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Abstract 
 

The focus of this thesis is to obtain an estimate of the significant wave height together with the 

corresponding peak period for the proposed bridge locations at Bjørnafjord. The task was conducted by 

modelling and calculations done in SWAN software. The methodology for transforming the NORA10 

hindcast data into the design wave conditions for the 10-2 and 10-4 probability of exceedance was 

introduced for an offshore location. Furthermore a short description for the methods of transforming 

the metocean conditions to the fjord position were presented. 

The theory on the different wave generation and dissipation mechanisms present in the coastal waters 

was described. The description introduced the influence of those physical phenomena on the wave 

spectrum. The implementation of the dissipation mechanisms in SWAN was described with respect to 

the models produced for this thesis. 

As an introduction to modelling in the SWAN, the test case model analysis based on the master thesis by 

Engbretsen (2012) was performed. 

Furthermore a series of simplified idealized models was prepared. The models are reflecting the real 

bathymetry features found in the Bjørnafjord and are the basis for the analysis of the fjord. The cases 

were modelled to consider the influence of the bottom topography on the wave field. A number of 

sensitivity studies was executed to investigate the influence of the different coastal effects on the total 

sea characteristics. 

Finally the Bjørnafjord wave model was created. Real bathymetry data was modelled based on the maps 

acquired from Kystverket. The inputs in regard to the wind and incoming wave conditions were based on 

the reports by SINTEFF - Stefanakos (2015) and NORCONSULT - Lothe (2015). A number of cases with 

different environmental conditions was analysed. Sensitivity study in regard to the dominating 

dissipation mechanisms was conducted. The obtained results were compared with the analyses done in 

the source reports of Stefanakos and Lothe.  
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Scope of work 
 

MSc thesis 2017 

 

Title: Assessing wave conditions in a Norwegian fjord 

Student: Andrzej Koziel 

 

The Norwegian Road Directorate aiming for a ferry – free highway from Stavanger to Trondheim. Such a 

highway will involve a number of fjord crossings. The primary solution for a ferry free fjord crossing is a 

tunnel under the fjord. For some fjords such a solution will not be the preferred solution due to the 

water depth at the crossing location. For such cases a bridge is to be preferred. If the width of the fjord 

is large a floating bridge solution may well be the preferred solution. As a consequence, wind and wave 

conditions at the bridge crossing location are needed.  

The focus of this thesis is to discuss how wave conditions at target location can be established. This 

includes the locally generated wind sea and the long period ocean waves that propagated into the fjord. 

Furthermore, focus should be on relative importance of the various physical mechanisms regarding their 

impact on estimated wave conditions at target site.  

Here we shall assume that the bridge will be designed similarly as offshore structures i.e. a limit state 

based design. This means we need to know the met-ocean conditions sufficient well to estimate 

characteristic loads corresponding to annual exceedance probabilities of 10-2 (ULS) and 10-4 (ALS), 

respectively. Met-ocean conditions should also be sufficient for possible estimating fatigue damage due 

to weather variability.  

The necessary offshore met-ocean information will be given by the Norwegian hindcast data base, 

NORA10, giving weather characteristics every 3 hours from 1957 – 2014. In connection with this thesis, 

offshore wave conditions can be adopted from the master thesis prepared by Juliet Ebiose Ngbeken. 

Regarding local wind conditions, we may get some measurements from the Road Directorate or from 

the Norwegian Meteorological Institute.  

 

As mentioned above, focus should be to understand and discuss the various physical mechanisms 

affecting the estimated wave conditions at target site. For this purpose, SWAN can be applied to an 

idealized fjord geometry.  

 

Below is a possible division into sub-tasks. The candidate may well deviate from this if another schedule 

is found more convenient.  

 

1. As an extended introduction to the MSc thesis, describe the work that needs to be done in order 

to present metocean design condition in a fjord – accounting both for local wind sea and 
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incoming offshore sea conditions.  

 

2. The local wind sea shall be calculated using SWAN. At first, make yourself familiar with SWAN 

and do a validation of your familiarity by repeating: i) The model test case and ii) The 

Doggerbank case presented in the MSc of Espen Engebretsen. Verify that you obtain the same 

results as in that thesis. Do some sensitivity analysis for the Doggerbank case. What happen with 

increasing wind speed? What happen if bottom slope is reduced? 

 

3. Introduce an idealized fjord geometry and investigate the relative importance of the physical 

mechanisms modelled by SWAN for various idealized fjord geometries. Discuss the results and 

comment on the relevance for real fjord case. This point is considered a very important part of 

the thesis. 

 

4. Introduce realistic bottom topography for the fjord east of the bridge position.  Calculate the 

wave field corresponding to a mean wind speed from east of 20m/s, 25m/s 30m/s and 35m/s. 

Present wave spectra at various positions and give corresponding significant wave height and 

spectral peak period. Do sensitivity studies which you consider important in view of point 3). 

 

5. Specify offshore design wave conditions based on some reference. Discuss how can we estimate 

the corresponding conditions at fjord locations – including local wind effects and incoming swell. 

Discuss options and select your preferred approach. Use SWAN to transform open sea 

conditions to various positions along the fjord for 10-2 – and 10-4 – annual probability offshore 

sea conditions. Run at least one case with and without wind to investigate if wind input will 

affect the energy on long period peak periods.  

 

6. Summarize your main findings in a conclusion chapter. Recommend further work based on your 

experience.  

The candidate may of course select another scheme as the preferred approach for solving the requested 

problem.  

The work may show to be more extensive than anticipated.  Some topics may therefore be left out after 

discussion with the supervisor without any negative influence on the grading.  

The candidate should in his report give a personal contribution to the solution of the problem 

formulated in this text.  All assumptions and conclusions must be supported by mathematical models 

and/or references to physical effects in a logical manner. The candidate should apply all available 

sources to find relevant literature and information on the actual problem.  

The report should be well organised and give a clear presentation of the work and all conclusions.  It is 

important that the text is well written and that tables and figures are used to support the verbal 

presentation.  The report should be complete, but still as short as possible. 

The final report must contain this text, an acknowledgement, summary, main body, conclusions, 

suggestions for further work, symbol list, references and appendices.  All figures, tables and equations 
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must be identified by numbers.  References should be given by author and year in the text, and 

presented alphabetically in the reference list. The report must be submitted in two copies unless 

otherwise has been agreed with the supervisor.   

The supervisor may require that the candidate should give a written plan that describes the progress of 

the work after having received this text.  The plan may contain a table of content for the report and also 

assumed use of computer resources. As an indication such a plan should be available by early April.  

From the report it should be possible to identify the work carried out by the candidate and what has 

been found in the available literature.  It is important to give references to the original source for 

theories and experimental results. 

The report must be signed by the candidate, include this text, appear as a paperback, and - if needed - 

have a separate enclosure (binder, diskette or CD-ROM) with additional material. 
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1 Introduction 

1.1 Background 
The Norwegian public Roads Administration in years 2017- 2033 is developing a ferry-free route 

connection between Trondheim and Kristiansand. The goal of the project is to stream traffic, decreas 

the travel time between major cities and provide further development of the coastal area through 

better logistic connections. The existing motorway is divided by eight ferry crossing which are planned 

to be replaced by tunnels or bridges. Although the proposed crossings cover 37km of the roughly 

1000km of the total length of the described E39 motorway section, the engineering challenges 

connected to the development provide a need for extensive research. 

 

Figure 1-1 The E39 ferry-free motorway project. Vegdirektoratet (2015). 
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The fjords in question are characterized by unique topography features – large depth varying from 450m 

to 1250m, span of the single crossing varying from 2 to 9 km and steep shores. The following features 

combined with severe environmental conditions require numerous studies to be conducted in 

connection to the technical solutions and loading estimates. 

There possible bridges technology considered for the fjord crossings are suspension bridge, floating 

bridge and the submerged tube bridge. The technology solutions for different types differ greatly in 

terms of execution costs, experience with the construction and the overall difficulty of the construction 

process. The suspension bridge is the most worldwide technical developed solution of the proposed set. 

The bridge construction composes of the deck, pillars and the suspension cables. The deck of the bridge 

is suspended on cablese connected to the grirders anchored to the bridge pillars. The loading is 

transferred mainly by the cables witch permits small cross-sections of the bridge deck. The solution is 

particularly sensitive to wind loading and harmonic resonance. 

 

Figure 1-2 Suspension bridge. Ellevset (2011). 

The floating bridge construction is based on a series of concrete pontoons, floating on the water surface, 

which transfer the vertical loading of the deck The horizontal forces are accommodated by the stiffness 

of the combined deck and pontoon cross-sections. The arched shape of the pontoon bridges proposed 

provide better accommodation to the wind and wave loads in deep water (loading is relatively lower 

near the shore due to refraction and water depth). 
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Figure 1-3 An existing floating bridge: the Nordhordlandsbru near Bergen. The nearest span constructed 

as a suspended bridge to enable ship traffic. Ellevset (2011). 

The submerged floating bridge is based on a concept of buoyancy tunnels bellow the water line. The 

solution is executed with closed metal or concrete tubes which positive (combination of tube and 

bottom anchoring lines) or negative buoyancy (combination of the tube and pontoons). The solution 

provides lower environmental loading than in the pontoon bridge case but requires more studies with 

concerned to the safety of the construction and the tunnel travellers The submerged bridge is a 

relatively new technology which still requires extensive research. 

 

Figure 1-4 Submerged floating pipe bridge with negative buoyancy. Ellevset (2011) 
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Due to the necessity of providing an open traffic route for ship based transport for most of the fjords a 

combination of proposed solution can be a viable solution (ref Figure 1-3). The complexity of designing 

such a bridge will expand the time needed for engineering work. 

Each bridge structure needs to be designed in the consideration to the Norwegian Standard building 

codes and NORSOK. Both standards adopt the limit state design approach in respect of the design 

environmental loading. Investigations of the wind, wave and current at the crossing location need to be 

conducted. The dominant loading in the fjord will be the result of surface waves from the local 

generated wind sea and the incoming ocean swells. The design wave conditions need to be established 

for the ultimate limit state (ULS) and the accidental limit state (ALS) cases.  

Further investigation of the frequency of the incoming waves need to be conducted for establishing the 

risk of resonance induced loading in the structure. The local wind generates waves with the spectrum 

peak near the first order eigen frequency of the long span bridges. The swells provide waves higher peak 

frequency spectra which can correspond to the other eigen frequency modes. The proper analysis of the 

wave statistics data is also necessary for obtaining an accurate estimate of the structure’s life span and 

the fatigue limit state (FLS). 

The long term observations of wave and wind are conducted in the North Sea. The data gathered for a 

number of offshore locations provides the best base for the environmental loads estimation. The wave 

loading data in the coastal area, and especially in the fjords is rarely gathered or the time span for the 

observations is significantly shorter. The loads at the crossing positions need to be calculated based on 

the offshore data adopting proper transformation models that include the near shore effects. 
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1.2 Objectives 
The main objective of the thesis is to obtain an estimate for the design wave conditions at the position 

for planned Bjørnafjord crossings. The wave conditions will provide basic input for the further concept 

and limit state structure design of the bridge. 

The thesis will describe the process for estimating the met-ocean wave conditions based on the hindcast 

data, measured at the position outside of the fjord. The report will consider also the possible method of 

converting the obtained swell wave and wind conditions into met-ocean conditions in the position of the 

fjord crossing. 

An introduction to the SWAN (Simulating WAves Nearshore) wave modelling will be conducted by 

recreating the model from the master thesis by Engebretsen (2012). The purpose of this exercise is to 

validate the knowledge of SWAN program as well as to set a base for the further investigation on the 

effects of different bathymetry. 

Furthermore sensitivity analysis of the idealized fjord models will be conducted in SWAN program in the 

terms of the importance of various physical processes accompanying near shore, complex bathymetry 

conditions. 

Finally the analysis of the Bjørnafjord SWAN model was conducted in the light of findings obtained 

during the sensitivity analysis of the idealized cases. The conditions at the position of the planned fjord 

crossing will be calculated based on the input provided by SINTEF, Stefanakos (2015), NORCONSULT, 

Lothe (2015) and the bathymetry based on the data from Kartverket. 
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2 Methodology for determining the 50-year sea state- input for 

further analysis with SWAN. 

2.1 Gathered data. 
For proper structural design of structures exposed to ocean loading a design wave condition has to be 

established. The estimation of the parameters is based on the measured data. Hindcast data of the 

significant wave height, corresponding spectral period and the accompanying wind conditions is 

available for the north sea. The NORA 10 database contain data gathered from 1st September 1957 is 

provided by the Norwegian meteorological institute. The dataset records observation with a 3 hour 

interval. The available data contains wind direction, wind speed, significant wave height and peak 

period of the total sea. 

2.2 Estimation of the cumulative distribution. 
The hindcast data is transformed into a probability distribution of the wave parameters. Two basic 

approaches are advised for calculating the distribution for design wave height DNV (2014):  

-global model approach (initial distribution method)– utilizes all measured data from long series of 

subsequent observations. 

-event model – utilizes only the observations chosen  from the total data set that exceed some threshold 

level. The Peak Over Threshold (POT) or the storm analysis method can be used for the event model 

analysis. 

The global model approach is preferred for obtaining sea parameters for locations where sever weather 

conditions are dominant in the long term approach. This methods allows better fitting of the tail 

behaviour for the calculated spectra as it utilizes more data. The event model provides good estimation 

of the wave distribution for areas with calm seas, where there might be only a few severe events. 

The global model approach introduces, unless the data indicates otherwise, a 3-parameter Weibull 

initial distribution to be assumed as the marginal significant wave height distribution:  

���
(ℎ) = 1 − exp �− �

���

�
�

�
�     ( 2-1 ) 

where 

� is the scale parameter, 

� is the shape parameter and  

� is the location parameter. 

The event model Peak Over Threshold approach uses a 2-parameter Weibull or an exponential 

distribution with the form of: 

���
(ℎ) = −��� �−

����

�
�    ( 2-2 ) 

where � = �[� − ℎ�] and ℎ� is the chosen threshold for the measured wave heights. 
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The POT model should be compared with a different approach for obtaining the distribution, because of 

the methods sensitivity to the chosen threshold value. 

The 3 distributions mentioned above are usually fitted as set of extreme waves using various methods. 

The most common used are: the method of moments (MOM), the least square method (LS), the 

maximum likelihood methods (MLE). 

2.3 The environmental contour concept 
The environmental contour concept represents a rational procedure for defining an extreme sea state 

condition DNV (2014). The goal of the method is to obtain the ��� and �� parameters corresponding to 

m-year probability of return. The initial step for this method is to obtain a joint probability density 

function for ��� and ��: 

������
����, ��� = ����

(���)���|���
(��|���)   ( 2-3 ) 

and transform it into a standard normalized U-space: 

Φ(�1) = ���
(ℎ�)     ( 2-4 ) 

Φ(�2) = ���|��
(��)     ( 2-5 ) 

where Φ is the standard normal cumulative distribution function. In such proposed space the contours 

of constant probability of return lie on a circle defined by value � equal: 

��1
� + �2

� =  � = −Φ�� �
�

��
�    ( 2-6 ) 

where 

�� = Φ−1
�����

����
��     ( 2-7 ) 

�� = Φ−1
����|��0

���|��0��    ( 2-8 ) 

and �� is the estimated number of sea states durin � years. It is given by: 

�� =
����∙�[�����]

����[�����]
      ( 2-9 ) 

where 

���� is the number of observed sea states in the specified direction, 

���� is the number of years data has been gathered for. 

After transforming the contour line of constant probability of return from the Gaussian space to the 

physical space we obtain the following expressions: 

��� = ���
���

(Φ(�1))     ( 2-10 ) 

�� = ���
��|���

(Φ(�2))     ( 2-11 ) 
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By plotting the corresponding values we obtain the m-year sea state parameters - they are determined 

from the peak of the contour. 

 
Figure 2-1 Enviromental contours of the significant wave heights and corresponding peak periods for the location outside of the 
Bjørnafjord (at the location 60N, 4.5E). Stefanakos (2015). 

The NORA10 is gathered in the offshore area, to obtain the input parameters at the entrance of the fjord 

an additional analysis needs to be conducted. The analysis can be done with a computational model that 

considers nearshore effects like STWAVE, CGWAVE, WAM or SWAN model. 
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3 Introduction to estimation of fjord wave conditions. 

3.1 Physical processes and theories relevant for estimation of nearshore wave 

conditions. 
The wave spectrum in a fjord consist of a local wind sea and the incoming wave swells. Due to 

decreasing water depth, ocean waves reaching the coastal areas are affected in the terms of amplitude 

and propagation direction. This phenomenon is a result of various physical processes that need to be 

understood and taken into consideration for proper estimation of the design wave conditions in the 

fjord. The overview of the processes with the relative importance for different areas is shown in Figure 

3-1. 

 

Figure 3-1 The relative importance of the various processes affecting the waves in oceanic and coastal 

waters, Holthuijsen (2007). 

The diagram showing influence off the different source terms on the total energy spectrum is shown in 

Figure 3 -2. 
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Figure 3-2 The summarized effect of the source terms on the incident wave spectrum. Holthuijsen (2007). 

3.1.1 Wind generation  
In the case of some pre-existing vertical water surface turbulence - this roughness- a kind of 

superposition of harmonic waves modify the airflow of the incoming wind blowing over the surface. The 

pressure at the water surface is modified by the airflow which as a consequence further increases 

further the wave growth. 

 

Figure 3-3 The wave-induced wind-pressure variation over a propagating harmonic wave. Holthuijsen 

(2007). 
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The transfer of energy for a constant wind is constant in time, which provides a linear correlation: 

���,�(�, �) = �      ( 3-1 ) 

with ���, �, ���⃗���� �. 

The air pressure on a wave crest is positive on windward side of the wave crest and negative on the 

other side (refer Figure 3-1). This pressure is dependent on the wave amplitude and results in further 

growth of wave steepness. It can be described by the exponential component: 

���,�(�, �) = ��(�, �)     ( 3-2 ) 

with �~ [�  ���(� − ����� ) �⁄ ]� . The total energy transfer is:  

���(�, �) = � + ��     ( 3-3 ) 

The wind generated energy for a local wind sea comes in the peak and the far frequency side of the 

spectrum (refer Figure 3-2) 

 

Figure 3-4 The wind input energy term, for a JONSWAP spectrum in deep water for Hmo=3.5m , Tp =7s and 
U10= 20m/s. Holthuijsen (2007) 

3.1.2 Wave propagation. 

3.1.2.1 Shoaling. 

Shoaling is the deformation of waves in the direction of propagation as the wave approaches shallow 

water, Holthuijsen (2007). For a harmonic wave approaching a gentle slope, due to the rule- that 

number of waves propagating through a fixed point in space is constant the wave frequency is constant. 

Through the dispersion relation it can be shown that while depth decreases the wave length and phase 

speed will decrease. 

�� = �� tanh(��)     ( 3-4 ) 

The description of the process can be illustrated by a normal wave incident (i.e., parallel bottom 
contours) under stationary conditions (see Figure 3-5.) The following conditions assume that the depth 
variation is considered slow enough that local water depth can be assumed as constant – this 
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assumptions also provides that the amplitude change is slow enough to locally approximate the incident 
with the linear wave theory. Under such conditions, in the absence of wave generation or dissipation, 
the wave energy leaving volume G through plane 2 is equal to the wave energy entering volume G 
through plane 1.  

 

Figure 3-5 A wave approaching a straight coastline at normal incidence under stationary conditions. 

Holthuijsen (2007). 

The conservation of energy is then: 

��� = ���  →   [���]� = [���]�  →
�

�
����

���,� =
�

�
����

���,�   → �� = �
��,�

��,�
��  ( 3-5 ) 

After taking the under consideration the up wave boundary in deep water the equation describes the 

shoaling coefficient:  

��� =  �
��,�

��
      ( 3-6 ) 

The correlation shows that the wave group speed decreases when the wave approaches the shore. The 

wave amplitude although initially decreasing at the shore line approaches infinity. The breaking 

mechanism dissipates the waves before it happens (refer Figure 3-6). 
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Figure 3-6 The amplitude evolution of a harmonic wave approaching the shore an normal incident under 

conditions that allow linear wave theory approximation. Holthuijsen (2007). 

3.1.2.2 Refraction 

With the oblique wave-shore incident (the propagation direction parallel to the depth contours) the 

wave will slowly shift the direction towards the region with the shallower water .i.e.. the shoreline. 

The directional change is always towards the region with the lower propagation speed. The depth 

variation in this case leads to phase speed variation along the wave crest. This can be shown considering 

Figure 3-5.  

 

Figure 3-7 Turning of the wave crest towards the shallow water depth. Holthuijsen (2007). 

For a line with equal phase velocity (in this case the wave crest) that travelled the distance ∆�� = �∆� 

and ∆�� = (� + ∆�)∆� for point A and B respectively the directional turning rate becomes: 

∆�

∆�
= −

∆�∆�

∆�
     ( 3-7) 
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For a infinitesimally small differences with the assumption of stationary variable depth and the absence 

of current the relation becomes: 

�
��

��
� = −

�

�

��

��
     ( 3-8 ) 

For an oblique incident the following correlation becomes the Snel’s Law: 

����

�
= ��������    ( 3-9 ) 

 

Figure 3-8 Under stationary conditions, in the absence of dissipation and generation the wave energy 

leaving volume G along two parallel wave rays, through plane 1 is equal to the energy entering through 

plane 1. Holthuijsen (2007). 

The energy change due to refraction can be described based on the situation illustrated in Figure 3-6. In 

the following case (assuming the rate of depth variation allows the linear wave theory approximation) 

the conservation of energy is described as: 

���� = ����   →   �����
�

�� = �����
�

��  →
�

�
����

���,� =
�

�
����

���,�
��

��
  ( 3-10 ) 

After simplification: 

�� = �
��,�

��,�
�

��

��
��     ( 3-11 ) 

After taking the under consideration the up wave boundary in deep water the equation describes the 

refraction coefficient:  

���� =  �
��,�

��
      ( 3-12) 

3.1.2.3 Diffraction 

Diffraction is the turning of waves towards areas with lower amplitudes due to amplitude changes along 

the wave crest. Diffraction is particularly strong along the geometric shadow line of obstacles such as 

islands, headlands and breakwaters, Holthuijsen (2007). With the diffraction effects accounted, for the 
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wave rays (lines orthogonal to the propagating wave crest) curve into the shadow area behind the 

obstacle (refer Figure 3-9). 

 

Figure 3-9 Diffraction of the wave rays due to occurrence of headland (assuming constant water depth- 

no refraction and no reflection - idealized case) Holthuijsen (2007). 

The spatial turning rate is derived on the same basis as the refraction effects (refer Equation 3.8). The 

turning rate in time is: 

��,���� =
��

�(�� �� )

���

��
     ( 3-13 ) 

where  

�� is the second order spatial derivative f the wave amplitude,  

�� -the group velocity with the effect off diffraction:  

�� =  ��(1 + ��)�/�      ( 3-14 ) 

Equation 3.9 is derived with the assumption of constant water depth. Such an ideal situation, with 

absence of water depth variations rarely occurs in real world applications. With a bottom slope near the 

obstacle the refraction needs to be accounted for separately. 

3.1.2.4 Reflections 

The coast topography is usually reflecting the waves in some degree. The reflection degree is varying 

based on the sloping of the shore and thus the angle of attack of the incoming wave. A vertical wall can 

reflect up to 100% of energy. The resulting wave field near the obstacle is a summation of the incoming 

wave and the reflected one. The coast line is however usually really intricate which results in a 

multidirectional reflection of the incoming wave spectrum. 
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Due to the nature of the fjords with a number of vertical rocky walls, reflection influence should be 

considered in the wave prediction for a local scale. The reason for that is found in the precise 

bathymetric and directional spectra wave input required for computation as well as a relatively high 

computational force required. The reflection is therefore often neglected for ocean scale applications. 

Due to the scale of investigated area, precision of the bathymetric data and the input methodology for 

the reflection calculations required by SWAN (further explained in Chapter 3.2.1) the reflection 

influence for the modelling done was omitted. 

3.1.2.5 Tides and currents 

Time-varying water depths and ambient currents produced by tides, storm surges or river discharge may 

change the amplitude, frequency and direction of the incoming waves. Due to lack of data about the 

currents in the investigated fjord the influence of current on the design wave is neglected. 

3.1.3 Dissipation 

3.1.3.1 White-capping 

White- capping is breaking due to wave steepness. The occurrence of white capping is not dependant 

directly of the water depth and thus they can occur in deep water conditions. In case of a shallow water 

normal beach incident -the steepness of the wave is increased due to shoaling and the white cap  

dissipation gain on importance. However in a more complicated bathymetry conditions diffraction and 

refraction can prevent energy bunching and diminish the white cap influence on the total dissipation. 

 

Figure 3-10 Impact of white-capping on a JONSWAP spectrum (Hs=3.5 m and Tp= 7s) for deep and 

shallow water conditions d=10m. Holthuijsen (2007) 
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3.1.3.2 Bottom friction 

Bottom friction is a dissipation mechanism based on momentum transfer between waves and the thin 

turbulent boundary at the basin bottom. In the result of this transfer the orbital motions of water 

particles is transfer to the bottom particles. The effect is therefore dependant on the type of material of 

the bottom. The influence seems to be biggest for loose bottom material like sand. 

The energy of the waves can be high enough to change the bottom form. The shift from a flat sandy 

bottom to a rippled bottom surface induces the shear stress. Due to increasing roughness, which as a 

results increases the bottom friction, dissipation of waves is quicker. The mentioned situation describes 

the complexity of the correlation between the friction and the incoming waves. 

There are three basic formulation of the bottom friction influence on wave characteristics: 

-the drag-law model developed by Collins, assuming one empirically obtained coefficient that allows to 

calculate a proper estimate of the shear bottom stress, 

-the eddy-viscosity model developed by Madsen, based on the permanent flows over a turbulent-

boundary-layer and, 

-JONSWAP empirical model developed by Hasselmann, based on real observations of swell dissipation. 

Effects of a JONSWAP modelled bottom friction on the wave spectrum is shown in Figure 3-11 

 

Figure 3-11 Impact of white-capping on a JONSWAP spectrum (Hs=3.5 m and Tp= 7s) for shallow water 

conditions d=10m. Holthuijsen (2007). 

3.1.4 Depth-induced (surf-)breaking 
The dissipation of energy due to surf breaking is proportional to the energy density: 
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����� (�, �) = ����� �(�, �)/��    ( 3-15 ) 

����� = −
�

�
�����������

�      ( 3-16 ) 

where 

��� is the tuning coefficient based on observations (usually ��� ≈ 1)  

�� is the fraction of breaking waves (wave breakers described closer in Chapter 3.1.6), 

�� is the mean zero-crossing frequency of the breaking waves, 

���� is the maximum wave height for the existing wave length. 

The shape of the influence of surf breaking is identical to the shape of the wave spectrum.  

The  

 

Figure 3-12 Impact of surf-breaking on a JONSWAP spectrum (Hs=3.5 m and Tp= 7s) for shallow water 

conditions d=10m, Holthuijsen (2007). 

3.1.5 Nonlinear wave-wave interactions- quadruplet and triad wave-wave interactions 
Quadruplet and triad wave-wave interactions are phenomena of transferring the energy amongst the 

waves. The transfer occurs due to resonance. The quadruplet interaction refers to a situation of four 

individual wave interaction and analogically triad interactions refer to three wave components 

interacting. 
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The quadruplet energy exchange is one of the dominant processes changing the spectrum in the deep 

water conditions. The total energy balance must become constant in the resonance exchange thus both 

the positive and negative influence of the quadruplets interaction on the spectrum. The low frequency 

amplification is usually dissipated quickly by white-capping with the high frequency components are 

smoothing the wind sea generated component. In shallow water the influence of quadruplets become 

even more intensified (refer Figure 3-13). 

 

Figure 3-13 Quadruplet wave-wave interaction influence on a JONSWAP spectrum (Hs=3.5 m and Tp= 7s) 

for deep and shallow water conditions d=10m. Holthuijsen (2007). 

The triad wave-wave interactions are not realisable for the deep water conditions. In extremely shallow 

water when the waves become non-dispersive a three wave component resonance is possible. In such 

conditions the triad interactions often generate a second peak at double the peak frequency (and 

sometimes also at higher peak multiplies). 
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Figure 3-14 Quadruplet wave-wave interaction influence on a JONSWAP spectrum (Hs=3.5 m and Tp= 7s) 

for deep and shallow water conditions d=10m. Holthuijsen (2007). 

3.1.6 Breaking waves 
The wave breaking is one of the most nonlinear process affecting waves in the coastal area. The 

breaking is usually classified by according to visual recognition. The most common classification divides 

the breaking waves into three categories: spilling breakers, plunging breakers and surging breakers, 

Svendsen (2006). The mathematical description of breaking waves can be introduced with the Iribarren 

number (surf similarity parameter): 

��� =
����

���� ��⁄
      ( 3-17 ) 

where ��� is the wave height at the anticipated point of breaking and �� is the deep water wave 

length. Replacing the breaking wave height with the deep water wave height: 

�� =
����

��� ��⁄
      ( 3-18 ) 

 The described parameter allows to determine the expected kind of barkers (assuming a flat beach). 

Table 3-1 Breakers occurrence in respect to the Iribarren number. Holthuijsen (2007) 

Type of breaker Iribarren range for deep water Iribarren range for shallow water 

Spilling If �� < 0.5 If �� < 0.4 

Plunging If 0.5 <  �� < 3.3 If 0.4 <  �� < 2.0 

Surging If  �� > 3.3 If �� > 2.0 
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The Iribarren number characterises also the reflection of waves off the beach and run-up of the waves 

up a beach. 

The shape of the different types of breakers are shown in Figures 3-14 through 3-16. 

 

Figure 3-15 Spilling breakers. Svendsen (2006). 

 

Figure 3-16 Plunging breakers. Svendsen (2006) 

 

Figure 3-17 Surging breakers. Svendsen (2006) 
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3.2 Implementation of the theories of near shore wave energy dissipation in 

SWAN 

3.2.1 The SWAN wave model basic assumptions 
The SWAN model (Simulating WAves Near Shore) is a third-generation wave model developed at the 

Delft University of Technology. The Swan model accommodates for the following processes in the terms 

of sources and sinks: wind generation, wave propagation in time and space, bottom- and current- 

induced shoaling and refraction, diffraction (only an approximation) and reflection (approximation only 

for obstacles - not considered for bathymetry). 

Dissipation processes included into the model are: white-capping, bottom friction dissipation, surf-

breaking and nonlinear wave-wave interactions: quadruplet and triad wave-wave interactions. 

The model can also introduce effects of wave damping due to vegetation (not included in this paper due 
to lacking data on the vegetation in the area), turbulent viscosity effects and dissipation due to effects of 
a fuzzy layer of bottom muds (in the case of Norwegian fjords the bottom is assumed fixed). 
 
The SWAN model incorporates in some cases several underlaying theories in regard to one process 
which allows a more customized approach to the modelled problem (refer Table 3-2). 
 
Table 3-2 Overview over physical processes and generation modes in SWAN (2015) 
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3.2.1.1 The action balance equation 

SWAN model is based on the action balance equation (the calculation account for the wave-current 

interactions). For small scale computation (for Cartesian co-ordinates) the equation becomes: 

��(�,�;�,�,�)

��
+

���,��(�,�;�,�,�)

��
+

���,��(�,�;�,�,�)

��
+

����(�,�;�,�,�)

��
+

����(�,�;�,�,�)

��
=

��(�,�;�,�,�)

�
 ( 3-19 ) 

The �(�, �) component is the source term of energy density. It represents the effects of generation, 

nonlinear wave-wave interactions and dissipation. The �(�, �) term represents the action density 

spectrum. 

In the equation the firs term (from the left side) accounts for the nonstationary situations (change of 

rate of action in time). 

The second and third terms account for the propagation of action in space (with ��,� and ��,� 

representing propagation velocities). 

The fourth term represents the directional change in the action propagation – it accounts for depth and 

current induced refraction and diffraction.  

The fifth term describes the variation in frequency induced by depth and current variation.   

In the absence of ambient currents and assuming stationary runs (as in all situations considered in this 

paper) the equation becomes the energy balance equation with the action density replaced by the 

energy balance density. 

���,��(�,�;�,�,�)

��
+

���,��(�,�;�,�,�)

��
+

����(�,�;�,�,�)

��
= �(�, �; �, �, �)  ( 3-20 ) 

3.2.1.2 Input parameters 

The following parameters need to be specified as an input for SWAN stationary analysis: 

-computational grid, 

-directional resolution and coverage, 

-frequency resolution and range, 

-bottom grid, 

-boundary input – incoming wave spectrum at the boundary position, 

-spreading coefficient, 

-generation model, 

-physical processes that should be enabled/disabled for the planed run, 

-output parameters request and the location. 

A short description of possibilities for the most important input categories for this thesis is provided 

bellow. 
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3.2.1.3 Computational an bottom grid. 

The computational grid impute needs to be defined in respect to the problem coordinates where the 

size of the grid should be cover by the bathymetry grid (minimal requirement). The correlation between 

the computation grid and the input grids should secure that the energy spreading should cover the 

whole computational grid (for all possible situations). The advised range for cell size discretization lays 

between 50- 1000m for costal applications, SWAN (2015). 

While modelling cases with open water boundaries, without any wave input - a sufficient enough size of 

the bottom grid should extend over the edge of the computational grid. This helps prevent the leakage 

through those boundaries due to refraction. 

The cell size (in the geometric shadow of the obstacle position) in case of diffraction calculation should 

be in the range of 1/5 to 1/10 of the dominant wave length. This constrains can be worked over with 

nested runs or unstructured meshes. 

SWAN allow description of the grid as a regular, curvilinear or unstructured (triangular mesh grid). 

 

Figure 3-18 Cartesian computational grid for SWAN modelling. The grey area shows the common 

mistakes while modelling- insufficient input grid in respect to the spatial coverage required by the 

program, SWAN (2015) 

A directional resolution needs to be chosen for the computation run. Advised values lay between 15° 

and 10° for wind sea and between 2° and 5° for swells. The directional range needs to cover the 

energy propagation area. A secure solution of 360° coverage can be adopted. 

SWAN adopts a Cartesian coordinate system (with the orthogonal or nautical coordinate systems as an 

option) Cartesian system equal to the one found in SWAN (0 degrees in the positive x direction with the 

counter clockwise positive angle notation) was assumed for this paper.  

3.2.1.4 Directional resolution and coverage  

The minimum and the maximum frequencies recommended in SWAN (2011) should follows the 

correlation Δ�⁄f ≈ 0.1 where 
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�� = �−1 + �
�����

�����
�

�

[���]
� �     ( 3-21 ) 

And ����� > 0.04 �� ��� ����� ≤  1��. The ����� should be below the minimum peak awaited as the 

result for the analysis. 

3.2.1.5 Boundary input and spreading coefficient 

The wave spectrum at the boundary is described as a two dimensional spectrum given by: 

�(�, �) = �(�)�(�)      ( 3-22 ) 

where �(�) is the one dimensional spectrum (JONSWAP, Pierson-Moskowitz or a  Gaussian-shaped), 

and �(�) is the directionality function given by: 

�(�) = ������� − ������ �� − ��� ≤
�

�
   ( 3-23 ) 

where 
�� is the main wave propagation direction and 

� is the spreading coefficient. 
The spreading coefficient describes the range in which the waves can spread. Coefficient can be set for 

SWAN calculations as an integer within a range <2 ; 65>. The lower value corresponds to short crested 

waves like wind sea whereas the  � = 65 is advised only for long crested oceanic swells. 

3.2.1.6 Output parameters and locations 

SWAN can produce output parameters for a specific chosen array of points, a curve (the points along the 

curve are calculated with the division given by the user) or a grid. The possibilities of the output grid 

design are similar to those for the bottom and computational grid. 

The spatial resolution of the output grid must be sufficient to obtain relevant spatial precision. In the 

cases when the output grid does not follow the computational grid an bi-linear interpolation is used to 

calculate results. The obtained results can therefore be interpolated twice (data from the input grids 

interpolated to fit the computational grid and afterwards the results interpolated to the output grid 

resolution). This can sometimes result in a supposed loss of information about the bathymetry (refer 

Chapter 5 and 6). 

3.2.1.7 Reflection, transition and absorption 

Due to complexity of the process, high input precision requirements and a high computational power 

needed, SWAN dose not model the reflection for none of the input grids. The process is available for 

computation of separate elements modelled directly in the computational grid with the command 

“obstacle”. The process is design to calculate the influence of linear objects such as dams, headlands 

and breakwater. The input requires description of the geometry (coordinates, slope) and the ratio for 

transition of energy through the barrier. Due to input work difficulties and the local scale (due to 

geometric requirements), this type of object modelling for reflection is omitted in this thesis.  

The bottom grid assumes then no reflection and the dry land assumes total energy absorption. For a U-

formed, steep cliff-shored fjord this assumption can provide some uncertainty with the results. 
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4 Recreation of constant slope experiment by Engbretsen 

4.1 Introduction 
An exercise of recreating the results of the test case (by Engbretsen (2012)after Svangstu 2011) 

investigation was conducted to familiarize with the SWAN program. The input data was obtained from 

the master thesis from the Norwegian University of Science and Technology in Trondheim. The obtained 

solution was compared with the results from Engbretsen report. The test case was conducted with the 

following input data. 

Table 4-1 Model test setup values from Engbretsen (2012) 

Significant wave 
height (m) 

Peak 
period(s) 

Maximum depth 
(m) 

Minimum depth 
(m) 

Horizontal length of 
tank (m) 

10.5138 11.25 67.23 0 1377.187 

 

The analysis was performed as a two dimensional stationary run for the full scale model with the swell 

input as long crested waves (spreading coefficient set to n=65). The incoming wave field was described 

as a JONSWAP spectrum with the peakedness coefficient of � = 3.3. The default settings for the physical 

processes provided in the SWAN model were used for the investigation. Additionally the triad wave-

wave interaction and dissipation through bottom friction where enabled due to the suspicion of the 

importance of the mentioned processes in the total energy loss. Due to long crest input an neglecting 

the effects of wind the quadruplets wave-wave interaction where omitted as recommended in SWAN 

(2015). 

4.2 Computational grid and input grid 
The computational grid created was a rectangular regular grid. The grid size was assumed as 1377,167m 

by 5000m with the beginning of the grid at point (0,0). The input grid for bathymetry was created with 

dimensions equal to the computational grid. The depth of the bathymetry was specified as 67.23m and 

0 for the west and east boundaries of the computational grid respectively. 

The bathymetry was assumed as a constant slope provided as one element (due to constant slope of the 

idealized case the bottom grid could be assumed as one element without loss of result precision), where 

the computational grid was divided into elements Δx= 20 by Δx= 50 m respectively based on the initial 

analysis performed by Engbretsen. The wave propagation was modelled perpendicular to the bottom 

slope (assumption of the lack of refraction and diffraction in the investigated case).  
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Figure 4-1 The graphic representation of the constant slope problem. Engbretsen (2012) 

4.3 Frequency resolution 
The minimum spectral frequency �low, and the maximum spectral frequency, �high were specified to be 

0.0530Hz and 1Hz respectively for the test case.  

The directional space was chosen to be 360° - providing coverage over the whole area. Directional 

resolution of 10° was assumed according to SWAN (2015) recommendations to use 15° ≤ Δθ ≥10° for 

wind sea and 5° ≤ Δθ ≥ 2° for swells. 

4.4 Physical Processes 
The default option for the near shore and dissipation physical processes were utilized in SWAN. The 

physical processes activated are: surf-breaking, white-capping and the dissipation by bottom friction. 

Due to lack of wind and a constant moderate depth variation the bottom friction is assumed the 

governing energy dissipation mechanism. 

4.5 Output modelling 
The analysis was focused on the spectral density and the significant wave height for the points set at the 

line parallel to the x-axis in the midpoint of the computational domain in respect to the y-axis. The 

significant wave height was investigated for the bottom depth varying from 67.23m to 15m. A sensitivity 

to analysis was performed for the influence of different dissipation processes on the result. 

4.6 Comparison of the output from SWAN with Engbretsen result 
The analysis of the described model was done in SWAN. The spectra at the output locations are shown 

in Figure 4-2 (with the results obtained by Engebretsen shown in Figure 4-3).The results obtained were 

analogues to the ones obtained in the recreated analysis. 
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Figure 4-2 Spectrum output at the investigated locations for the test case. 

 

Figure 4-3 The results of the full scale model of the test case obtained by Engebretsen. On the left: 

spectrum at depth d=67.23m- input spectrum. On the right: the spectrum for d=15m. Engebretsen (2012) 

Furthermore the sensitivity study of the influence of the different dissipation processes was conducted 

to familiarize with the input methods, parameters and commands for different mechanics available in 

SWAN. Results were presented for the significant wave height parameter relative to the dimensionless 

water depth. The value for �� is given by: 

�� = 4�∬ �(�, �)����    ( 4-1 ) 

where �(�, �) is the variance density spectrum dependant on � – the absolute radian frequency. 

The value for the dimensionless water depth is described as the water depth relative to the wave length 

d/L. The wave length for the linear wave theory (used in SWAN) is given by: 

� =
�

��
∙�� ∙���ℎ (��)     ( 4-2 ) 
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where � is wave number and � is the wave period. The wave length was calculated in SWAN as the peak 

wave length. The obtained results are shown in Figure 4-4.  

 

Figure 4-4 Sensitivity study for the influence of different processes for the significant wave height. 

Whilst recreating the test case experiment special interest was set to the results regarding the refraction 

of the waves toward the open water boundaries parallel to the wave propagation (refer Figure 4-5). The 

figure shows the leakage of energy through the sides. The problem is a result of the methodology of 

inputting wave parameters in SWAN. The input in this case is set at the x=0 line but is only valid for the 

computational grid. The conditions outside of the grid (for y>500 and the negative values of y) dose not 

have a full directional coverage of the incoming wave. This solution provides lower energy density in 

those areas and cause the waves to refract in those directions.  
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Figure 4-5 The significant wave height over the entire computational domain for the short crested test 

case Engebretsen (2012). 

Although keeping this in mind and assuming a wide enough computational grid it is possible to obtain 

reliable wave characteristic near the midline of the model the solution is not applicable in constrained 

estuaries such as fjords (due to the fact that fjords have the width in the relative range of about 25 -300 

wind sea wave length). Such a simplification in the model is not feasible for the a fjord model due to lack 

of reliable research connecting refraction in the open ocean conditions and refraction toward the sloped 

shore. Such transformations method, if devised, would be of a complex nature. Due to those facts a 

reliable bathymetry input for the sides of the fjords need to be modelled. The considerations mentioned 

above were the inspiration and the basis for the analysis in Chapter 5. 
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5 Idealized simple models for bathymetry sensitivity analysis  
The Bjørnafjord (analysed further in Chapter 6) is a fjord characterized by a complex bathymetry. Two 

narrow, deep inlets (norther and southern) provide the connection of the fjord to the open ocean. The 

incoming waves come parallel to the inlets axis. Approximately in the middle of the length of both inlets 

a turn occurs which introduces a sudden decrease in the spectral energy. The eastern sector of the fjord 

is on the other hand shallower with a slow bottom slope. The compositions of different elements 

prevents an easy estimation of the degree of importance of a singular dissipation processes. Due to this 

complexity a series of three groups of idealized models with special bathymetry was introduced to 

properly estimate the energy evolution in the fjord. 

5.1 Basic models assumptions 
All computations where conducted as stationary runs in Cartesian coordinate system. 

Due to similarities of the total dimensions (length, width, depth, longitudinal slope wave input) the 

computational domain was chosen to have the density of dx=50m and dy=50m based on chapter 6.1 of 

Juliet’s Ngbeken (2016) thesis. 

The minimum spectral frequency �low, and the maximum spectral frequency, �high were specified to be 

0.0530Hz and 1Hz respectively for all models. 

The directional space was chosen to be 360° - providing coverage over the whole area. Directional 

resolution of 10° chosen. 

Each model where drawn as a series of surfaces with the incident of the surface resulting in a sharp 

“edgy” connection. Due to further discretization of the mesh the edge can transform into a radius of 

roughly one or two meters. Due to lack of data and the total scale of the models such geometric 

characteristics where neglected. 

Because of the lack of information about the bottom material a JONSWAP bottom friction coefficient of 

����� = 0.019 ����� was assumed for calculations. The value is advised by SWAN (2015) for non-sandy 

bottoms. 

No vegetation based dissipation was assumed for the model – this can be an underestimation as 

Bjørnafjord lays near the warm Gulf Stream which can result in intensive marine flora. This fact together 

with the arbitrary chosen bottom friction leads to uncertainties in the bottom friction dissipation. Thus 

this mechanism is not the most intensive dissipation model for costal area no further investigation was 

conducted. 

The observed sloping of the side of Bjørnafjord (based on available bathymetry data)is in the range : 

-most steep slope in the inlet – 1: 1.5 ( Δd=400m for Δy=600m), 

-least steep slope in the inlet – 1: 3 (Δd=200m for Δy=600m), 

-average slope in the eastern sector – 1:13 (Δd=200m for Δy=4000m). 

The prepared models are designed to fall into the same steepness range. 
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5.2 General input parameters 
The incoming swell wave parameters are based on the value obtained through the extreme wave 

statistics by Juliet Ngbeken (2016). The wave characteristics calculated for the winter season are used 

for the simplified cases analysis. Wind input is not taken into consideration. 

Table 5-1 Extreme values for 100 year exceedance for winter and summer season. Ngbeken (2016) 

 

Significant wave 

height(m) Peak period (s) 

Wind 

speed(m/s) 

Wind 

speed(m/s) Wind direction 

WINTER 12.4 17.1 14 14 288 

SUMMER 7.58 13.18 26 26 324 

 

5.3 Methodology for implementation of the simple cases and the simplified fjord 

model 
Three groups of models described by the general principle schemes were created: 

-ideal beach model with the varying depth value as the differentiating parameter, 

-closed idealized fjord model with the varying side sloping as the differentiation, 

-turn simulation model with the turn angle as the varying parameter. 

5.4 Idealized beach model 

5.4.1 Model description 

 

Figure 5-1 The principals for designing the ideal beach model group. 
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Table 5-2 List of the ideal beach models analysed 

Depth Gradient 

25 1:200 

50 1:100 

75 3:200 

100 1:50 

200 1:25 

300 3:50 

400 2:25 

500 1:10 

600 3:25 

The model is introduced to investigate the behaviour of a wave propagating parallel to the shoreline 

(along the x-axis).  

The default processes activated for the analysis were: surf-breaking, white capping and diffraction. 

Refraction, bottom friction and triad wave-wave interactions where turned on and off for series of runs 

to analyse the influence of those processes on the spectra. 

5.5 Results of the ideal beach analysis 
The results obtained will be shown as Hs contour plots (with the direction of propagation indicated) for 

different processes active. (Figures 5-2 to 5-9). The following figures show the development of the wave 

profile. The situation described is an incident of the wave train, from deep water, into a beach with a 

constant slope. The contours profile therefore reflect a superposition of two main processes – 

development of refraction and an impact of a water mass stream into a linear obstacle parallel to the 

water velocity. An incident modelled like this is highly unlikely to occur in reality. In real bathymetry, 

there will be some sloping on the negative part of the x-asks towards the open ocean conditions. The 

waves will not hit a vertical triangular wall – and thus the wave dispersion will not be so abrupt as the 

one that can be seen in the high left corner of the contour plots. The sudden disruption off energy and 

the linear drop in the Hs value for Figures 5-10 to 5-12 should be therefore neglected. 

Nevertheless the incident modelled reflects, in a very overestimated way, the wave entering into the 

fjord from an ocean shelf. Similar disruptions can also be observed in the Bjørnafjord contour plots 

(refer Chapter 6). 



Assessing wave conditions in a Norwegian fjord  Andrzej Koziel 

41 
Master Thesis  

Figure 5-2 The Hs map over the beach area for the slope of 1:200 (maximum depth 25m). All default and 

investigated processes active. 

Figure 5-3 The Hs map over the beach area for the slope of 1:200 (maximum depth 25m). All default 

processes active. Bottom friction and triad interactions disabled. 

Figure 5-4 The Hs map over the beach area for the slope of 1:200 (maximum depth 25m). All default 

processes active. Refraction disabled. 

Figures 5-2 to 5-4 describe the dissipation in near shallow water (in consideration to the linear wave 

theory) conditions. The visual assessment at once identifies refraction as the main dissipation 

mechanism. 

The interesting part of Figure 5-4 is the formation of a boundary layer near shore (due to effect of water 

depth variation) even thou refraction was not accounted for in the calculations (lack of directional shift). 
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Figure 5-5 The Hs map over the beach area for the slope of 3:200 (maximum depth 75m). All default and 

investigated processes active. 

Figure 5-6 The Hs map over the beach area for the slope of 3:200 (maximum depth 75m). All default 

processes active. Bottom friction and triad interactions disabled. 

Figure 5-7 The Hs map over the beach area for the slope of 3:200 (maximum depth 75m). All default 

processes active. Refraction disabled. 

Figures 5-5 to 5-6 show the finite water depth conditions for the investigated case. The refraction 

influence zone is clearly visible at Figure 5-5 and can be estimated with a value of 3000m. Outside of this 

zone the refraction will still be present but the rate of directional shift will be smaller. 

Influence of the introduced slope on the wave spectrum 

The spectral sensitivity analysis was done in respect to two directions – parallel and normal to initial 

wave propagation (parallel to x and y axis respectively). The analysis was based on an intermediate case 

of sloping chosen from the modelled group - slope 3:50 (Δd=300m for Δy=5000m). Investigation was 

conducted for the case where all processes where active. 
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Figure 5-8 shows the evolution of the spectrum in the y direction. Figure 5-9 shows the differentiation of 

energy in the x direction. The investigated positions lay on a line 5 km out from the input boundary. 

There difference in the observed spectra is the result of three phenomena: 

- the developing wave profiles perpendicular to wave propagation direction due to refraction which is 

shifting into shoaling closer to land (and with the propagation direction shift), 

-the difference in the depth along the investigated line, 

-the development of the ‘boundary layer’ profiles parallel to the shoreline (it is a result of bottom depth 

gradient) – so close to the incident place the flow is not stabilized yet. 

 

Figure 5-8 Wave spectrum evolution for d=120m (distance to shore 1000m) for slope 3:50 (Δd=300m for 

Δy=5000m) The investigation taken in the direction of the wave propagation, parallel to shore (constant 

depth). 
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Figure 5-9 Wave spectrum evolution based on distance to shore propagation distance x=5000m. Slope 

3:50 (Δd=300m for Δy=5000m). The investigation taken perpendicular to the wave propagation, normal 

to shore (varying depth) 

The difference in the spectrum over a sloped shore is relevant for computation in SWAN when the input 

boundary is laying in the fjord, on a sloped bathymetry. The spectra should be then modelled to account 

for the difference in the depth. This influence is easy to have been omitted as engineers are used to 

calculate the input spectrum at a singular data gathering point. 

SWAN can account for the mentioned problem in a number of ways: 

- segmented or variable spectra along the input boundary are possible to be modelled, 

- a nested series of runs can be used to transfer the characteristics from a less troubling location, 

- a full unstructured input taken based on the calculations from a supporting program. 

Sensitivity analysis to the slope gradient: 

A number of water depths where chosen to investigate the influence of the beach inclination on the 

significant wave height. The compared results vary with consideration to the distance to shore for each 

slope value.  
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Figure 5-10 Significant wave height as function propagation distance for d=7m. All default and 

investigated processes active. 

 

Figure 5-11 Significant wave height as function propagation distance for d=7m (bottom friction and triad 

wave-wave interaction calculation disabled in SWAN) 
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Figure 5-12 Significant wave height as function propagation distance for d=7m (refraction calculation 
disabled in SWAN 

Figures 5-10 and 5-11 show the differences off the significant wave height due to refraction for shallow 

water case. After the initial turbulence effects dissipated and a typical flow is established (about 2km 

into the fjord) the refraction becomes the main mechanism for energy loss at the line (after the wave 

turns other processes take over). The sloping gradient influences the rate of refraction which is reflected 

in Figure 5-10 and 5-11. Once the significant wave height level differentiates in the more regular wave 

domain the rate of loss of energy seems constant. 

In addition to the influence of sloping on refraction the influence of other mechanisms in the shallow 

waters was investigated. The difference between Figures 5-11 and 5-10 shows that dissipation due to 

bottom friction and triad wave-wave interactions is not responsible for a significant energy loss in the 

wave field (which had to be controlled due to differences in the water depth for the plotted lines). Triad 

resonance is suspected to be responsible for the waving of value for the significant wave height after 

14km of propagation distance in the case described in Figure 5-10. 
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Figure 5-13 Significant wave height as function propagation distance for d=25m. All default and 

investigated processes active. 

 

Figure 5-14 Significant wave height as function propagation distance for d=25m (refraction calculation 

disabled in SWAN) 
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Figure 5-15 Significant wave height as function propagation distance for d=100m. All default and 

investigated processes active. 

 

Figure 5-16 Significant wave height as function propagation distance for d=100m (refraction calculation 

disabled in SWAN) 

For Figures 5-13 to 5-15 (describing the influence of slope variations in finite water conditions) show 

that for deeper water the incident of a high energy wave (as the inputted spectrum) does not generate 
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differentiate the values based on the modelled slope. The wave at this water depth do not ‘feel’ the 

bottom which is the suspected cause for indifference of the wave height to the sloping conditions.  

5.6 Closed idealized fjord model 
The second model group is design to investigate the wave behaviour in a constricted area. The model 

group was designed in connection to the principals scheme shown in Figure 5-17. 

 

Figure 5-17 The principals for designing the closed ideal fjord model group. 

To better visualize the problem analysed one of the bottom grids is shown in Figure 5-18. 
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Figure 5-18 A model of the bathymetry grid (for 100m by 100m cells) of the closed ideal fjord. The side 

slope 8:5 (Δd=125m for Δy=200m). 

The varying element for the group is the side slope gradient. With the constant bottom level of -200m 

for all cases the inclination was modified by the horizontal distance variation Δy marked as the ‘’a’’ 

parameter on Figure 5-17. The inclination assumed for models is shown in Table 5-4 

Table 5-3 List of the closed fjord models analyzed 

depth Δy variation Slope 

200 125 8:5 

200 250 4:5 

200 500 2:5 

200 750 4:15 

200 1000 1:5 

The assumption of constant slope was made: in the longitudinal direction for the main bottom surface, 

and in the transverse direction for the sides. Two sloping surfaces meeting under these constrains 

provide that the shape of the models narrows toward the end. The contraction is equal the Δy variation 

value from Table 5-2 for each side. This means, in example, that the case with the 1:5 slope (Δy equals 

1000) the end will be shorter by 2000m (because of the two side slopes)- refer Figure 5-20. 

Models due to geometric conditions have a different area cross-section at the input boundary. This 

results in a difference in total mass of water propagating into the model. The effect of this differences 

can be investigated with a study of geometry and be controlled with an extra series of models. Due to 

the time constrains for the report work this investigation was omitted. 

The following analyses where conducted for the closed fjord model: 

-investigation of the influence of the side inclination gradient (together with the narrowing) on the 

significant wave height, 

-sensitivity analysis to the different dissipation processes for the 1:5 slope model (Δy equals 1000 for 

Δd=200m). 
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5.7 Results of the closed ideal fjord analysis 
 

 

Figure 5-19 The Hs plot for the closed fjord model with the sides constant slope 1:5 (Δy=1000m for 

Δd=200m) 

 

Figure 5-20 Figure 5-21 The Hs plot for the closed fjord model with the sides constant slope 8:5 (Δy=250m 

for Δd=200m) 

Figures 5-19 and 5-20 show the qualitative difference in the sea state developed for the two cases - 

most differentiated in respect to the side inclination. A clear difference in the wave height is visible in 

the shallow water area on the right side of the model. 

The edgy side line of the plot (between points [0,0] and [20000,1000]) in Figure 5-20 is the result of the 

series of interpolations necessary to run for different grids. The results in SWAN are initially calculated 

only for the nodes of the computational grid based on the interpolated depth value (obtained based on 

nearest bottom grid nodes). The results are therefore interpolated twice. Those values are afterwards 

transformed to the locations requested in the output grid node series. The output plotted as a contour 

map is then redistributed by the calculations done in MATLAB.  

In addition, regular cartesian grids where adopted to model a triangular-like shape which provides 

lacking information in the domain coverage by the mesh at the bathymetry grid boundaries. 

The problem is constricted however to the edges of the bottom topography. The interpolation for the 

more regular bottom surface in the middle of the model provides reliable information.  
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The whole process of producing a contour plot can result in three level of data interpolation. A full 

investigation of the process and the uncertainty estimations is an demanding scientific problem. As the 

complication not entirely connected to this report’s topic -it is omitted in the further analysis. 

 

Figure 5-22 Significant wave height as a function of propagation distance for the different models of the 

closed ideal fjord group. The investigated points lay in the midline of the model in the longitudinal 

direction. 

Sensitivity to slope inclination and fjord narrowing  

Figure 5.12 Shows that the biggest influence of the side slope introduction (and narrowing) is shown 

when the wave approaches the shallow water. The range when wave has cover the distance between 17 

and 18.5km is the point where most of the dissipation processes activate.  

The bulge in the plot at the 18th km – the amplitude raise, shows the effect of shoaling followed with a 

rapid decrease of significant wave height due to breaking. 

The intense loss of energy in that area begins quicker and is more excessive for more steep sides. The 

suspect ion is that the intense refraction provided by more narrowed cases prevents wave bunching and 

increase in the amplitude provided by shoaling.  

The result shows that another study for the influence of side steepness should be conducted with a 

model series that does not introduce narrowing to research the true influence of side’s inclinations. The 

effect of total water volume inputted into the model should be also investigated. 
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Figure 5-23 Sensitivity study for the influence of different processes for the significant wave height for 

the 1:5 slope model (Δy equals 1000 for Δd=200m). 

Sensitivity to different dissipation mechanisms  

Figure 5-22 shows the participation of different dissipation processes on the wave energy. It is shown 

that refraction is the main dissipation mechanism for the deep and intermediate water. This fact was 

expected because of the quick contraction of the fjord width. Approaching shallow water, as the waves  

hit the bottom the water level raises slightly. The energy raise due to shoaling increases the rate of 

refraction and breaking.  

The breaking curve was intentionally stopped at 19km. Further propagation to the shore was increasing 

the significant wave height but the observations were excluded from the data set to maintain a proper 

scale for the plot. This was done because with the breaking calculation disabled SWAN has calculated 

the significant wave height equal to 42m at the shoreline. The value although is in accordance with the 

theory (for the ideal case of shoaling without breaking the wave amplitude reaches infinity 

asymptotically – refer Figure 3-6) it is highly unrealistic. The lack of breaking in such a case is not feasible 

in reality.  

5.8 Curve introduced in the middle of the ideal fjord model 
Bjørnafjord main connection to the open ocean waters is through to inlets (refer Figure 6-1). The 

northern inlet with the total length of ca. 20km has an over 90 degrees curve in the middle of the route. 

The radius for the curve is similar to the width of the inlet (2.5km). The analysis preformed in Chapter 

6.3 and the rapports by NORCONSULT (Lothe, 2015) and SINTEFF (Stefanakos, 2015) show that this turn 

stops the propagation of the swell into the fjord (wave crash onto the shore in the far end of the curve). 

This research show the enormous influence of route turning on the waves in the fjords. The 

investigations conducted in this chapter are focused on understanding this phenomena. 
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5.9 Turn of the fjord model description 
A simplified model was introduced to investigate the influence of the angle of the turn on the wave 

field. The governing idea behind the bathymetric model is shown in Figure 5-23. The varying parameter 

for the model is the angle value for the fjord turn. There was a total of 6 bathymetric models prepared 

for calculations. The angles adopted were: 15°, 30°, 45°, 60°, 75° and 90° for each model respectively.  

 

Figure 5-24 The principals for designing the turn of the fjord model group. 

Some differences in comparison to the previous model need to mentioned. The depth has been set to 

300m, with the assumption of the flat bottom in the middle of the fjord. The sides are modelled as a 

constant slope of 1:1 ratio (Δd=300m for Δy=300m). Those changes were introduceed to better reflect 

the conditions found in the Bjørnafjord northern route.  

For better visualization of the problem, Figure 5-24 shows a sample of the model group for the 30° 

angle. 
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Figure 5-25 A model of the bathymetry grid (for 100m by 100m cells) of the turn of the fjord model for 

the 30° angle. The side slope are 1:1 (Δd=300m for Δy=300m). 

The following analyses were conducted for the fjord turn model: 

-investigation of the Hs contour plots in connection to the shape of the wave field, 

-investigation of the significant wave height evolution due to propagation over the turn, in the fjord, 

-sensitivity of the models to the diffraction and refraction mechanism modelled in SWAN. 

5.10 Results of the analysis of the turn model. 
Figure 5-25 to 5-27 describe the wave field propagating through the bathymetric curve. The plots were 

prepared for the default dissipation processes available in SWAN (with the refraction and diffraction 

calculations enabled). 

 

Figure 5-26 Contour plot of the Hs values for the wave field propagating through a 30° angled curve in 

the ideal fjord. 
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Figure 5-27 Contour plot of the Hs values for the wave field propagating through a 60° angled curve in 

the ideal fjord. 

 

Figure 5-28 Contour plot of the Hs values for the wave field propagating through a 90° angled curve in 

the ideal fjord. 

Figure 5-25 shows the considerable decrease in the wave height due to influence of the curve. The wave 

field before the turn shows a typical development for a symmetric channel, with the highest wave 

energy in the middle (at the deepest area) and the waves refracting towards the sides. The directional 

field shows that after the turn the rate of refraction dose not manage to induce waves propagation 

towards the left side of the model. The highest waves energy tend to propagate on the right side. There 

is suspected a local, slight increase in water level on the right side that produces a surge further towards 

the end of the model. The participation of refraction, diffraction and surging water volumes on the wave 

field requires further investigation. The element of reflection that may be crucial for this case was not 

analysed due to complex modelling requirements in SWAN for this mechanism. 

Figure 5-26 shows the evolution of the contour. With the increasing angle the range for the influence  of 

the input spectrum decreases.  
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Figure 5-27 shows that for the incident with a straight angled curve with a radius small (2500m) in 

relation to the wave length, almost all wave energy is absorbed by the shore. The waves with the 

significant height of 1 -1.5m range propagating after the curve are assumed to be the effect of 

resonance of the surge water.  

Incidents in Figures 5-25 to 5-26 are of a turbulent nature. The significant wave height being a 

characteristic of a statistical spectrum of the total incoming waves dose not illustrate this properly. The 

lack of reflection provides to a high uncertainty in the results obtained. 

Sensitivity to the turn with the angle as the governing parameter. 

 

Figure 5-29 Significant wave height as function of propagation distance for the different values of the 

angle governing the turn. All dissipation processes are active in SWAN. 

Figure 5-29 shows that the input wave do not manage to travel through a curve introduce for such a 

narrow width. A correlation between the angle of the turn and the distance the wave travels is visible. 

The drop in the significant wave is most abrupt in the case of angles wider than 60 degree. For smaller 

angles some energy seems to propagate through the curve but dissipates afterwards due to refraction 

as the waves are forced to travel along the right side - near shore. 
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Figure 5-30 Significant wave height as function of propagation distance for the different values of the 
angle governing the turn. All default dissipation processes are active while refraction is disabled in 
SWAN. 
With the loss of rarefaction influence (shown in Figure 5-30) the model loses less energy in the first part 
of the channel increasing the significant wave height at the swing location. The comparison between 
Figure 5-30 and 5-29 shows that refraction is the main dissipation mechanism after propagation over 
the turning point.  

 

Figure 5-31 Significant wave height as function of propagation distance for the different values of the 

angle governing the turn. All default dissipation processes are active while diffraction is disabled in 

SWAN. 

Figure shows that diffraction plays a negligible role in the wave directional shift in this case. The 

diffraction calculation according to SWAN (2015) are also only an estimation. Diffraction is not enabled 

in the default set up of processes in SWAN.  
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6 The Bjørnafjord bathymetry simulation in SWAN 

6.1 Introduction 
Bjørnafjord located near Bergen is one of the fjord mentioned in the ferry free E39 motorway 

connection project. Obtaining a proper estimate of the design wave conditions is therefore crucial for 

the design of the future bridge. 

 

Figure 6-1 Bathymetry of the computational grid for the Bjørnafjord calculations with target points and 

routes adopted for calculations 

For such a complex basin precise bottom input is required for estimation. Bathymetry maps were 

acquired from Kystverket (in the WGS-84 UTM 33N coordinate system). Maps obtained in the form of 

GIS data (shapefiles together with the coordinate system data) where discretised in MATLAB to obtain a 

regular grid.  
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The goal of the analysis is to obtain wave characteristics at the planed bridge locations -target points. 

Overview of the target locations can be found in the table 6-1 - after Stefanakos (2015).  

Beside of the values in the bridge location contour maps of the significant wave height were created for 

each analysed case.  

A sensitivity analysis of the influence of different dissipation process was conducted for three curves 

(refer Figure 6-1). The lines describe the northern (yellow), southern (purple) and eastern (green) 

routes. The division of the investigated curve is based on the different forcing mechanism that are 

dominant for the respective areas: forcing from the southern or northern fjord inlet or wave generation 

by wind for the eastern sector. 

Table 6-1 Target point locations for the Bjørnafjord analysis 

Target point Latitude [deg] Longitude [deg] 

TP1 (input point) 60° 08’ 00’’ N 4° 57’ 00’’ E 

TP2 60° 09’ 25’’ N 5° 06’ 20’’ E 

TP3 60° 11’ 20’’ N 5° 13’ 25’’ E 

TP4 60° 08’ 35’’ N 5° 17’ 20’’ E 

TP5 60° 03’ 50’’ N 5° 19’ 50’’ E 

TP6 60° 00’ 00’’ N 5° 19’ 15’’ E 

TP7 59° 57’ 00’’ N 5° 10’ 00’’ E 

TP8 60° 07’ 00’’ N 5° 41’ 00’’ E 

A2 (first proposed bridge position) 60° 05’ 53’’ N 5° 22’ 06’’ E 

A3 (first proposed bridge position) 60° 06’ 31’’ N 5° 22’ 10’’ E 

A4 (first proposed bridge position) 60° 07’ 10’’ N 5° 22’ 15’’ E 

B2 (second proposed bridge position) 60° 05’ 54’’ N 5° 26’ 47’’ E 

B3 (second proposed bridge position) 60° 06’ 34’’ N 5° 26’ 41’’ E 

B4 (second proposed bridge position) 60° 07’ 13’’ N 5° 26’ 34’’ E 

6.1.1 Input parameters 
Input boundary was designed at the TP1 position. The values of the wave characteristics were taken 

from SINTEF rapport by Stefanakos (2015). The additional reason for assuming those values is the 

possibility to compare the output values for the preformed analysis. The differences in the modelling 

technique in SWAN will be commented on in the second part of this chapter. 

Table 6-2 Input parameters for the incoming swells based on (Stefanakos, 2015) 

Target point Hs [m] Tp [s] ����� [deg] 

TP1 12.85 14.08 269 

6.1.2 Sensitivity studies 
Two sensitivity studies were conducted in regard to the computational and the bottom grid resolution to 

help obtain the most economic (in regard to computational efforts) combination of parameters. The 

sensitivity to the computational grid was conducted for constant of 75m by 75m bottom grid whereas 

the bottom grid sensitivity adopted a 75m by 75m computational grid. 
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Figure 6-2 Sensitivity analysis of the computational grid resolution for Bjørnafjord modelling. 
 

 
Figure 6-3 Sensitivity analysis of the bottom grid resolution for Bjørnafjord modelling. 

The models analysis results seem to show moderate sensitivity to grid resolution. The maximal 

differences of 0.2 m (around 10% of the value of obtained Hs at investigated locations) significant wave 
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height at the target locations can be neglected for rough estimations but a higher density should be 

assumed for final analysis. The trends in both studies showed to the identical bottom and computational 

resolution (cell of 75m by 75m) as the best solution for modelling the problem at hand. 

With the 2 hours as the longest time needed for one run, this grid resolution was acceptable both for 

the computational grid and the bottom grid. The resolution was further adopted as the basic output grid 

used as the basis for plotting the contour maps for Hs. The additional advantage resulting from the fact 

of identical grid resolutions is omitting the internal interpolation of data in SWAN for the bottom level or 

the requested output parameters. This helps to reduce the uncertainty level. The only interpolation step 

was conducted in MATLAB for the contour plotting command.  

Higher resolutions were tested but calculations resulted in a non-acceptable number of errors that 

prematurely ended the initial computations. 

The computational grid and the bottom grid were taken between [ 59° 52’ 00’’N and 60° 18’ 00’’ X 4° 57’ 

00’’E and 5° 50’ 00’’ E]. Due to topography and bathymetry conditions no relevant (effect of the 

boundaries in the north- and south- west corners is negligible) water boundaries without wave input 

were present thus no possibility of leakage of energy due to refraction to open ocean. The area covered 

by those grids is shown in Figure 6-1 and all the other maps. 

 

Figure 6-4 Bottom topography input grid with a cell size equal to x=300m and y=300m. 
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Figure 6-5 Bottom topography input grid with a cell size equal to x=100m and y=100m. 

Figures 6-4 and 6-5 show the difference in the precision of reproducing the bottom topography for 

different mesh sizes. The visual assessment and the initial analysis indicates that the additional 

roughness in the case of the second grid would have a strong influence on the obtained results. Figure 

6-3 shows that the real differences at the bridge positions are lesser than expected – this is due the fact 

that most of the wave energy is transferred in the deep water areas. The areas with deep water 

conditions have low sensitivity to bottom topography. This indicates that smaller bottom grid resolution 

can be used for obtaining reliable results (for deep water conditions at the incoming waves route and 

investigated locations). 

Due to the variety of data sources and the differences in the coordinate system descriptions in the 

software used a unified coordinate system has been applied for the following description- refer Figure 6-

6. The system is adopted from the Cartesian coordinate system notation for the SWAN application. 

 

Figure 6-6 Coordinate system adopted for Bjørnafjord model description. 
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6.2 Modelled cases 
Modelling followed all the basic assumptions used for the simplified models (refer Chapter 5.1) 

The list over analysis (not including the sensitivity cases) is shown in Table 6-3 

Table 6-3 Input for the analysed cases for Bjørnafjord 

Name  
Wave input Wind input 

Input boundary HS [m] Tp [s] Direction [deg] Velocity [m/s] Direction [deg] 

Swell waves * West 12.45 14.08 1 - - 

Wind sea * West - - - 33 1 

Total sea * West 12.45 14.08 1 33 1 

Eastern region * - - - - 35 180 

Eastern region * Initial condition 0.20 4.00 180 35 180 

Eastern region * - - - - 35 180 

Eastern region * Initial condition 0.20 4.00 180 35 180 

Case 1** West 5.00 12.00 0 25 300 

Case 2** West 5.00 12.00 0 25 60 

Case 3** West 5.00 12.00 0 - - 

*   - based on Stefanakos (2015) 
** - modelled after Lothe (2015) 
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6.3 Bjørnafjord analysis -result and discussion 

6.3.1 Swell waves  

 

Figure 6-7 Bjørnafjord- Hs map for wave input if Hs=12.48m and Tp=14.08s DIR= 1° with no wind input. 

The incoming swell waves for the winter season are presented on Figure 6-8. In accordance 

with the results obtained in Chapter 5.9 the incoming waves do not manage to shift the 

propagation direction at the turns of the inlets. The energy is lost due to the waves coming 

ashore, both in the southern and the norther route. Due to that fact we can see that the 

offshore conditions have little influence on the wave regime in the isolated estuaries refer 

Table 6-4.  

The analysis conducted in Stefanakos (2015) and Lothe (2015), discuss widely the case of the 

dominant forcing inlet for the incoming waves in the bridge position. The quiver plot describing 

the mean direction of propagation (Figure 6-8), together with the direction obtained for the 
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bridge position (Table 6-4), in this scale are not conclusive in regard to the topic of governing 

forcing wave direction. Based on the basis of all conducted analyses it was established that the 

norther route delivers a greater input for the bridge positions in regard to the wave energy 

transferred. 

Table 6-4 Results for the wave characteristics obtained for the bridge positions for the incoming swell 

case. 

Target point A2 A3 A4 B2 B3 B4 

Hs [m] 0.009 0.169 0.236 0.09 0.086 0.053 

Tp [s] 17.15 14.09 13.93 13.79 14.03 13.99 

� [deg] 263 315 323 323 335 347 

 

The significant wave pattern analysed from the western direction shows that the main dissipation 

mechanism in the norther and southern approaches are refraction and the development of the 

boundary conditions at the side of the channels. The wave field evolution is in accordance with the 

findings described for the ideal beach case of the closed fjord analyses (refer Chapters 5.8 and 5.7). 
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6.3.2 Wind sea 

 

Figure 6-8 Bjørnafjord- Hs map for constant wind of 33 m/s input over the total area. Wind direction  

DIR= 1°. 

The wind generation is the dominant forcing mechanism responsible for the waves at the bridge 

locations. This fact inspires necessity for more extensive analysis of wind input directions and values. 

Due to a constricted geometry an analysis assuming most probable wind directions in the long fetch 

routes were conducted ( Chapter 6.5 and the additional cases).  

Figure 6-9 show the results obtained for the pure wind sea developed due to wind blowing form the 

wester direction. 
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6.3.3 Total sea 

 

Figure 6-9 Bjørnafjord- Hs map for wave input if Hs=12.48m and Tp=14.08s DIR= 1° with constant wind 

of 33 m/s input over the total area. Wind direction DIR= 1°. 

The incoming wave swells together with the wind generated waves provide the total sea conditions. The 

swell input is marginal for the condition of no wind input. The co-dependency described in Chapter 3.1.1 

however states that the initial roughness of the sea surface provided by swells will increase the wave 

generation at the eastern sector. The case shown in Figure 6-10 is the most severe case of loading 

coming from the western sector and has been chosen as a basis for further analysis. 

A comparison of the results obtained by Stefanakos (2015) and in this thesis are shown in Table 6-5.  

The directions of propagation from SINTEFF report where transformed to the adopted coordinate 

system. 
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Table 6-5 Comparison of results obtained in the thesis with the results by Stefanakos (2015) 

Target points A2 A3 A4 B2 B3 B4 

Results obtained 

 by SINTEFF 

Hs [m] 2.5 2.52 2.46 2.87 2.83 3.07 

Tp [s] 4.88 4.88 4.88 5.65 5.26 5.65 

� [deg] 364 359 360 1 358 359 

Results obtained 

in the thesis 

Hs [m] 2.22 2.34 2.35 2.45 2.39 2.23 

Tp [s] 5.00 5.03 5.02 5.49 5.39 5.09 

� [deg] 336 342 350 339 350 4 

Relative difference 

Hs [m] -11.0% -7.1% -4.6% -14.7% -15.5% -27.4% 

Tp [s] 2.5% 3.1% 2.9% -2.9% 2.5% -9.9% 

� [deg] -7.7% -4.8% -2.9% -6.2% -2.2% 1.4% 

The comparison shows that the results obtained during the thesis preparation are lower than the ones 
obtained by Stefanakos. The difference may be a result of modelling parameters:  
-different set of dissipation mechanism activated during SWAN computations or different values 
adopted for the governing parameters like for example the value assumed for bottom friction 
coefficient, 
- the difference in the spreading coefficient assumed -  the difference in the wave crest length, 
- the difference in the precision of adopted grids (SINTEFF grid size varies for different runs between 
230m and 90m whereas the final results obtained in the thesis adopt the mesh size of 75m by 75m for 
the computational, bottom and output grid). 
The biggest difference between Stefanakos approach and the one realized in this thesis is the modelling 

methodology. In the SINTEFF report the model was executed as a number of nested runs (3 different 

steps with a different grid for each step). The information about the nesting realization, control of the 

transfer of information, between the runs – especially in regard to the 2D spectra input/output as well 

as the sensitivity analysis for changing grid resolutions was not available to the thesis author. 

The realization of the model in this thesis was done as a single model with the coverage of the whole 

fjord area. This solutions provides (private assumption of the author) a better coverage and transfer of 

information in the side-ends of the directional spectra. 

Further analysis and more data concerning the input parameters needs to be gathered for full 

comparison of models and the modelling methodology. 

6.3.4 Analysis of the influence of the energy dissipation processes on the total sea  
An analysis of the influence of different dissipation mechanics was done for the three routes specified in 

Figure 6-1. 
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Figure 6-10 Depth profile of the northern route – inlet to the Bjørnafjord (yellow curve on Figure 6-1). 

 

Figure 6-11 Significant wave height development along the northern route in respect to the dissipation processes
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Figures 6-12 and 6-13 show the bottom profile and the evolution of significant wave height along the 

northern route. The most prominent dissipation mechanism throughout the route is white capping. This 

is due the high wind input blowing over the domain. 

The figure illustrates the steady wave propagation from the offshore sector towards the fjord entrance. 

The significant wave height is constant due to wind generation in the deep water conditions and the 

white capping mechanism staying in balance. The influence of all other dissipation mechanisms is 

constant and laying in a similar range. 

At the fjord entrance the refractions influence increases. This is due to introduction of the sides of the 

channel. Near the 12th kilometre the participation of single mechanism in total energy dissipation begins 

to shift as the wave field begins to ‘feel’ the incoming turn. 

At the curve beginning we see a high impact of diffraction. The diffraction term is both negative and 

positive as it is responsible mainly for the directional shift. The investigation is conducted in the midline 

of the fjord which means that the line of investigation is also bending. The effect of diffraction – the 

dispersion of the wave rays first result in the lower amplitude and with the dispersed wave rays crossing 

the line of investigation again, they produce a positive influence on the wave amplitude. The 

investigation line crossing the wave field two times at a different angle of income seems to be the main 

reason for the turbulence visible in the section of the plot corresponding to the turn. 

At the end of the northern route with the situation returns to the wind sea generated state. The 

influence of refraction is smaller than in the fjord entrance due to bigger width of the fjord cross section.  

Figure 6-13 and 6-14 show the situation at the southern route. Due to a big radius of the turn, the arcing 

of the route does not have such an abrupt effect on the dissipation. The problem of the turbulences in 

the observations caused by the investigation line crossing wave rays twice is not present
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Figure 6-12 Depth profile of the southern route – inlet to the Bjørnafjord (purple curve on Figure 6-1). 

 

Figure 6-13 Significant wave height development along the southern route in respect to the dissipation processes   

-600

-500

-400

-300

-200

-100

0

0 5000 10000 15000 20000 25000 30000
d

ep
th

 [
m

]

wave propagation distance along the southern route [m]

bottom level

fjord
entrance

beginning of the
southern turn

end of the
southern curve

TP5

TP6

TP7

1

3

5

7

9

11

13

15

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0

H
s

[m
]

wave propagation distnce along the southern route [m]

default values - all dissipation processes active

breaking dissabled

diffraction dissabled

bottom friction dissabled

refraction dissabled

triads wave-wave interactions dissabled

whitecapping dissabled

fjord entrance beginning of the
southern turn

end of the
southern curve

TP5

TP6

TP7



Assessing wave conditions in a Norwegian fjord  Andrzej Koziel 

73 
Master Thesis  

 

 

Figure 6-14 Depth profile of the eastern route – eastern sector of Bjørnafjord (green line on Figure 6-1). 

 

 

Figure 6-15 Significant wave height development along the eastern route in respect to the dissipation process
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Figures 6-15 and 6-16 showing the eastern route show the development of the wind sea in deep water. 

The near shore dissipation effects show little influence on the midline of a 5 kilometre width and 400 

meters deep basin. 

The deactivation of breaking mechanism in SWAN resulted in an unrealistic situation where breaking 

generates wave energy. The obtained data is surprising as all three routes were analysed based on the 

same run in SWAN and the results seem reasonable for the norther and southern approach. The 

occurrence of this result needs to be further investigated and the probable error eliminated. 

6.3.5 Wind sea analysis for the fjord from the eastern direction 

 

Figure 6-16 Bjørnafjord- assessment of the eastern sector. Wind velocity 35 m/s DIR=180° blowing over 

the whole area.  

An analysis after Stefanakos (2015) were adopted to investigate the influence of wind incoming from the 

eastern sector. The fetch is longer in this situation (with regard to the bridge position) and thus the 

developed wind sea can produce higher values for the significant wave height. The problem connected 
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to such an analysis is to properly assume the sea state when the highest winds begin to blow. The 

assumption is that there is an pre-existing wave field at the beginning of the highest wind weather 

although modelling of such a situation and adopting proper values for wave characteristics is a task 

connected to high uncertainty. 

The approach taken by Stefanakos in the SINTEFF report is based on an arbitrary chosen values (based 

on authors experience) of Hs=0.2 m for a Tp=4.0s forcing at point TP8 form the eastern direction. This 

approach needs to ‘cut’ the model at the TP8 line to introduce a water boundary for input of waves. The 

data on the depth and wind history from the area laying eastwards from TP8 is lost and replaced with 

the approximation of incoming significant wave height modelled. The assumptions seems reasonable 

but still show a number of uncertainties and show that the problem at hand need further research.  

The approach adopted in this thesis is slightly different. The analysis of the eastern sector wind input 

was done separately under two (seemingly conflicting assumptions): 

1) that the wind generation process in SWAN can calculate the proper fully developed wind sea state in 

an stationary run, based on the total information about the bathymetry and the fetch range for the 

closed basin (the time period for which the generation effects is being calculated needs to be controlled 

for stationary and nonstationary runs and a sensitivity analysis needs to be conducted). 

2 )that some wave field is existing when high wind approaches. The assumption is that it exist over 

whole area of the basin. This situation is modelled by introducing the initial sea state over the whole sea 

surface. This simplification here have been done with an unrealistic input of a constant wave condition 

for each point of the bathymetry. Such a situation will never occur due to a number of effects varying 

from water depth to wave propagation character. The assumption to overcome this uncertainty is that 

the sea state of Hs=0.2 m and for a Tp=4.0s is feasible for every point over the bathymetry greed which 

is quite reasonable. 

Figures 6-19 and 6-17 show the results for the first assumption for wind speed 25 m/s and 35 m/s 

respectively. Figures 6-18 and 6-20 show the realisation of the second set of assumptions for wind 

speed 25 m/s and 35 m/s respectively.  

Result comparison of the different approaches is show in Table 6-5. 
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Figure 6-17 Bjørnafjord- assessment of the eastern sector. Wind velocity 35 m/s DIR=180° blowing over 

the whole area, initial wave input Hs=0.2 m Tp=4 s DIR=180° over the whole area. 
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Figure 6-18 Bjørnafjord- assessment of the eastern sector. Wind velocity 25 m/s DIR=180° blowing over 

the whole area. 
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Figure 6-19 Bjørnafjord- assessment of the eastern sector. Wind velocity 25 m/s DIR=180° blowing over 

the whole area, initial wave input Hs=0.2 m Tp=4 s DIR=180° over the whole area. 
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Table 6-6 Comparison of the results obtained in the SINTEF REPORT (by Stafanakos,2015) and in the 

investigated runs for 25m/s wind. 

Target point A2 A3 A4 B2 B3 B4 

Results obtained by SINTEFF 

for wave input at TP8 

Hs [m] 2.02 2.01 2.03 1.91 2.03 2.01 

Tp [s] 5.08 5.43 5.43 4.67 5.08 5.08 

� [deg] 174 180 185 177 182 184 

Results with only wind 

 over the whole fetch 

Hs [m] 2.27 2.40 2.22 2.29 2.29 2.27 

Tp [s] 5.69 5.68 5.67 5.48 5.39 5.33 

� [deg] 182 175 164 187 180 176 

Results for the initial wave 

input over the whole area 

Hs [m] 3.40 3.41 3.18 3.29 3.26 3.25 

Tp [s] 6.67 6.67 6.65 6.29 6.21 6.14 

� [deg] 182 175 164 187 180 177 

 

Results from table 6-5 show that the first assumption is false – SWAN dose not generate a fully 

developed wind sea in a stationary run. Possibilities for obtaining such results should be checked as this 

sea state will be probably the most extreme loading situation and thus a basis for the structural design. 

Small differences between SINTEFF’s results and the pure wind sea (second series of results) shows that 

both the methodology and the values assumed by Stefanakos are reasonable.  

The increase in the Hs and Tp values with the initial wave excitation (the third series of results) show 

that wave conditions can assume higher values at the bridge position than the ones calculated in the 

runs with different input manner. However the quantitative values are very uncertain due to the 

amount of energy introduced to the model in the somewhat artificial way (the initial state input). The 

way for proper modelling of initial wave input should be further researched in connection to SWAN 

technical documentation and discussed at lengths with model developers. 
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6.3.6 Additional cases analysis. 
Three additional cases where included based on the report of Lothe (2015). This analysis was introduced 

to compare STWAVE based results with the ones produced in SWAN. The analysis is also beneficial 

because it investigates other fetch generated wind conditions and allows to research wave conditions at 

bridge positions for forcing from the southern direction. 

The cases assume the situation where the wind is blowing from the longest fetch distance in the north 

direction (Case 1- Figure 6-22) and the southern direction (Case 2 – Figure 6-23). The last case is 

adopted as a control case for the situation without wind. 

The original results are shown in Figure 6-24 and the results obtained during the thesis work are shown 

in Table 6-7. 

 

Figure 6-20 Case 1. Bjørnafjord- assessment of refraction. Wind velocity 25 m/s DIR=300° blowing over 

the whole area, wave input Hs=5.0 m Tp=12 s DIR=0° at the western boundary. 
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Figure 6-21 Case 2. Bjørnafjord- assessment of refraction. Wind velocity 25 m/s DIR=60° blowing over the 

whole area, wave input Hs=5.0 m Tp=12 s DIR=0° at the western boundary. 
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Figure 6-22 Case 3.Bjørnafjord- assessment of refraction. Wave input Hs=5.0 m Tp=12 s DIR=0° at the 

western boundary. 
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Figure 6-23 Results of the analysis performed by NORCONSULT Lothe (2015) p 46. The wind directions in 

the figure correspond: 210=60 in the thesis coordinate system and 330=300 in the thesis coordinate 

system. 

Table 6-7 Results for cases 1 to 3 for the A bridge location. 

Target location A2 A3 A4 

Case 1 

Hs [m] 2.08 1.97 1.84 

Tp [s] 5.39 5.33 5.32 

� [deg] 304 314 325 

Case 2 

Hs [m] 1.52 1.72 1.82 

Tp [s] 4.63 4.79 4.95 

� [deg] 50.9 54.9 57.6 

Case 3 

Hs [m] 0.002 0.055 0.090 

Tp [s] 15.34 11.96 11.83 

� [deg] 258 315 324 

The result comparison is difficult to perform due to the division of the results in the original report to 

high and low frequency waves and data presentation. A preliminary assessment shows that results 

obtained in SWAN are higher than the ones obtained in STWAVE. The Full comparison of models would 

also require data on other parameters connected to the generation and dissipation processes and the 

realisation of the theories in the STWAVE software suite.  
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7 Discussion and propositions for future work 
Research done shows that the correlation between the different generation an dissipation mechanisms 
is of a complex nature. Further investigations are required for a full comprehension of: 
-wave field in a side constrained constant slope beach, 
-influence of the inclination angle on the wave field while an oblique incident of wave towards a 
constant slope beach, 
-physical processes influencing wave behaviour in a turning channel. 
-reflection in a turning channel. 
 
Furthermore an investigation of the best possible solution for bypassing an unnecessary number of 

interpolations while preparing calculations and visualizations of the wave field parameters based on 

modelling in SWAN. 

The obstacles in the form of the terrain have also an influence on the wind field over the fjord. The 

estimations of the design wave conditions calculated in this paper where concluded with the 

assumption of a constant wind velocity propagating in a constant direction over the whole field which 

can be unrealistic. 

The real situation at the fjord location can also differ from the wind calculated at the offshore position. 

The wind directions and velocities should be measured (with a proper size of the dataset) with the 

measuring points placing resolution sufficient for calculating input for the wave calculations. A model of 

the wind field can be prepared and included as an input in SWAN calculations. 

Bottom friction coefficient and vegetation influence on the wave conditions research should be 

conducted. The assumed bottom friction for the Bjørnafjord case with the value of �� = 0.019 �����  is 

the advised value for non-sandy bottoms. The value taken for the calculations could be an 

underestimate in regard to the total friction generated by the underwater vegetation and bottom 

material roughness – vegetation can have a significant role in the Bjørnafjord area due to influence 

warm of the Gulf Stream current. 

Bathymetry data with higher resolution should be gathered for the northern and the southern turn of 

the fjord inlets. A study of the wave field should be conducted for the mentioned places with programs 

that fully supports reflection calculations. 

Further investigation of the initial sea state conditions set for the analysis of the east wind for the 

eastern sector should be conducted. An analysis should be conducted to discover the realistic 

assessment for the maximum wave height and its steepness possible for the eastern sector. A fetch 

based calculation of the wave field could be concluded to obtain this data. The investigation of the non-

stationary and long-time analyses in swan should be done in respect to the mentioned problem. 

Influence of the tide can produce local high velocity currents at some throating positions in the semi-

enclosed basins. Such currents can have an influence the amplitude, frequency and direction change of a 

harmonic wave. The existence of such currents should be investigated and properly incorporated in the 

model.  

  



Assessing wave conditions in a Norwegian fjord  Andrzej Koziel 

85 
Master Thesis  

Bibliography 
 

DNV (2014). DNV-RP-C205. Environmental conditions and environmental loads. 

Ellevset, O., (2014). Norwegian coastal highway route E39.Norwegian Public Roads administration. 

Engebretsen, E.A, (2012).Wave conditions for offshore wind turbine foundations in intermediate 

water depths. Master thesis. Norwegian University of Science and Technology. 

Holthuijsen, L.H., (2007). Waves in oceanic and coastal waters. Cambridge University Press.  

Lothe,A. and Musch,O., (2015). Bjørnafjord submerged floating tube bridge (No 12149-01).Norconsult 

AS:Trondheim.  

Lothe,A. and Musch,O., (2015). E39 Bjørnafjord Crossing – Design wave data (No 5146702-

01).Norconsult AS:Trondheim. 

Ngbeken, J. E,. (2016) Assessing wave conditions in a Norwegian fjord. Master thesis. University of 

Stavanger 

Stefanokos,.C (2015). Bridge across Bjørnafjorden. Metocean analyses. (SINTEF F26636). SINTEF. 

Svangstu, E. (2011). An investigation of wave conditions and wave induced loads for design of wind 

turbine foundations at 15 40m depth., Technical report, NTNU. 

Svendsen, I. A. (2006). Introduction to Nearshore Hydrodynamics, World Scientific. 

SWAN (2015). SWAN User Manual for SWAN Cycle III version 41.10AB, The SWAN team. 

SWAN (2011). SWAN Scientifc and Technical Documentation for SWAN Cycle III version 40.85, The 

SWAN team. 

Vegdirektoratet (2015). Statusrapport Ferjefri E39. Technical report Norwegian public roads 

administration. 

Vennetti, D., (2012). Wave and tidal energy technology survey for ferry free E39 project (No.109). 

Norwegian public roads administration. 


