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1 Introduction

Theories of gravity with the Lagrangian of the form

L = L(gab, Rabcd,∇a1Rbcde, . . . ,∇a1...apRbcde) (1.1)

are natural geometric generalizations of Einstein gravity. Many theories of this form, such

as Einstein-Weyl gravity, quadratic gravity, cubic gravity, L (Riemann) gravity and their

solutions, have been studied in recent years, often motivated by attempts to understand a

quantum description of the gravitational field (see e.g. [1–6] and references therein).

The complexity of the field equations is in general increasing considerably with each

term added to the Einstein-Hilbert action. Thus, very few exact solutions to generalized

theories of gravity are known and naturally, to examine various mathematical and physical

aspects of these theories, authors often resort to perturbative or numerical methods.

However, there exists a special class of spacetimes, universal spacetimes, that simulta-

neously solve vacuum field equations of all theories of gravity with the Lagrangian of the

form (1.1). Particular examples of such spacetimes were first discussed in the context of

string theory [7, 8] and in the context of spacetimes with vanishing quantum corrections [9].

The formal definition of universal metrics reads [9]

Definition 1.1. Ametric is universal if all conserved symmetric rank-2 tensors constructed

from the metric, the Riemann tensor and its covariant derivatives of arbitrary order are

multiples of the metric.

Note that from the conservation of the Einstein tensor, it immediately follows that

universal spacetimes are necessarily Einstein spaces.

In previous works [10, 11], we studied necessary and sufficient conditions for universal

spacetimes in an arbitrary dimension. For example, we have proved [10]
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Proposition 1.2. A universal spacetime is necessarily a CSI spacetime.1

Note that CSI is a necessary but not a sufficient condition for universality.

For type N (employing the higher-dimensional algebraic classification of tensors [13]),

we have found necessary and sufficient conditions for universality [10]:

Proposition 1.3. A type N spacetime is universal if and only if it is an Einstein Kundt

spacetime.2

For type III [13], we have found sufficient conditions for universality [10]:

Proposition 1.4. Type III, τi = 0 Einstein Kundt spacetimes obeying

CacdeC
cde

b = 0 (1.2)

are universal.

Note that the τi = 0 condition implies that the null Kundt direction ℓ is recurrent3

and that the cosmological constant Λ vanishes. Thus, these spacetimes are Ricci-flat.

In [11], we have studied type II and D universal spacetimes. It has turned out that

this problem is dimension dependent. For instance, we have proved the non-existence of

such spacetimes in five dimensions, while we have provided examples of type D universal

spacetimes in any composite number dimension as well as examples of type II universal

spacetimes in various dimensions.

Note that while all known universal spacetimes in dimension d ≥ 4 [9–11] are alge-

braically special4 and Kundt, the existence algebraically general (type I or G) or non-Kundt

universal spacetimes has not been excluded.

Although the results stated above valid in all dimensions considerably constrain the

space of universal spacetimes by giving various necessary conditions, so far the full set of

neccessary and sufficient conditions for universality has been known only for Weyl type N

spacetimes (proposition 1.3).

In this work, we focus on the case of four dimensions. This leads to a simplification

of the problem and in fact it allows us to find necessary and sufficient conditions for

universality for all algebraic types except of the type II.

In section 2, we prove the non-existence of Petrov type I universal spacetimes in four

dimensions. In fact, in combination with further results presented here and in [10], we

find that

Proposition 1.5. Four-dimensional universal spacetimes are necessarily algebraically spe-

cial and Kundt.

1CSI (constant scalar curvature invariant) spacetimes are spacetimes, for which all curvature invariants

constructed from the metric, the Riemann tensor and its covariant derivatives of arbitrary order are constant,

see e.g. [12].
2Kundt spacetimes are spacetimes admitting null geodetic conguence with vanishing shear, expansion

and twist (see e.g. [15, 16]).
3Recurrent null vector ℓ obeys ℓa;b ∝ ℓaℓb.
4Algebraically special spacetimes are spacetimes of Weyl/Petrov types II, D, III, N, and O.
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Section 3 is devoted to Petrov type D spacetimes. The main result of this section are

necessary and sufficient conditions for universality for type D.

Proposition 1.6. A four-dimensional type D spacetime is universal if and only if it is

a direct product of two 2-spaces of constant curvature with the Ricci scalars of the both

2-spaces being equal.

Section 4 focuses on type II universal spacetimes. This is the only case for which we

do not arrive at a full set of necessary and sufficient conditions for universality. Neverthe-

less, we obtain certain necessary conditions. In particular, we find that these spacetimes

necessarily admit a recurrent Kundt null direction and that they are Kundt extensions of

type D universal backgrounds discussed above. Thus, they represent gravitational waves

propagating on these backgrounds. Furthermore, we prove that to examine necessary con-

ditions for universality, it is sufficient to consider only rank-2 tensors linear or quadratic in

∇(k)C, k ≥ 1, or rank-2 tensors not containing derivatives of the Weyl tensor.

In section 5, we study type III universal spacetimes and we arrive at necessary and

sufficient conditions.

Proposition 1.7. A four-dimensional type III spacetime is universal if and only if it is

an Einstein Kundt spacetime obeying F2 ≡ Cpqrs
;aCpqrs;b = 0.

We also present an explicit type III Kundt Ricci-flat metric with τi 6= 0 and vanishing

F2, providing thus an example of type III non-recurrent universal metric.

Finally, in section 6 we briefly summarize the main results and in table 1 we compare

known necessary/sufficient conditions for universality for various algebraic types in four

and higher dimensions. We also point out that VSI spacetimes (spacetimes with all scalar

curvature invariants vanishing [14]) are not necessarily universal.

Note that all results in the following sections apply to four dimensions and often this

will not be stated explicitly. We will employ the standard four-dimensional Newman-

Penrose formalism summarized e.g. in [15]. Occasionally, to connect with previous higher-

dimensional results, we will also refer to the four-dimensional version of the higher-dimen-

sional real null frame formalism (see e.g. [16] and references therein).

2 Type I universal spacetimes do not exist

In this section, we prove the non-existence of type I universal spacetimes. By proposi-

tion 1.2, we can restrict ourselves to CSI spacetimes.

It has been shown in [17] that CSI spacetimes in four dimensions are either (locally) ho-

mogeneous or CSI degenerate Kundt metrics.5 Degenerate Kundt metrics are algebraically

special. Thus, it remains to study type I locally homogeneous spacetimes.

Theorem 12.5 of [15] and the results given below this theorem imply that “there are

no homogeneous Einstein spaces with Λ 6= 0 of types I or II”. Thus for type I universal

spacetimes, we have to restrict ourselves to the Ricci-flat case.

5Degenerate Kundt spacetimes [18] are Kundt spacetimes with the Riemann tensor and its covariant

derivatives of arbitrary order aligned and of type II or more special. For example, all Einstein Kundt

spacetimes are degenerate Kundt.
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Theorem 12.1 of [15] states that all non-flat Ricci-flat homogeneous solutions with a

multiply transitive group are certain plane waves (of type N). Theorem 12.2 of [15] states

that the only vacuum solution admitting a simply transitive G4 as its maximal group of

motions is given by

k2ds2 = dx2 + e−2xdy2 + ex
[

cos
√
3x(dz2 − dt2)− 2 sin

√
3xdzdt

]

(2.1)

with k being an arbitrary constant. Thus, this metric is the only type I CSI Einstein metric

and the only type I candidate for a universal metric.

However, it can be shown by a direct calculation that for metric (2.1), a rank-2

tensor F2 ≡ Cpqrs
;aCpqrs;b is conserved and not proportional to the metric (F2)

a
b =

diag(0,−48k2δij). Thus metric (2.1) is not universal. We conclude with

Lemma 2.1. Universal spacetimes in four dimensions are necessarily algebraically special.

3 Type D universal spacetimes

Let us proceed with examining type D universal spacetimes.

Without loss of generality, we choose a frame aligned with both multiple principal null

directions (PNDs), for which the following frame components of the Weyl tensor vanish

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0. (3.1)

The standard complex curvature invariant I (see e.g. [15]) can be expressed in terms

of the Weyl components as

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2 = 3Ψ2

2. (3.2)

Thus the CSI condition implies

Ψ2 = const. (3.3)

Then, the Bianchi equation (7.32e) of [15] for Einstein spacetimes reduces to

DΨ2 +
1

12
DR = 3ρΨ2 = 0. (3.4)

Since Ψ2 6= 0, ρ vanishes and therefore a type D Einstein CSI spacetime is necessarily

Kundt.

Further Bianchi equations (7.32a)–(7.32h) of [15] imply

κ = 0, ν = 0,

σ = 0, λ = 0,

ρ = 0, µ = 0,

τ = 0, π = 0. (3.5)

Thus

Lemma 3.1. Type D Einstein CSI spacetimes are doubly Kundt and both Kundt directions

are recurrent.
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Furthermore, taking into account (3.5), Ricci identity (7.21h) gives

Ψ2 +
R

12
= 0 (3.6)

and therefore,

Lemma 3.2. Type D Ricci-flat CSI spacetimes do not exist.

Let us prove the following lemma:

Lemma 3.3. Type D Einstein CSI spacetimes are symmetric (i.e. Rabcd;e = 0).

Proof. This can be more easily shown using spinors, see e.g. [15]. The type D Weyl spinor

in an adapted frame reads

ΨABCD = 6Ψ2o(AoBιCιD). (3.7)

Since due to (3.5), the derivatives of the basis spinors satisfy

∇AȦoB = TAȦoB, (3.8)

∇AȦιB = −TAȦιB, (3.9)

where

TAȦ = γoAōȦ − αoAῑȦ − βιAōȦ + ǫιAῑȦ, (3.10)

and

∇AȦΨ2 = 0, (3.11)

we get

∇AȦΨABCD = 0. (3.12)

Thus,

∇eCabcd = ∇eRabcd = 0 (3.13)

and these spacetimes are symmetric.

In four dimensions, type D symmetric spaces are necessarily direct products of two

2-spaces of constant curvature (see chapter 35.2 of [15]). Such a product space is Einstein

if and only if the Ricci scalars of both spaces are equal. It has been shown in [11] that such

direct product spaces are universal. This concludes the proof of proposition 1.6.

4 Type II universal spacetimes

In this section, let us study type II universal spacetimes.

We choose a frame with

Ψ0 = 0 = Ψ1. (4.1)

Then the curvature invariant I is given by (3.2) as in type D and thus the CSI condition

again implies

Ψ2 = const. (4.2)

– 5 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
8

For type II Einstein spacetimes, the Goldberg-Sachs theorem implies

κ = 0 = σ (4.3)

and eq. (7.32e) of [15] again reduces to (3.4) and thus a type II Einstein CSI spacetime is

Kundt. Then, eq. (7.32h) of [15] reduces to

τΨ2 = 0 (4.4)

and therefore

Proposition 4.1. Genuine6 type II Einstein CSI spacetimes are degenerate Kundt with a

recurrent principal null direction.

Now, let us study behaviour of the covariant derivatives of the Weyl tensor.

Lemma 4.2. For a type II Einstein CSI Kundt spacetime with a recurrent principal null

direction, boost order of the first covariant derivative of the Weyl tensor is at most −1.

Proof. This can be more easily shown using spinors. The type II Weyl spinor in an adapted

frame reads

ΨABCD = 6Ψ2o(AoBιCιD) − 4Ψ3o(AoBoCιD) +Ψ4oAoBoCoD. (4.5)

We choose an affinely parametrized Kundt congruence k and a frame parallelly prop-

agated along k

0 = κ = σ = ρ = τ = ǫ = π. (4.6)

Then, the derivatives of the basis spinors read

∇AȦoB = TAȦoB, (4.7)

∇AȦιB = −TAȦιB + (−λoAῑȦ − µιAōȦ + νoAōȦ)oB, (4.8)

where

TAȦ = γoAōȦ − αoAῑȦ − βιAōȦ. (4.9)

Note that the covariant derivative ∇AȦ does not increase the boost order of the frame

spinors oA and ιA. The Bianchi identity (7.32g) from [15] reduces to

DΨ3 = 0. (4.10)

Thus, taking into account

∇AȦ = ιAῑȦD + oAōȦ∆− ιAōȦδ − oAῑȦδ̄, (4.11)

it follows that

∇AȦ(−4Ψ3o(AoBoCιD) +Ψ4oAoBoCoD) (4.12)

contains only b.w. negative terms.

However, since ∇AȦΨ2 = 0, it follows from (4.7) and (4.8) that

∇AȦ(6Ψ2o(AoBιCιD)) (4.13)

also contains only b.w. negative terms, cf. also (4.26).
6Meaning Ψ2 6= 0.
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Lemma 4.3. For a type II Einstein CSI Kundt spacetime with a recurrent principal null

direction, boost order of an arbitrary covariant derivative of the Weyl tensor is at most −1.

Proof. The Ricci equations (7.21d), (7.21e), (7.21f), (7.21g), (7.21h), (7.21i), (7.21q)

from [15], using also (4.10) and (4.2), imply

Dα = 0, (4.14)

Dβ = 0, (4.15)

Dγ = Ψ2 −
R

24
→ D2γ = 0, (4.16)

Dλ = 0, (4.17)

Dµ = Ψ2 +
R

12
, (4.18)

Dν = Ψ3 → D2ν = 0, (4.19)

0 = Ψ2 +
R

12
, (4.20)

respectively. Eq. (4.20) implies that eq. (4.18) reduces to

Dµ = 0 (4.21)

and that Ψ2 is real

Ψ2 = −R

12
. (4.22)

From the Bianchi equation (7.32c) in [15], it follows

DΨ4 = δ̄Ψ3 + 2αΨ3 − 3λΨ2. (4.23)

Applying the operator D on (4.23) and using the commutator

Dδ − δD = −(ᾱ+ β)D, (4.24)

we arrive at

D2Ψ4 = 0. (4.25)

Applying the covariant derivative (4.11) on the Weyl spinor (4.5), we obtain

∇EĖΨABCD = 4o(AoBoCιD)[o
E ῑĖ(δ̄Ψ3 − 3λΨ2 + 2αΨ3)

+ιE ōĖ(δΨ3 − 3µΨ2 + 2βΨ3) + oE ōĖ(−∆Ψ3 + 3νΨ2 − 2γΨ3)]

+oAoBoCoD[ι
E ῑĖDΨ4 + oE ῑĖ(−δ̄Ψ4 + 4λΨ3 − 4αΨ4)

+ιE ōĖ(−δΨ4 + 4µΨ3 − 4βΨ4)

+oE ōĖ(∆Ψ4 − 4νΨ3 + 4γΨ4)]. (4.26)

Let us employ the balanced scalar/tensor approach in a parallelly propagated frame

introduced in [14]. A scalar η with a b.w. b under a constant boost is a balanced scalar

if D−bη = 0 for b < 0 and η = 0 for b ≥ 0. A tensor, whose components are all

– 7 –
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balanced scalars, is a balanced tensor. Obviously, balanced tensors have only b.w. negative

components.

While in our case, the Weyl tensor itself is not balanced, we will show that its first

derivative (4.26) is balanced.

For the first derivative of (4.26) to be balanced, we have to show that Db on a com-

ponent of b.w. b vanishes. B.w. −1, −2, and −3 components of (4.26) read

δΨ3, δ̄Ψ3, DΨ4, λΨ2, µΨ2, αΨ3, βΨ3, (4.27)

∆Ψ3, δΨ4, δ̄Ψ4, νΨ2, γΨ3, λΨ3, µΨ3, αΨ4, βΨ4, (4.28)

∆Ψ4, νΨ3, γΨ4, (4.29)

respectively.

Using the Bianchi and Ricci equations and commutators (4.24) and

∆D −D∆ = (γ + γ̄)D, (4.30)

we arrive at

0 = D(δ̄Ψ3) = D(λΨ2) = D(αΨ3) = D(δΨ3) = D(µΨ2) = D(βΨ3) = D2Ψ4,

0 = D(∆Ψ3) = D2(νΨ2) = D2(γΨ3) = D2(δ̄Ψ4) = D(λΨ3)

= D2(αΨ4) = D2(δΨ4) = D(µΨ3) = D2(βΨ4),

0 = D3(∆Ψ4) = D2(νΨ3) = D3(γΨ4). (4.31)

This implies that the first derivative of the Weyl tensor is balanced.7

In fact, a covariant derivative of a balanced tensor in a degenerate Kundt spacetime is

again a balanced tensor (see lemma B.3 of [19]) and thus all derivatives of the Weyl tensor

are balanced. This concludes the proof.

As a consequence of lemma 4.3, all tensors of the form ∇(k1)C ⊗ · · · ⊗ ∇(kp)C
︸ ︷︷ ︸

p times

, ki > 0,

have boost order ≤ −p. Since a rank-2 tensor has in general boost order ≥ −2, all rank-2

tensors constructed from the Riemann tensor and its covariant derivatives containing more

than two terms of the form ∇(k)C, k > 0, vanish.

Therefore, further necessary conditions for universality may follow only from rank-2

tensors linear or quadratic in ∇(k)C, k > 0, or from terms not containing derivatives of the

Weyl tensor. Now, let us study some of these rank-2 tensors.

All rank-2 order-4 tensors constructed from the Riemann tensor and its derivatives can

be expanded on the FKWC basis [20, 21] of rank-2 order-4. For Einstein spacetimes, the

FKWC basis of rank-2 order-4 tensors without derivatives of the Weyl tensor reduces to

the four-dimensional identity

CaefgCb
efg =

1

4
gabCefghC

efgh, (4.32)

7Note that the term γΨ2 that is not balanced does not appear in (4.26).
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while the FKWC basis of rank-2 order-6 tensors without derivatives reduces to

RpqrsRpqtaRrs
t
b, RprqsRt

pqaRtrsb, Rpqr
sRpqrtR

s
a
t
b. (4.33)

It turns out that in our case, all these tensors are either zero or proportional to the metric

and thus they do not yield any further necessary conditions for universality.

A lengthy but straightforward computation of the FKWC basis of rank-2, order-6 Weyl

polynomials containing derivatives of the Weyl tensor [20]

F1 ≡ CpqrsCpqrs;ab, F2 ≡ Cpqrs
;aCpqrs;b, F3 ≡ Cpqr

a;sC
;s

pqrb (4.34)

in the Newman-Penrose formalism gives

F2 = 0 = F3. (4.35)

For CSI spacetimes, by differentiating the identity (4.32) twice, we obtain

F1 + F2 = 0 (4.36)

and thus vanishing of F2 implies vanishing of F1. Thus, all rank-2 order-6 tensors in the

FKWC basis either vanish or are proportional to the metric and give no further necessary

conditions for universality.

Explicit examples of type II spacetimes in the context of universality were studied in [9]

and [11]. It has been found that further necessary conditions follow from rank-2 tensors

involving higher derivatives of the Weyl tensor, for instance, e.g., from the rank-2 tensor

Rcg
ehR

dh
fg∇(e∇f)Cacbd. (4.37)

Thus, the necessary conditions for universality of type II spacetimes, Einstein, CSI, Kundt,

and recurrent, clearly are not sufficient. To find the full set of necessary conditions for type

II at the general level is beyond the scope of this paper.

4.1 Case DΨ4 = 0

Note that using the Bianchi equations (4.23), and (7.32d) and (7.32f) in [15]

∆Ψ3 − δΨ4 = 4βΨ4 − 2(2µ+ γ)Ψ3 + 3νΨ2, (4.38)

−δΨ3 = 2βΨ3 − 3µΨ2, (4.39)

respectively, the first derivative of the Weyl spinor simplifies to

∇EĖΨABCD = DΨ4[4o(AoBoCιD)o
E ῑĖ + oAoBoCoDι

E ῑĖ]
︸ ︷︷ ︸

b.w. −1

+(−δΨ4 + 4µΨ3 − 4βΨ4)[oAoBoCoDι
E ōĖ + 4o(AoBoCιD)o

E ōĖ]
︸ ︷︷ ︸

b.w. −2

+(−δ̄Ψ4 + 4λΨ3 − 4αΨ4)oAoBoCoDo
E ῑĖ

︸ ︷︷ ︸

b.w. −2

+(∆Ψ4 − 4νΨ3 + 4γΨ4)oAoBoCoDo
E ōĖ

︸ ︷︷ ︸

b.w. −3

, (4.40)
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where

D(−δΨ4 + 4µΨ3 − 4βΨ4) = 0. (4.41)

Thus, there is a special subcase of type II CSI Einstein Kundt spacetimes characterized by

DΨ4 = 0, for which the first derivative of the Weyl tensor (4.40) contains only b.w. ≤ −2

terms. Furthermore,

D(−δ̄Ψ4 + 4λΨ3 − 4αΨ4) = 0, (4.42)

D2(∆Ψ4 − 4νΨ3 + 4γΨ4) = D(−4Ψ2
3 + 6Ψ2Ψ4) = 0. (4.43)

Thus, in this case, the first derivative of the Weyl tensor is 1-balanced.8 Using (4.10), (4.14)–

(4.25), (4.30), and (4.41)–(4.43) the same proof as in section 4 of [10] or in section 7.1

of [11] applies to our case and thus a covariant derivative of a 1-balanced tensor is 1-

balanced. Therefore, all covariant derivatives of the Weyl tensor are 1-balanced and hence

they contain only b.w. ≤ −2 components. This implies that while studying universality

within this class, it is sufficient to study only rank-2 tensors linear in derivatives of the

Weyl tensor.

Note that the Khlebnikov-Ghanam-Thompson metric discussed in the context of uni-

versality in [9] and [11] in four and higher dimensions, respectively, are explicit examples

of spacetimes belonging to the DΨ4 = 0 class.

4.2 Seed metric for type II universal spacetimes

All type II Einstein recurrent Kundt spacetimes have the metric of the form

ds2 = 2du(dv +Hdu+Wxdx+Wydy) + h2(u, x, y)(dx2 + dy2), (4.44)

whereH = v2Λ/2+vH(1)(u, x, y)+H(0)(u, x, y), andWi = W
(0)
i (u, x, y). The CSI condition

implies further that h does not depend on u.

Consider the one-parameter group of diffeomorphisms of the metric (4.44) defined by

φλ : (u, v) 7→ (ue−λ, veλ). This map gives a rescaling of the functions as follows:

(

H(1)(u, x, y), H(0)(u, x, y)
)

7−→
(

e−λH(1)(ue−λ, x, y), e−2λH(0)(ue−λ, x, y)
)

, (4.45)

W
(0)
i (u, x, y) 7−→ e−λW (0)(ue−λ, x, y). (4.46)

This map is a diffeomorphism and leaves the invariants invariant and is the Lorentizan

version of the limiting map in [22]. Let p be the fixed point of φλ given by (u, v, xi) =

(0, 0, xi). Then note that the map dφλ induces a boost on the tangent space TpM which

aligns with the natural null-frame of (4.44). Hence, given an arbitrary curvature tensor R

of (4.44) with boost weight decomposition R =
∑

b≤0(R)b, then at p

φ∗
λR =

∑

b≤0

ebλ(R)b = (R)0 + e−λ(R)−1 + e−2λ(R)−2 + . . .

8A scalar η with a b.w. b under a constant boost is 1-balanced if D−b−1η = 0 for b < −1 and η = 0

for b ≥ −1. A tensor, whose components are all 1-balanced scalars, is a 1-balanced tensor. Obviously,

1-balanced tensors have only components of b.w. ≤ −2.
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Consequently,

lim
λ→∞

φ∗
λR = (R)0.

However, in the limit λ → ∞, the metric is a type D metric with the same invariants as

the type II metric. We also note that the universality requirement is invariant under this

diffeomorphism,9 as well as in its limit, and hence, in this limit, the metric turns into a

universal type D metric having identical invariants. This implies that the “background”

metric for universal type II metrics are universal type D metrics.

Example [23]

ds2 = ds2b + [f(ζ, u) + f̄(ζ̄ , u)]du2, (4.47)

where ds2b

ds2b =
2dζdζ̄

(
1 + 1

2Λζζ̄
)2 + 2dudv + Λv2du2, (4.48)

is the metric of the (anti-)Nariai vacuum universe with Λ > 0 (Λ < 0), and f(ζ, u) is an

arbitrary holomorphic (in ζ) function characterizing the profile of the gravitational wave.

This metric is a special case of metrics considered in [11] with

H = [f(ζ, u) + f̄(ζ̄ , u)] (4.49)

and it was conjectured there that such a metric is universal if

(�(1))PH = 0, (4.50)

where P = 1, 2 (note that �(0)H = 0 identically and that the vacuum Einstein equations

with the cosmological constant �(1)H = 0 imply (�(1))2H = 0).

5 Type III universal spacetimes

It follows from the results of section 5.2 of [10] that type III universal spacetimes in four

dimensions are Kundt.

In four dimensions for type III, the following identity holds

CacdeC
cde

b = 0. (5.1)

As a consequence of (5.1), theorem 1.4 of [10] reduces to

Proposition 5.1. Type III, recurrent (τi = 0) Einstein Kundt spacetimes are universal.

Note that it follows directly from the Ricci identity (7.21q) of [15] that τ = 0 implies

that Ricci scalar vanishes and thus these spacetimes are in fact Ricci-flat, as observed

in [10]. An explicit example of such a metric is given in [10].

Thus, in this section we focus on the non-recurrent (τi 6= 0) case which also allows

for Λ 6= 0.

9This follows from the fact that Tab = kgab and φ∗

λgab = gab at p.
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Let us start with proposition 5.1 of [10]

Proposition 5.2. For type III Einstein Kundt spacetimes, the boost order of ∇(k)C (a

covariant derivative of an arbitrary order of the Weyl tensor) with respect to the multiple

WAND is at most −1.

A straightforward consequence of the above proposition is a generalization of lemma 5.2

of [10] to Einstein spacetimes:

Lemma 5.3. For type III Einstein Kundt spacetimes, a non-vanishing rank-2 tensor con-

structed from the metric, the Weyl tensor and its covariant derivatives of arbitrary order

is at most quadratic in the Weyl tensor and its covariant derivatives.

It has been shown in the proof of proposition 5.1 of [10] that for type III Einstein Kundt

spacetimes, the Weyl tensor and its covariant derivatives of arbitrary order are balanced.

Thus it follows:

Corollary 5.4. For type III Einstein Kundt spacetimes, all rank-2 tensors constructed

from the Weyl tensor and its covariant derivatives of arbitrary order quadratic in the Weyl

tensor and its covariant derivatives are conserved.

In the following, we will employ the formula for the commutator for an arbitrary tensor:

[∇a,∇b]Tc1....ck = Td...ckR
d
c1ab + · · ·+ Tc1...dR

d
ckab. (5.2)

5.1 The Ricci-flat case

In the Ricci-flat case, covariant derivatives in a rank-2 tensor quadratic in the Weyl tensor

and its derivatives effectively commute thanks to lemma 5.3 and (5.2). Thus, using the

Bianchi identities, one can generalize lemmas 5.3 and 5.4 of [10] to the τi 6= 0 case

Lemma 5.5. For type III Ricci-flat Kundt spacetimes, a rank-2 tensor constructed from

the metric, the Weyl tensor and its covariant derivatives of arbitrary order quadratic in

∇(k)C, k ≥ 0, vanishes if it contains a summation within ∇(k)C.

Lemma 5.6. For type III, Ricci-flat Kundt spacetimes, let us assume that a certain rank-2

polynomial quadratic in ∇(k)C vanishes. Symbolically we will write C(1)C(2) = 0. Then

also C
(1)
;fC

(2) ;f = 0.

First, let us examine conserved rank-2 tensors quadratic in the Weyl tensor from the

FKWC basis [20] of rank-2, order-6 Weyl polynomials (4.34). In our case, F3 vanishes

identically as a consequence of (5.1) and lemma 5.6.

On the other hand, F2 is in general non-vanishing (see section 5.3), however, in this

case, F2 = 0 is a necessary condition for universality and will be assumed in the rest of

this section. From (4.36), vanishing of F2 implies vanishing of F1.

For spacetimes satisfying F2 = 0, the FKWC basis of rank-2, order-6 tensors vanishes

and thus also all rank-2, order-6 Weyl polynomials.
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Now, let us prove universality in the Ricci-flat case.

Proposition 5.7. Type III, Ricci-flat Kundt spacetimes, obeying F2 = 0 are universal.

Proof. By lemma 5.3, we can limit ourselves to the discussion of rank-2 tensors which are

linear or quadratic in ∇(k)C, where k = 0, 1, . . . . We start with the quadratic case.

The key tools in the proof are lemmas 5.5 and 5.6 and the observation that covariant

derivatives in a rank-2 tensor quadratic in the Weyl tensor and its derivatives effectively

commute.

First, consider rank-2 tensors quadratic in the Weyl tensor and its derivatives with

both free indices appearing in the first term ∇(k)C. Symbolically, such tensors will be

written as

Cab...;...C
....;..., Ca.b.;...C

....;..., Ca...;b...C
....;..., C....;ab...C

....;...,

etc., where a, b are free indices and the dots represent various combinations of dummy

indices. We understand that covariant derivatives are of arbitrary high order.

Using symmetries of the Weyl tensor, the Bianchi identities, by lemma 5.5, and the

fact that here covariant derivatives commute, all above rank-2 tensors can be reduced to

Ca.b.;...C
....;... = ∇(n)Ca.b.∇(n−2)C .... . (5.3)

All indices in ∇(n) are dummy indices and by lemma 5.5, to obtain a non-zero result,

they should be contracted with the dummy indices in the second term ∇(n−2)C..... Due to

the symmetries of the Weyl tensor, only two of them can be contracted with C...., while

remaining indices are contracted with those of ∇(n−2). Now by lemma 5.6, the tensor (5.3)

vanishes since

∇(2)Ca.b.C
.... = 0,

as a consequence of vanishing of the rank-2, order-6 Weyl FKWC basis.

Next, consider rank-2 tensors quadratic in the Weyl tensor and its derivatives with the

free indices appearing in both terms. Such tensors reduce to

Ca...;...C
b...;... = ∇(n)Ca...∇(n)Cb.... (5.4)

In order to get a non-zero result, at most two dummy indices in ∇(n) in the first term can

be contracted with Cb... in the second term. Thus n − 2 indices will appear in both ∇(n)

terms. By lemma 5.6, the problem thus reduces to determining whether

Ca...;...C
b...;... = ∇(k)Ca...∇(k)Cb..., k ≤ 2, (5.5)

vanishes. Cases k = 0, 1 are trivial. For k = 2, to obtain a non-trivial result, the indices in

the first ∇(2) have to be contracted with Cb... and similarly with the second ∇(2). Taking

into account the symmetries of the Weyl tensor, we arrive at the form

Cacde;fgCb
fge;cd = −Cacde;fgCb

fcg;ed − Cacde;fgCb
fec;gd = 0, (5.6)
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where the first term vanishes due to the symmetries of the Weyl tensor and its derivatives

and the second term due to lemma 5.6 and vanishing of the rank-2, order-6 Weyl FKWC

basis.

Above, we have proven vanishing of all rank-2 tensors quadratic in ∇(k)C. Due to

this result and (5.2), covariant derivatives in a rank-2 tensor linear in ∇(k)C commute.

Vanishing of these linear terms is then a trivial consequence of the Bianchi identities and

tracelessness of the Weyl tensor.

5.2 The Einstein case

In the Einstein case, all rank-2 tensors constructed from the Weyl tensor without derivatives

vanish due to (5.1).

Let us proceed with conserved rank-2 tensors quadratic in the Weyl tensor containing

derivatives. The FKWC basis [20] of rank-2, order-6 Weyl polynomials reduces again

to (4.34).

Differentiating (5.1) twice, we obtain

Cpqr
a;s

sCpqrb + 2Cpqr
a;sC

;s
pqrb + Cpqr

aC
s

pqrb;s = 0. (5.7)

Using the Bianchi identities, (5.2), and the fact that all rank-2 tensors quadratic in the

Weyl tensor vanish, we find that the first and the last terms in (5.7) vanish. Consequently,

from (5.7)

F3 = 0. (5.8)

As in the Ricci flat case 5.1, we demand

F2 = 0. (5.9)

Then from (4.36), F1 = 0.

As in the Ricci flat case, for spacetimes satisfying F2 = 0, the FKWC basis of rank-2,

order-6 vanishes and thus do also all rank-2, order-6 Weyl polynomials.

Using (5.2) and vanishing of the FKWC basis, it follows that covariant derivatives in

a rank-2 tensor of the form ∇(2)C∇(2)C, ∇(3)C∇(1)C, and C∇(4)C commute. If there is

a summation within one term ∇(2)C in ∇(2)C∇(2)C or in one term in ∇(3)C∇(1)C, or in

C∇(4)C then the resulting rank-2 tensor vanishes due to the Bianchi identities, tracelessness

of the Weyl tensor, and commuting of covariant derivatives. Then vanishing of all rank-2

order-6 tensors that we write symbolically as C(1)C(2) = 0 implies

C
(1)
;f C(2);f = 0. (5.10)

Hence, ∇(3)C∇(1)C and C∇(4)C vanish and the only rank-2 possibly non-vanishing tensor

of the form ∇(2)C∇(2)C is (5.6) that still vanishes using the same arguments as given

for (5.6).

Thus, we have proven

Lemma 5.8. For type III, Einstein Kundt spacetimes, obeying F2 = 0, all rank-2 tensors

of the form ∇(k)C∇(l)C, k + l ≤ 4 vanish.
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Let us prove using mathematical induction

Proposition 5.9. For type III, Einstein Kundt spacetimes, obeying F2 = 0, all rank-2

tensors of the form ∇(k)C∇(l)C vanish.

We start by assuming that all rank-2 tensors of the form ∇(k)C∇(l)C, k + l ≤ p

vanish. Then

Lemma 5.10. If all rank-2 tensors of the form ∇(k)C∇(l)C, k + l ≤ p, vanish then the

covariant derivatives in rank-2 tensors of the form ∇(r)C∇(s)C, r + s ≤ p+ 2, commute.

Proof. When commuting derivatives using (5.2), the additional terms are rank-2 tensors of

the form ∇(r)C∇(s)C, r + s ≤ p that vanish by our assumption.

Then obviously,

Lemma 5.11. If all rank-2 tensors of the form ∇(k)C∇(l)C, k+ l ≤ p, vanish then rank-2

tensors of the form ∇(r)C∇(s)C, r + s ≤ p + 2, vanish if there is a summation within

one term.

Proof. We commute the repeated dummy indices to the first position and then employ the

Bianchi identities and the tracelessness of the Weyl tensor.

This further implies,

Lemma 5.12. If all rank-2 tensors of the form C(1)C(2) = ∇(k)C∇(l)C, k + l ≤ p vanish

then also C
(1)
;e C(2);e = 0.

Proof. This can be shown by differentiating C(1)C(2) = 0 twice and using lemma 5.11.

Proof. Now let us prove proposition 5.9.

We have assumed that all rank-2 tensors of the form ∇(k)C∇(l)C, k + l ≤ p, vanish.

We want to show that then also all rank-2 tensors of the form ∇(r)C∇(s)C, r + s ≤ p+ 2,

vanish.

Using lemma 5.10 and the Bianchi identities, without loss of generality, all case reduce

to the following two cases

Ca.b.; . . . .
︸︷︷︸

r

C....; . . . .
︸︷︷︸

s

, (5.11)

Ca....; . . . .
︸︷︷︸

r

Cb...; . . . .
︸︷︷︸

s

. (5.12)

If there is a summation within one term then by lemma 5.11, the rank-2 tensor van-

ishes. Otherwise, r = s + 2 or r = s, respectively. Then by lemma 5.12, it reduces to

(non-)vanishing of Ca.b.;...C
.... and (5.6), respectively, which was discussed earlier.

The discussion of rank-2 tensors linear in ∇(k)C is straightforward. The derivatives in

∇(2)C commute due to eqs. (5.1) and (5.2). Then all such rank-2 tensors vanish due to

Bianchi identities and tracelessness of the Weyl tensor. If all rank-2 tensors linear in ∇(k)C
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vanish then using (5.2) and proposition 5.9, all rank-2 tensors linear in ∇(k+2)C vanish as

well. Thus, by mathematical induction all rank-2 tensors linear in ∇(p)C for arbitrary p

vanish.

This concludes the proof of proposition 1.7.

5.3 A type III non-recurrent universal metric

Let us present an explicit example of a type III universal spacetime with τ 6= 0. In this

section we use the real null basis and corresponding formalism (see e.g. [16]).

In this case, the necessary condition for universality F2 = 0 (see proposition 1.7) reads

F2 = 48ℓaℓbΨ
′
iτj(2Ψ

′
jτi −Ψ′

iτj) (5.13)

= 48ℓaℓb[τ2(Ψ
′
3 +Ψ′

2) + τ3(Ψ
′
3 −Ψ′

2)][τ2(Ψ
′
2 −Ψ′

3) + τ3(Ψ
′
2 +Ψ′

3)] = 0,

hence

τ2(Ψ
′
3 ±Ψ′

2) = τ3(Ψ
′
2 ∓Ψ′

3). (5.14)

Type III Ricci-flat Kundt spacetimes with τ 6= 0 admit a metric [15]

ds2 = −2du(dr +W2dx−W3dy +Hdu) + dx2 + dy2, (5.15)

where

W2 = −2r

x
+W 0

2 (u, x, y), (5.16)

W3 = W 0
3 (u, x, y), (5.17)

H = − r2

2x2
+ r

(
W 0

2

x
+ h1(u)

)

+H0(u, x, y), (5.18)

where

W 0
2 ,x = W 0

3 ,y ,

W 0
2 ,y = −W 0

3 ,x (5.19)

(in the complex notation, the function W 0
2 + iW 0

3 is holomorphic) and H0 is subject to an

additional b.w. −2 Einstein equation [15].

In the adapted null frame

ℓ = du, (5.20)

n = −(dr +W2dx−W3dy +Hdu), (5.21)

m(2) = dx, (5.22)

m(3) = dy, (5.23)

we obtain

τ2 = −1/x, τ3 = 0, (5.24)

Ψ′
2 = − 1

2x
W 0

2 ,x , Ψ′
3 = − 1

2x
W 0

2 ,y . (5.25)
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The condition F2 = 0 (5.14) implies

Ψ′
3 = ∓Ψ′

2, (5.26)

which gives

W 0
2 (u, x, y) = g(x± y) + f2(u), (5.27)

W 0
3 (u, x, y) = g(y ∓ x) + f3(u). (5.28)

By (5.19), this reduces to

W 0
2 (u, x, y) = F (u)(x± y) + c2(u), (5.29)

W 0
3 (u, x, y) = F (u)(y ∓ x) + c3(u). (5.30)

6 Conclusions

In four dimensions, we have obtained stronger results on universal spacetimes than in

previous works in arbitrary dimensions [10, 11].

In four dimensions, we have proved that universal spacetimes are necessarily alge-

braically special and Kundt. Furthermore, in addition to the necessary and sufficient

conditions for universality for type N already known in arbitrary dimension, we have found

necessary and sufficient conditions for type III. We have pointed out that apart from type

III spacetimes with a recurrent null vector, the non-recurrent case is also universal provided

F2 (as defined in proposition 1.7) vanishes.

For type D, the universality condition is very restrictive, allowing only for direct prod-

ucts of two 2-spaces of constant and equal curvatures. Type II universal spacetimes then

reduce to these type D backgrounds in an appropriate limit. In contrast to types III and

N, type II and D universal spacetimes necessarily admit recurrent null vector.

In table 1, known necessary/sufficient conditions for universality for various algebraic

types in four and higher dimensions are summarized.

Let us conclude with a discussion of universality for VSI spacetimes (spacetimes with all

scalar curvature invariants vanishing [14]). Although all curvature invariants in VSI space-

times vanish, conserved rank-2 tensors may be non-vanishing (in contrast to what seems

to be suggested in [24]). For example, as noted in [10], in higher dimensions CacdeC
cde

b

is in general non-vanishing for type III VSI spacetimes and F2 is in general non-vanishing

for type III VSI spacetimes with τi 6= 0 even in four dimensions. Thus, although many

VSI spacetimes are universal and thus represent an interesting class of spacetimes in this

context, VSI is neither a sufficient, nor a necessary condition for universality.
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type 4D HD

I/G ∄ (proposition 1.5)

II N:

• E+K+ (τ = 0) (⇒ Λ 6= 0) (proposition 4.1) • ∄ 5D (theorem 1.2 [11])

• additional conditions (e.g. from eq. (4.37)) • τ = 0 is not necessary

• extensions of univ. type D (section 4.2) • τ = 0 ⇒ Λ 6= 0 (proposition 5.1 [11])

• S: universal Kundt extensions

of type D univ. spacetimes (proposition 6.2 [11])

D NS: direct product of 2 2-spaces S: direct product of N max. sym. n-spaces

with the same Ricci scalar (proposition 1.6) with the same Ricci scalar (proposition 6.1 [11])

III NS: E+K + (F2 = 0) (proposition 1.7) S: E+K + (Ca
cdeCbcde = 0) + (τ = 0)

(theorem 1.4 [10])

N NS: E+K (theorem 1.3 [10]) NS: E+K (theorem 1.3 [10])

Table 1. Universal spacetimes in four and higher dimensions (HD), known necessary (N)/sufficient

(S) conditions for various algebraic types. All universal spacetimes are Einstein (E) and CSI (the-

orem 1.2 [10]) and in four dimensions, they are all necessarily Kundt (K) (proposition 1.5).
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