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Sammendrag 

I denne artikklen undersøker vi virkningen av offentlig støtte til forsknings- og utviklingsinnsats på 

omfanget av patentering i norske foretak. Vi analyserer både skattefradragsordningen SkatteFUNN og 

direkte FoU-støtte fra Norges Forskningsråd og Innovasjon Norge. Vi finner at både direkte støtte og 

SkatteFUNN har positive effekter på patentering. Effektens omfang er imidlertid avhengig av 

foretakenes egenskaper før de får støtte. De statistisk signifikante estimatene er alle relatert til foretak 

uten tidligere patentsøknader, dvs. før de mottar støtte. Videre anslår vi at direkte støtte har utløst 

minst tre ganger så mange innvilgede patenter per krone i støtte sammenlignet med SkatteFUNN. Våre 

resultater tyder på at FoU-støtte bør gis til foretak med stort potensiale for å innovere, snarere enn 

foretak som allerede har innovert – iallfall gjelder dette mht. patenterbare innovasjoner. Videre, siden 

vi finner at målrettede subsidier genererer flere innovasjoner enn SkatteFUNN, tyder våre resultater på 

at samfunnet vil dra nytte av å distribuere mer av støttene til prioriterte områder enn det som har vært 

tilfellet til nå. 

 



1 Introduction

Many countries undertake policies aiming to increase research and develoment (R&D) activity,

since a strict reliance on a market system may result in underinvestment in R&D and innovation

activities, relative to the socially desirable level (Griliches, 1992; Martin and Scott, 2000; Hall and

van Reenen, 2000). Market failures arise because of e.g. external knowledge spillovers, limited

appropriability and financial constraints. In this paper we examine the impact of two different

innovation policy instruments on Norwegian firms’ innovation, measured by the propensity to

patent. The innovation policies considered are the Norwegian R&D tax credit scheme Skattefunn

and the two major sources of direct R&D subsidies in Norway: The Research Council of Norway

and Innovation Norway.1 Innovation policies to support private R&D activities should in prin-

ciple reflect the size of the external spillovers from the research (Goulder and Schneider, 1999;

Straathof et al., 2014). Even if such spillovers are found to differ between innovating firms, they

are difficult to measure. The Norwegian R&D tax credit scheme is “technology neutral” in the

sense that it offers the same subsidies for any type of technology or sector. On the other hand,

both the Research Council and Innovation Norway offer specific programs targeted at specific

industries or technologies (e.g. environmental technologies).

A common argument against direct subsidies is that the state should not try to “pick

winners”. In line with this view, tax incentives have become an increasingly popular policy

tool over the last decades.2 Nevertheless, Mazzucato (2013) argues that we need to shift the

focus away from the worry that the state is picking winners, and towards the needs of complex,

network dependent innovation sectors. When policy makers target priority technology areas as

with direct subsidies, they are aware that such projects typically involve a higher risk of failure,

even if the project has a high potential value. The tax credit scheme, on the other hand, does

not take into account that particular technologies are exposed to greater market failures than

others, e.g. environmental technologies (Acemoglu et al., 2012), public good issues (Calel and

Dechezleprêtre, 2016), and possible larger knowledge externalities (Dechezleprêtre et al., 2013;

Mazzucato, 2013).

1Innovation Norway is a government body for promoting industry development.
2R&D tax incentive schemes are widely adopted in advanced economies including the United States, Japan,

and all EU countries except Germany and Estonia (Straathof et al., 2014).
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We use Norwegian firm level registry data on patents which have been assigned to firm

identification numbers, allowing us to merge data on patents with various other registry data

sets, such as innovation policy databases. These data have full coverage of limited liability

firms with detailed accounting and employment information. We will refer to the combined

data as the Business Register. We merge the Business Register with survey data on firms’

R&D-expenditures. The R&D survey data combine two sources: the annual R&D census and

questionnaire data from firms that have applied for tax credits. The questionnaire data contain

information about R&D expenditures each year during the three previous years.3 Combining the

two R&D surveys enables us to track the recent R&D history of about 85 percent of the firms

that obtained any form of public R&D support during the observation period (see below).

We contribute to the existing literature in three ways. First, we investigate potential

differences in the propensity to patent between the response of a technology neutral R&D tax

credit scheme and direct R&D subsidies on innovation in general. Second, we are able to include

all the major sources of R&D subsidy programs in one country in our analysis; both direct

subsidies (grants) and tax credits, and to study the effects of these programs. Although there

are other studies that address multiple sources of public support (e.g. Czarnitzki and Lopes-

Bento, 2013 and Dumont, 2017), we are, to the best of our knowledge, the first to analyse the

impact on an innovation outcome (patenting) of all major sources of support in one country over

a relatively long period of time (2002–2013).4 Third, according to both theoretical and empirical

approaches to the economics of innovation (see Cohen, 2010, for a literature overview), specific

characteristics of firms are also likely to influence innovation. Our rich data set allows us to

control for observed firm heterogeneity through a wealth of control variables.

There is a large literature on the effects of public R&D support on private R&D, for

example, Almus and Czarnitzki (2003) find positive effects on the R&D intensity, and both

Lokshin and Mohnen (2013) and Moretti and Wilson (2014) find positive effects on R&D. Bøler

et al. (2015) find that the introduction of the Norwegian R&D tax credit scheme in 2002–2003

had positive effects on R&D. However, increased R&D expenditures is not equivalent to more

innovations. For instance, nominal R&D expenses might increase because firms adapt to the

3See Section 4.2 in Benedictow et al. (2018) for a description of this data set.
4In a related study, Nilsen et al. (2018) analyse the impact of public R&D support in Norway on firms’ output

and employment growth, labour productivity and returns on assets, but not on innovation outcomes.
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policies by reclassifying spending that they otherwise would not have characterized as R&D.

Tax credit schemes could be particularly vulnerable to such adaptations. Relatively few studies

investigate the effect of R&D subsidies on innovation outcomes. Among them are Bronzini and

Iachini (2014) and Bronzini and Piselli (2016) who both find positive effects on patenting of an

R&D subsidy program in northern Italy. Dechezleprêtre et al. (2016) find that tax deductions

for R&D expenses in the UK increased the propensity to patent. Cappelen et al. (2012) find

that the introduction of R&D tax credits in Norway contributed to an increase in (self-reported)

new products and processes, but not to more patent applications.

Earlier studies of the Norwegian tax credit scheme utilize that tax credits are capped at

R&D expenditures exceeding a certain threshold (e.g. Bøler et al., 2015; Hægeland and Møen,

2007). However, the identification strategies used typically do not take into account that firms

may apply for funding from multiple sources or apply many times.5 Our approach is to use a

quasi-experimental design where firms that received support (treated firms) are matched with a

control group according to the pre-treatment characteristics of the supported firms.

We find that both direct subsidies and tax credits have significant positive effects on patent-

ing. However, we estimate that direct subsidies have triggered almost three times as many granted

patents per NOK million in support compared to tax credits. Nevertheless, the effects depend

critically on the firms’ pre-treatment characteristics. In particular, we find that the public poli-

cies only give incentives for more patenting among firms with no patent applications prior to

obtaining support. When we control for firms’ R&D experience and their history of patenting,

we find no evidence that other variables, such as firm-size or firm-age, have a separate impact

on the efficiency of the R&D-support schemes.

The rest of the paper is organized as follows: Section 2 contains a description of the data

and the variables used in the empirical analysis. The econometric model is presented in Section 3

and the results in Section 4. Finally, Section 5 concludes and suggests some policy implications.

5A part of the identification strategy is that the tax credit scheme is assumed to lower the marginal cost of
R&D only for firms with R&D expenditures below the cap prior to the introduction of the scheme (in 2002–2003).
However, this assumption is less plausible when firms have access to several sources of funding as in our study, or
can make intertemporal adjustments. For example, the fact that the number of Skattefunn projects in Norway
dropped substantially just after its implementation phase (2002-2003) (see Figure 2.2. in Benedictow et al., 2018),
suggests that some R&D projects may have been postponed to benefit from the introduction of the scheme, rather
than having been triggered by it.
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2 Data sources and description of variables

Drawing on administrative sources and survey data, we have prepared a firm-level panel data

set spanning the years from 1995 to 2014, except for the data on innovation polices and the

related R&D questionnaire data, which are collected from 2002, when the tax credit scheme was

introduced in Norway, and onwards.

The Norwegian patent data contain unique firm identification numbers that allow for a

reliable match of the patent data to the other data sets.6 Data on innovation policies are

gathered from three different sources: Innovation Norway’s databases, the PROVIS database

from the Research Council of Norway and the Skattefunn database. These data sources are used

to obtain information related to R&D support for all the firms in the Business Register from

2002 and onwards.7

To be able to distinguish between firms with regard to the level of their R&D activity prior

to the receipt of R&D support, is particularly important in order to identify causal effects of

the policies. Otherwise we risk confusing the effect of doing R&D (which cet. par. increases the

probability of obtaining R&D support) with the effect of the policy itself. Our primary source of

information about firms’ R&D expenditure is the Business R&D census.8 It is mandatory for all

firms that are included in the sample selected by Statistics Norway. This sample covers all firms

in the business enterprise sector with at least 50 employees. Among firms with 10-49 employees,

stratified random samples of about 30 percent of the population are drawn each year in the

main R&D industries (2-digit NACE), with smaller shares in the other industries. Firms with

5-9 employees are also included in the census, but the coverage is much smaller for these firms.

Regardless of size or industry, all firms that reported significant R&D activity in the previous

survey remain included in the next one.

Firms included in the R&D census account for about 50 percent of both the total number of

6In most countries, there is no unique identifier allowing researchers to link intellectual property information
directly to other firm-level data (Helmers et al., 2011). Instead, the names indicated on patent documents,
including assignee and inventor names, and the firm names contained in firm-level databases are used to merge
data sets. For example, PATSTAT and the US patent office provide identifications only by names. Even if the
patent offices have harmonized the name use within their organizations, name harmonization with other data
sources is challenging (Helmers et al., 2011; Tarasconi and Kang, 2015).

7If more than one firm participates in a project, the data from the PROVIS-database are only available for
the main contractor firm.

8The census has been annual since 2001 and was bi-annual from 1995 to 1999.
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patents in the Business Register and a similar share of total R&D support. Thus, the sole reliance

on the R&D census for the classification of firms with regard to their R&D activity would mean

that about half of the support had, from the outset, to be excluded from the estimation sample.

Even more importantly, the sample would not be representative of the population of supported

firms, as mainly medium sized and large firms are included in the census. Fortunately, we are

able to supplement the R&D census with questionnaire data from the Skattefunn applications

regarding each of the applicants’ R&D expenditures three years prior to applying. These data are

collected by the The Research Council of Norway and include information on R&D expenditures

for most firms included in the Skattefunn database.

A detailed description of key variables is provided below, where they are grouped into three

main categories: measures of innovation (Section 2.1), measures of innovation policies (Section

2.2), and determinants of innovation (Section 2.3).

2.1 Innovation measures

We use register data on patent applications and granted patents as measures of innovation. In

contrast, innovation measures based on surveys, such as the Community Innovation Survey (CIS),

may be prone to measurement errors as they depend on the respondents’ own judgement and

accuracy. Comparing the data from the Norwegian CIS with registered patent applications from

the Norwegian Patent Office, reveals substantial discrepancies both with regard to the timing and

number of patent registrations, raising serious concerns about the quality of the (self-reported)

CIS data.

It is common but not uncontroversial to use patent counts as a measure of innovation (see

e.g. the discussion in Bronzini and Piselli, 2016). An important argument in favour of using

patent counts is that there are few examples of economically significant innovations that have

not been patented (Dernis and Guellec, 2001; Dernis and Khan, 2004). Moreover, the analysis

on granted patents allows us, at least partly, to take into account the quality of the innovation

(e.g. novelty). A limitation of patent data is that are there are other means of protecting

innovations, such as industrial designs, trademarks and copyrights.9 Innovators may also prefer

9Unfortunately, register data on other intellectual property rights than patents are available only for a few
years in Norway (e.g. industrial designs since 2010 and copyrights since 2013).
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Figure 1: Yearly sum of patent applications and granted patents, by year of application.
Data source: The Norwegian Patent Office

secrecy over property rights to prevent the public disclosure of an innovation, or to save the

significant fees associated with filing patents (Dechezleprêtre et al., 2011). Nevertheless, it is

reasonable to assume that patent applications are strongly correlated with innovative activities

and that granted patents correspond to actual innovations (see e.g. the discussion in Bronzini

and Piselli, 2016). Moreover, patenting is widespread among R&D-active firms: One out of eight

firms that received R&D support in Norway during 2002-2013 have applied for patents, receiving

about a third of total R&D support (see Section 2.4).

We see from Figure 1 that the number of patent applications and granted patents increase

until 2007–2008, but with a downward trend thereafter. Part of this drop is likely due to the

financial crisis, but the number of patent applications and granted patents were still well below

their pre-crisis level in 2014. We also see that the annual numbers of granted patents (by year

of application) are roughly proportional to the number of applications.10

10Using data on granted patents involves potential timeliness problems because of the processing time of appli-
cations. However, to classify a patent application as granted we use processing data from the Norwegian Patent
Office as of January 2019, allowing for a four year lag from the latest time of application in the estimation sample
(December 2014) to the classification (January 2019).
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2.2 Innovation policy instruments

The Norwegian innovation policy instruments can be grouped into two main categories: i) tax

credits, which are rights-based subsidies, given that some formal requirements are fulfilled by

the applicant; and ii) direct subsidies. Direct subsidies aim to reflect the size of the external

spillovers from the research activities. The primary difference between these two innovation

policy instruments is that the former typically allows firms to choose projects, whereas the latter

is usually accompanied by a government directed project choice (David et al., 2000). As a result,

direct subsidies involve competition between projects and firms for government funding. The

two types of support are thus exposed to different types of selection biases. On the government

side there are several small agencies and two large ones: The Research Council of Norway and

Innovation Norway. This study only considers these two as the other agents are unimportant in

comparison (see Cappelen et al., 2016).

Traditionally, Norwegian R&D support have mainly been given as direct subsidies to firms

(Hægeland and Møen, 2007). The Research Council and Innovation Norway provide different

types of direct subsidies.11 The Research Council offers strategic and targeted subsidies for

research where at least 50 percent of the project is expected to be financed by the firm itself. 12

The Research Council also operates larger programs designed to build long-term knowledge

to encourage innovation, enhance value creation, as well as help find solutions to important

challenges facing society. Innovation Norway offers direct subsidies in the form of direct grants,

high-risk loans and guaranties. Both the Research Council13 and Innovation Norway14 offer direct

subsidies for priority thematic and technology areas, such as e.g. environmental technologies.

The R&D tax credit scheme Skattefunn (SKF) was introduced in January 2002 to SMEs15

but extended to all firms in the following year. It was believed that an R&D tax credit scheme

11The Research Council and Innovation Norway not only provide support intended to enhance innovation. The
policy assignments from the government to Innovation Norway can be specified in three separate categories: In
addition to innovation, Innovation Norway supports regional development and offer financial lending intended
to improve survival probabilities. We exclude support intended for the two latter objectives from our data in
order to identify the effects from subsidies aimed at innovation. In addition to innovation subsidies, the Research
Council provides support for e.g. project establishments and knowledge-building projects not directly related to
innovation, which we exclude from our data.
12Direct subsidies from Innovation Norway typically covers a larger percentage of the project cost. See the

home page of Innovation Norway (in Norwegian) for more details.
13http://www.forskningsradet.no/en/Research_areas/1252498540762
14http://www.innovasjonnorge.no/no/finansiering/miljoteknologi/
15Firms with a) less than 250 employees, and b) a yearly sales income not exceeding 50 million Euros or a

yearly profit not exceeding 43 million Euros (§16-40-5 Regulations for Law of Taxation)
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would provide more stable conditions for the business community than direct grants (see Cappe-

len et al., 2010). Firms are entitled to tax credits as long as the R&D project has been approved

by the Skattefunn division of the Research Council. The SKF scheme grants large firms 18 per-

cent and SMEs 20 percent of approved R&D expenses up to a cap. The cap was NOK 4 million

until 2008 and NOK 5.5 million from 2009-2013. Thus, the maximum tax refund for a large firm

in 2013 was about NOK 1 million (about EUR 110,000).16

Although low access to loans or private venture capital can hinder innovation, it is in prac-

tice difficult to identify firms that truly are exposed to such constraints. A common conception

is that innovation and economic growth is created by “entrepreneurial” small or medium sized

firms (SMEs). However, there is little empirical evidence to support this assertion. As Mazzu-

cato (2013) points out, the relationship between firm size and innovation is sensitive to various

factors such as industry or technology specific effects. Moreover, many small firms tend to be

young.

Based on the current design, the purpose of tax credits is not to reflect the size of the

external spillovers from the research. Unlike direct subsidies, the Norwegian tax credit scheme

does not discriminate between types of R&D projects or technologies. It is thus unlikely that

tax credits contribute in reducing the market failures and challenges that face the development

of particular types of technologies, as for example environmental technologies (Acemoglu et al.,

2012; Dechezleprêtre et al., 2013; Calel and Dechezleprêtre, 2016). Even if tax credits may make

marginal projects profitable, the firms may still focus on projects with the greatest short term

returns.17 Tax credits may therefore not promote new technologies that are not close to the

existing market solutions (David et al., 2000).

An important difference between direct subsidies and tax credits, is that tax credits are

obtained by many more firms, but in much smaller amounts per firm. For example, more than

60 percent of tax credits (SKF) are given in amounts of less than NOK 500,000 per firm-year.

The corresponding numbers for Innovation Norway (IN) and the Research Council (RCN) are

16The tax refund takes place at the end of the year when the actual R&D expenses were incurred. If the firm’s
taxes are less than the refund, the remaining tax credit is given as a direct grant. See Benedictow et al. (2018)
for more details abut the scheme.
17Assume that a firm has two potential projects, A and B, and apply for public funding of the "best" project,

say A. Furthermore, assume that it carries out both A and B if it gets funding and only A if not. Thus, even if
A is the supported project, B is the marginal project and the “impact“ of the support is that B is carried out .
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Figure 2: Distribution of support in NOK mil. from each policy instrument at the firm-year level

35 and 30 percent. On the other hand, a significant share of IN and RCN grants exceed NOK 6

million per year. This is illustrated in Figure 2.

Table 1 provides descriptive statistics of the shares of received R&D support and filed

patent applications by (broad) industry classification, firm size (small, medium and large) and

region. We see that support is highly concentrated in a few industries, with about a third of

total support going to Professional, technical and scientific services (22 percent of tax credits and

41 percent of direct subsidies). Next comes Information and communication (with 25 percent of

tax credits and 12 percent of direct subsidies) and Manufacturing of Machinery and electronics

(14 percent of tax credits and 16 percent of direct subsidies). These three industries receive

65 percent of total support, but account for only 16 percent of the firm-years (a firm observed

for one year). In contrast, Other services account for 75 percent of the firm-years, but only

14 percent of total support. Patenting is highly concentrated in two industries: Professional,

technical and scientific services (34 percent) and Manufacturing of machinery and electronics

(27 percent). In comparison, Other services and other Manufacturing (excluding machinery and

electronics), account for 16 and 12.5 percent of the patent applications.

TABLE 1 HERE

Large firms (≥ 250 employees) make up less than 0.5 percent of the firm-years in the
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Business Register, receive 4 percent of the tax credits, 13 percent of the direct subsidies and hold

24 percent of the patent applications. Large firms thus patent more relative to the funding they

receive and – much more – relative to their numbers.18

Figure 3 depicts the share of treatment-years, defined as firm-years with tax credits or direct

subsidies, relative to all firm-years in the given industry (upper chart) or in the given employ-

ment category (lower chart). The industries with the highest share of treatment-years relative

to firm-years are Manufacturing of chemical, pharmaceutical, rubber and plastic products; Man-

ufacturing of machinery and electronics; Manufacturing of textiles and food; and Information

and communication. There is a strictly increasing relation between number of employees and

the receipt of R&D support (lower chart). Direct subsidies are disproportionally given to large

firms: Large firms have more than 10 percent probability of receiving direct subsidies and 8

percent probability of receiving tax credits in a given year, compared to 5 percent and 1 percent,

respectively, for firms with 10–49 employees.

2.3 Determinants of innovation

A number of firm characteristics may be important drivers of innovation – in addition to public

policies (see Klemetsen et al., 2018, for a systematic discussion). This is illustrated in Figure

4. The upper panel depicts the average number of patent applications vs. granted patents

per firm-year in each of the industries. Figure 4 also depicts the number of patents per firm-

year by number of employees (lower panel). The upper panel reveals large differences between

industries with regard to the propensity to patent. The three top industries in this respect

are Manufacturing of chemical, pharmaceutical, rubber and plastic products; Manufacturing of

machinery and electronics; and Mining, oil and gas extraction. Then comes Manufacturing of

metals and minerals and Professional, scientific and technical activities. Other industries have

an almost negligible number of patents per firm-year.

From the lower chart in Figure 4, there appears to be an exponential relation between firm

size and the propensity to patent. The number of patent applications per firm-year is 0.25 among

18The different regions in Norway account for a similar share of R&D support as of firm-years. The exception
is Middle Norway, which gets a disproportional share of directs subsidies (18 percent) compared to firm-years (8
percent). This is due to firms in the industry Research and Development (NACE 72), of which many participate
in research networks with the Norwegian Technical University located mainly in the city of Trondheim.
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large firms, compared to only 0.03 among medium sized firms, and less than 0.01 among small

firms.

By taking into account both observed heterogeneity (control variables) and unobserved

heterogeneity (represented by fixed or random effects), we aim to eliminate the problem of

omitted variable bias when analyzing the effects of public R&D support. We will control for

R&D-activity, patenting history, firm size, age, industry and region. Some of these variables are

clearly endogenous and therefore would be "bad controls" in a regression model. Instead, we

apply a quasi-experimental design. That is, we mimic – through a stratification-based matching

procedure – the conditions of a randomized experiment as closely as possible by using the pre-

treatment values of the variables. The approach will be detailed in Section 3. The critical

prerequisite for our analyses is that our control group of firms is representative of the non-

treated (counterfactual) outcomes for the firms that receive support, i.e. the outcomes that

would have been realized if they had not received support.

2.4 Sample size and summary statistics before matching

Table 2 shows summary statistics for the Business Register, separating between "All firms"

and "Patenting firms". The upper part of the table shows that, in general, patenting firms

are much larger, more capital intensive and have higher labour productivity than non-patenting

firms. They are also somewhat older, with a mean firm-age of 12.5 vs. 10.5 years, but not more

profitable: the mean (median) return on assets is 2.1 (3.0) percent vs. 6.0 (4.1) percent for

patenting vs. all firms. The most striking difference is perhaps that among patenting firms, over

50 percent obtained R&D support, compared to just 3.7 percent among all firms.

Column 1 in the lower part of Table 2 shows that the Business Register consists of 335,763

firms, of which only 2,024 have at least one patent application during 2002-2013 (Column 3).

The number of treated firms, i.e. firms receiving R&D support, is 8,834. They received in total

NOK 21.9 bil. in R&D support between 2002 and 2013. Of the treated firms, 1,081 (i.e. 1 out

of 8) are patenting firms, receiving more than a third of the total R&D support in the Business

Register. Thus, R&D support is given highly disproportionate to patenting firms.

TABLE 2 HERE
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chart) and number of employees
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Table 3 contains descriptive statistics for treated firms after the merger of the Business

Register with our two sources of R&D survey data. Comparing Column 1 and 2 in the upper

part of Table 3, we see that the need to classify firms as either R&D-active or R&D-inactive at

the time of treatment assignment reduces the sample size by less than 15 percent. The number

of treatment-years is reduced from 27,224 to 23,737 and the amount of R&D support from NOK

21.9 bil. to NOK 19.1 bil.

In the lower part of Table 3 (Column 3), we see that about 70 percent of treated firms were

R&D-active before receiving treatment. Perhaps even more strikingly, R&D support is given

disproportionate to young firms. The lower part of Table 3 (Column 1) shows that 43 percent

of the treated firms were 3 years or younger when first assigned to treatment. In comparison, 30

percent of all firm-years in the Business Register are related to firms aged 3 years or less (see

upper part of Table 2). These figures reflect that the R&D support schemes are generally more

popular among start-up than incumbent firms, but also that IN and RCN have programs that

target young firms.19

The shares of patenting firms before and after the merging of the Business Register with

the two sources of R&D survey data are almost identical: 11 and 12 percent (Column 1 and 3 in

the lower part of Table 3). Moreover, comparing Column 1 (Column 2) with Column 3 (Column

4), respectively, we see that the mean (median) number of employees among the treated firms is

32.1 (5.0) in the Business Register vs. 39.7 (7.0) in the merged data set. The firms in the two

data sets have almost identical characteristics for all other variables: the mean (median) firm-age

is 8.6 (5.0) vs. 9.0 (5.0), the mean (median) return on assets (RoA) is 1.0 (2.0) percent vs. 2.0

(3.0) percent, and the mean (median) level of labour productivity is 0.45 (0.40) vs. 0.46 (0.41).

TABLE 3 HERE

2.5 The matched estimation sample

Our matching is based on stratification: treated firms are matched with non-treated firms be-

longing to the same stratum at the time of matching. The matching (stratification) variables

(X) are: NACE industry (at the 2-digit level), region, firm-age, employment, R&D expenditure

19An example is "Etablererstøtte" (start-up support) from IN.
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and (lags of) number of patent applications. The matching variables should affect both the

dependent variable and the probability of treatment. That this is the case with regard to X

is evident from the discussions and the descriptive statistics presented above. We divide the

possible outcomes of the matching vector X into strata, x, as follows:

x = (ind, reg, age, empl, rd, pat)

where ind is a 2-digit NACE industry, reg denotes a region (see Table 1), age is an age interval (0–

3, 4–9, or >9 years), empl is an employment interval (<5, 5-19, 20-49, 50-249, ≥250 employees),

and rd is R&D-status : a dummy for whether the firm had positive R&D expenditures (including

R&D support) during the three preceding years not including the current one. Finally, pat is a

dummy for whether the firm has had at least one patent application since 1995.

The final estimation sample is a combination of sampling from the R&D census and

the Business Register, as treated R&D-active firms (firms with positive R&D expenditure) are

matched with non-treated R&D-active firms according to the R&D census. On the other hand,

R&D-inactive firms (according to R&D expenditure reported in the R&D census or in the sup-

plementary R&D questionnaire) are matched with firms from the Business Register with no

recorded R&D activity.

Table 4 shows that the final matched sample consists of 13,528 (3,406+10,122) treatment-

years, comprising NOK 11 bil. in total R&D support, of which 70 percent was received by firms

that were R&D-active at the time of treatment assignment. Moreover, 4.5 (2.6) percent of the

R&D-active (R&D-inactive) firms were classified as patenting firms prior to treatment. The

total number of patents by firms included in the estimation sample is 3,148. Of these, 2,441

(328+2,113) are related to treated firms.

TABLE 4 HERE

The effect of the matching is a substantial reduction of the estimation sample: the final

estimation sample described in Table 4 comprises 3,622 (1,134+2,528) treated firms, compared

to 6,838 treated firms with R&D information in the Business Register (Table 3). This reduction

in sample size is the price we pay for a matched estimation sample with excellent balancing

properties. First, by construction, the matching is exact with regard to the categorical variables
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R&D-activity (rd), prior patenting (pat), industry (ind) and region (reg). Second, from the

upper part of Table 4, we see that the matched estimation sample is almost perfectly balanced

with regard to the mean of employment and firm-age. That is, we do not reject that the means

are equal for the treated and controls (this is easily derived from the reported standard errors

(SE) in Table 4).20 Third, we observe good balancing properties in Table 4 also with regard to

variables not used in the stratification, such as labour productivity, capital intensity and return

to assets. The explanation is that neither of these variables are significant predictors of treatment

conditional on the matching variables. In contrast, the matching variables are highly significant

predictors of treatment.21

3 Empirical model

As already stated, our main research question is whether the two main types of innovation

policies – tax credits and direct subsidies – spur innovations in the form of patenting. However,

a firm receiving a large amount of support can have a higher propensity for patenting cet. par.

We will control for this selection problem by means of statistical matching, as discussed above.

Furthermore, we will allow for heterogeneity in treatment effects across firms and programs. In

this way, we can relate the estimated effects to the characteristics of firms and policies, such as

the amount and source of support, when interpreting the results (see Section 4).

To take into account that R&D support tend to take the form of annual payments and/or

tax deductions in consecutive years, reflecting the duration of the supported projects, we define

a treatment as a sequence of consecutive firm-years with support. We will refer to the first year

in the sequence as the year of treatment assignment, denoted Ti (the firm receives support in

Ti but not in Ti − 1 ). The number of consecutive years with support is denoted Di (the firm

receives support in Ti, Ti + 1, ..., Ti + Di − 1, but not in Ti + Di). In the case of non-consecutive

years with support, we will consider this as repeated treatments, with a separate matching for

20When the reported mean values are used with the standard errors to calculate 95 percent (pairwise) confidence
intervals for treated and controls, it is easily seen that they overlap. Formal tests of equality of both means and
medians are available from the authors upon request. In all cases these tests lead to a clear non-rejection.
21Comparing Table 1 (before matching) and Table A.1 in the Appendix (after matching), give further evidence

that the matched estimation sample is representative for the population of treated firms as a whole, including the
industry and regional distributions. Thus, while the matching substantially reduces the sample of treated firms
that can be analysed, the matched sample is not skewed with regard to any dimension of x, such as e.g. firm size
or firm age.
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each treatment (see below, especially Footnote 24).

To identify separate effects of treatments funded by different policy instruments, we must

take into account that co-funding is widespread. For this purpose, we define the main policy

instrument as the source of the largest amount of support at the treatment level by summing

the NOK support from all sources over the treatment period. Although research projects may

receive public funding from several sources, there tends to be one dominant source of funding

(we will address the robustness of our results to the definition of the policy instrument in Section

4.3).

In our empirical model, the dependent variable, Pit, is a count variable denoting either

the number of granted patents or patent applications of firm i in year t. Let Pit(d) denote the

outcome of the dependent variable as a function of treatment status, where d = 0 means non-

treatment and d ∈ {1, 2, ...} means treatment with duration d (d consecutive years of support).

Note the important difference between Pit(Di) and Pit(d): Pit(Di) is the realized outcome, while

Pit(d), for d ∈ {0, 1, 2, ...}, are the potential outcomes. In particular, we will refer to Pit(0) as

the non-treated outcome.

Let S(X) = x be the mapping that maps the matching vector X into a unique stratum x,

as explained in Section 2.5. We assume that, conditional on x, the causal effect of the treatment

is represented by a fixed or random effect, τi . That is, the conditional mean of the potential

outcome Pit(d) is given by:

E(Pit(d)|S(XiTi ) = x, τi, Di) = exp(τi1(1 ≤ s ≤ d))

× E(Pit(0)|S(XiTi ) = x) (1)

where s ≥ 0 is the number of years since treatment assignment (Ti), t = Ti + s and 1(A) is the

indicator function which is one if the statement A is true and zero otherwise. The key identifying

assumption in Equation (1), is that the stratification S(X) is sufficiently rich so that conditional

mean independence (CMI) holds with regard to the non-treated outcome. That is:

E(Pit(0)|S(XiTi
) = x, τi, Di) = E(Pit(0)|S(XiT i) = x) for t ≥ Ti (2)
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The specification consisting of Equations (1)-(2) is a multiplicative version of the (linear) matched

Diff-in-diff model advocated by e.g. Blundell and Costa Dias (2009), where treatment-specific

effects (τi) are also considered as fixed or random. As in the linear model, CMI means that

whatever treatment, Di, the firm is assigned to at Ti , this assignment is per se uninformative

about the expected non-treated outcome of the dependent variable (given x).

3.1 Common trend

The expected non-treated outcome is assumed to be determined by a common trend – denoted

mt(x, Ti) – depending on what stratum, x, the firm belongs to at the time of treatment assign-

ment, Ti:

E(Pit(0)|S(XiTi) = x) = exp(mt(x, Ti)) (3)

Importantly, mt(x, Ti) only depends on predetermined values and therefore is not affected by

the treatment.

If we were to estimate the above model on a given reference population, e.g. as a count data

regression model with Pit(Di) as the dependent variable, the causal effects would be identified

solely by the functional form of mt(∙). Since Di and XiTi , by assumption, are highly correlated,

any error in the specification of the common trend could turn up as a spurious "treatment effect".

Moreover, for non-treated firms (Di = 0), Ti is not well-defined: it is a potential year of treatment

assignment.

To address these issues, we combine stratification and statistical matching as follows. First,

we define the cell C(x, T ) as the set of all firms observed to belong to the strata x at T . The

subset of firms in this cell that are assigned to treatment at T (i.e. firms with Ti = T ) is denoted

NT (x).22 The corresponding control group, MT (x), is a subset of non-treated firms in C(x, T ).23

The main identifying restriction with regard to the estimation is that the firms in the control

group, MT (x), have the same common trend, mt(x, T), as the firms in the treatment group,

22Formally NT (x) = {i : S(XiT ) = x, Ti = T, Di > 0} and C(x, T ) = {i : S(XiT ) = x}
23In principle, any non-treated firm in C(x, T ) could be in the control group. Some details are in order here:

First, all firms in the cell that are assigned to treatment at T will have the same control group (many-to-many
matching). Second, any non-treated firm could potentially belong to several control groups (one for each T ). To
achieve uniqueness and efficiency, a firm is assigned to a (unique) control group according to a simple rule which
attempts to balance the ratio of number of treated to controls across the cells. Third, we do not exclude firms
from potentially being in a control group until they get treatment (if any), since such exclusions would depend
on future outcomes of endogenous variables (e.g. future R&D) and thus violate CMI.
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NT (x).

3.2 Treatment response function

Since pinpointing the timing of the effects from the policies are challenging and little guidance

is available from the literature, we model the effect of the treatment as simple as possible: A

treatment assigned at Ti induces – with a one-year lag – a proportional shift in the expected

number of patents equal to exp(τi) during the treatment. Of course, different lag choices can

easily be accommodated. In the empirical section we will also investigate "long term" or "post-

treatment" effects.

As we cannot estimate a separate parameter τi for each treatment, further assumptions

must be made. Moreover, to identify separate effects of the different policy instruments, we must

take into account the source of funding. Our approach is to relate τi to observed variables, both

with respect to firm characteristics (x) and the source of funding.

Formally, let the dummy variables TCi and DSi be one if the main policy instrument is,

respectively, tax credits and direct subsidies. Furthermore, let Pi = (TCi, DSi) and assume:

E(exp(τi)|S(XiT) = x,Di, Pi ) = exp(π(x)TC + γ(x)DSi)

≡ exp(τ(x, Pi)) (4)

We will henceforth refer to τ(x, Pi) as the treatment response function. The treatment response

function expresses the relative increase in the expected number of patent applications from the

policy Pi: τ(x, Pi) is equal to π(x) or γ(x) – depending on whether TCi = 1 or DSi = 1.

Although the treatment response, in principle, is allowed to depend on firm characteristics (x)

in a non-restricted way, we mostly focus on the impact of pre-treatment R&D-status (rd) and

patenting (pat) in our empirical analyses (see Section 4). The potential impact of firm-size and

firm-age will also be investigated. Moreover, we will examine the impact of policy mixtures, i.e.

co-funding of the same treatment from multiple funding agencies.
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3.3 Estimation

Pit = Pit(Di) is the dependent variable. To estimate the treatment response function, τ(x, p),

we utilize that in the matched sample the following holds:24

E(Pit|S(XiT ) = x,Di, Pi) = exp(τ(x, Pi)1(1 ≤ s ≤ Di) + mt(x, T )) i ∈ NT (x)

E(Pjt|S(XjT ) = x) = exp(mt(x, T )) j ∈ MT (x)
(5)

where s ≥ 0 is the number of years since the start of treatment and t = T + s. The notation

mt(x, T ) underscores that the common trend is specific to the cell, i.e. it is non-parametrically

identified as cell-specific time-effects. Hence, we specify mt(x, T ) as a fixed year-effect (specific

to t) plus a cell-specific random year-effect (specific to (t, x)). The assumption of random cell-

specific year-effects is justified since XiT and Di are independent in the matched sample.25

In view of the discussion in Section 2, a key assumption is that mt(x, T ) does not depend

on variables that may be affected by the treatment, such as contemporaneous R&D activity or

employment. Current endogenous variables are "bad controls". Therefore, the control variables

are used only for stratification (matching), but not included as explanatory variables in the

regressions.26

It is not possible to identify causal effects in this model if fixed firm effects are also included.

The reason is that the firm is observed from the start of treatment (s = 0) until the end of

treatment (s = Di) – or possibly a few years more. An implication is that a fixed firm-dummy

will be (almost) perfectly correlated with the treatment indicator 1(1 ≤ s ≤ Di). Our identifying

assumption is that the firms in the control group represent the non-treated outcomes of the

treated firm, not – as in a fixed effects model – that the treated firms patent more just after (or
24A firm (i) that obtained treatment at Ti = T is 1) considered as a treated firm from T and onwards (but

not earlier); 2) it remains in the sample after treatment until it exits; 3) if a firm receives repeated treatments
(non-consequtive firm-years with support), each new treatment is accompanied by a separate matching; 4) if an
R&D-inactive firm obtains R&D support a second time, it will change status from R&D-inactive to R&D-active
for the second matching.
25Even if the stratification may achieve independence of XiT and Di within each cell (T is the year of matching),

this does not guarantee a balanced distribution of XiT in the matched estimation sample. The reason is that
the ratio of treated to controls varies across the cells. Based on the theory of unequal probability sampling (see
Särndal et al., 1992), we correct this imbalance by means of weights, wi, where wi = 1 if i ∈ NT (x) (treated) and
wj = M(#NT (x))/(N#MT (x)) if j ∈ MT (x) (controls), where #A denotes number of elements in the set A,
and N and M denote the total number of treated and controls across all the cells in the matched sample. Then∑

j∈MT (x) wj/#NT (x) = M/N , i.e. the number of weighted controls per treated firm is equal to M/N in each
cell. As a result, a balanced distribution of XiT is achieved in the weighted matched sample.
26Our approach is in line with Lechner (2010) and Lechner and Wunsch (2013). Like us, they do not include

control variables in the regression (Diff-in-diff) part of the estimation, only in the matching part.
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during) treatment than it did before treatment.

We estimate our model using the mixed Poisson quasi-maximum likelihood estimator, i.e.

with both fixed and random coefficients.27 If the expected number of patents is correctly specified,

this estimator yields a consistent quasi-maximum likelihood estimator of τ(x, p) even if the

assumption of a Poisson-distribution does not hold (see Gourieroux and Monfort, 1995, Ch.

8.4).28 Robust estimates of the covariance matrix of the quasi-maximum likelihood estimator

are easily available (see Cameron and Trivedi, 2015). We will also estimate a fixed effects Poisson

model as a benchmark in Section 4.

4 Results

The estimates of the parameters in Equations (4)-(5) are presented in Table 5 for patent appli-

cations and Table 6 for granted patents. The corresponding estimates of marginal effects (ME)

are presented in Table 7. We report estimates along two dimensions with regard to firm charac-

teristics (x): (1) R&D-active vs. R&D-inactive firms (rd) and (2) patenting vs. non-patenting

firms (pat), where both variables are measured at the year of treatment assignment (the year of

matching). Other dimensions of x (firm-size and firm-age) will be considered in Table 8.

4.1 Estimates of the treatment response function (relative effects)

Table 5 contains the results of the relative effects of innovation policies on the number of patent

applications, i.e. the estimates of the treatment response function. The main policy instrument

is indicated in the first column of the tables, while the second and third columns classify the

treated firm according to the pre-treatment value of (rd, pat). In addition to the matching

estimator explained in Section 3, we report estimates of a fixed effects benchmark model (FE).

The FE model includes fixed firm-effects and calendar-year dummies in addition to the treatment

variables.

TABLE 5 HERE
27We use the STATA command mepoisson with weights, where the fixed part includes the calendar year

dummies, the weights wi are defined in Footnote 25, and the mixing (random coefficients) is with regard to the
cell-specific year-effects.
28This is not the case with the popular Negative binomial distribution unless unwarranted restrictions are placed

on the overdispersion parameter (see Guimaraes, 2008; and Cameron and Trivedi, 2015)
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The fixed effects (FE) specification captures correlation between unobserved firm specific ef-

fects and the treatment variables (the right-hand side variables). This feature of the model comes

at the cost of throwing out from the analysis firms without patents, as time-invariant variables

are automatically dropped from the FE model.29 As a result, the FE model is more appropriate

for investigating the intensity of innovation (intensive margin) rather than the propensity to

innovate (extensive margin). Nevertheless, we cannot consider the FE estimates as representing

causal effects. The reason is that the identification of causal effects in the FE model depends on

the implausible assumption that selection into treatment is time-invariant at the firm level.

From the lower part of Table 5 we see that the number of treated firms and patent applica-

tions included in the FE estimation are, respectively, 664 and 3,193. The corresponding numbers

for the matching estimator are 3,362 and 2,724. Thus, the sample for the matching estimator is

much larger with respect to number of treated firms, and moderately smaller with regard to the

number of patent applications.

From the results of the matching estimator in Table 5, it appears that both tax credits

and direct subsidies have significant positive effects on the prevalence of patent applications.

However, the effects seem to be highly dependent on the pre-treatment classification of the firm.

All the significant results refer to the extensive margin ; firms with no patent applications prior

to treatment. Furthermore, it is noticeable that that the magnitude of the estimates are higher

in the case of R&D-inactive firms compared to R&D-active firms. We also see that the estimates

for direct subsidies are significantly higher than for tax credits.

Comparing the estimates from the matched sample and the FE model in Table 5, we see that

the same parameters are significant in both models. As explained in Section 3.2, these parameters

can be interpreted in terms of relative effects, i.e. relative to the non-treated outcome. However,

since the expected number of patents is likely to be much higher in the FE sample because it

only includes patenting firms, the magnitude of the effects are not comparable across the two

models. We will return to the more interesting Average Marginal (level) Effect (AME) estimates

in Table 7, i.e. the effects of the treatment on the number of patents.

We replicate the results of Table 5 using granted patents instead of applications in Table

29To retain a sample which is as large as possible, we estimate the FE model over the extended time period
1995-2014.
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6. Further evidence of our main findings from Table 5 are given in Table 6. All the parameter

estimates are strikingly similar in the two tables. Moreover, the significant results are related to

the extensive margins and are much stronger for direct subsidies than for tax credits.

TABLE 6 HERE

4.2 Average Marginal Effect (AME)

The marginal effect of the treatment is defined as the change in the expected number of patents,

given the pre-treatment classification of the firm (x) and the main policy instrument (P ). The

estimated average marginal effects (AMEs) for patent applications and granted patents are re-

ported in the upper part of Table 7. They are derived from the corresponding parameter estimates

from the matching estimator reported in Table 5 and 6.

The level of significance reported in Table 5 (for patent applications) and Table 6 (for

granted patents) are translated into very similar levels of significance in Table 7. There are

no significant estimates of AMEs at the intensive margin, whereas all estimated AMEs at the

extensive margin (firms with no patent applications prior to treatment) are significant at the 1

or 5 percent level. These main findings of Table 7 hold with regard to patent applications as well

as granted patents.

Some other notable results from the upper part of Table 7 are the following: 1) The

expected number of patent applications or granted patents per year (μ) is close to the estimated

AMEs in the case of firms without prior patenting, indicating that their non-treated probability

of patenting is close to zero. 2) The estimated AMEs for granted patents are equal to, or slightly

below, those for patent applications, but not significantly different. 3) The AME estimates in

Table 7 for R&D-inactive firms (prior to treatment) are much higher for direct subsidies (in the

range 0.13–0.15) compared to tax credits (about 0.01). 4) In the case of R&D-inactive firms,

the estimated AMEs for direct subsidies are much higher than for tax credits also relative to the

amount of support received. For example, while the mean (median) support intensity (support

per year during treatment) is three (two) times higher for direct subsidies than for tax credits

(see the lower part of Table 7), the estimated AMEs are higher by a factor exceeding 10.

In the the lower part of Table 7, we present estimates of sums of marginal effects (Sum
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ME), defined as the sum of all the AMEs across all treatment-years. We can interpret Sum ME

as the total number of patents triggered by tax credits or direct grants occurring in the data

period. Regarding patent applications, the estimated Sum ME for direct subsidies and tax credits

are 239 and 139, respectively. The corresponding estimates are 157 and 56 for granted patents.

As seen from the lower part of Table 4, the amount of direct subsides and tax credits in the

estimation sample are equal: 2.1 + 3.4 = 5.5 (direct subsidies) and 1.2 + 4.3 = 5.5 (tax credits).

We conclude that direct subsides have been much more effective in triggering innovations as

measured by patent applications and granted patents than tax credits.

TABLE 7 HERE

While previous patenting and R&D activity are clearly the most important predictors of

future patenting, the treatment response function may depend on other pre-treatment charac-

teristics (x). In particular, the descriptive statistics reported in Section 2 indicate that firm-size

is a key determinant of patenting (cf. Figure 4). Moreover, we have seen that a disproportionate

share (43 percent) of treated firms are 3 years or younger when first assigned to treatment (cf.

Table 3). Hence, it is potentially interesting to separate between start-up firms (≤ 3 years) and

incumbent firms (> 3 years) when reporting AME estimates.

In Table 8, the estimated AMEs are allowed to depend on an additional dimension Firm

Type. In the upper part of Table 8, Firm Type refers to start-up or incumbent firm.

TABLE 8 HERE

From the results in the upper part of Table 8 (both granted and applications), we see that –

conditional on (pat, rd) – the estimated AME are very similar for start-ups and incumbent firms.

Not only are the estimates of the same magnitude and have overlapping confidence intervals, but

in each case where the AME estimate is significant in Table 7, the corresponding pair of AME

estimates in Table 8 (one for each Firm Type) are also significant.

The lower part of Table 8 displays estimated AME when Firm Type refers to firm-size

(large firms vs. SMEs) – instead of firm-age. As in Table 1, a large firm is defined as having 250

or more employees. There are three main takings from the lower part of Table 8. First, among

the R&D-inactive firms, there are too few large firms to even estimate AMEs. Second, among the
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R&D-active firms with no prior patenting, the estimated AMEs are significant only for SMEs.

Nevertheless, the estimates are almost identical for SMEs and large firms. Finally, there is weak

evidence (significant at the 10 percent level) that large R&D-active firms with prior patenting

have a positive AME from direct subsidies (but not from tax credits).

4.3 Robustness issues: Long-term effects and support mixture

To examine long-term effects, Table 9 presents AME estimates for the post-treatment period,

defined as the period from Ti + Di +1 (two years after the end of the treatment; see Section 3)

until Ti + 2Di. For comparability with Table 7 and 8, the post-treatment period is defined as

having the same duration (= Di) as the treatment period.30

TABLE 9 HERE

PTAME in Table 9 expresses the average marginal effect of treatment during the post-treatment

period. Similar to AME, it represents an average effect per year during this period. None of the

estimates in Table 9 are even close to being significant: the highest (absolute) z-value is 1.2. These

findings unambiguously support the hypothesis that the effects of R&D support are materialized

within one year after the end of treatment. They are also consistent with results obtained by

Lanjouw and Mody (1996) and Griliches (1998), who observe that patent applications tend to

be taken out early in the life of a research project.

So far, we have classified the source of funding of public support by the main policy in-

strument, i.e. whether the largest source of funding is direct subsidies or tax credits. However,

one might think that approval from multiple public agencies may signal a high quality of the

project. The existing literature provides little evidence on this issue. For example, Bérubé and

Mohnen (2009) find that firms which receive direct R&D subsidies in addition to R&D tax cred-

its are more innovative than firms which only receive tax credits. In contrast, Czarnitzki and

Lopes-Bento (2013) find that the estimated treatment effects do not depend on dummy variables

related to the presence of a subsidy mix.

Similar to Czarnitzki and Lopes-Bento (2013), we examine the issue of support mixture

by means of (ad hoc) dummy variables. Specifically, we introduce one dummy variable taking
30If a firm is assigned to a new treatment or is no longer observed (firm-exit), the post-treatment period is

truncated accordingly (cf. Footnote 24).
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the value one if two public agencies provide support for the same treatment and another dummy

variable which is one if the project is supported by all three sources (IN, RCN and SKF). We

include a full set of interactions between these two dummy variables and the dummy variables

indicating the main policy instrument. The result of the estimation is that we do not reject our

original specification. The p-value of the test is approximately 0.6, which is clearly insignificant.

This result is likely to reflect that treatments with SKF as main policy instrument rarely include

funding from IN or RCN, whereas treatments with direct subsidies as main policy instrument,

often include tax credits as a secondary source of funding. This is illustrated in Table 10. In the

upper part of the table, we see that in the case of treatments with direct subsidies (DIR) as the

main policy instrument (main source of funding), support from SKF is received in 42 percent

of the corresponding treatment-years. In the case of treatments with SKF as the main policy

instrument, support from DIR is received in only 8 percent of the corresponding treatment-years.

Looking at the amount of support reveals a striking difference between the policy instru-

ments (lower part of Table 10): In the case of treatments with direct subsidies (DIR) as the main

policy instrument, 74 percent of total funding comes from DIR. In the case of treatments with

SKF as the main policy instrument, 85 percent of total funding comes from SKF. The conclusion

from Table 10 is that projects mainly supported by direct subsides often obtain tax credits too,

but not vice versa.

TABLE 10 HERE

5 Conclusions and policy implications

We have analysed the three major sources of direct and indirect R&D subsidies in Norway:

direct subsidies from Innovation Norway and the Research Council of Norway, and the R&D

tax credit scheme Skattefunn. Our analyses are based on a quasi-experimental design, where we

mimic – through a stratification-based matching procedure – the conditions of a randomized ex-

periment, using measures of pre-treatment R&D activity, patenting, firm-size, firm-age, industry

and region as stratification variables.

Innovation policies to support private R&D activities should ideally reflect the size of the

external spillovers from the research. Direct grants from the Research Council and Innovation
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Norway are targeted specifically towards projects with low private return and possibly high social

return, such as e.g. the development of environmental and medical technologies. Targeting R&D

subsidies specifically towards prioritized technology areas that generate larger externalities is

thus likely necessary in order to foster major innovation leaps and new technologies that are not

already close to the existing market solution.

In contrast to direct grants, tax credits are generally thought to give more incentives to

SMEs – as they are typically more exposed to financial constraints than large firms – and to

firms with little R&D activity before obtaining support – due to a cap on the tax deductions.

In our empirical analyses, we found that both direct subsidies and tax credits have signifi-

cant positive effects on patent applications as well as granted patents. However, the magnitude

of the effects depend critically on the firms’ pre-treatment characteristics. All our statistically

significant estimates (at the 5 percent level) are related to the extensive margin, i.e. firms with no

patent applications prior to obtaining support. We find little or no evidence that other variables,

such as firm-size or firm-age, have a separate impact on the efficiency of the support when we

control for the pre-treatment level of R&D activity and patenting.

We find that direct subsidies have triggered at least three times as many granted patents per

NOKmillion of support compared to tax credits. The entire effect pertains to firms that are R&D-

inactive prior to obtaining support. Therefore, the usual explanation, that tax credits provide

less incentives for innovation than direct subsidies for R&D active firms, especially large ones,

does not apply here. Rather, our results indicate that projects that are (mainly) supported by

direct subsidies have a higher potential for innovation than projects that are (mainly) subsidized

by tax credits.

Our analyses lead to rather strong policy implications. Support to historically innovating

firms do not spur further innovations, at least not patentable ones. The reason may be that

the supported projects are carried out regardless of the support (cf. Footnote 17). Instead,

support should be directed to promote innovations at the extensive margin, i.e. to firms with a

high potential of becoming innovative rather than to firms that already have a record of being

innovative. Moreover, as targeted subsidies generate more innovations, society benefits from

distributing much of the subsidies to priority areas.
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TABLES 

 

 

 

Table 1. Share of R&D support, patent applications and firm-years. In percent, by 

industry region and firm-size   

Classification variable Direct 
support 

Tax credits Patent 
appl. 

Firm-
years 

 

      

Industry      

Primary industries 2.9 3.8 0.4 1.6  

Mining, oil and gas extraction 1.3 1.0 5.0 0.5  

Manufacturing 29.0 31.9 39.7 6.1  

  -Textiles and food 3.7 4.9 1.7 1.2  

  -Wood, pulp and paper 1.1 1.7 0.9 1.1  

  -Chemicals, pharma., rubber, plastic 5.0 4.1 6.5 0.4  

  -Metals, minerals 4.9 5.2 3.4 1.2  

  -Machinery and electronics 14.3 16.0 27.2 2.2  

Power prod., waste and recycling 1.6 1.6 1.1 0.9  

Information and communication 11.9 25.2 3.8 4.2  

Professional, scientific and technical 
services 

41.0 21.7 34.3 10.8  

Other services 12.3 14.9 15.8 75.9  

      

Region      

South 5.3 5.1 6.6 6.0  

East 43.8 49.4 48.3 52.5  

West 27.2 28.1 34.0 25.8  

Middle 18.2 11.1 8.6 7.6  

North 5.6 6.4 2.5 8.2  

 
Firm-size 

     

Small (<50 employees) 64.2 82.5 63.0 98.1  

Medium (50-249 employees) 22.6 13.9 13.5 1.6  

Large (250 employees) 13.2 3.6 23.5 0.3  
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Table 2. Mean/median of key variables at the firm-year level (upper part) and summary 

statistics (lower part). All vs. patenting firms in the Business Register, 2002-2013  

Variables All firms Patenting firms1 

 Mean Median Mean Median 

No. of patent applications 0.002  0.24  

No. of granted patents 0.002  0.18  

Treated firm (0/1)2 0.037  0.57  

No. of employees 7.4 1 85.8 5 

Labor productivity3 0.43 0.36 0.56 0.51 

Return on assets4 0.060 0.041 0.021 0.030 

Capital intensity5 1.40 0.58 2.39 1.39 

Firm-age 10.5 7 12.5 9 

Firm-age 3   (0/1)6 0.30  0.22  

No of firm-years 2,088,033  17,370  

No of firms 335,763  2,024  

No of treated firms 8,834  1,081  

Total support (NOK billion) 21.9  7.5  

No. of patent appl. 4,230  4,230  

No. patent appl. by treated firms 2,969  2,969  

No. of granted patents 3,226  3,226  

No. of granted patents by treated firms  1,744  1,744  

     
Notes: 0/1 indicates a firm-year dummy variable. 1 Firms with at least one patent application during the period.  

2Equal to 1 in all years if the firm received support at least once. 3 Value added per employee in NOK million 

(NOK 100   EUR 11 during 2002-2013). 4Operating income divided by the book value of total assets. 
5Tangible fixed assets in NOK million per employee. 6 Equal to 1 if the firm is   3 years old  
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Table 3. Treated firms in the Business Register: total R&D support and 

descriptive statistics at the time of treatment assignment 
 

All treated  firms  
Treated firms with 
R&D info1 

No. of treated firms 8,834   6,838  

No. of treatment-years 2) 27,224   23,737  

Firm-years with IN support 4,362   3,141  

Firm-years with RCN support 3,646   3,172  

Firm-years with SKF support 23,049   21,053  

Total support (NOK billion) 21.9   19.1  

Total IN support 5.0   4.1  

Total RCN support 6.4   5.0  

Total SKF support 10.5   9.9  

No. of patent applications 2,969   2,017  

Descriptive stat. (treated firms)3 Mean Median  Mean Median 

Previous patent appl. (0/1) 4 0.11 0  0.12 0 

No. of employees  32.1 5.0  39.7 7.0 

Labor productivity 5 0.45 0.40  0.46 0.41 

Return on assets6 0.010 0.020  0.020 0.030 

Firm age 8.6 5.0  9.0 5.0 

Firm age ≤ 3 (0/1) 4 0.43 0.00  0.43 0.00 

Capital intensity7 1.63 0.83  1.61 0.83 

R&D-active (0/1) 4 NA NA  0.70 1.0 
 

Notes: The table reports summary statistics for key variables at firm-year level for all treated firms in the 

Business Register vs. firms in the Business Register merged with R&D data. The lower part of the table gives the 

mean/median values of key variables at the firm-year level at the time of treatment assignment. 1 From two 

sources: the annual R&D census and questionnaires to firms with support from SKF 2 Some firms might receive 

support from several sources. Thus, the total for the rows might be larger than the no. of treatment-years. 3At the 

time of treatment assignment 4 Dummy variable. 5Value added per employee in millions of NOK (100 NOK   11 

EUR). 6Operating income divided by the book value of total assets. 7Tangible fixed assets in NOK million per 

employee 
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Table 4. Balancing properties w.r.t. key variables in the estimation sample at the time of 

matching. Treated vs. controls and R&D-inactive vs. R&D-active firms 1   
Variables R&D-inactive   R&D-active   

 Treated Control Treated  Control 

 Mean SE Mean SE Mean SE Mean SE 

Patent appl. before matching (0/1)2 0.026 0.004 0.026 0.008 0.045 0.008 0.045 0.008 

No. of employees 21.2 2.9 21.4 2.0 39.1 8.1 33.3 5.4 

Labor productivity3 483 16 448 13 490 40 504 30 

Return on assets4 0.04 0.01 0.06 0.00 0.04 0.02 0.05 0.01 

Capital intensity5 1454 145 1484 38 1762 109 1857 179 

Firm-age 9.9 0.3 8.9 0.7 10.6 0.5 9.6 0.5 

Firm-age 3   (0/1)6 0.42 0.02 0.46 0.04 0.27 0.02 0.35 0.02 

Small firm (0/1)7 0.89 0.01 0.91 0.01 0.87 0.03 0.87 0.03 

Medium firm (0/1)8 0.09 0.01 0.08 0.01 0.10 0.02 0.11 0.02 

R&D support and sample size 2002-
2013: 

        

No. of firms 1,134  68,930  2,528  2,970 

No. of treatment-years 3,406    10,122    

No. of firm-years with DIR subsidies  1,117    2,276    

No. of firm-years with SKF credits 2,747    9,203    

Total support (NOK billion) 3.3    7.7    

Total DIR subsidies 2.1    3.4    

Total SKF credits 1.2    4.3    

No. of patent appl. 2002-2013 328  283  2,113  424  

 
Notes: 0/1 indicates a firm-year dummy variable. 1 Frequency weighted averages of cell-specific means at the time 

of matching, with weights equal to no. of treated firms in each cell. 2 Equal to 1 if the firm has at least one patent 

application prior to treatment assignment; the patent variables date back to 1995. 3Value added per employee in 

NOK million (100 NOK  11 EUR). 4Operating income divided by the book value of total assets. 5Tangible fixed 

assets in million NOK per employee. 6Equal to 1 if the firm is   3 years old. 7Equal to 1 if the firm has <50 

employees. 8Equal to 1 if 50 employees 250   
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Table 5. Effects of innovation policies on patent applications. Estimates of the treatment 

response functions ( )x  and ( )x  using the matching and fixed effects (FE) estimator, by 

main policy instrument and firm classification 

Policy Firm classification (x) 
Matching estimator 

   

FE estimator1 

 Prior Prior Est.   z-value     Est.   z-value 

 patents R&D         

Direct subsidies No2 Inactive3 6.2 *** 13.3   1.14 ** 2.38 

 No Active 1.4 *** 5.6   1.16 *** 3.11 

 Yes Active 1.4  1.7   -0.11  -0.84 

Tax credits No Inactive 3.7 *** 8.0   0.97 ** 2.14 

 No Active 0.7 *** 3.7   1.22 *** 6.20 

 Yes Active 0.7  1.1   0.24  1.02 

#Treatment-years           

 No Inactive 2,771     569   

 No Active 7,752     1,228   

 Yes Active 580     3,661   

# Patent appl.4   2,724     3,193   

# Treated firms   3,662     664   

# Firms   75,562     1,470   

Notes: ***, ** and * denote, respectively, significant estimate at the 10, 5 and 1 percent level. 1The FE sample 

includes patent data for the pre-support schemes period 1995-20012 Firms with zero patent application prior to 

treatment assignment, based on patent data since 1995. 3 Firms with zero R&D-activity before obtaining support. 
4During 2002-2013  
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Table 6. Effects of innovation policies on granted patents. Estimates of treatment 

response functions ( )x  and ( )x using the matching and fixed effects (FE) estimator, by 

main policy instrument and firm classification 

 

Policy Firm classification (x) 
Matching estimator 

 

FE estimator1  

 Prior Prior Est.   z-value     Est.   z-value 

 patents R&D         

Direct subsidies No2 Inactive3 6.3 *** 11.2   1.23 ** 2.03 

 No Active 0.8 ** 2.2   1.41 *** 4.61 

 Yes Active 1.1  1.1   -0.10  -0.67 

Tax credits No Inactive 2.9 *** 6.1   0.82 
 

1.70 

 No Active 0.5 ** 2.1   1.18 *** 5.50 

 Yes Active 0.6  0.7   0.13  0.71 

#Treatment-
years  

    

  

   

 No Inactive 2,771     252   

 No Active 7,752     673   

 Yes Active 580     2,113   

# Granted pat.4   2,040     2,380   

# Treated firms   3,662     570   

# Firms   75,562     1,187   

Notes: ***, ** and * denote, respectively, significant estimate at the 10, 5 and 1 percent level. 1The FE sample 

includes patent data for the pre-support schemes period 1995-20012 Firms with zero patent application prior to 

treatment assignment, based on patent data since 1995. 3 Firms with zero R&D-activity before obtaining support. 
4During 2002-2013  
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Table 7. Estimated Average Marginal Effect (AME), Sum of Marginal Effects (Sum 

ME) and expected number of patents per year given treatment (  ), by main policy 

instrument and firm classification. Estimates derived from the matching estimator 

Dep.  variable 
Firm classification 

(x) 
Main policy instrument 

 
Prior 

patents 

Prior 

R&D 
Direct support 

 
 Tax credits 

 
 

   AME  95%  CI1   AME  95%  CI1   

No. of appl. No2 Inactive3 0.15 ** 0.02 0.29 0.15 0.01 *** 0.01 0.00 0.01 

 No Active 0.02 *** 0.01 0.03 0.03 0.01 *** 0.01 0.01 0.02 

 Yes Active 0.21  -0.26 0.68 0.61 0.00  -0.28 -0.21 0.31 

No. of granted No Inactive 0.13 ** 0.01 0.24 0.13 0.01 ** 0.00 0.02 0.01 

 No Active 0.01 *** 0.00 0.02 0.02 0.01 *** 0.00 0.01 0.01 

 Yes Active 0.12  -0.29 0.53 0.45 -0.02  -0.22 0.19 0.24 

   Sum ME 95%  CI  Sum  ME 95%  CI  

No. of appl. No Inactive 129 ** 10 248  28 *** 12 45  

 No Active 52 *** 18 86  91 *** 46 136  

 Yes Active 58  -90 206  20  -103 143  

 Sum  239     139     

No. of granted No Inactive 120 ** 12 228  10 ** 1 19  

 No Active 17 *** 5 30  53 *** 25 81  

 Yes Active 20  -46 86  -7  -82 69  

 Sum  157     56     

Support 

intensity 

(million NOK)5  

           

   Mean  Med.   Mean  Med.   

 No Inactive 1.59  0.81   0.42  0.29   

 No Active 1.43  0.80   0.48  0.37   

 Yes Active 1.88  1.16   0.59  0.48   

Notes: ***, ** and * denote significant estimates at the 10, 5 and 1 percent level. 1Confidence interval. 2Firms 

with zero patent application prior to treatment assignment, based on patent data since 1995. 3 Firms with zero 

R&D-activity before obtaining support. 4 95% confidence interval. 5Mean and median support per year during 

treatment in NOK million (100 NOK  11 EUR), by treatment category 
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Table 8. Estimated Average Marginal Effects (AME) when firm classification includes 

age (Type I) or size (Type II). Estimates derived from the matching estimator 

Dep.  variable Firm classification (x)  Main policy instrument  

 Prior  Prior  Firm- Direct support Tax credits 

 patents R&D Type (I, II) AME  95%  CI1 AME  95% CI1 

   Type I         

No. of appl. No2 Inactive3 Incumb. 0.14 * -0.04 0.32 0.01 ** 0.00 0.01 

   Start-up 0.08 ** 0.01 0.16 0.01 ** 0.00 0.03 

 No Active Incumb. 0.03 *** 0.01 0.04 0.01 *** 0.01 0.02 

   Start-up 0.04 *** 0.01 0.07 0.01 ** 0.00 0.02 

 Yes Active Incumb. 0.39  -0.40 1.18 0.10  -0.02 0.23 

   Start-up 0.05  -0.38 0.47 -0.22  -0.50 0.06 

No. of granted No Inactive Incumb. 0.12 * -0.04 0.27 0.00 ** 0.00 0.01 

   Start-up 0.08 ** 0.00 0.15 0.01 * 0.00 0.02 

 No Active Incumb. 0.01 ** 0.00 0.03 0.01 *** 0.00 0.03 

   Start-up 0.02 *** 0.00 0.03 0.01 ** 0.00 0.03 

 Yes Active Incumb. 0.32  -0.24 0.87 0.13  -0.24 0.87 

   Start-up 0.03  -0.32 0.38 -0.18  -0.32 0.38 

   Type II         

No. of appl. No Inactive SME NA    NA   NA 

   Large NA    NA   NA 

 No Active SME 0.03 *** 0.01 0.02 0.01 *** 0.01 0.02 

   Large 0.04  -0.02 0.03 0.00  -0.02 0.03 

 Yes Active SME 0.02  -0.24 0.16 -0.04  -0.24 0.16 

   Large 3.19 * -0.43 2.76 1.16  -0.43 2.76 

No. of granted No Inactive SME NA    NA   NA 

   Large NA    NA   NA 

 No Active SME 0.02 *** 0.01 0.02 0.01 *** 0.01 0.02 

   Large 0.03  -0.02 0.09 0.01  -0.02 0.03 

 Yes Active SME 0.05  -0.18 0.27 -0.02  -0.19 0.14 

   Large 2.03 * -0.26 4.33 1.15  -0.25 2.55 

Notes: See notes to Table 7 
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Table 9. Post-Treatment Average Marginal Effect (PTAME)1 by main policy instrument 

and firm classification. Estimates derived from the matching estimator 

Dep.  variable Firm classification (x) Main policy instrument 

 Prior patents Prior R&D Direct support Tax credits 

   PTAME z-value 95%  CI2 PTAME z-value 95%  CI 

No. of pat. appl. No3 Inactive4 0.00 0.86 -0.01 0.01 0.00 1 0.00 0.01 

 No Active 0.02 0.88 -0.02 0.06 0.01 0.93 -0.01 0.03 

 Yes Active -0.01 -1.28 -0.03 0.01 0.00 -0.53 -0.02 0.01 

No. of granted pat. No Inactive 0.00 0.88 0.00 0.01 0.00 1.22 0.00 0.01 

 No Active 0.02 0.93 -0.03 0.07 0.00 0.54 -0.01 0.01 

 Yes Active -0.01 -0.84 -0.02 0.01 0.00 -0.52 -0.01 0.01 

Notes: 1Estimated number of additional patents per year during the post-treatment period from 1
i

t T D    until 

min( 2 , )
i i

t T D E  , where 
i

E is the year of attrition or a new treatment assignment. 295% CI. 3Firms with zero 

patent application prior to treatment assignment, based on patent data since 1995. 4 Firms with zero R&D-activity 

before obtaining support 

 

 

Table 10. Share of treatment-years and share of total support, by the treatment’s main 

source of funding  

Share of treatment-years 
with support from 

Main source of funding 

 Direct subsidies (DIR) Tax credits (SKF) 

DIR 0.58 0.08 

SKF 0.42 0.92 

Share of total support from  

   

DIR 0.74 0.15 

SKF 0.26 0.85 

Note: If a firm may get support from both sources in the same year, the same firm-year is counted twice when 
calculated the shares 
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APPENDIX 

 

 

 

Table A.1. After matching: Share of R&D support, patent applications and firm-years. 

In percent, by industry, region and firm-size category 
      

Classification variable Direct 
support 

Tax credits Patent 
appl. 

Firm-
years 

 

 
Industry 

     

Primary industries 2.7 3.5 0.5 1.6  

Mining, oil and gas extraction 1.5 0.9 4.6 0.4  

Manufacturing      

  -Textiles and food 4.1 5.2 1.4 1.5  

  -Wood, pulp and paper 1.4 1.9 1.3 1.5  

  -Chemicals, pharma., rubber, plastic 4.4 3.3 2.5 0.4  

  -Metals, minerals 7.4 4.6 3.3 1.5  

  -Machinery and electronics 16.3 16.0 29.3 2.4  

Power prod., waste and recycling 1.4 1.3 0.6 0.7  

Information and communication 16.0 27.0 5.1 5.3  

Professional, scientific and technical 
services 

34.2 21.6 36.3 12.0  

Other services 10.8 14.7 15.2 72.8  

      

Region      

South 6.0 5.2 9.0 5.5  

East 53.3 52.2 52.4 56.6  

West 27.2 27.7 31.2 24.7  

Middle 11.1 10.2 6.0 6.7  

North 2.4 4.7 1.4 6.6  

 
Firm-size 

     

Small (<50 employees) 65.9 83.2 64.4 96.9  

Medium (50-249 employees) 14.1 12.8 13.2 2.6  

Large (250 employees) 20.1 4.0 22.4 0.5  
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