several times to be useful in analyzing time series. The 

creation of the ARCH model spawned the foundation of modern day technical analysis. 

However, due to some complications in the model for instance the determining of the lag 

component and the assumption of 𝛼0 > 0 and 𝛼1 > 0, other models derived from the ARCH 

model have been more frequently used the last decades. Among them is the GARCH model. 

  

4.9. GARCH 
The GARCH model is an extension of the ARCH models introduced by Tim Bollerslev (1986). 

The GARCH model aims to increase the accuracy of its forecast by including a third term to the 

equation and thereby allowing the conditional variance to be dependent on its predeceasing 

values. Written in its most general form a GARCH(p,q) model may look like 

  

(𝑦𝑡|𝑦𝑡−1, … , 𝑦𝑡−𝑚 ∩ 𝜎𝑡−1, … , 𝜎𝑡−n) = 𝜎𝑡
2 = 𝛾 + 𝛼 ∑ 𝜀𝑡−i

2𝑞
𝑖=1 + 𝛽 ∑ 𝜎𝑡−i

2𝑝
𝑖=1  (4.14) 

 

𝜀𝑡 = 𝜎𝑡𝑧𝑡 (4.15) 

  

Where the 𝛾 is the long-run average of the series while 𝛼 and 𝛽 terms are the weights of the 

previous error terms and volatilities. These parameters are determined by a maximum-

likeliehood fucntion. The parameters reveal how the series reacts to market changes. For 

instance, a high 𝛽 value tells that it will take long time for the volatility to stabilize after a market 
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shock, and a relatively large 𝛼 value is a sign that the volatility is sensetive to market events. 

The error term 𝜀𝑡 consists of two paramters 𝜎𝑡 and 𝑧𝑡, where 𝑧𝑡 is strong white noise (i.i.d.(0,1)) 

and 𝜎𝑡 is a scaling. The advantages of adding the third volatility term are many. One of them is 

the fact that since last measure of volatility (𝜎𝑡−1,𝜎𝑡−2, … , 𝜎𝑡−𝑛) is included, the GARCH value 

at time 𝑡 will be dependent on all its predeceasing values. A GARCH(1,1) model then becomes 

equal to an ARCH(∞) model. Other advantages that comes with the GARCH model is the ability 

to model phenomena’s such as leptokurtosis which is very common in financial time series. 

Leptokurtosis is when the distribution of the time series has a fat tail with most of the 

observations close to the expected value. This distribution model indicates that there is a higher 

probability of observing both high and low extreme values then what we see in normal 

distributions. The data can be transformed to normality using a heavy tail Lambert W x F 

distribution and must be done if we intend to use a linear model. However, the GARCH model 

takes leptokurtosis into account, which eliminates the need for a transformation. Another useful 

feature of non-linear models is their ability to forecast a series in the presence of long-range 

dependence. Long-range dependence, also referred to as long-memory in a time series, refer to 

the time it takes for a market event to affect the values of future observations. This effect can be 

measured by the ACF to determine how much of a lag we need to accurately predict future 

values. However, in many cases, negative shocks have proven to be followed by higher volatility 

than periods with equally large positive shocks. This effect is called the "Leverage effect" and 

has been described several times in scientific studies, amongst them in the work of Black (1976). 

This is one of the disadvantages with the GARCH model as it only models the absolute value of 

the volatilities of past shocks. The eGARCH model, which is an extension to the standard 

GARCH mode, takes this leverage effect into account. 

  

4.10. eGARCH 
The eGARCH model is an exponential variation of the GARCH model presented by Nelson in 

1991. Nelson argued that the nonnegative constraints on the GARCH model were too restrict 

and proposed the eGARCH model as a response. The eGARCH model has several advantages 

one of which is incorporating the leverage effect often experienced in financial time series. The 

model also has the advantage of removing the need for a positive parameter constriction as the 

parameters are put through a logarithmic function, allowing for asymmetries which is likely to 

occur in financial time series as many series often exhibit skewness and fat tails. The weighted 

innovation was considered as 
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𝑔(𝜖𝑡) = 𝜃𝜖𝑡 + 𝛾[|𝜖𝑡| − 𝐸(|𝜖𝑡|)] (4.16) 

  

Where both 𝜃 and 𝛾 are constants, and both 𝜖𝑡 and |𝜖𝑡| − 𝐸(|𝜖𝑡|) are i.i.d. variables with zero-

mean and a continuous distribution. The innovation creates an asymmetry  

  

𝑔(𝜖𝑡) = {
(𝜃 + 𝛾)𝜖𝑡 − 𝛾𝐸(|𝜖𝑡|)   𝑖𝑓 𝜖𝑡 ≥ 0
(𝜃 − 𝛾)𝜖𝑡 − 𝛾𝐸(|𝜖𝑡|)   𝑖𝑓 𝜖𝑡 < 0

  (4.17) 

  

This gives eGARCH the property of separating between positive and negative returns. An 

eGARCH(p,q) model can be written as 

  

𝑙𝑛(𝜎𝑡
2) = 𝛾 +

1+𝛽(𝐵)

1−𝛼(𝐵)
𝑔(𝜖𝑡−1) = 𝛼0 +

1+𝛽1𝐵+⋯+𝐵q−1𝐵𝑞−1

1−𝛼1𝐵−⋯𝛼𝑝𝐵𝑝 𝑔(𝜖𝑡−1) (4.18) 

  

Where 𝛼0 is a constant and is the unconditional mean of 𝑙𝑛(𝜎𝑡
2), B is a lag operator such that 

𝐵𝑔(𝜖𝑡) = 𝑔(𝜖𝑡−1)  and the lag-polynomials 𝛽(𝐵)  and 𝛼(𝐵)  contains zeros outside the unit 

circel without common factors. By using a logged conditional variance to remove the need for 

a positive parameter constraint and by incorporating 𝑔(𝜖𝑡)  to allow the model to act 

asymetrically to positive and negative returns, the eGARCH model differs from the standard 

GARCH model in ways that have proven to be useful when modeling financial time series (Tsay, 

2010, p. 143-145)  

 

4.11. ARMA-GARCH  
To achieve good results from the GARCH model, it is crucial that the inputs of the model are as 

accurate as possible. The simplest way of estimating the long run average of the time series is 

to simply assume the expected value to be independent of its previous values and calculate their 

mean. However, if a time series shows signs of autocorrelation being present then such an 

estimate might be too simple to achieve the most accurate results. A common way to estimate 

the long run average (𝛾) of the model is to apply the previously mentioned AR models. An 

ARMA model may be used to calculate the expected value of a time series where the order of 

the model is decided by a trial and error attempt. The expected value of a time series 𝐸(𝑦𝑡) given 

the information at time 𝑡 − 1 can be decided using an ARMA(q,p) model 
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𝐸(𝑦𝑡|Ω𝑡−1) = 𝜍 + ∑ 𝛽𝑖𝐸𝑡−𝑗

𝑞

𝑗=0
+ ∑ 𝛼𝑖𝑦𝑡−𝑖

𝑝
𝑖=1   (4.19) 

  

Where 𝜍  is the independent expected value of the observation, the Ω𝑡−1  represents the 

information set at time 𝑡 − 1  and the AR and MA order of the model is estimated using a trial 

and error approach. Combining these two models is a commonly used method to forecast a time 

series, where the GARCH term in the model estimate the conditional volatility of the series and 

the ARMA term estimates the conditional mean. The goodness of the result is determined by 

reading the value of certain Information criteria. In this thesis we have chosen to use the Akaike 

Information Criteria (AIC) to determine the which of the models presented yields the most 

accurate results. The reason for this is because the AIC is a relatively good criteria that reveals 

how well the model fit compared to alternative models. It does so by dealing with a trade-off of 

goodness of fit and the simplicity of the model. Our reason for applying a model to a time series 

is to remove some of its complexity and explain it in a simpler manner. This makes the AIC the 

most suited criteria for our purpose. Other alternative Information criteria include the Bayes 

Information Criteria (BIC), the Hannah-Quinn Information Criteria (HQIC) and Shibata 

Information Criteria (SIC). These are commonly used when analyzing the result of an ARMA-

GARCH model.  

  

4.12. ARCH effect 
To determine whether a GARCH model is suited to model a time series, we test for ARCH-

effect. ARCH-effect, also known as conditional heteroskedasticity, are mainly discovered using 

two tests. The Box-Ljung test (1978) and the Lagrange multiplier test of Engel (1982). Both the 

tests are executed as a hypothesis test with null hypothesis 𝐻0 that the data is independently 

distributed and an alternative hypothesis 𝐻𝑎 that the dataset is experiencing serial correlation. 

The Box-Ljung test is conducted by applying the Box-Ljung statistics 𝑄(h) to the squared 

residuals of the series. The Box-Ljung statistics 𝑄(h) can be written as 

  

𝑄 = 𝑛(𝑛 + 2) ∑
𝜌𝑘

2

𝑛−𝑘

h

𝑘=1
 (4.20) 

  

Where 𝜌𝑘
2 is the squared result of the theoretical ACF of the series at lag 𝑘 and h is the number 

of lags being tested. The 𝑛 is the length of the sample of the series. The test statistic is under the 

null hypothesis asymptotically distributed as a chi-squared distribution 𝜒1−𝛼,h
2  with h degrees of 
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freedom and 𝛼 as the significance level. If the test statistic 𝑄(h) > 𝜒1−𝛼,h
2   or the p-value of 

𝑄(h) is less than 𝛼 then the null hypothesis will be rejected, and the series is experiencing an 

ARCH-effect. The Lagrange multiplier test is equivalent to the usual F-statistic and is similar to 

performing an F-test with a chi-squared distribution. The F-statistics is defined as 

  

𝐹 =
(SS𝑅0−S𝑆𝑅1) h⁄

𝑆𝑆𝑅1 (𝑛−2h −1)⁄
 (4.21) 

  

Where SS𝑅0 is the sum of squared residuals for the sample period and the SS𝑅1 is the sum of 

the squared least-square residuals of the prior linear regression. Also, here 𝑛 and h represents 

respectively the sample length and the number of lags being tested. If the F-value turns out 

higher than the 𝜒1−𝛼,h
2  or the p-value of F is lower than our chosen 𝛼 , we reject the null 

hypothesis and conclude that conditional heteroskedasticity is present in the series (Tsay, 2010, 

p. 114-115). 

5. Data and results 
The data used in this thesis is chosen based on the authors understanding of what Bitcoin is, and 

what Bitcoin is meant to be. Bitcoin is a recent invention, and as a financial asset there has been 

conducted little research on Bitcoins properties and possibilities. This in turn implies that it is 

challenging to find other financial assets that has shown any significant relationship with 

Bitcoin. Facing these challenges, the focus of this chapter will be to compare the volatility of 

Bitcoin to that of the S&P500 index, and the spot price of gold. In addition, the rolling correlation 

between Bitcoin, S&P500 and gold will be examined.  

   

5.1. Data collection  

The historical data used in this thesis has been retrieved from various sources. S&P500 data 

comes from Yahoo finance6, Bitcoin prices is retrieved from charts.bitcoin.com7, gold prices are 

from the and LBMA8 via Quandl9. All data is daily observations from all available trading days. 

The observations run from 1st of October 2010 until 20th of March 2018. The original dataset 

                                                           
 

6 https://finance.yahoo.com/quote/%5EGSPC/history/?guccounter=1  
7 https://charts.bitcoin.com/chart/price 
8 London Bullion Market Association 
9 https://www.quandl.com/data/LBMA/GOLD-Gold-Price-London-Fixing  

 
 

https://finance.yahoo.com/quote/%5EGSPC/history/?guccounter=1
https://charts.bitcoin.com/chart/price
https://www.quandl.com/data/LBMA/GOLD-Gold-Price-London-Fixing
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for Bitcoin contained 2728 observations, the S&P500 dataset contained 1879 observations, and 

for gold we have 1887 observations. All GARCH models has been created by using the rugarch10 

package in R, and price observations and correlation has been plotted in Excel.  

 

Unlike traditional financial assets and products, Bitcoin is always trading, and so the market is 

never closed. The "closing price" of Bitcoin in this thesis is the price observed at midnight. With 

no closed days this gives 2728 daily observations. Seeing that the S&P500 is an American index, 

the observations used follows the American trading calendar, resulting in a total of 1879 

observations over the observation period. The gold price on the other hand is from LBMA and 

therefore follows the British calendar, giving 1887 observations. It was the authors wish to have 

3 datasets with an equal amount of observations, and to achieve this, all American and British 

closed days has been removed from the datasets, resulting in a total of 1845 daily observations.  

 

The S&P500 is a popular indicator of the performance of the US economy. It has less exposure 

to tech-stocks than NASDAQ, and it captures about 80% of the total market capitalization of the 

stock market (Amadeo, 2018). It is considered by the authors to be a good asset to compare to 

Bitcoin because many people treat Bitcoin as an asset when they invest in it. In addition to the 

S&P500, Bitcoin will be compared to gold. As mentioned in chapter 2, Bitcoin has many of the 

same properties as gold, for that reason it is of interest to investigate how Bitcoins price move 

compared to gold.  

   

  

 

 

 

 

 

 

 

 

 

 

                                                           
 

10 Author of the package is Alexios Ghalanos, 2014. 
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5.2. Descriptive statistics of Bitcoin 
 

 

 

  

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Descriptive statistics for Bitcoin. (Price, log daily return, density plot and ACF).  
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From the plotted daily return of Bitcoin, we can see from simple visual inspection that the price 

has been going through some dramatic changes during the sample period. From a minimum 

value at the beginning of the period of $0,06 and a peak value of $18 987 right before Christmas 

2017. Though the price has since been falling, it is clear that Bitcoin has been appreciating 

heavily since its introduction to the public. It is worth noting that there has not been any major 

financial crisis in the sample period. If we look at the density distribution of the Bitcoin daily 

log-return we see that most of our observations are centered around the expected value of the 

return and the data set has heavy tails with a high probability of extreme values compared to the 

normal distribution.  The daily log-return plot for Bitcoin also suggests that volatility clustering 

is present and gives us an idea that the series is exposed to an ARCH effect. We can also see 

from the daily log-return plot that bitcoin is an extremely volatile asset peaking with a daily log-

return in the sample period of 32,89% and a loss of -38,25%. The volatility of Bitcoin also seems 

to be steadily decreasing from the beginning of the sample period, but it experiences a rising 

trend near the end of the sample period. The ACF plot gives us an idea that there is 

autocorrelation present in the series and that it is significant all the way back to lag 𝑘 = 20. 

  

When analyzing the data for an ARCH effect by applying the Lagrang multiplier test and the 

Box-Ljung test we obtain the results listed in tables 5.1 and 5.2. As we can see from table 5.1 

and table 5.2 all the lags tested yields a test statistic value greater than the corresponding chi-

squared values (𝜒1−𝛼,h
2 ) with a significantly low p-value. Judging by the test results, it is safe to 

say that an ARCH-effect is present in the time-series. 

  

  

Box-Ljung test results (Bitcoin)              

Lag  1  5  10  15  20  30  

X-squared  36,953  56,594  64,927  83,701  106,91  119,14  

P-value  1,21E-09  6,13E-11  4,19E-10  1,46E-11  7,17E-14  1,42E-12  

Table 5.1: Box-Ljung test results (Bitcoin) 
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Lagrange multiplier test  

results (Bitcoin)  

            

Lag  1  5  10  15  20  30  

X-squared  96,816  257,44  328,08  379,11  444,7  484,62  

P-value  2,20E-16  2,20E-16  2,20E-16  2,20E-16  2,20E-16  2,20E-16  

Table 5.2: Lagrange multiplier test results (Bitcoin)  

  

As seen in table 5.3, the Bitcoin series has a kurtosis value of 9,0165 which indicates a 

leptokurtotic distribution relative to the normal distribution which has a kurtosis of 3. This 

complies well with our suspicions from visual inspection of the density plot and this indicates 

that a student-t distribution would be of better fit than a normal distribution. The distribution 

also has a skewness of -0,07011 which is well within the range of being considered symmetrical 

{-0,5 , 0,5}. 

  

  Number of 

observations 

Mean Standard 

deviation 

Kurtosis Skewness 

BTC 1844 0,004673 0,050305 9,016505 -0,07011 

 Table 5.3 Descriptive statistics of Bitcoin 
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5.3. Descriptive statistics of S&P500 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Descriptive statistics for S&P500. (Price, log daily return, density plot and ACF). 
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From the plotted stock price of S&P500 we can see that the index has increased in a stable 

manner during the sample period. The price of the S&P500 has gone from a bottom value of 

$1099 to a peak value of $2873 with small deviations from the trend. We can also see from the 

daily log-return plot that the price is quite stable with a maximum daily log-return value of 

4,63% and a maximum daily loss of -6,9%. The plot also indicates that there is some volatility 

clustering in the series. The ACF graph indicates that we may have significant autocorrelation 

present in the series all the way back to lag 𝑘 = 31.  

 

When analyzing for ARCH-effect in the series, similarly as for Bitcoin, we apply the Lagrang 

Multiplier test and the Box-Ljung test and obtain the results presented in table 5.4 and 5.5. As 

shown in the tables, both tests indicate that ARCH-effect is present in the series. 

  

Box-Ljung test results 

(S&P500)  

            

Lag  1  5  10  15  20  30  

X-squared  5,75  31,199  33,332  39,876  53,06  71,127  

P-value  0,01648  8,56E-

06  

0,0002395  0,000474  7,97E-05  3,43E-05  

 Table 5.4: Box-Ljung test results S&P500 

  

Lagrange multiplier test 

results (S&P500)  

            

Lag  1  5  10  15  20  30  

X-squared  155,63  809,78  1067  1162,5  1264,9  1443,6  

P-value  2,20E-

16  

2,20E-

16  

2,20E-

16  

2,20E-

16  

2,20E-

16  

2,20E-

16  

Table 5.5: Lagrange multiplier test results (S&P500) 

 

Furthermore, the S&P500 series has a skewness of -0,59376 and kurtosis of 5,4201. This shows 

that the series has a leptokurtotic distribution with a moderate negative skew. A negative skew 

in a financial time series indicates that there is a higher probability of getting extreme negative 

returns than the probability of getting extreme positive returns based on the sample period.  
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Table 5.6: Descriptive statistics S&P500 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Number of 

observations  

Mean  Standard 

deviation  

Kurtosis  Skewness  

S&P500  1844  0,000433  0,009037  5,420099  -0,59376  
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5.4. Descriptive statistics Gold 
  

  

  

  

  

  

  

  

  

  

  

  

 

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3: Descriptive statistics for gold. (Price, log daily return, density plot and ACF). 
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The plotted spot price of gold tells us that gold is the least performing asset in our evaluation 

portfolio. Through the sample period the price of Gold has been swinging within the range of a 

maximum value of $1891 and a minimum value of $1050. The spot price at the start of the 

sample period seems to be close to the spot price at the end of the sample period. The asset has 

been somewhat volatile during the sample period with a maximum daily log-return of 5,07% 

and a maximum loss of -8,91%. Even though the daily log-return plot shows signs of volatility 

clustering, visual inspection alone is not sufficient to draw this conclusion. The density plot 

gives us an idea of the skewness and kurtosis of the daily log-return distribution, while the ACF 

plot indicates that we have significant autocorrelation present in the series. 

  

When applying the Box-Ljung test and the Lagrang Multiplier test to the data we achieve the 

results presented in table 5.7 and table 5.8. The results show that there appears to be a dispute 

between the test of whether an ARCH-effect is present or not. The Lagrange multiplier test 

shows clear signs of an ARCH-effect while the Box-Ljung test indicates that no conditional 

heteroskedasticity is present in the series.  

  

Box-Ljung test results 

(Gold)  

            

Lag  1  5  10  15  20  30  

X-squared  0,38147  1,2682  6,6387  16,461  29,575  46,706  

P-value  0,5368  0,9382  0,7591  0,3521  0,07705  0,02568  

Table 5.7: Box-Ljung test results (Gold) 

 

Lagrange multiplier test  

results (Gold)  

            

Lag  1  5  10  15  20  30  

X-squared  33,93  66,207  122,56  140,62  207,61  265,17  

P-value  5,71E-09  6,30E-13  2,20E-16  2,20E-16  2,20E-16  2,20E-16  

Table 5.8: Lagrange multiplier test results (Gold) 

  

The daily log-return distribution of the spot price of Gold has a leptokurtotic distribution with a 

kurtosis of 7,38 and is moderately skewed to the left with a negative skewness of -0,64.  
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 Table 5.9 Descriptive statistics Gold 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Number of 

observations  

Mean  Standard 

deviation  

Kurtosis  Skewness 

Gold  1844  4,8E-05  0,010119  7,384554  -0,64898  
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5.5. GARCH and eGARCH results 
  

 

Figure 5.4: Standard GARCH, normal error distribution (Bitcoin) 

 

 

Figure 5.5: Standard GARCH, student-t error distribution (Bitcoin) 
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 Figure 5.6: eGARCH, normal error distribution (Bitcoin) 

 

Figure 5.7: eGARCH, student-t error distribution (Bitcoin)  

 

Figure 5.8: Standard GARCH, normal error distribution (S&P500) 
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Figure 5.9: Standard GARCH, student-t error distribution (S&P500) 

 

Figure 5.10: eGARCH, normal error distribution (S&P500) 

 

Figure 5.11: eGARCH, student-t error distribution (S&P500) 
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 Figure 5.12: Standard GARCH, normal error distribution (Gold) 

 

Figure 5.13: Standard GARCH, student-t error distributions (Gold) 

 

Figure 5.14. eGARCH, normal error distribution (Gold) 
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Figure 5.15: eGARCH, student-t error distribution (Gold) 

 

Type of model Bitcoin S&P500 Gold 

Standard GARCH with normally distributed 

errors 

-3,6706 -6,8892 -6,475 

Standard GARCH with student-t distributed 

errors 

-3,9431 -6,9518 -6,5545 

eGARCH model with normally distributed 

errors 

-3,7141 -6,944 -6,478 

eGARCH model with student-t distributed 

errors 

-3,9697 -6,9949 -6,5522 

Table 5.10: Akaike information criteria (AIC) for different models/assets 

 

Figure 5.4-5.15 display the results from the standard GARCH and the eGARCH models both 

with the normal distribution and with the distribution. In table 5.10 the Akaike Information 

Criteria results reveal which of the models are best suited to describe the volatility present in 

each of the assets. The best fitted result is written in bold text. As we see in table 5.10 the best 

fitted model for both Bitcoin and S&P500 is the eGARCH model with a student-t distribution. 

This makes the eGARCH models ability to capture the nature of both Bitcoin and S&P500 

weighted on its simplicity the most suited model for our purpose. The fact that the student-t 

distribution has a higher fit than the normal distribution is as expected when observing the 

kurtosis of the series. The eGARCH also outperforms the GARCH model, implying that a 

leverage effect is likely present in the series. In the case of Gold, the student-t distributed 

GARCH model has the lowest AIC value, indicating that in the time series of gold the leverage 

effect is lower or non-existing. 
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5.6. Correlation 
To investigate if it is possible to reduce risk or improve returns in a portfolio using Bitcoin we 

examine the correlation between our three assets. We have used a rolling correlation window of 

one year and plotted the result. As one can see in figure 5.16 the correlation between Bitcoin 

and gold and Bitcoin and S&P500 does not seem any less stable than that of S&P500 and gold. 

All three combinations yield a fairly low correlation mostly in the range of -0,2 to 0,2.  

 

 

 
Figure 5.16: Correlation between the examined assets.  
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6. Discussion 
In this section we intend to summarize our results and key findings and interpret them in an 

effort to answer the questions presented in the thesis. This will both be questions about the 

classification and future of Bitcoin, and an attempt to uncover the possibilities of Bitcoin as a 

financial asset.  

  

6.1. Properties and value of Bitcoin 
When we first started reading about Bitcoin, we started asking ourselves why Bitcoin gained a 

positive value in the first place. This was a hard question to answer, because it is difficult to find 

unbiased information and research about Bitcoin. Bitcoin is a new concept, and there are serious 

obstacles standing in the way of Bitcoin as a currency for daily use. The lack of user-friendliness 

makes it difficult for regular people to get involved in Bitcoin transactions, and the lack of a 

safety net can make mistakes costly. There are also currently very few establishments that 

accepts Bitcoin as payment. This combined with the extreme volatility of Bitcoin currently 

makes Bitcoin unsuitable for storing value and use on a day-to-day basis.  

 

Though there obviously are big downsides with cryptocurrencies there are some aspects of 

Bitcoin that makes it a viable option for some groups of people, and we believe this justifies 

Bitcoin gaining a positive value. Perhaps the most important property of Bitcoin is that the use 

of cryptocurrencies lowers transaction costs when transferring money across international 

borders, as argued by Jenssen, (2014).  

 

Some of the properties of Bitcoin mentioned in chapter 2 makes Bitcoin a revolutionary mean 

of payment. It is the first currency that is digital and completely independent of any third party, 

something that makes Bitcoin a very viable option for people living in countries without 

functional central banking. The security and safety offered by Bitcoin is similar to that of cash, 

and the anonymity of the currency is a possible way to maintain privacy in societies that are 

moving away from cash, in addition to being nearly impossible to counterfeit. Bitcoin also offers 

reduced costs when transferring funds across borders, seeing that there are no geographical 

limitations to Bitcoin. Without the need of an external third part in the transaction Bitcoin can 

be transferred across international borders independent of the regulations and transfer fees 

between the countries and it can be done independently of the working hours of the people who 

traditionally conduct monetary transactions. This allows for a more efficient value exchanging 
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system than what exists today. Another feature of Bitcoin that separates it from traditional 

currencies is the privacy offered. This may be both a positive and a negative aspect of Bitcoin. 

In a digital society with enhanced opportunities of intense surveillance, privacy is a privilege 

that many people strive to achieve. A downside of the privacy incorporated in Bitcoin is the 

illegal activities it may support. Criminal activities are of no desire in a community and 

represents a cost to society. The fact that Bitcoin may be, and has been, used to finance criminal 

activities without leaving a digital trail is a downside of Bitcoin. However, this negative aspect 

of the currency may contribute to stabilizing the price of Bitcoin as it makes it, for better or 

worse, a desirable asset in certain communities.  

  

Valuating Bitcoin in the traditional way of using DCF would be a very challenging task. As 

mentioned in chapter 3.3, while discussing equation 3.1, the value V of an asset is extremely 

sensitive to the expected cash flow, c. In the case of Bitcoin, the extreme volatility imposes a 

big challenge when finding an expected value for c. News regarding the future of Bitcoin will 

influence investors expectations, and thus change the value V.  This may be the cause of much 

of the volatility. Determining the expected growth rate is probably equally difficult, and 

investors should be using a high discount rate to compensate for the immense risk of investing 

in Bitcoin.  

 

The result from the ACF analysis (Figure 5.1) of Bitcoin implies that the Bitcoin market is not 

very efficient. According to EMH, it should not be possible to forecast future prices based on 

historical data. The number of significant lags showed by not only Bitcoin, but also S&P500 and 

gold is in violation with this principle. Though all three assets show conflict with EMH, judging 

by the Box-Ljung and Lagrange multiplier test results (Table 5.1 – 5.8), which shows very low 

p-values for Bitcoin, Bitcoin may be the least efficient asset.  

 

6.2. Digital commodity money  
It can be argued that Bitcoin is a digital commodity money (Jenssen, 2014, p. 51). Bitcoin share 

some properties with other commodity money like gold, and like other commodities, its price is 

set by supply and demand. One of the advantages that gold possesses over other commodity 

money is that it is relatively easy to store large amounts of it because of its dense value. Bitcoin 

is even easier to store because any amount of Bitcoin can be stored on a piece of paper by writing 
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down the public/private key pair. It is also nearly impossible for a third party or an attacker to 

destabilize the supply of Bitcoin, and it should thus theoretically be able to keep its value.   

  

6.3. Volatility analysis 
As discussed in chapter 5, Bitcoin exhibits an extreme volatility compared to the other assets. 

This is not surprising, but also interesting. Bitcoin is a relatively new concept and is built on the 

emerging blockchain technology. Previous research on the volatility of Bitcoin is very scarce, 

but as argued by Meland and Øyen (2017), there seems to be a significant relationship between 

price shocks and news regarding Bitcoin. This research also found a significant negative 

relationship between the volume of Bitcoin traded and the price. This is consistent with the 

results from our eGARCH analysis of Bitcoin which shows that leverage effect is present in the 

dataset. When examining the historical price of Bitcoin and comparing the traits of Bitcoin with 

that of previously experienced bubbles we see some clear similarities. Bubbles are as mentioned 

often based on speculation about future prices which lead to extreme volatility measures. The 

downward trend exhibited towards the end of 2017 in our data set may explain some of the 

increased volatility in the same period due to the leverage effect. When prices go down, people 

become more impulsive in their buying and selling habits. This again increases volatility. EMH 

states that all relevant information about an asset will be reflected in the asset price. Given that 

Bitcoin is a new concept surrounded by a lot of speculations regarding regulations and legality, 

the extreme volatility can be explained by the market constantly trying to adjust the price of 

Bitcoin to the expected future price based on todays information. When new information is 

released everyday alternating between predicting the death and the mass adoption of Bitcoin, 

one can understand why Bitcoin appears to be so volatile.  

 

6.4. Comparison of volatility 
The three different assets we have examined in this thesis are different by nature. S&P500 is a 

well-known market index, and gold is often used by investors as a safe haven during financial 

crisis. In contrast, Bitcoin is viewed by some people as an asset that can generate cash flow, 

while the creator of Bitcoin created it, at least partly, as a response to the financial crisis and 

bank bailouts of 2008. Among investors there are both speculators and idealists, and on the 

sideline a lot of experts are skeptical. The volatility of the three assets in many ways reflect these 

differences. Gold shows the most stable volatility, but also has the lowest daily return. S&P500 

has a higher daily return, but the volatility fluctuates more than gold. Bitcoin has an average 

daily return that is ten times higher than S&P500, but the volatility is also off the charts 
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compared to both gold and S&P500. It is difficult to pinpoint the exact reasons why this is the 

case, but there are numerous factors that probably contributes to Bitcoins extreme volatility. One 

may be the uncertainty of Bitcoins future. If Bitcoin were to be adopted as a day-to-day currency 

it is not unlikely that the value of a Bitcoin would be significantly higher than todays value, 

given that the finite number of Bitcoins to ever be in circulation is 21 million coins. This means 

that any positive news regarding the legality of Bitcoin or signs of mass-adaption probably will 

generate positive price shocks. This may also be part of the reason why Bitcoin exhibits signs 

of being a bubble. One can for example look at the price rally before Christmas 2017 where the 

price increased by nearly 400% in about a month. This dramatic price increase resulted in a lot 

of media coverage of Bitcoin and may have resulted in people investing because they feared to 

miss out on a good opportunity to earn easy money. This is similar to what happened during the 

dot-com bubble of the late 90s, although this took place over a much longer time-span. In figure 

5.7 one can see that the volatility of Bitcoin has been increasing the last year, and this may very 

well be related to the media coverage and huge price increase in this period.  

 

In our data sets, S&P500 has a positive trend for the whole observation period, while Bitcoin 

fluctuates with both booms and busts. It is common knowledge that the stock market also has 

undergone periods of high volatility, especially during financial crisis. It would therefore be 

interesting to examine and compare how Bitcoin would behave in comparison to the S&P500 

during a financial crisis. So far nobody has found any evidence of Bitcoin being able to act like 

a safe haven during financial crisis, which is one of the things Satoshi Nakamoto intended on 

when creating Bitcoin.   

 

6.5. Correlation 
As one can see in chapter 5.5, Bitcoins has a quite stable correlation with both gold and S&P500 

compared to the correlation between S&P500 and gold. The relatively low correlation implies 

that people holding Bitcoin could reduce their risk by including stocks or commodities in their 

portfolio while still capturing some of the high returns from holding Bitcoin. This should come 

as no surprise given the results from the GARCH models, which portrays Bitcoin as an 

extremely risky asset.  
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7. Concluding remarks 
If there is one thing that we have learned during this thesis, it is that the future of Bitcoin is very 

uncertain. The blockchain technology behind Bitcoin so far seems to be very secure and reliable, 

but as a currency there are still major obstacles to climb for Bitcoin.  In the eyes of the authors 

Bitcoin should not be viewed as a potential substitute for the monetary systems in use today, but 

rather as a supplement, and be judged accordingly. Bitcoins very nature makes it a good 

transaction medium for exchanges over the internet and across borders, something that may 

prove to reduce the cost of transferring value. In countries that lack a functional banking system 

or suffer from major inflation like Venezuela and Zimbabwe, Bitcoin may offer a viable 

alternative for people who wants to keep their purchasing power. It is also in these countries we 

believe Bitcoin and other cryptocurrencies have the largest potential. In the western world 

Bitcoin must compete against a sophisticated and well-tried monetary system. As mentioned 

several times in this thesis there are many drawbacks to Bitcoin, the most important ones being 

a lack safety net, limited legislation and a lack of user-friendliness. The opinion of the authors 

is that Bitcoin is not yet able to compete with traditional fiat currencies when it comes to daily 

use.  

The other aim of this thesis was to investigate whether Bitcoin had matured as a financial asset. 

Judging by the results from the GARCH models, Bitcoin has not yet matured. The volatility of 

Bitcoin was more extreme in the first years of our sample period, and showed a declining trend, 

but during 2017 the volatility increased, and this increase has continued until the end of our 

sample period. Bitcoin is still very volatile, implying an immature market.  

Bitcoin exhibits signs of being a bubble, and much of the price rally seems to be fueled by 

speculation and hype, rather than the underlying value of Bitcoin. As seen before during the dot-

com bubble of the late 90’s investments based solemnly on speculations may cause extreme and 

irrational price increases. However, as shown by example of Google and Amazon, the fact that 

an asset is acting like a bubble does not mean that it doesn’t have any value. Once the speculative 

period of Bitcoin ends and a clearer picture of what Bitcoin has to offer is brought to light, we 

may see a justified increase, or at least stability, in the value of Bitcoin.  

Bitcoin shows a quite stable correlation with both S&P500 and gold. This could be used to 

research risk reduction for Bitcoin investors. This would require further research outside of the 

scope of this thesis.  

The conclusion for this thesis is that Bitcoin has not yet matured as a financial asset.  
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Appendix 
 

> setwd("C:/Users/Andreas/Documents/Masteroppgave") 

> df<-read.csv("AlleTre.csv", header = TRUE) 

> attach(df) 

> library(rugarch) 

Loading required package: parallel 

 

Attaching package: ‘rugarch’ 

 

The following object is masked from ‘package:stats’: 

 

    sigma 

 

> library(tseries) 

 

    ‘tseries’ version: 0.10-44 

 

    ‘tseries’ is a package for time series analysis and computational finance. 

 

    See ‘library(help="tseries")’ for details. 

 

> Box.test(LogB,type="Ljung",lag=5) 

 

        Box-Ljung test 

 

data:  LogB 

X-squared = 56.594, df = 5, p-value = 6.131e-11 

 

> Box.test(LogB,type="Ljung",lag=1) 

 

        Box-Ljung test 

 

data:  LogB 

X-squared = 36.953, df = 1, p-value = 1.21e-09 

 

> Box.test(LogB,type="Ljung",lag=10) 

 

        Box-Ljung test 

 

data:  LogB 

X-squared = 64.927, df = 10, p-value = 4.187e-10 

 

> Box.test(LogB,type="Ljung",lag=15) 

 

        Box-Ljung test 
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data:  LogB 

X-squared = 83.701, df = 15, p-value = 1.461e-11 

 

> Box.test(LogB,type="Ljung",lag=20) 

 

        Box-Ljung test 

 

data:  LogB 

X-squared = 106.91, df = 20, p-value = 7.172e-14 

 

> Box.test(LogB,type="Ljung",lag=30) 

 

        Box-Ljung test 

 

data:  LogB 

X-squared = 119.14, df = 30, p-value = 1.421e-12 

 

> Box.test(LogSP,type="Ljung",lag=1) 

 

        Box-Ljung test 

 

data:  LogSP 

X-squared = 5.7507, df = 1, p-value = 0.01648 

 

> Box.test(LogSP,type="Ljung",lag=5) 

 

        Box-Ljung test 

 

data:  LogSP 

X-squared = 31.199, df = 5, p-value = 8.559e-06 

 

> Box.test(LogSP,type="Ljung",lag=10) 

 

        Box-Ljung test 

 

data:  LogSP 

X-squared = 33.332, df = 10, p-value = 0.0002395 

 

> Box.test(LogSP,type="Ljung",lag=15) 

 

        Box-Ljung test 

 

data:  LogSP 

X-squared = 39.876, df = 15, p-value = 0.0004735 

 

> Box.test(LogSP,type="Ljung",lag=20) 

 

        Box-Ljung test 
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data:  LogSP 

X-squared = 53.057, df = 20, p-value = 7.971e-05 

 

> Box.test(LogSP,type="Ljung",lag=30) 

 

        Box-Ljung test 

 

data:  LogSP 

X-squared = 71.127, df = 30, p-value = 3.425e-05 

 

> Box.test(LogG,type="Ljung",lag=1) 

 

        Box-Ljung test 

 

data:  LogG 

X-squared = 0.38147, df = 1, p-value = 0.5368 

 

> Box.test(LogG,type="Ljung",lag=5) 

 

        Box-Ljung test 

 

data:  LogG 

X-squared = 1.2682, df = 5, p-value = 0.9382 

 

> Box.test(LogG,type="Ljung",lag=10) 

 

        Box-Ljung test 

 

data:  LogG 

X-squared = 6.6387, df = 10, p-value = 0.7591 

 

> Box.test(LogG,type="Ljung",lag=15) 

 

        Box-Ljung test 

 

data:  LogG 

X-squared = 16.461, df = 15, p-value = 0.3521 

 

> Box.test(LogG,type="Ljung",lag=20) 

 

        Box-Ljung test 

 

data:  LogG 

X-squared = 29.575, df = 20, p-value = 0.07705 

 

> Box.test(LogG,type="Ljung",lag=30) 

 



62 
 
 

        Box-Ljung test 

 

data:  LogG 

X-squared = 46.706, df = 30, p-value = 0.02658 

 

> bt=LogB-mean(LogB) 

> st=LogSP-mean(LogSP) 

> gt=LogG-mean(LogG) 

> Box.test(bt^2,type="Ljung",lag=1) 

 

        Box-Ljung test 

 

data:  bt^2 

X-squared = 96.816, df = 1, p-value < 2.2e-16 

 

> Box.test(bt^2,type="Ljung",lag=5) 

 

        Box-Ljung test 

 

data:  bt^2 

X-squared = 257.44, df = 5, p-value < 2.2e-16 

 

> Box.test(bt^2,type="Ljung",lag=10) 

 

        Box-Ljung test 

 

data:  bt^2 

X-squared = 328.08, df = 10, p-value < 2.2e-16 

 

> Box.test(bt^2,type="Ljung",lag=15) 

 

        Box-Ljung test 

 

data:  bt^2 

X-squared = 379.11, df = 15, p-value < 2.2e-16 

 

> Box.test(bt^2,type="Ljung",lag=20) 

 

        Box-Ljung test 

 

data:  bt^2 

X-squared = 444.7, df = 20, p-value < 2.2e-16 

 

> Box.test(bt^2,type="Ljung",lag=30) 

 

        Box-Ljung test 

 

data:  bt^2 
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X-squared = 484.62, df = 30, p-value < 2.2e-16 

 

> Box.test(st^2,type="Ljung",lag=1) 

 

        Box-Ljung test 

 

data:  st^2 

X-squared = 155.63, df = 1, p-value < 2.2e-16 

 

> Box.test(st^2,type="Ljung",lag=5) 

 

        Box-Ljung test 

 

data:  st^2 

X-squared = 809.78, df = 5, p-value < 2.2e-16 

 

> Box.test(st^2,type="Ljung",lag=10) 

 

        Box-Ljung test 

 

data:  st^2 

X-squared = 1067, df = 10, p-value < 2.2e-16 

 

> Box.test(st^2,type="Ljung",lag=15) 

 

        Box-Ljung test 

 

data:  st^2 

X-squared = 1162.5, df = 15, p-value < 2.2e-16 

 

> Box.test(st^2,type="Ljung",lag=20) 

 

        Box-Ljung test 

 

data:  st^2 

X-squared = 1264.9, df = 20, p-value < 2.2e-16 

 

> Box.test(st^2,type="Ljung",lag=30) 

 

        Box-Ljung test 

 

data:  st^2 

X-squared = 1443.6, df = 30, p-value < 2.2e-16 

 

> Box.test(gt^2,type="Ljung",lag=1) 

 

        Box-Ljung test 
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data:  gt^2 

X-squared = 33.93, df = 1, p-value = 5.713e-09 

 

> Box.test(gt^2,type="Ljung",lag=5) 

 

        Box-Ljung test 

 

data:  gt^2 

X-squared = 66.207, df = 5, p-value = 6.295e-13 

 

> Box.test(gt^2,type="Ljung",lag=10) 

 

        Box-Ljung test 

 

data:  gt^2 

X-squared = 122.56, df = 10, p-value < 2.2e-16 

 

> Box.test(gt^2,type="Ljung",lag=15) 

 

        Box-Ljung test 

 

data:  gt^2 

X-squared = 140.62, df = 15, p-value < 2.2e-16 

 

> Box.test(gt^2,type="Ljung",lag=20) 

 

        Box-Ljung test 

 

data:  gt^2 

X-squared = 207.61, df = 20, p-value < 2.2e-16 

 

> Box.test(gt^2,type="Ljung",lag=30) 

 

        Box-Ljung test 

 

data:  gt^2 

X-squared = 265.17, df = 30, p-value < 2.2e-16 

 

> b1<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="norm") 

> bGarch1<-ugarchfit(spec=b1,data=LogB) 

> b2<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="std") 

> bGarch2<-ugarchfit(spec=b2,data=LogB) 
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> b3<-

ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="norm") 

> bGarch3<-ugarchfit(spec=b3,data=LogB) 

> b4<-

ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="std") 

> bGarch4<-ugarchfit(spec=b4,data=LogB) 

> plot(bGarch4) 

 

 

> s1<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="norm") 

> sGarch1<-ugarchfit(spec=s1,data=LogSP) 

> s2<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="std") 

> sGarch2<-ugarchfit(spec=s2,data=LogSP) 

> s3<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="norm") 

> s3<-

ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="norm") 

> sGarch3<-ugarchfit(spec=s3,data=LogSP) 

> s4<-

ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="std") 

> sGarch4<-ugarchfit(spec=s4,data=LogSP) 

> g1<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="norm") 

> gGarch1<-ugarchfit(spec=g1,data=LogG) 

> g2<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="std") 

> gGarch2<-ugarchfit(spec=g2,data=LogG) 

> g3<-

ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="norm") 

> gGarch3<-ugarchfit(spec=g3,data=LogG) 

> g4<-

ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(

1,1)),distribution.model="std") 

 


