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Abstract

This study started by exploring the different discretization methods that have been explored and
developed throughout the years for reservoir simulators. Understanding simulators in general and how
they are used in the oil and gas industry was essential to fully grasp the extent that this topic has been
investigated. An interesting and new development in this field comes from a couple of individuals from a
research group at the University of China in the department of Thermal Science and Energy Engineering.
They utilized analytical techniques as a bases for solving for heterogeneous reservoirs. The most
common method used in the industry today is the harmonic mean method for discretizing/representing
the permeability at the grid interfaces. This has been proven to highly under estimate the effective
permeability of heterogeneous reservoirs. Especially as the permeability ratio between the grid cells
increase. The results would have a low resolution, and where there is low resolution in the effective
permeability calculation, there are inaccuracies in the pressure field. And so, these researchers
developed a method, the finite analytic method, and it proved to be highly accurate on both synthetic
checkerboard data, and real data. Even more surprising, very little grid refinement was needed to
achieve results with minimal error margins (Liu & Wang, 2013). Thus, an extension to this method was
decided to be the main focus of this study. More specifically, enhancing the method to be able to solve
for anisotropic permeabilities.

Starting by first implementing the method described by the article. This proved to be a very challenging
task as insufficient information was supplied by the article. However, what most puzzling was the fact
the pressure equations presented proved to be incorrect and the results erroneous. Therefore, a great
amount of time was dedicated to first understanding the method on a fundamental and mathematical
level, and then actually correctly derive and express the pressure equations. After the corrections were
done, the results become directly comparable with that which was presented in the article. This was
compared to other industry standard methods, mainly geometric mean and harmonic mean, and the
finite analytic method proved to be much more reliable and much more accurate. The test were done
on a mirrored checkerboard, and it was tested with varying grid refinements (4x4, 16x16, 64x64) and
varying permeability ratios (1:2, 1:10, 1:100, 1:1000, 1:10000). The permeability tested here was
isotropic.

Lastly, a novel technique was developed for solving anisotropic permeabilities. Basing the method on
the core concepts of the finite analytic method for isotropic permeability discussed in the article, an
anisotropic extension was derived and implemented. However, due to the time required to correct for
the pressure equations earlier, little time was left to fully implement the anisotropic approach. As such,
there was not enough time to adapt the necessary calculations that are needed to solve for the
boundaries for anisotropic permeabilities. Therefore, this method could only be tested on isotropic data.
Nevertheless, the method gave identical results to that of the isotropic approach, validating the
methodology applied to it. Therefore, the first component that should be implemented in the future
should be the MPFA method to solve for anisotropic permeabilities at the boundary (Aavatsmark, Reiso,
Reme, & Teiland, 2001). Other than that, so that the method is comparable with current industry
standard software, multi phase flow and three dimensional solutions should be derived as well.
Unstructured grids could be explored once these other, more vital, parts are applied.
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1. Introduction
Reservoir simulation have always been a vital part of geological modelling. It can yield important
information about the behavior of the reservoir and the fluids-and-gases inside. Understanding fluid
flow in a porous media can help determine the ideal parameters and circumstances for extraction.
Additionally, indication of the pressure-and-temperature distribution as well as the heterogeneity of the
reservoir can lead to dramatic changes in both the method and execution of the fluid withdrawal
process. Therefore, accurately and precisely simulating the reservoir is of great importance, and has
stark consequences for drilling.

Numerical methods has been an important tool in reservoir simulations. They are the mathematical
building blocks to which simulators are built on. Numerical schemes are crucial for solving the fluid flow
and pressure distribution for large and complex reservoirs. One of the major challenges facing the
industry today is the fact that accuracy and high level of detail, especially in intricate heterogeneous
reservoirs, is inherently difficult to incorporate in reservoir models. The commonly used numerical
methods have a hard time resolving such situations, and if to be used, would require heavy compute
power and time.

1.1. Motivation
Resolving highly detailed, intricate, and heterogeneous reservoirs is one of the biggest challenges for
reservoir simulation. Thanks to recent improvements in geoscience techniques, it is now possible to
attain very accurate reservoir models with precise portrayal of all the geological substances present.
Unfortunately, most of the current discretization methods that are used rely heavily on principles that
were established and applied when reservoir models were much less exhaustive and comprehensive. As
such, it is becoming increasingly more difficult to accurately simulate such models without the need of
extensive compute power and/or compute time, through the use of particularly fine grids. This study will
therefore try to determine a method and approach that will be able to resolve and delineate solutions
that are greatly accurate for vastly heterogeneous reservoirs, without the need to use fine grids.

1.2. Objective
The main focus for this thesis is to apply a new and enhanced discretization method for fluid flow in a
porous media. Through the use of analytical methods, the approach should be able to solve
discontinuities and inconsistent structures in the reservoir model without having very fine grids or ad-
hoc methods. This can be used to not only save time and compute power, but also give an overall
greater understanding of the model, as well as result in a more accurate simulation, specifically for
heterogeneous reservoirs.

1.3. Hypothesis
Numerical methods and solutions are a vital part of reservoir simulation. They allow for issues due to
complex behavior to be solved, such as; multiphase flow, nonlinearity, and heterogeneity to name a
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few. Analytical solutions, although can lead to exact solutions to be calculated, cannot be used to solve
such difficult and complicated problems. Analytical solutions are usually achieved by making
assumptions that simplify such aspects as boundary conditions, properties, and geometry. These
assumptions however, can often make it impossible to solve the fore mentioned problems.

Geological modelling data is regularly too vast and/or too detailed for numerical methods to solve
directly. As such, computations are usually performed with upscaled transport properties. There are
various upscaling methods used per today, the most common of which will be mentioned below
(Background Research). These upscaling methods are often derived from both numerical-and-analytical
solutions to integrate micro scale properties in to the macro scale.

The hypothesis of this study is that by using the power law behavior, that is the most prevalent behavior
present in heterogeneous reservoirs, an analytical based local solution can be derived. After which, a
numerical scheme can be constructed based on this solution, and used to examine heterogeneous
reservoirs.
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2. General Background
This section focuses on the importance of reservoir simulation. The relevance of simulators in the
industry will be examined briefly. In addition, a little information about the concepts of numerical and
analytical methods will be given. Lastly, a comparison between the two methods, and a quick look at the
benefits and limitations of both will be considered.

2.1. Reservoir Simulation
Reservoir simulation is referred to as “the process of inferring the behavior of a real reservoir from the
performance of a mathematical model of that physical system” (Soleng & Holden, 1998). It has become
ingrained in the oil and gas industry. So much so, that most aspects of reservoir engineering problems
are and can be solved using simulators. There is a simulator for everything from well testing to EOR
(Enhanced Qil Recovery) predictions (Islam, Hossain, Mousavizadegan, Mustafiz, & Abou-Kassam, 2016).
Simulation is a combination of physics, mathematics, and computer programming, coming together to
develop a tool for estimating and predicting hydrocarbon behavior under various situations and
operations. Figure 2.1 details the necessary steps that are involved when developing a reservoir
simulator (Odeh, 1982). The purpose of simulators are to take an environment and all the necessary
forces and characteristics, and then simulate/imitate the reaction and feedback of the environment and
all the elements involved given a set boundary.

- Validation &
z ) Non-linear — application
l e it l solver | Cloud computation |

ormulation :
P (=
E Nonlinear | Comprehensive
Reservoir l : \ Multiple Single t ehensive | ¥ ;
algebraic v Multiple Single point | Comprehensive § emulation
T l model validation ‘

process I equation - solution solution

process

— e ige— | Field scale modeling j
Adva s »v loaic s - —————b
[ Well representation ] | Advanced fuzzy logic 2

- study

7//_\

(\l.:": arameter >
\ p, €y etc=F(t

\_,/

P 1.5=1Q

Figure 2.1: The major steps involved in reservoir simulation development and procedure (Odeh, 1982)

A very similar objective is present for the reservoir; to simulate the behavior of all the components
involved (fluids, geo-mechanics, etc.) without the cost or effort of testing it in real life. However,
what makes reservoir simulators so different from most others is largely by the fact that the
portrayal and model of the reservoir, coupled with the boundary conditions and flow calculations of
porous media, have a great deal of uncertainty. The pore systems and the flow patterns through
them occurs on a level of detail that is near impossible to model or even characterize (Pettersen,
2006).
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Figure 2.2: A regular Cartesian grid pattern (Pettersen, 2006)

The structure of the pore system is so complex and unsystematic, that without the possibility to scan or
extract the reservoir on the nano scale, the system will remain largely unknown. On the other hand,
even if it were possible to achieve such a level of detail in the model, it would result in a problem that is
too large and intensive to solve for computers presently. The uncertainty that is incorporated in these
calculations is what make them so increasingly difficult to simulate accurately (Peaceman, 1977).

These problems occur essentially due to; the generalization and upscaling from micro scale to macro
scale from subsurface data such as seismic and well logs, and the simplification and/or uncertainty in the
model and calculations themselves. However, despite these hindrances, reservoir simulation is
commonly used with great success. It is still one of the fundamental parts used for decision making in
the industry. Not only can yield vital information about the reservoir and the flow patterns, but also
highlight areas that need to be investigated further (Carlson, 2006).
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2.2. Gridding in Reservoir Simulation
A reservoir description is a model that maps the geology of a region. The geological data is often
obtained from well logs, seismic, or other similar techniques. This is then used to create a geological
model, which is often of fine scale reflecting the input information, such as core samples. Though,
through upscaling and over generalization of the data, coupled with the necessity of having manageable
computations, leads to simulators having to have a coarser scale. As such, simulators grid the
information, where some statistical method is applied, and makes it more feasible to perform
calculations on (Soleng & Holden, 1998). Gridding is an essential part of any numerical reservoir
simulation.

0.07713

Figure 2.3: A regular Cartesian grid pattern as found in a reservoir model. Varying grid lengths and dipping structures are taken
into account when creating such a model (Pettersen, 2006)

When reservoir simulators were first being introduced into the industry, Cartesian grids
(rectangular/cuboidal) were what was most commonly used (Cao, 2002). Radial grids were then later
developed to simulate flow near the well bore (Pedrosa & Aziz, 1985), and then local grid refinement
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was established to attain higher accuracy in regions of either high flow or where more information is
available (Nacul, 1991). Not too long thereafter, a technique referred to as corner point gridding was
developed and introduced to the industry (Ponting, 1989). This ushered a new and radical way of
approaching the subject matter of gridding. Corner point gridding made it possible to design grid blocks
that are non-rectangular (Peaceman, 1996), making it possible to model faults and other intricate
geological features more accurately and with more precise geometry.

Figure 2.4: An example of an unstructured grid, where faults and multilateral wells can be seen as well (Cao, 2002)

In the last few decades, there has been a large focus on unstructured grids (Aavatsmark, Barkve, &
Mannseth, 1998). Similar to the concept of corner point gridding, unstructured grids can adapt to
geological features. The way in which it can achieve that is by allowing the grids to be flexible in nature,
non-orthogonal, and can contain multiple points. This allows for not only being able to model complex
geological structures, but also be used to varying sizes for the grid blocks, performing similarly if not
better than local grid refinement and corner point gridding (Prévost, Lepage, Durlofsky, & Mallet, 2005).
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3. Background Research
This section looks closer at the different discretization methods typically used in the industry. The
technologies that will be described in this section are considered relevant to this study. There will also
be a discussion on the methods and their use. More specifically, the importance of applying the correct
method in the correct circumstance, and a few new advances within this field.

3.1. Discretization
Analytical methods result in continuous solutions with regards to space and time, whereas numerical
methods result in discrete solutions at specific points in time and space (Cheng, 2012). The gridding
represents the space domain, which is then iterated/discretized over the time domain, also referred to
as time steps.

This chapter will look at the basics of; finite difference and finite element, geometric averaging, and
harmonic averaging. A quick overview of these techniques will be considered here. If more details and in
depth analysis of the methods are desired, please refer to the various references provided both in this
chapter and in the References section.

3.2. Finite Difference & Finite Element
As mentioned earlier, to obtain analytical solutions one must make several simplifying assumptions.
However, is many cases, these assumptions are not applicable. As such, approximation methods using
numerical techniques must be used. Two such methods are the finite difference and the finite element
methods (Wang & Anderson, 1982). These methods make it possible to operate and solve the
differential equations that make up the reservoir model.
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Figure 3.1: An overview of the relationship between the different components that are involved in models and solutions (Wang
& Anderson, 1982)

Finite difference is an approximation based on the Taylor’s series expansion (Smith, 1985). This is used
in most commercial reservoir simulators for solving fluid flow equations. The core of the method
involved is to replace the differential equations with difference equations between nodal points. Finite
element differs slightly from the finite difference method. The idea is rather than simplifying the
differential equations into difference equations, the solution is acquired by continuously interpolating
the between the nodal points (Rao, 2011).

Finite difference is the method that is most commonly used in the industry and is the method that most
approximation methods are based on.

3.3. Pressure Equation for One Phase Flow
Reservoir simulators are built up of mathematical models, consisting of a set of equations that describe
fluid flow and the boundary conditions in a reservoir. The fluid flow is governed by the conservation of
mass, momentum, and energy. This is most often described by Darcy’s law which defines the linear
relationship between the viscosity and the pressure head (Darcy, 1856). (Chen, Huan, & Ma, 2006). In
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this study, the calculations are performed on single phase flow, to simplifying the approach, but can
then be generalized and expanded for multi phase flow.

V- (kVP) =0
Equation 1

The general single phase pressure equation, which is described in Equation 1, can be integrated by using
the divergence theorem (also known as Gauss’s theorem). This can be defined as the outcome that
relates the flux of a vector field through a surface to that of the vector field inside the surface (Katz,
1979). In other words, the volume integral of the divergence over the region inside the surface is equal
to the outward flux of a vector field through a closed surface, as illustrated in Equation 2.

ﬂv (V-F)de#S (F - n)ds

Equation 2
Applying the divergence theorem to the pressure equation from Equation 1, the result in a two
dimensional environment would be as follows:
f [(kVP) - 7ildS = 0
s
Equation 3

In order to manage Equation 3 numerically, a discretization is introduced such that the domain for which
the equation is valid is completely covered by a set of non-overlapping control volumes. The control
volumes examined and used in this study are standard structured quadrilaterals. When relating Equation
3 to a control volume, the surface, which is referred to as S in Equation 3, would represent the boundary
of the control volume. It is also useful to define a flux along a given edge of a control volume. This flux is
denoted as Q;, and reads as follows:

o= [ 1tkvpy-ias
S

i
Equation 4

When using discretization standard approaches such as geometric averaging or, the industry standard,
harmonic averaging, the fluxes are usually computed along the entire edge of the grid block, and in the
direction facing out of the control volume. This can be seen illustrated in Figure 3.2 below. Thus, when
calculating the flux in a direction, it follows, for example, in the form of:

1

QizkiﬁAS

Equation 5

9|Page



Background Research

Where j is a control volume index, j + 1 is a direct neighboring control volume, and the permeability is
expressed using a discretization method such as the two mentioned above, namely geometric mean or
harmonic mean. These are expressed in Equation 6 below. There are, of course, several other
discretization methods. However, these are the two most commonly used in reservoir simulators, and
are explained more generally and in a little more detail in the following sub sections.

kem = /kjkj+1

HM

Equation 6
A) B)
O~1 O-ly O~4y
Qj_x‘_ — Q4x
Q, «— . — Q .
QZxd_ — Q3x

l b

Q, Qy  Q

Figure 3.2: lllustrating the standard whole edge flux approach (a), and the refined half flux approach used in this study (b) on a
control volume

A discretized flux calculation, of Equation 3 can now be expressed as a sum of the four fluxes that are
calculated from the control volume edges, for example:

Qi=01+0Q,+0Q3+0,=0

-
||M4>
=y

Equation 7

The method that is explored in this study, however, applies a certain level of refinement when
calculating the fluxes. Rather than computing the flux on the whole edge of the control volume, a half
edge approach is used where each of the four fluxes are separated into x and y components. A
demonstration of this can be seen in Figure 3.2 above. This allows for a more distinguished and precise
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result, as more refined information is being calculated. The sum of the fluxes can then be expressed as

follows:

4
Z Qi, +Qi, = [Q1x + Q1y] + [sz + sz] + [ng + Q3y] + [Q4x + Q4’y] =0
i=1

Equation 8

o -

PNE > kNE

Pk,

7
7///I

4

ks

PSE 2 kSE

Figure 3.3: A sketch of the method described in this study, where half edge fluxes are illustrated, and the shaded region

represents the influenced area of the grid node (Liu & Wang, 2013)
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The fluxes that are utilized are the ones that can be seen highlighted in Figure 3.3. However, in actual
implementation, the fluxes are calculated around the grid node and use the grid node as the reference
point. The derivation and use of these fluxes are explored towards the end of the

Finite Analytic Method section, after the analytical nodal solution, which this is based on, is presented.

3.4. Effective Permeability
Usually, when permeability is mentioned, it is the absolute permeability that is being referenced.
Absolute permeability is “The measurement of the permeability, or ability to flow or transmit fluids
through a rock, conducted when a single fluid, or phase, is present in the rock” (Qilfield-Glossary, 2017).
This can be determined by taking a bases in Darcy’s law, which can be seen in Equation 9.
kAP k

D=—kVP>Q=—-A——=—-A-VP
KL U

Equation 9

The effective permeability k. ¢, also known as the equivalent permeability, however, is defined as “The
ability to preferentially flow or transmit a particular fluid when other immiscible fluids are present in the
reservoir (e.g., effective permeability of gas in a gas-water reservoir). The relative saturations of the
fluids as well as the nature of the reservoir affect the effective permeability” (Oilfield-Glossary, 2017).
However, the interest here lies in the effective permeability in the case of one phase flow. Technically,
this is the same as upscaling. The permeability field is represented at the grid scale, meaning a single
permeability per control volume. In effect, the following upscaling procedure results in a single effective
permeability at the domain scale (coarse scale).

Considering, for example, that there is a single phase flow in the positive x direction, where the upper
and lower boundaries are closed. The flow rate though the right boundary can be written as such:

Q=f V-ﬁdS:—f kVP - AdS
S S

Equation 10

Which follows from the definition of the Darcy flow rate defined in Equation 9. If the pressure and the
permeability are known, the flux can be computed. When exploring the expression for the Darcy flow
rate on the domain scale, the flux can then be expressed as follows when taking into account the same
example presented earlier, flow in the positive x direction, where the upper and lower boundaries are
closed:
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S

v . ap . AP
eff = “Reff 37 = TRerr p
i _ Q Ax
off = AP Ay
Equation 11
Where it is noted that the flux is computed from the grid scale pressure field.
3.5. Geometric Averaging
The geometric mean is a form of averaging that indicate the dominant tendency of a set of
numbers/values. It achieves this by using the product of these values. It is defined as follows:
1
n n
(nxi) = Yx1Xz -+ X
i=1
Equation 12

The geometric mean is often used when comparing different items where each item has multiple
properties with different numeric ranges (Crawley, 2005). One thing to note, however, is that this
method of averaging cannot accept values of differing signs, as it would lead to complex numbers with
imaginary parts. Additionally, series of numbers that involve the number zero cannot produce viable
results, as it is a product sum and will lead to results that are simply zero. If the geometric mean is
desired in such situations, the number zero needs to be excluded from the series.

This is used in reservoir simulation and can give rather accurate results in regions where there is high
permeability contrast. However, it is highly unstable and requires rather specific input data (Peaceman,
1983). Therefore, this is not used as often as harmonic mean in industry standard reservoir simulators.

3.6. Harmonic Averaging
The harmonic mean is form of averaging that is appropriate for indicating the average rates of a set of
numbers/values. It achieves this by using the reciprocal of the arithmetic mean of these values. It is
defined as follows:

n n

11 1 1
n — — — cee —
=lyx;  xq +x2 + +xn

Equation 13

The harmonic mean is often used when the series of numbers contain several outliers. It tends to
alleviate the influence of larger outliers, but also intensify the influence of smaller ones (Chou, 1963).
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This is the most commonly used form of averaging in industry standard reservoir simulators. It accepts
all ranges of numbers (besides zero) and is stable in most relevant situations. The drawback of using this
method, however, is that it can greatly underestimate the effective permeability, especially in regions

where there is a high permeability ratio. As such, the results in heterogeneous reservoirs is often
misleading and incorrect.
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4. Finite Analytic Method
Although harmonic mean is the most commonly used method for approximating intermodal
transmissivity, it very often underestimates effective permeability, especially when there is a strong
contrast in permeability present. This is most evident when using the theoretical example of a
checkerboard geometry. This consists of alternating low and high permeability, which is a similar
structure as can be seen on a chess board. Harmonic averaging yields numerical error that increases
substantially as the ratio between the permeabilities grows (Yeo & Zimmerman, 2001). Thus, as the use
of harmonic averaging is frequent in most commercial simulators, the results of heterogeneous
reservoirs can often be erroneous.

The finite analytic method was developed as an improvement for heterogeneous porous media (Liu &
Wang, 2013). It assumes power law behavior of the pressure as the node is approached, (see Figure 4.1).
This is supported by both numerical (Yeo & Zimmerman, 2001) and experimental observations (Dawe &
Grattoni, 2008).

Note: the pressure equations presented in the article are not entirely correct. They do not abide by the
criteria and results in erroneous solutions. As such, a great deal of time was required and was essential
to correct the equations.

4.1. Power Law Behavior
Spatial discontinuities in permeability causes large spikes in the pressure field, where the pressure
gradient would be discontinuous across the interfaces. Solving for such conditions numerically can be
rather difficult, a condition that is common in heterogeneous reservoirs. The power law behavior has
been explored recently, as is discussed above, and it was discovered that the pressure and its normal
derivative exhibit a behavior similar to the power law toward the grid node.

Power law is a polynomial based function that relates two quantities, where relative changes in one
leads to proportional changes in the other. In other words, “one quantity varies as a power of another”
(Yaneer, 2017). As an example, comparing the length of a square to its area, if the length is doubled then
the area is quadrupled. The general power law relation with respect to pressure is as follows (Liu &
Wang, 2013):

dapP

P—Pyxx%, —oxxB
o X X TR

Equation 14
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Figure 4.1: A 2x2 grid block showcasing the permeability distribution (a), and an illustration of the discretization of the boundary
element (b) (Liu & Wang, 2013)

A test was conducted on a two dimensional 2 by 2 grid, as can be seen in Figure 4.1, where the
permeability was set to constant values in each of the four quadrants. To accurately perform the test,
several control volumes were used in order to achieve more precise results. The boundary conditions
was a simple test case, two parallel sides that are impermeable and two parallel sides with a constant
pressure difference. This type of test is often used to test for the accuracy of algorithms since the
effective permeability can be determined analytically with an exact value. The test concluded that the
power law behavior is in fact present and is prominent around the grid node.

After having identified that the power law behavior is prominent in heterogeneous reservoirs, especially
near the grid node, it can be assumed that the pressure and the pressure gradient will exhibit power law
behavior. The assumption for the solutions of the pressure equation can be seen in Equation 15, where
both the pressure and the pressure gradient display protuberant power law structure in their
formulation.

As a result, the assumptions for the finite analytic method, as presented in the article (Liu & Wang,
2013), is as follows for a grid node inx = 0,y = 0.
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1. Along the positive x-axis:

- apP p
Plysoy=0 = A1x™ ™", e =B (1-B)x
Yixso0y—o0*
2. Along the positive y-axis:
i—a doP _p
Ply—oy>0 = A2y 7%, v =B,(1— By P2
y x—07,y>0
3. Along the negative x-axis:
a daP _p
Ply<oy=0 = Az(—x)""%3, v = B3(1 — B3)(—x)7"3
Ylx<oy-0-
4. Along the negative y-axis:
1-a op -B
Ply—oy<o = As(=y) ™%, v = By (1 — B )(—y) 7P+
y x—07%,y<0

Equation 15

4.2. Analytical Nodal Solution
The analytical solution for the finite analytic method is detailed below. The equations and calculations
that follow are in large part replicated and derived again based on the solutions presented by (Liu &
Wang, 2013). The article goes through the procedure, but avoided to mention some very important
steps, some of which took a significant amount of time and effort to understand and derive.

The analytical solution is set in an infinite domain with four heterogeneous permeabilities connected to
the nodal point.

V- [(k(x,y)VP)] =0
Equation 16

The solution is derived by applying Equation 16 in an infinite coordinate plane comprised of four
guadrants, each with their select permeability. Starting by first assuming the power law behavior, as was
determined earlier, the solution of Equation 16 should fulfill the important continuity criteria, namely
the pressure continuity and flux continuity. Equation 17 highlights the continuity criteria for both the
pressure and the flux between the interfaces at the grid node.
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1. Along the positive x-axis:
Py (x, J’)|x>o,y—>o+ = Py(x, y)|x>0,y—>0_

apP; dP,

ki — =k, —

1 dy 4 dy

x>0,y-0% x>0,y-0"

2. Along the positive y-axis:

Py (x, }’)|x—>o—,y>o = Py (x, y)lx—>0+,y>0

. opP, _ oP,
g ox x—07,y>0 St ox

x-0%,y>0
3. Along the negative x-axis:

Py (x, Y)|x>0,y—>0_ =P, (x, Y)|x>0,y—>0+
i d0P;
3 ay

x>0,y—0%
4. Along the negative y-axis:

P4— (x, 3’) |x—>0+,y>0 = P3 (X, y) |x—>0_,y>0

k P, _ g dP;
T ox x-0%,y>0 % ox

x=07,y>0
Equation 17

Where 4;, B;, a;, B; are unknowns relative to the quadrant that they represent. One can also say the
a; < 1and B; = 0 due to the fact that the pressure is continuous and the flux is divergent when
approaching the origin.

Starting with applying complex function theory (Lang, 1985), assigning z = x + iy to be a complex
number, and f(z) = u(x,y) + iv(x,y) to be a complex analytic function. It is known that the Cauchy-
Riemann relation can be written as follows:

au_av au_ ov
ax oy’ dy  Ox

Equation 18
By using Equation 18 it can be observed that:
0°u 0 (6u>_ 9 (617)_ v 0 (c’)v)_ 0 ( 6u)_ 0%u
dx2  0x\dx/ o9x\dy/ odxdy ox\ox/ ax\ ady/ = 0y?
0%u N 0’u 0
ax2  dy?
Equation 19

Relating the same logic for the imaginary component v, the result is as follows:
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0%v 0 (6u) 0 (6u) 0 ( 617) 3 0%v
dy?z  dy\ox/ odx\dy/ ox\ dax) = ox2
0%v  0%v

a2 Ty 0

Equation 20

Therefore, it can be concluded that both the imaginary part and the real part of any complex analytic
function satisfies the Laplace equation. However, it can be useful to express the solution more generally,
following the fore mentioned article, (Liu & Wang, 2013). The solution of Laplace’s equation in a given
guadrant is then written in the form:

Pi(x,y) = filx +iy) + 9:(x — iy) = fi(2) + 9:(2)
Equation 21

Where Z = x — iy is the complex conjugant of z = x + iy, and f; and g; are complex analytic functions.
It is then also understood that the sum of the two functions should yield no imaginary part. Now, using
Equation 15, is can be noted that the solution for the first quadrant can be presented as:

fi(x) + g1(x) = Ajx' ™"
if' (x) —ig',(x) = (1 — By)Byx~F1

Equation 22
Which leads to:
filx) = %(Alxl‘“l — iByx~F1 + C)
g1(x) = %(Alxl‘“l +iByx P — ()
Equation 23
Then, referring back to Equation 21, the pressure at the first quadrant can be written as:
P(xy) = %{Al[zl_al +z7M] — iBl[Zl_Bi — Z_l_Bi]}
Equation 24

Using a similar approach, the pressure in all the quadrants are found to be:
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Pi(x,y) = %{Al[(z)l‘“l +(2)'*] — By [(2)Fr — (D)1}
Py(x,y) = %{Az[(—iz)l—az + (i2)1%] + iB,[(—iz) 1 P2 — (iz)1~F2]}
P3(x,y) = %{Ag[(—Z)l“’% + (=2D)1"%] + iB3[(=2)1 P2 — (—=2)1F2])
P(x,y) = %{A4[(i2)1‘“4 + (—i2)17%] — iB,[(iz)' P+ — (—iz)1~F4]}
Equation 25

By applying the criteria established in Equation 17, regarding the continuity of pressure and flux, on the
general pressure solutions in Equation 25, the A;, B; unknowns can be determined by algebraic
computations. Taking the P; = P, and the k, Z—I;l =k, Z—? criteria set as an initial example (along
positive y-axis), from Equation 17, and utilize the pressure solutions from Equation 25, the following can

be inferred:

1
AL + (i)t m] = By [(@)'Fr = (i) ]} = A, ()
1 k
§{A1(1 —a)[(y)™ + (—iy) "] = iB;(1 = B)[(y) P — (=iy)F1]} = k—sz(l — B) ()P
1
Equation 26
The same can be done for the other pressure equations to achieve comparable equations.

Firstly, since Equation 26 should be valid for all y > 0 in the domain, and in order to also have unique
solutions, it must be concluded that a; = ; = a, = 5, = «a, and as such, for the general equations for
all four quadrants, the exponents can be simplified as @; = 8; = a. After some algebraic manipulations,
the various equations can be solved as follows:
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A = Ay sin (g a) + B4 cos (g a)

B, = I;—: [—A4 cos (g a) + B, sin (g a)]
A, = A1 sm( ) + B, cos (ga)
B, [A1 cos (g a) — By sin (g a)]
Az = A, sin (g a) — B, cos (g a)

B; = 2—2 [AZ cos (g a) + B, sin (g a)]

A, = Az sin (g a) — B3 cos (g a)
B, = i—i [—A3 cos (g a) — B3 sin (g a)]
Equation 27

Looking at Equation 27, it can be observed that the individual equations are interconnected in such a
manner that is possible to reduce the number of unknowns to only two. This can done using the
backward substitution method on the entire cycle from the equations. The step by step expansion is
significantly comprehensive and is therefore difficult to include in its entirety here. However, scanned
copies of the entire calculation can be found in the appendix.

By performing the substitution method on the entire cycle, Equation 27 can be simplified to a set of two
linear equations consisting of only A;, By, @ as unknowns, seen in Equation 28.

0=A4, {sin4 (E a) + [’;;’;i] cos (: a) — [:—; + % + ’;1 + ’;3 + -2 + sinz(na) — 1}

+Bl{ [ ] [2 sin(rra) — sin(2ra)] — = [% : ij i—ﬂ [2 sin(ma) + sin(Zna)]}
0= Al{ [Zii: kz k4 Z_: [2 sin(ma) + sin(me)]} -= [1 + -2 + + ] [2sin(na) — sin(2na)]
+B, {s ( ) [];1];:] cos* (%a) — [Z—:+Z—‘:+:—:+k—l+k—z+k—l Zsmz(na) — 1}

Equation 28

To find non-zero solutions for the unknowns, the corresponding determinant of the linear equations
must equal zero. This is a well-known result from linear algebra. Thus, after considerable manipulation,
the determinant of Equation 28 can be expressed as:
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sin® (g a) + cos® (g a) + 4 sin® (g a) cos? (g a) + 4 sin? (g a) cos® (g a) + 6 sin* (g a) cos* (g a)

— 2sin* (g a) — I;:I;z I;j;:] cos* (g a)

ki ki ki ky ky, ks 5 (T 5 (T _
+k2+k3+k4+k3+k4+k4 sin (Za)cos (Za)+1—0

Equation 29

It is noted that:
sin® ( ) + cos ( ) + 4 sin® (g a) cos? (g a) + 4 sin? (g a) cos® (g a) + 6 sin* (g a) cos* (g a)
And thus:

2 — 2sin* (Ea) _ [faks + k2k4] cos* (n a) + [kl + ke + ky + ks +— i + k3] sin? (E a) cos2 (Ea)

2 koky  kiks ky ks ki ks kg ky 2 2
=0
Equation 30
Finally, the expression for a can be given as:
+oos™ (6 - [ + 12| + ["1 +p 224 g)
Equation 31
In fact, this can further be simplified to:
kiks — Kok
“ [\/(k1 + ko + kg + ky)(kikoks + kiksky + kikok, + k2k3k4)]
Equation 32

Which is the equation that is represented in the article (Liu & Wang, 2013).

Note that if k1 k3 = k,k,4, then @ would be zero, and there would be no singular behavior from the
pressure gradient. This represents a situation with much less severe heterogeneity, and as such can be
treated by simply using the harmonic averaging scheme.

The pressure equations can then be simplified even further by assigning a constant for the value of %.
1

Employing the solution for &, coupled with one of the expressions from Equation 28, then j—l can be
1

expressed as a constant, as follows:
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LB k3 (ley + Iy + k3 + ky)
= a, = sgn(kqiks 2k4) (kikyks + kiksky + kikoky + koksky)

Equation 33

After having an expression for both a and C, the pressure equations can finally be expressed in a
simplified form where the only unknown is A;. First, using Equation 27 for the substitution to express all
the equations with only A;, By, &« as unknowns. Then via Equation 32 and Equation 33, a and B; can be
eliminated. Note that A; can be arbitrary.

Polar coordinates, which was in fact also used in the former manipulations, are a form of coordinate
system in mathematics, where each point is represented by a distance and angle from a reference plane
(Brown, Gleason, & Brown, 1992). In comparison to a Cartesian coordinates, which is the standard x, y
coordinate system, polar coordinates use trigonometric functions to convert Cartesian coordinates,
where x and y are related to the length/radius r and angle 6.

X =rcosf , y =rsinf
r=x%2+y2, 0 =tan™! (%)

Equation 34

The same conversion, seen in Equation 34, can be done to complex numbers, where x = r cos 8

and iy = risin@. Thus, z = x + iy = r[cos 8 + i sin 8] in polar coordinates. Moreover, Euler’s formula
can be applied to express the complex numbers in an exponential form, where r[cos 8 + i sin 8] = re'®
is the expression for any given complex number (Lang, 1985).

The following are the pressure equations expressed with polar coordinates by using the method
described above. These differ slightly from what was suggested in (Liu & Wang, 2013). This is due to the
fact that the equations in the article do not abide all the criteria in Equation 17 that were set by the
authors, which in turn results in incorrect solutions. This is probably due to some strange misprints in
the article. However, by using the following equations that were derived from the same methodology
suggested in the article, both the criteria are upheld and the results gave the correct solution. The
numerical solutions are directly comparable with that of the article, which will be briefly shown and
discussed in the Results section. Correcting these misprints caused a considerable amount of time for
both troubleshooting the issues, and once the problem was pin pointed, a lot of time was required to
actually derive the correct corresponding equations.
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P, = A;rt%{cos[0(1 — a)] + Csin[6(1 — a)]} = AN,
T

P, = Arl@ {[sin (E a) + C cos (g a)] cos [(9 _ g) (1- a)]
I;:] [cos (3@) = € sim (5 ) sim [(9 -3)a- a)]} = Al,

Py =A;ri™@ {[sin2 (g a) [Ilil] cos ( [1 + ] C sin (;T a) cos (g a)] cos[(8 —m)(1 — a)]
2

[ [2 + Z sin (n a) cos (72T ) C sm( [k3] C cos (;T a)
- [k_] C sin2 Ea)] sin[(6 — m)(1 — a)]} = Al;
2
P, =A@ {[sm3 ( [k3] C cos (72T a) + [1 + 2+ —] C sin? 72Ta) cos (g a)

- ];—:+ I]: 2] C sin (;T a) cos? (g a)] cos [(9 + —) 1- a)]

|l esint Ge) e os Ge) = 2+ 2 4 st () os )

_ I;:I;i + ka + —] C sm )c052 (ga)] sin [(9 + %) (1- a)]} = A2,

Equation 35

Where A; notation is introduced and A; is set to A for simplicity.

With this, the analytical nodal solution is derived and expressed. Now, the numerical fragment, which
was discussed at the end of section 3.3, will be tackled. Below is the necessary approach to achieve the
correct numerical expressions for the fluxes needed in the implementation of the finite analytic method.

By assuming a continuity in the flux, which is denoted as @, the flux solution at quadrant 1 and 3 need to
be calculated and included in the final solution. This is required to fulfill both criteria set above, as well
as the continuity functions, as seen in Figure 3.3.

Note: in following equations; Ax = %Ax and Ay = %Ay. This was done to make the transition into the

program easier as the foundation of the code that was used in this study applied this notation.
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Ay
daP
€= [ (52 oy
0
% =A(1 - a)r‘“—{cos[@(l —a)] + Csin[6(1 — )]}
dx d0x
+A(1 — a)rl‘“g—Z{—sin[G(l —a)] + Ccos[0(1 — a)]}

0 vy

Jar x 8%
= Jx2+y2>—=2 0 =tan"?
r xrwy ox r an (x) ax
I
asx—>0,0 - 5 ,calculations are done along positive y — axis

aaxl—A(1 )y~ — {Sm[—(l “)]+CC°S[ (-al

=A(1—-a)y~ {sm (Z) cos (;T a) sin (;T a) cos (Z) C cos (;T) cos (g a) — C sin (%) sin (g a)}
T T
=A(1-a)y @ {cos (E a) — Csin (E a)}

Ay

Qx, = f (k1 aapl) dy = —k,Ayt™@ {cos (g a) — Csin (g a)} = Ay, A
0

r2

Equation 36

Similarly for Qy,, Qx,, Qy,:

Ay

Qx, = J (k1 (’)a )ay = —kAyl~¢ {cos (72r a) C sin (g a)} = Ay, A
0
Ax

daP.
le b[ (k1 ay)a.x— _klel aC A A

Ay

dP.
Qx3 J (k3 P 3) ay
0
= k3Ay'~ “{[sm (g )— 2] cos (72T ) [1 +:—2 sm(ga) cos(ga)] cos(ga)
= []sin? G o)+ [2] ¢ cos? G )+ [+ 2] sin (G @) cos () sin (G )}
3 3
= Ay, A
Ax
Q== [ (ks 52)ox
3 0
0 = = () o sin? (T ks 2 (™
= —k3Ax { [kg]Csm (Za)+[k3](]cos (Za)
+ 2 Zz sin (na) cos (ga)}=/1y3A
Equation 37
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Define the inter nodal transmissivity y as follows:

, = Q  Aly Ay
Pi=b Aki—%) =%
Equation 38
And thus, the final solution for the inter nodal transmissivity can be expressed as such:
_ AX1 _ /13’1
T mn T L
_ AX1 _ /13/3
T e T
_ Axs _ AJ’a
R P
_ Axs _ /13’1
ThmL T
Equation 39

Equation 8 can be now be expressed as follows (see also Figure 3.3):

Pl{(yx1 + yxz) + (VY1 + y)’4)} + PZ{(yx1 + yxz) + (YYz + y)’3)} + P3{(]/x3 + Yx4) + (sz + sz)}
+ P4_{(]/x3 + yle-) + (ylﬁ + szx-)} =0

Equation 40

Where k k3 = kyk,4, a traditional harmonic scheme is used. This is due to the fact that the flux relations
are reduced to it when the numerical scheme’s sub cell are not directly joined to the grid node. Same
goes for the inter nodal transmissivity, when ky k3 = kyky, yx,and vy, from the finite analytic method
are reduced to the results from the traditional harmonic average (Liu & Wang, 2013).This shows that the
power law behavior is only dominant around the grid node where the joined cells have different
permeabilities.

At the boundary, two kinds of boundary conditions are typically used. It is either assumed that the
pressure is constant at the boundary (Dirchlet). Otherwise, it is assumed the boundary is closed, which
means that there is no flux (Neumann). Regular harmonic averaging scheme can be used at the
boundary. The practical implementation and reasons for its use are detailed in the article (Liu & Wang,
2013). The situation at a boundary is illustrated in Figure 4.2.
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Figure 4.2: An illustration of the fluxes on the surface of the boundary cells (Liu & Wang, 2013)
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5. Finite Analytic Method Extension: Anisotropic Solution
This section will examine the new method that was developed during this study. The objective of this
method is to take the concepts of the previously described method, and improve on one of its
limitation. This method is tries to use the core concepts of the isotropic finite analytic method as a
bases, and then modify it to include the ability to solve anisotropic problems.

5.1. Anisotropy
According to Webster’s Dictionary, the word isotropic means “exhibiting properties (as velocity of light
transmission) with the same values when measured along axis in all directions”. Anisotropic however, is
when the values are difference in the different directions (Lake, 1988). Petroleum reservoirs are often
described as being both anisotropic and heterogeneous. This is especially true for regions such as
fractured beds, where the permeability should be treated as a full tensor (Liu & Wang, 2016).

Researchers have developed several numerical schemes where the permeability is a full tensor with a
discontinuous distribution. The manner in which this study approached anisotropy is by assigning every
permeability within a cell as a 2 X 2 matrix. Additionally, the coordinate system is attributed an angle to
the deviation from the standard space. These are then combined to develop a new coordinate system
that can easily transform back and forth to the standard x, y space (Nelson, 2001).

5.2. Finite Analytic Method with Anisotropy
The permeabilities are expressed in matrix form, as can be seen in Figure 5.1 where the permeabilities
are shown with the tensor components.
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Figure 5.1: Permeability tensor components shown alongside their respective permeability plug and the features they represent
(Nelson, 2001)

Starting with the full symmetric tensor representation of the permeability
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(R Ky,
bk, ki,

Where i refers to the quadrants, and kl-12 and kl-21 can be set equal to each other due to orientation, as

Equation 41

is seen in Figure 5.1.

The eigenvalues of the permeability tensor k; can then be calculated from the following expression

A—k; k;
det(Al —k;) = ‘ K, "y _‘}é =(A—ky )A—ki,) -k ,>=0
12 22
22 = (kiy, + ki, )2+ ki ki, — ki, * =0

1 2
A= E [(kin + kizz) * \/(kin + kizz) - 4‘(kl'nkizz - ki122)]

l11 77122 l12

1
A:E[(kin+ki22)i\/ki112+ki222—2k- ki + 4k; 2]

Equation 42
For a given eigenvector, the following applies:
)00
ki,, A=k, )\Y 0
x(2 = ki, ) = yki,, = 0
y(A—ki,) = xk;, =0
Equation 43

Therefore, using (/'l — kin)(/'l — kizz) =k; % from Equation 42, the two eigen vectors can then be

l12
X /11 - kizz /12 - ki >
— & 22
0 =" )a ("

This is well known from linear algebra (Anton, 2010).

shown to be:

Equation 44

A similarity transformation can now be performed on the matrix k; to obtain a diagonal matrix k;,

where k; = Q7 'k;Q, Q% and Q is a matrix consisting of the eigenvectors for k;.

R = ("0 k,o )
iz

Equation 45
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Furthermore, it is well known that this similarity transformation corresponds to a rotation of the original
standard Cartesian coordinate system to a coordinate system where the new axis are aligned with the
eigenvectors of k;. The rotation, which is denoted as 9~i, is given by the expression:

~ v
0, = cos™1—
Il

A —k;
where y = ((1)) ,and 17( 1k- lzz) — the first eigenvector of k;
l12

<i

Equation 46
Returning to the pressure equation with the full tensor permeability, it can now be written as:
92p, 92Pp, 92Pp,
V- [(k; (e, y)VP)] = ki, Fr 2k;,, 3xdy + ki, a2 0
Equation 47
Furthermore, it is also noted that:
[ oP; | I[%k o 1
S ki, ki, \[ ox || /M Ox 11 gy hzlomy
EICIE M | ke, ki, )| P |(ny) =lon. on |(ny)
12 22 _° I —k:
I ay/ | [5x “izz Ty Miaz]
(0P oP; _
I i + @kilz - X — axis
~)op, P, _
la ki, + Ekizz -y — axis
Equation 48

k; = Q7'k;Q shows how with a repositioned coordinate system, one can eliminate the off diagonal
elements. In the rotated coordinate system, denoted by ¥, J, Equation 47 can now be written as:

i aiz

(x)_ cosf; sinb; (x)_ xcosB; ysinb;
y —sinf; cosf;)\Y

—xsinf; ycosb;
Equation 49

Such that there is a rotation 8; between the x, y coordinate system and the %, 7 coordinate system.

Moreover, an additional transformation is introduced (stretching transformation), such that:
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- [ ~ L~ 0% cosb;
X=2X% |k; =xcosb;+ysind; - x T
i
[ ~ L~ 9y cosb;
y=9 |k, =ycosf; —xsinf; » ——=——
z dy -
ki,
Equation 50
In the new X, y coordinate system, the pressure equation can finally be written as:
0%p; 09°P,
+ =0
ox? = 0y?
Equation 51

In other words, the Laplace equation for the pressure can is obtained in the £, ¥ coordinate system.

Introducing the variable t;, which represents the rotation of the axis and is described in complex form

astT; = elf
z=x+1iy, Z =X — 1y
1z =2, z=72
P=%+i9, ZI=%-1ip
_ xcosf;+ysinh; ycosh; —xsinb;
zZ= +1
k; k;

L2

k:

2

Equation 52

By following to a certain degree the same methodology as with the isotropic case, the analytical nodal
solution for the anisotropic case can be determined. However, the computations in the following will
naturally be much more involved. The solutions for the individual pressure equation will be using the
coordinate system described above (X, 7).

Assuming the same power law behavior as described in Equation 17, (but in the X, J coordinate system)
the pressure equations can then be expressed as follows:

P; = fi(rz) + g;(7z) , or
P;(2,9) = f;(®) + 9:(2)

Equation 53

As before, f; and g; are complex analytic functions. Thus, for the first quadrant, the following is valid:
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fi®) + g1 (R) = A"
lf,l(jc\) - lgll(jc\) =(1- ﬁ1)Blf_ﬁ1

Equation 54
The details of the solution is presented in the following:
fli@®+g ) =>0-a)Ax™%, |x i and sum
2if',(®) = (1= )i + (1= B, | =
F® = 2 {1 - @) — (L~ f)iB, &)
thus: f; (%) = %(Ala?l‘“l —iB;27F1 + ()
g1(%) = %(Alfl‘“l +iB,2 P - C)
P (%,9) = %{Al[il‘“l + Z1-@] — B, [21Fr — Z1-P1]}
Equation 55
Performing the same procedure on all four quadrants, the pressure equations now read:
P(%,9) = %{Al (2= +(2) ] - By [P - @1-31]}
P(%,9) = %{Az (—i2)t= + (i2)' | + iB; [(—ie)*F> — (i2) ]}
P3(%,9) = %{A3 :(—2)1‘“3 + (—2)1_“3] +iB; [(—2)1—53 - (_51‘33]}
Py(%,9) = %{A4 :(iz“)l‘“‘* + (—iE)l‘“4] —iB, [(i2)1‘34 — (—i§)1_54]}
Equation 56

Their respective derivatives are then deduced to be:
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= s{a-aafere + @) - a- s @ - @)
P, 1

5 Tk {(1 - al)Al[(Z“)‘“l - (z“T“l] —(1-BiB, [(2)-/31 n @‘51]}

%2 — o= @[y + (@] + @ - pis, [iny P - 1))
aai; i %i {1 - @iy = (12) ] + (- g8 [P+ ()]}
% - %{(1 — @3)Ag[(—2)7% + (—2) | + (1 - Ba)iBs [(-2) P> — (-2) "]}
% =310 e[ (7] s @ - pois [+ (D7)
?313 1 {(1 a4)A4[(i2)—a4 + (—iZ*)‘%] — (1= B,)iB, [(if)—ﬁ4 _ (—if)_ﬁ4]}
a"’i; ) %i (@ - @A — (=) | - - poiss [P + (-i2) ]}

Equation 57

For the same reason as mentioned in the

Finite Analytic Method section; @; = f5; = . This is due to the fact that if unique solutions are to be
possible, this has to occur.

From Equation 48, the various flux expressions for all the quadrants are as follows:
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oP, 0% oP, 09
O, = f (ki 37 3 * kllza_y@)a
%Ax
oP, 0% P, 09
Qy, = Of (kluganklzza—f,@) 0x
75y
~ f ( oP, 0% P, ay)a
O, = J 5% 6x " "2 3y ay Y
%Ax
~ 9P, 0% P, ay)
Oy, = Of (kzn 9% ox T ¥222 55 5y) %
Ay
~ oP; 0% P, ay)
QO = Of (k311 o7 ox T 31255 5y) Y
Ly
0P, 0% oP; 09
Qy, = Of (kslzgaJrkszza—y@)a
74y
~ f ( OP, 0% oP, ay)a
Cx, = J M0z ax T e 95 5y 4
%Ax
~ f ( 9P, 0% P, ay)a
QY4 - J 412 9% Ix 422 9y dy x

Equation 58

The final pressure equations must abide by the same criteria as was set in Equation 17, however, using
the new coordinate system. Thus, the criteria can be expressed as follows:
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1. Along the positive x-axis:
Py (%,9) = P4(%,9)
dP, 0% dP; 0y dP, 0x 0P, 0y
1 Aa 2 TR, 3573 = K4, 35 A T K4y 35 30
2 0x O0x 22 gy dy 12 9x O0x 22 gy dy
2. Along the positive y-axis:
Py(%,9) = P1(%,9)
daP, 0% dP, 0y dP, 0% dP, 0y
kzn_'\_+ 212 A0 A 111_’*_+ 112 35 3.,
J0xX Ox ay dy dX Ox ay dy
3. Along the negative x-axis:
P3(%,9) = P,(%,9)
dP; 0% dP; 0y daP, 0x daP, 0y
k312_’\_+ 322 30 Ay 212_’\_+ 222 35 Aa,
J0x Ox ay dy J0xX Ox ay dy
4. Along the negative y-axis:
P4(5C\;5}\) = P3(5C\)5}\)
dP, 0x 0P, 0y dP; 0% dP; 09
11 9% ax M2 99 dy 1 9% dx 12 9§ dy

Equation 59

Using the polar form of complex numbers, the pressure equations set up in Equation 56 can be written
as:

Py (®,9) = A1 "% cos[0,(1 — )| + By “sin[8,(1 — )] = A1 dy
_ ~oom iew . [fA T .
PZ (56'\,5/\) = Azf'zl @ COS [(92 - E) (1 - a)] - Bzrzl @ Sin [(92 - 5) (1 - a)] = Azﬂ.z
P3(%,9) = Asty' "% cos[(8; — m)(1 — &)] — B3 *sin[(8; — 1) (1 — @)] = 434,
PREPDH=A f’l_“cos[(@ +E)(1—a)] - B fl_“sin[(é +E)(1—a)] = A,
3\X,y 4Ty 4T 4Ty 4TS a4

Equation 60

Note: ; = /X2 + P2

With this, the analytical nodal solution for the anisotropic case is expressed. However, the
unknowns A;, B;, a are yet to be determined. This is delayed till after the numerical fragment is
examined (see end of section 3.3). Below is the necessary approach to achieve the correct numerical
expressions for the fluxes needed in the implementation of the anisotropic extension for the finite
analytic method.

Similar to before, the fluxes need to be expressed at the first and third quadrant, and to be included in
the final solution for the inter nodal transmissivity. This is done to uphold the continuity critera
described above. Taking basis in Equation 58, the fluxes can be denoted as such:

. . . 1 1 . , e
Note: in following equations; Ax = EAx and Ay = EAy. This was done again to make the transition into

the program easier as the foundation of the code that was used in this study applied this notation.
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Using the following facts:

Ay,y; €an be expressed as follows:

o[t
o]t
o[
o]

k

8P1 8x
i, xox T

8P1 8x
112 a a

6P3 ax
Kay 3 ax

6P3 6x
312 a a

dP; 0y
112 35 39 dy

~

)ay— 14y,

oP, 89 )
152 a—y@)ax Al

Equation 61
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y cos 04

f{r_ﬁ *(A1 cos[6,(1 — a)] + By sin[8;(1 — )])
ey,

/‘lxl = k111

-y

+ 22170 (4, cos[By (1 — )] + By sin[B; (1 — a)])}
&1
0 ~
+ ki, &{r—f‘l_“(fh cos[91(1 a)] + B, sin[91(1 — a)])
/1}'12
+ 21, cos|By (1 — )] + By sinBy (1 — a)])}
&1
xcosfy (X
/'lyl ki, - L {Hrl (A1 cos[91(1 — a)] + B; 51n[91(1 - a)])
ki,
9

23 10—y cos[By (1 — @)] + By sin[6 (1 — a)])}
"

é y ~ ~
+ky,, &{%fl—“(& cos[0;(1 — @)] + By sin[0;(1 — a)])

— rll_a(—Al cos[0;(1 — a)] + By sin[8; (1 — a)])}
7”1

&2 (As os[(8; = 1) (1 — @] - By sin[(8; =) (1 - @)])

P ( As cos[(0; —)(1 — @)| — B sin[(05 — ) (1 — a)])}
3
+ k3, ycosds {:—3@‘“(/13 cos[(#3 — m)(1 — @)] = By sin[(B5 — m)(1 — a)])
A1 (= cos[ (0~ m)(1 — @] = By sn](8; )1 - a)])}

3
A xcosf; (%
AJ’3 = k312 {

+

= gr3 “%(Ascos[(83 —m)(1 — a)] — Bs sin[(8; — m)(1 — a)])
ks,
+

. f31_“(—A3 cos[(§3 —m)(1— a)] — B, sin[(93 —m)(1—- a)])}
3
xcosfO;(y

+ ks, ?{% 3~ %(A3 cos[(0; — m)(1 — a)] — B sin[(f; — ) (1 — @)])
32

~

X

+ o 731 "%(=A;z cos[(f5 — ) (1 — @)] — By sin[(65 — m)(1 — a)])}

Equation 62
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And thus, the final solution for the inter nodal transmissivity can be expressed as such:

Yo, = /13‘1 Yo, = /1)’1
T L N ¥
y) y)
yxz = Z ill,'{ ’ Vyz = /.’{ is;{
2 1 3 2
yl yi
Vx3 =3 j3‘ ’ y)’3 =3 zg"
A3 — A4 A3 — 4,
X3 /13/1

BT P A

Equation 63

Lastly, to solve for the unknowns A; and B;, which are functions of a, a backward substitution needs to
be applied similar to that described in the previous section. A; and B; form a cyclical behavior (see
Equation 66), where the solution of one is determined by the other. As such, by expressing equations for
these unknownes, it is not only possible to set up a solution for each, but also solve for a.

Seeing as how these sets of equations are much more involved than before, several temporary variables
and changes in notation need to be established so as to keep the expressions more contained.

Starting by first expressing the following quantities with these notations:

. xcosf;+ysinb; . ycosb; —xsinb;
X; = =

ox — dy -
ki, ki,
= |%%+92, 0,=6-0;
of % of, P 20, ¥ 00, %
ax;, % 9y, 0% #2009 72

Equation 64

Where 0 is the angle between the vertex and the grid node in the standard x, y Cartesian coordinate
system. Moreover, the following set of definitions are introduced:
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Along the positive x-axis (y = 0):

sin[él(l — a)]}

cos[0;(1 — a)]}

P1 = P4:
a;, = “cos[0,(1 - a)]
b11 = 7,’\'11_“ Sin[él(l - a)]
a,, = 7' %cos [(§4 + g) 1- a)]
by, =7, “sin [( +%) 1- a)]
QY1 = QY4
cos 6, f . TA
a, =k, ,— A —-a) {— ;"% cos[0;(1 — a)] — At ~%sin[6;(1 - a)]}
k11
] a0
+ky,, o —11-a) {— "% cos[6,(1 — a)] — —Lpla
/klz
6 or 26, ~
by, =kq,, C08—1(1 —a) {%ﬁ “sin[0;(1 — )] + oz ”11 *cos[0;(1 — a)]}
/1211 !
cos @ or Gl
ki,, = 1(1—05){6—5]11“1 “sin[0;(1 — a)] — ylfll @
1z
cos @ of;
a42=k412f4(1—a){aA 7y “cos[( )(1—a)]
41
00, ., PO (1
- 6—241"4 %sin [(64 + E) 1- a)]}
ke, 2% ){aA " cos[(8,+3) (1 - )
—a){=—7, " %cos -1 -«a
S 9 st
42
Gl
-G8, +3) - o]}
cos . T
by, = ks, \/74 1-a) {—m sin [(94 + E) (1- a)]
ks,

+ a—é41“”41 % cos [(94 ) (1- a)]}

0%,

+ky,, cos 0, 1-a) {—m sin [( )(1 —a)]
s, 9
334 £, 7% cos [( ) (1- a)]}
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Along the positive y-axis (x = 0):

P, = P;:
a,, =, % cos [(éz - g) (1- a)]
b, =—f," “sin [(92 — %) (1- a)]
a, = f’ll_“ cos[0; (1 — a)]
by, = =71 sm[91(1 — a)]

sz = Qx1

cos 6, oty . _q ~
s, = o, R - @ FE 0 o058, - ) 1= )

- g—zzle_“ sin [(éz — g) (1- a)]}
2 - {32 cos[ (0~ ) - )]

cos @ o _ ~ Al—a . A
=k, —1l-a) {7111*1 “cos[0,(1 — a)] - _;?irll “sin[6, (1 — a)]}

(1-a) {a—;lf‘l “cos[0,(1— a)] — 96, rll “sin[0, (1 - a)]}
1

~

cos 0 7 a0, ,_ .
=kq,, —1 1-a {Tlf‘l 51n[91(1 — a)] + 11 ¢ cos[91(1 — a)]}

cos @ or: L) "
+kiq,, = L(1-a) {6_57117&1 sm[@l(l - a)] — 711“11 * cos[61(1 - a)]}
ki,
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. Along the negative x-axis (y = 0):

P3 = PZ:
as, = 5" “cos[(f5 + ) (1 — )]
by, = —f5' “sin[(8; + m)(1 — a)]
w (A T
a,, =7, “sin [(92 - E) (1- a)]
_ .o
bzl - _7,’\'21 a sin [(02 - E) (1 — 0()]
QY3 = QYZ:
cos 0, ot , _, ~
as, =k;,— 0 —a) ﬁrg cos[(93 + n)(l — a)]
/E31 3
a0 ~
- S sinl (6, + )1 - a)]}
cos 0 of3 . _, .
ks,, = 1—-a) 5 T3 cos[(93 + n)(l — a)]
ks, 3
a0 ~
— a—yZﬁgl_a sin[(0; + ) (1 — a)]}
cos 05 03 . —q . trn
bs, = —k3_, — (1-a) 5%, 3" %sin[(03 + m)(1 — )]
ks,
20 ~
+ a—k\z@l_“ cos[(8; + m)(1 — a)]}
cos 6 ary  _ ~
— ks, >(1-a) {0}72 3~ *sin[(0; + m)(1 — a)]

—(
fk32

— Z—Zirzl_“ sin [(52 - %) (1- a)]}
i, SR - {32 cos[(0, - ) (- )]
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by, = —ky,, ﬂ (1-a) {g;jzz ,~ % sin [(@2 - g) 1- Ol)]

a}’Z
. Along the negative y-axis (x = 0):

P4 = P3:
a,, =f, “cos [(94 ) (1- a)]
by, =7, sin| (8, + ) 1-a)
as, =f3' " “cos|(f5 + m)(1 — a)]
by, = —f5" " “sin[(8; + m)(1 — a)]

Qx, = Qx33

ay, = ks, —/— cos 0y (1-a) {—a cos [( ) 1- a)]

s,

— a—@ﬁl_“ sin [(54 + g) (1- a)]}

094
cosf, 0y g . (s T
by, = ks, T(l —a) 6—3?47’4 sin [(94 + E) a- a)]
kg,
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as, = ks ,— cos b 1-a) {2 *cos[(03 + m)(1 — )]
g? o sin[(§3 + n)(l - a)]}
+ ks, — 03 s 1—-a) {— 73 cos[(§3 + n)(l — a)]
20 ~
- S sinl (B, + )1 - a)]}
b, = ks, =5 (1 _ o) {ir3 “sin](8; + )1 - )]

ks

1

9%,

cos 6,

ffc32

+ 095 5 1 ol (6, + ) (1 — a)]}
Y3

+— 0% — 7" "% cos[(f; + m)(1 — a)]}

—k3,,— (1 —a) { sm[(93 + n)(l — a)]

39,

Equation 65

With this simplification, both the pressure continuity and the flux continuity can be systematically
written as:

1. Along the positive x-axis (y = 0):
A4a41 + B4_b4_1 = Alall + Blb11
A4a42 + B4_b4_2 = Alalz + Blblz
2. Along the positive y-axis (x = 0):
Alall + Blb11 = Azazl + szzl
Alalz + Blblz = A2a22 + szzz
3. Along the negative x-axis (y = 0):
Azazl + szzl = A3a31 + B3b31
A2a22 + szzz = A3a32 + B3b32
4. Along the negative y-axis (x = 0):
A3a31 + B3b31 = A4a41 + B4b41
A3a32 + B3b32 = A4a42 + B4_b4_2

Equation 66

By using Cramer’s rule, one can acquire solutions for the individual unknowns. These can be expressed
as follows:
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_ (A4a41 + B4b41)b12 - (A4a42 + B4b42)b11

4 ‘111b12 - a12b11

B, = —(A4ay, + Byby)ay, + (Asaq, + Byby,)ay,
ay, by, —aq,by;

4, = (Ayay, + Byby )by, — (Ajay, + Bybsy, )by,
az by, —ay, by,

B, = —(A10L11 + B1b11)azz + (Ala12 + Blblz)az1
a21b22 - azzbz1

_ (Aza,, + Byby,)bs, — (Aza,, + Byby, )bs,
3T as, bs, —asz, bs,

B, = —(Azaz1 + szzl)a32 + (A2a22 + szzz)a31
as, bs, —as, bz,

4, = (Asas, + B3bs, )by, — (Azas, + Bsbs, )by,
Ay, by, — ay,by,

5, = —(Azas, + B3bs )ay, + (Azas, + B3bs,)a,,

Ay, by, — A4, by,
Equation 67

This allows for the unknowns to be solved as long as « is determined, as it is the only unknown in the
equations above other than the subjects.

By changing notation, a more compact set of equations can be formed:
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w - a41b12 — a4,2b11 w - —Q4, 01, F Q4,04
11 - 4 12 - —
a11b12 0L12b11 6111b12 alzb11
b4,1b12 - b4,2b11 _b41a12 + b4_2a11
vl = , ’[]1 =

1 — 2 —_
a11b12 0L12b11 6111b12 alzb11

S a11b22 — a12b21 " = —0q,az, + 01,05,
21 - ) 22 -
azlbzz_azzbzl 6121b22—6122b21
b11b22 - b12b21 _b11a22 + b12a21
‘1]2 = , ‘UZ =

1 — 2 —_
azlbz2 a22b21 a21b22 a22b21

. = az bs, —ay, bs, . = —ay, as, +a,az,
31 - ) 32 -
a31b32 — a32b31 a31b32 — a32b31
V3, = ) U3, =

, =
1 a31b32 — a32b31 a31b32 — a32b31

w = a31b42 — a32b41 w = —Q3,Q4, T 43,04,
41 - ) 42 -
a41b42 Ay, b41 a41b42 — Oy, b41
b31b4,2 - b32b41 _b31a4,2 + b32a41
Vs, = ) Vs, =

=
1 a41b42 - a42b41 a41b42 — a42b41

Equation 68
Thus, the equations for the unknowns A; and B; are as follows:
A1 = A4u11 + B4U11
Bl = A4u12 + B41712
AZ = A1u21 + B1U21
B2 = A1u22 + Blvzz
A3 = A2u31 + B2U31
B3 = A2u32 + B2U32
A4_ = A3u41 + B3U41
B4 = A3U,42 + B3v42

Equation 69

Applying the backward substitution method here, similar to that seen in the

Finite Analytic Method section, a general solution for a can be derived. Starting with the expressions
deduced from the substitution:
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A = A3[u41u11 + u42v11] + B3[v41u11 + v42v11]

= Az[u31u41u11 + U3z Uy, V1, U3,V Uy u32v4,2v11]
+ Bz[v31u41u11 + V3, Ug, vy, U3,V U F v32v42v11]

= Al[u21u3lu4lu11 + Up, U3, Uy, Uy, + Up, U3, Vg, Uy, + Up, U3, Vs, V1, + Up, V3, Ug Up, + Up, V3, Uy, V1,
+ Up,V3,Vs, Up, + u22v32v42v11]
+ B, [v21u31u41u11 + Uy, Uz Uy, Uy, + Vo U3, Uy Uy, + Vp U3, Vg, Vy, + Uz, V3 Uy Uy,
+ V2,V3,Us, V1, + V2,V3,Vs,Us, + v22v32v42v11]

=A1¢1, + B1gy,

B, = A3[u41u12 + u42v12] + B3 [v4,1u12 + v42v12]

= Apfus, ug, us, + us Uy, vy, + Uz, Vg Us, + Uz, Uy, V1|
+ Byvs Uy Uy, + V3, Us, V1, + V3,V Us, + V3, V4,1, |

= Al[u21u31u41u12 t Up Uz Uy, V1, + Up U3, Vg Up, + Uy U3, Vs, Vy, + Uy, V3 Uy Up, + Uy, V3 Uy Vy,
+ Up, V3, Vg Uy, + Up, V3, Vs, V1 |
+ B, [v21u31u41u12 + Uy Uz Uy, V1, + Vp Uz, Vs Uy, + Vp Uz, Vs, V1, + Vp V3 Uy Uy,
+ V3, V3, Uy, V1, T V2, V3,V Uy, + v22v32v42v12]

= A191, + B1gy,
Equation 70

The variables @;; are simply a change of notation, used to make the equations shorter and more

comprehensible.

Finally, the following can be obtained:

Ai(@1, —1) +B1g,, =0
A1p1, + Bi(9z, = 1) =0

Equation 71
Again, the corresponding determinant is taken is set to equal zero, as follows:
((P1 - 1) (%)
! ! = P1,P2, — P1,P2, —P1, — P2, +1=10
P1, (‘.022 - 1)
Equation 72

Note: ¢;; are the components derived from the substitution method.

Now, a solution for Equation 72 must be found in order to determine the value of a. The Newton Secant
method would be applied to find the best fit for a. This is a numerical approach to the solution of «, as
opposed to the analytical solution that was determined in the previous section for the isotropic
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permeability. Using the equation established above, the same solution for a was achieved for the
checkerboard test case used in this study, despite the two methods and algorithms varying so greatly in

the approach. In addition to finding a solution for , the constant C = j—l can be solved by taking
1
——((pll_l), orC=——212
(le (<p22_1)
theoretical approach described in the

either C =

This was also determined to give the same value as the

Finite Analytic Method section.

Newton Secant, also referred to as the Newton-Raphson method, is a root seeking algorithm where
better approximations for the roots are found in a successive fashion (Papakonstantinou, 2007). The
approach starts with a function f and its corresponding derivative ' (approximated numerically in the
approach used in this study, see Equation 73), together with an initial guess x, for the root of the
function. If the guess converges towards a better assumption, then the process is repeated until a
sufficiently better approximation is found based on a criteria and/or margin of error. The general
formula takes the form of:

rery = L0 — f(xo) , _ fOne1) = f(xn)
fxg) = X1 — %o = flxne1) = Xmet —%n
_ f (xo) f(xn)
X1 =X

0~ = Xn41 = Xpn T
f'(x0) T ()
Equation 73

In this manner, the finite analytic method is reconfigured to support anisotropic permeability. This novel
method differs greatly from what was recently developed by the same authors of the article that was
explored in the

Finite Analytic Method section. The approach that they tackled was a more generalized form of the
Laplace equations (Liu & Wang, 2016), where an entirely new set of equations are derived. However, the
novel method developed during this study is entirely independent.
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6. Results
In this section, a comparison study will be performed where both the finite analytic method and the
anisotropic extension that was produced during this study will be evaluated in an isotropic condition.
The results from the finite analytic method will be performed first to greater understand the behavior of
the scheme. Later, after implementing the anisotropic extension, it will be tested on isotropic data. This
is done to validate the method developed during this study, and assure that it is in fact possible to
derive the solution in such a manner. Both the isotropic and anisotropic versions of the finite analytic
method will be compared to the results achieved from geometric averaging and harmonic averaging
schemes, as these are industry standard techniques.

6.1. Dataset
The dataset that was used during this study is a checkboard grid with a permeability contrast ratio of
1:2,1:10, 1:100, 1:1000, and 1:10000. Additionally, the grid is also divided in either 4x4, 16x16, or 64x64
control volumes. An illustration of the grid used can be seen in Figure 6.1 where the expected results
for @ and C at the different nodes are also present. The flow is expected to flow along the high
permeable zones and pass through the edges, where there is a bottleneck.

The checkerboard example is a commonly used problem when evaluating heterogeneous features. It
represents the most severe case of heterogeneity, where the permeability contrast around the grid
node is at a maximum, given the parameters used. Computational complexity and the inaccuracy of the
solution usually increases with increasing permeability ratio.

The test consisted of evaluating the effective permeability that the schemes estimated. It is possible to
determine the effective permeability theoretically when evaluating problems such as the checkerboard
example. It can expressed as ko5 = m (Keller, 1964). More general details on the effective
permeability can be found in the

Background Research section.

To test the methods, a program was developed from the ground up. This program is essentially a
prototype simulator where the different discretization methods were written into. Namely, harmonic
mean, geometric mean, and the isotropic and anisotropic versions of the finite analytic method. Thanks
to the support of IRIS (International Research Institute of Stavanger) and Helmer André Friis, the
backend of the program was able to be developed within the timeframe.
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Figure 6.1: A sketch of the grid that was used during this study to test both the isotropic and the anisotropic finite analytic
method, with the expected values for the unknowns a and C given the case of permeability ratio of 1:100
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6.2. Isotropic Results
Below are three tables showcasing the results for the computed effective permeability for the three
methods explored in this study; namely harmonic mean, geometric mean, and the finite analytic
method, using the approach discussed in section 3.4 for computing the effective permeability.
Additionally, the theoretical result is also presented. The tests were done using varying permeability
ratios, as well as different grid refinements, to explore the changes in accuracy and precision for the
different methods. The permeability ratios used were 1:2, 1:10, 1:100, 1:1000, and 1:10000, and the
three grids refinements used were 4x4, 16x16, and 64x64.

Note: the heterogeneity distribution retained its size and grid node positions, the only changes were
made to the permeability ratios and the grid refinement. Additionally, the results from the finite analytic
method are directly comparable to that which was discussed in the article (Liu & Wang, 2013).
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4x4 Grid
Finite

Permeability | Harmonic Geometric Analytic

Ratio Mean Mean Method Theoretical
1to?2 1.371428571 | 1.41348468 | 1.479543924 | 1.414213562
1to 10 2.183622829 | 3.162243364 | 3.396019342 | 3.16227766
1to 100 2.6061994 | 10.03609011 | 10.4254933 10
1 to 1000 2.660462465 | 31.70741447 | 32.1354455 | 31.6227766
1 to 10000 2.66604471 | 100.110472 | 100.5437339 100

different permeability ratios, on a 4x4 grid

16x16 Grid
Finite

Permeability | Harmonic Geometric Analytic

Ratio Mean Mean Method Theoretical
1to2 1.4078486 | 1.414276021 | 1.417508858 | 1.414213562
1to 10 2.77523138 | 3.278767573 | 3.189865668 | 3.16227766
1to 100 4.1034331 | 12.68807143 | 10.10749708 10
1 to 1000 4.337647026 | 48.1538745 | 31.78565715 | 31.6227766
1 to 10000 4.362904038 | 165.6021411 | 100.1853329 100

different permeability ratios, on a 16x16 grid

64x64 Grid
Finite

Permeability | Harmonic Geometric Analytic

Ratio Mean Mean Method Theoretical
1to2 1.41344831 | 1.41282759 | 1.414458961 | 1.414213562
1to 10 3.02514645 | 3.196671831 | 3.171159618 | 3.16227766
1to 100 5.452266091 | 11.86982237 | 10.07480591 10
1 to 1000 6.05053855 | 46.1550946 | 31.76760897 | 31.6227766
1 to 10000 6.119158676 | 162.8353881 | 100.1782617 100

different permeability ratios, on a 64x64 grid

Table 1: Results of the effective permeability for the three methods explored in this study and the theoretical result, for the

Table 2: Results of the effective permeability for the three methods explored in this study and the theoretical result, for the

Table 3: Results of the effective permeability for the three methods explored in this study and the theoretical result, for the
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The results from the tables above show that the harmonic mean results give good approximations for
low permeability ratios. However, when the ratio becomes large, such as 1 to 100, the methods stars
highly under estimates the effective permeability. Rather surprisingly, the results from the geometric
mean method gave very accurate approximation for small grid refinement. This is probably due to the
fact that the nature of the geometric averaging method solves for the effective permeability directly,
similar to that of the theoretical result, when only two sets of permeabilities are used (see section 3.5).
Though, for a more general heterogeneous reservoir that consists of more variations, the results will
most likely be poorer (which is explored further below). However, the error increased significantly when
the refinement increased. This can be due to the fact the geometric averaging scheme was used across
the entire domain, as opposed to only where there is high heterogeneity (where kiks # k, k4. Though,
the effective permeability approximation is much more accurate than the harmonic mean approach,
especially for higher permeability ratios. The results from the finite analytic method were very
consistent throughout the different permeability ratios and different grid refinements. Only ever so
slightly over estimating the effective permeability, and the error grew even smaller with increased
refinement. This ascertains the method as being superior to the others, and more importantly, superior
to the method used most commonly in the industry today, the harmonic averaging method.

The effective permeability approximation from the finite analytic method was remarkably accurate
compared to the other methods and compares well with the theoretical results. Even for very small
refinements, the method was able to have a very small error margin. This can be seen in more detail in
the table below. It demonstrates than the margins are very low, verifying the method established by Liu
and Wang in their 2013 article (Liu & Wang, 2013).

Finite Analytic Method Error Margin

Permeability

Ratio 4x4 [ % ] 16x16 [ % ] 64x64 [ % ]
1to2 4.415574301 | 0.232470886 | 0.017349265
1to 10 6.882813609 | 0.864864247 | 0.280085494
1to 100 4.081277412 1.06353811 | 0.742504771
1 to 1000 1.595337753 | 0.512434112 | 0.455912084
1 to 10000 0.540793397 | 0.184990013 | 0.177944522

Table 4: A table exploring the error margins for the finite analytic method for the different grid refinements and permeability
ratios, where all the numbers are presented as percentages

To visually explore the pressure gradient sharpening from the increasing permeability ratios, images of
the pressure field were developed. The cases that were considered were at a grid refinement of 64x64

and permeability ratios of 1:10, 1:100, and 1:1000. The grid refinement chosen was due to the fact that
a high resolution was desired to present the pressure gradient more clearly.
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Finite Analytic Method Pressure Field
for Permeability Ratio of 1:10
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Figure 6.2: An illustration of the pressure field from the finite analytic method for the permeability ratio of 1:10
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Finite Analytic Method Pressure Field
for Permeability Ratio of 1:100
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Figure 6.3: An illustration of the pressure field from the finite analytic method for the permeability ratio of 1:100
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Finite Analytic Method Pressure Field
for Permeability Ratio of 1:1000
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Figure 6.4: An illustration of the pressure field from the finite analytic method for the permeability ratio of 1:1000
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The figures above shows how the pressure gradient becomes sharper as the permeability ratio

increases. Higher contrast and harsher edges become more prominent, and the pressure field becomes
more constrained. This is the expected behavior for these cases, and the finite analytic method reveals
this accurately and gratifyingly.

The article (Liu & Wang, 2013) also explored real reservoir data on a 5x4 grid (see Figure 6.5) and
compared it to both geometric mean and harmonic mean. There are no theoretical results for that data,
however, the finite analytic method proves to not only be more accurate, but also achieve the results
with fewer grid refinement, as seen in Figure 6.6. Results could also have been obtained using the
program developed during this study, however, due to both time constraints and the fact that the
implementations give identical results, a reference to the article seemed sufficient.
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Figure 6.5: The spatial permeability distribution in a 5x4 grid (Liu & Wang, 2013)
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Figure 6.6: A plot of the equivalent permeability as a function of the grid refinement “n”, comparing different numerical schemes
(Liu & Wang, 2013)
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6.3. Anisotropic Results
Due to the complications with the implementation of the finite analytic method, explained in the

Finite Analytic Method section in more detail, little time was left to fully apply and administer the
anisotropic implementation. The boundary flux calculations are missing from the method for general
anisotropic permeability tensors. The approach that was going to be used was MPFA, which has been
research and validated extensively (Aavatsmark, Reiso, Reme, & Teiland, 2001). However, due to the
MPFA method not being applied for the boundary calculations, as well as the parts of the domain with
homogeneous permeability, in the approach, and time becoming highly constrained, it was decided that
at the very least an isotropic test should be done. The MPFA method is somewhat difficult to implement
and requires significant time to apply and test. Thus, the novel anisotropic extension was tested on
isotropic data to validate it and prove that it can be used and performed in such a manner.

The results from this method proved to be identical to that of the isotropic implementation of the finite
analytic method. Different test cases were performed and, on all accounts, the outcomes were
indistinguishable. As such, one can conclude that the novel anisotropic extension is a valid approach and
can be expanded upon to solve for anisotropic permeability test cases, though obviously more
comprehensive testing is required for general anisotropic permeability tensors. Code extracts from both
the isotropic and anisotropic implementations are included in the appendix for validation.
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7. Conclusion
The results from the finite analytic method proved to be comparable with that was deduced in the
article (Liu & Wang, 2013). The power law behavior was very evident and the effective permeability was
calculated within a 7% error margin, where the harmonic averaging method gave results with over 75%
error margin. Thus, the finite analytic method proved to be much more accurate and precise in its
calculation.

The anisotropic form of the finite analytic method that was developed in this study was able to give
identical results to that of the standard isotropic method. This showed that the approach was valid and
could replicate what was discovered earlier. The novel anisotropic method differs from that which the
authors of the finite analytic method recently designed. However, it was both precise enough and
robust enough to fully resolve anisotropic permeability.

The ambition of this study was to create a novel approach to anisotropic permeability data, and to
possibly publish the results. However, due to time constraints, anisotropic data could not be fully tested,
and as such were not included in this study. Having to both redevelop and correct the method described
for the finite analytic method (Liu & Wang, 2013), as well as both program it and develop a suitable
foundation to test it. Additionally, deriving the novel anisotropic form. All of this required more time
than originally anticipated. Though, the only missing part to implement is the MPFA discretization to
account for the boundaries (Aavatsmark, Reiso, Reme, & Teiland, 2001). Given that the anisotropic
method presented and discussed in this study is novel, an attempt for publication will be made as soon
as the above mentioned piece is in place and a test on anisotropic permeability data can be made.

Nevertheless, in conclusion, this study was successful in replicating and verifying the finite analytic
method. This study was also able to develop a unique method for solving anisotropic permeability
problems using the core concepts of the finite analytic method. The results were positive, proving the
power law behavior is prominent around the grid nodes where high permeability contrast is present.
And as such was able to show that the use of harmonic averaging, which is an industry standard, greatly
underestimates the effective permeability.
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8. Future Work

The pressure equations for the isotropic finite analytic approach, explored in (Liu & Wang, 2013), were
corrected and validated. It proved to be much more stable, reliable, and accurate when compared to
industry standard methods, such as geometric averaging and, more importantly, harmonic averaging.
The work on the novel anisotropic extension developed in this study, which is completely independent
from the work done in (Liu & Wang, 2016), proved to be valid when tested on isotropic data.

However, due to time constraints, the anisotropic method could not be fully implemented. The
calculations that occur at the boundary and in homogeneous zones should use the MPFA method
(Aavatsmark, Reiso, Reme, & Teiland, 2001). Yet, this was not and could not be implemented in the
allotted time. Therefore this should be the first and most important addition to be made in the future.

Additionally, the approach is only implemented for single phase flow. The approach can easily be
expanded to account for multi phase flow. This is a key addition to be made and would bring even
greater value to the approach and method discussed in this study.

Lastly, the other vital component that is currently missing is the fact that the present implementation is
only applied in a two dimensional bases. Given that today practically all data and reservoir model are in
three dimensions, this would have to be implemented to wholly be comparable and to improve current
industry standard simulators and methods. This addition can be done in multiple ways, however, the
simplest approach would be to apply the same two dimensional approach that is present today, and
apply it to the remaining two planes in the three dimensional environment. A sample by sample
calculation should be performed, where the calculations are done on the three planes (x,y), (z, x),

and (z,y).

These are a few of the accompaniments that should be added to this study in the future. There several
other additions that can be made, such as expanding the method to solve for unstructured grids.
However, the focus should be on these first as they are essential components for reservoir simulators
given today’s standards. These, coupled with the accuracy and precision gained from using the method
examined and developed in this study, should result in a very robust and enhanced reservoir simulator.
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Appendix

This section is divided into four separate parts; appendix A, B, C, and D. Appendix A consists of scanned
copies of some of the calculations, which were done by hand. These are more in depth mathematically,
and contain a few intermediary expressions that were not included in this study, due to size and
relevance. Appendix B consists of the code that was programmed for the isotropic finite analytic
method. Appendix C consists of the code that was programmed for the anisotropic extension for the
finite analytic method. And lastly, appendix D consists of the setup routines that use the classes
examined in appendix B and C. These setup routines are used to generate the linear equation system
corresponding to the actual finite analytic method discretization.
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Appendix A: Scanned Calculations by Hand of Finite Analytic Method

Below are some scanned copies of a more extensive look on the calculations involved in deriving the
finite analytic method. These include some of the calculations, specifically the backward substitution
process, which was too exhaustive to include in this study. Keep in mind that these were all done by

hand and included little description of the processes, and therefore might be difficult to follow without
having revised this study thoroughly.
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Appendix B: Finite Analytic Method Code Implementation (Isotropic)

#include "FAM2DSGDiscritization.h"
#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

FAM2DSGDiscritization::FAM2DSGDiscritization()
: m_alpha_FAM(©.9),
m_C_FAM(©.0),
m_perm(),
m_C(),
m_k1(0.0),
m_k2(0.0),
m_k3(0.0),
m_k4(0.0),
m_Ftol(0.00000001),
m_notHarmonicScheme(true)
{
¥
FAM2DSGDiscritization: :~FAM2DSGDiscritization()
{
¥
void FAM2DSGDiscritization::setup(const CSnShape& C, const ArrayS<realS>& perm)
{

mC = C;
m_perm = perm;

}
void FAM2DSGDiscritization::computeAlphaAndC(const Pair<int,int> Pghat, const int ihat,
const bool atBoundary)
{
int i1
int i2 =
int i3 =
int i4 =

1]
QOPQ

. e

.« e

B
//Must find control volume neighbores "Pghat", use a CSnShape 'getNeighbors....'

if (!atBoundary)
{
ArrayS<int> neigh;
m_C.u_getNeighbours_RF(Pghat, 2, neigh);// the '2' is hardcoded due to 2D
space, for different problem dimensions, use 'problemDimension'....?
il = neigh[@];
i2 = neigh[1];
i3 = neigh[2];
i4 = neigh[3];

//Must first find the correct quadrant for ihat:
double FTOLL = ©.000001;

Pair<int, int> Pihat(2, ihat);

RnPoint XI = m_C.u_getCoordinate_ou(Pihat);



exit(9);

RnPoint XQ = m_C.u_getCoordinate_@u(Pghat);
= XI.u_getElement_0u(9);
= XI.u_getElement_0u(1l);
= XQ.u_getElement_0u(0);
= XQ.u_getElement_0u(1l);

double
double
double
double

XI_x
XI_y
XQ_x
XQ_y

int whichQuad = -1;

if ((XI_x-XQ_x) > FTOLL & (XI_y-XQy) > FTOLL)

{

//1 quadrant
whichQuad = 1;

}

else if ((XQ_x-XI_x) > FTOLL & (XI_y-XQ_y) > FTOLL)

{

//2 quadrant
whichQuad = 2;

else if ((XQ_x-XI_x) > FTOLL & (XQ_y-XI_y) > FTOLL)

//3 quadrant
whichQuad = 3;

}
else if ((XI_x-XQ_x) > FTOLL && (XQ_y-XI_y) > FTOLL)

{

//4 quadrant
whichQuad = 4;

}

else

{

cout << "Something is terribly wrong!!! Program is stopped...

}

if (whichQuad == 1)//ihat in first quadrant

{

if (il == ihat)

{

i1 =
i2 =
i3 =
i =

else

neigh[0];
neigh[1];
neigh[2];
neigh[3];

if (i2 ==

= neigh[1];

neigh[2];

= neigh[3];

neigh[0];

if (i3 ==

= neigh[2];
= neigh[3];
= neigh[@];

neigh[1];

if (i4 ==

ihat)

ihat)

ihat)

<< endl;



i1 =
i2 =
i3 =
i4 =
}

neigh[3];
neigh[@];
neigh[1];
neigh[2];

}
else if (whichQuad ==

{

if (i1 == ihat)

{

il =
i2 =
i3 =
i4 =
}

else
{

i1 =
i2 =
i3 =

neigh[3];
neigh[0];
neigh[1];
neigh[2];

if (i2 ==
neigh[@o];
neigh[1];
neigh[2];
neigh[3];

if (i3 ==

= neigh[1];

neigh[2];

= neigh[3];

neigh[@];

if (i4 ==

= neigh[2];
= neigh[3];
= neigh[@];

neigh[1];

}
else if (whichQuad ==

{

if (i1 == ihat)

{

i1 =
i2 =
i3 =
i4 =
}

else
{

i1 =
i2 =
i3 =

neigh[2];
neigh[3];
neigh[@o];
neigh[1];

if (i2 ==
neigh[3];
neigh[@o];
neigh[1];
neigh[2];

if (i3 ==

= neigh[0];

neigh[1];

= neigh[2];

2)//ihat in second quadrant

ihat)

ihat)

ihat)

3)//ihat in third quadrant

ihat)

ihat)



i4 = neigh[3];
else if (i4 == ihat)

il = neigh[1];
i2 = neigh[2];
i3 = neigh[3];
i4 = neigh[0];

¥
¥
else if (whichQuad == 4)//ihat in fourth quadrant
{
if (i1 == ihat)
{
il = neigh[1];
i2 = neigh[2];
i3 = neigh[3];
i4 = neigh[9];
b
else if (i2 == ihat)
{
il = neigh[2];
i2 = neigh[3];
i3 = neigh[9];
i4 = neigh[1];
b
else if (i3 == ihat)
{
il = neigh[3];
i2 = neigh[9];
i3 = neigh[1];
i4 = neigh[2];
}
else if (i4 == ihat)
{
il = neigh[9];
i2 = neigh[1];
i3 = neigh[2];
i4 = neigh[3];
b
}
m_kl = m_perm[il];
m_k2 = m_perm[i2];
m_k3 = m_perm[i3];
m_k4 = m_perm[i4];

m_notHarmonicScheme = (fabs(m_k1*m_k3 - m_k2*m_k4) > m_Ftol) ? true :
false;

if (m_notHarmonicScheme)

{
double api = atan(1.90)*4;

m_alpha FAM = fabs((2/api)*atan(((m_k1*m_k3)-
(m_k2*m_k4))/(sqrt((m_k1+m_k2+m_k3+m_k4)*((m_k1*m_k2*m_k3)+(m_k1*m_k3*m_k4)+(m_k1*m_k2*m_
k4)+(m_k2*m_k3*m_k4))))));



if (((m_k1*m_k3)-(m_k2*m_k4)) < 0.9)
m_C_FAM = -
sqrt (((m_k4a*m_k4)*(m_k1+m_k2+m_k3+m_k4))/((m_k1*m_k2*m_k3)+(m_k1*m_k3*m_k4)+(m_k1*m_k2*m_
k4)+(m_k2*m_k3*m_k4)));
else
m_C_FAM =
sqrt(((m_ka*m_k4)*(m_k1+m_k2+m_k3+m_k4))/((m_k1*m_k2*m_k3)+(m_k1*m_k3*m_k4)+(m_k1*m_k2*m_
k4)+(m_k2*m_k3*m_k4)));
}

else
{
m_alpha_FAM = 0.0;
m_C_FAM = 1.0;//check for all 'k' = 3
}
}
else
{
//NOT NECCESARY!!!!
}

realS FAM2DSGDiscritization::computeRHSContribution(const int ihat, const int khat, const
int ghat, const ArrayS<realS>& g)
{

double ret = 90.0;

Pair<int,int> PQ(@, ghat);

Pair<int,int> PK(1, khat);

Pair<int,int> PI(2, ihat);

double delta_x = 0.0;

double delta_y = 0.0;

RnPoint XQ = m_C.u_getCoordinate_0u(PQ);
double XQ_x = XQ.u_getElement_0u(9);
double XQ_y = XQ.u_getElement_0u(1);
RnPoint XI = m_C.u_getCoordinate_0u(PI);
double XI_x = XI.u_getElement_0u(9);
double XI_y = XI.u_getElement_0u(1);

delta_x
delta_y

fabs(XI_x - XQ_x);// Half actual delta_x in the grid!!!!
fabs(XI_y - XQ_y);// Half actual delta_y in the grid!!!!

RnPoint normalVec = m_C.u_getNormalVector_Ou(PI, PK);
if (m_C.u_boundaryIndex_0u(PK))

////NOTE: In case of a Neumann (i.e. flux) B.C. we assume that "g" is a
vector of zero's.

if ((fabs(normalVec.u_getElement_0Qu(1l)) <= m_Ftol) ? (ret =
(delta_y/delta_x)*m_perm[ihat]*g[m_C.u_findBoundaryPosition_Ou(PK)]) : (ret =
(delta_x/delta_y)*m_perm[ihat]*g[m_C.u_findBoundaryPosition_0Ou(PK)]));
}

return (-1.0)*ret;



realS FAM2DSGDiscritization::computeMatrixContribution(const
const int khat, const int ghat, const ArrayS<realS>& alphal,

const bool atBoundary)

{

realS ret=0.09;
atan(1.0)*4;

double api =

double delta_x =
double delta_y

double theta
double radius

double gamma_x
double gamma_y

0.
= 0.
= 0.0;
= 0.9

0.
0.

9;
@-

5
0
0

)

)

)

Pair<int,int> PQ(@, ghat);
Pair<int,int> PI(2, ihat);
Pair<int,int> PK(1, khat);

RnPoint XQ = m_C.u_getCoordinate_0u(PQ);
Q.u_getElement_0u(9);
Q.u_getElement_0u(1l);
I
I

double XQ_x =
double XQ_y =
RnPoint XI
double XI_x =
double XI_y =
RnPoint XK =
double XK_x
double XK_y

RnPoint vl
vl -= XQ;
RnPoint v2
v2 -= XQ;

X
X
C

m_
X
X

m

.u_getCoordinate_0u(PI);
.u_getElement_ou(0);
.u_getElement_ou(1);
_C.u_getCoordinate_0u(PK);

XK.u_getElement_o0u(0);
XK.u_getElement_0Ou(1);

XK;

XI;

int ihat, const int itilde,
const ArrayS<realS>& alpha2,

theta = acos(vl.u_dot_0Qu(v2)/(vl.u_norm2_0u()*v2.u_norm2_0u()));

delta_x

fabs(XI_x - XQ_x);// Half actual delta_x in the grid!!!!

delta_y = fabs(XI_y - XQ_y);// Half actual delta_y in the grid!!!!

radius = sqrt((delta_x*delta_x)+(delta_y*delta_y));

bool Geometric = false; //This should be turned true and “m_notHarmonicScheme =

false” if the geometric mean calcualtions are desired

if (m_notHarmonicScheme)

{

lambda_c = (pow(radius, 1-m_alpha_FAM))*((cos((api/4)*(1-
m_alpha_FAM)))+(m_C_FAM*sin((api/4)*(1-m_alpha_FAM))));

lambda_w = (pow(radius, 1-m_alpha FAM))*((cos((api/4)*(1-

double
double
double
double
double
double
double
double

lambda_x
lambda_y
lambda_c
lambda_w
lambda_s
lambda_e
lambda_n

LI | | R | B
OO0

lambda_sw = @.

0
0
0
.0;
0
0
0

)
)

)

)

)

)
9;

m_alpha_FAM))*(sin(@.5*api*m_alpha_FAM)+(m_C_FAM*cos(@.5*api*m_alpha_FAM))))-



((m_k1/m_k2)*sin((api/4)*(1-m_alpha_FAM))*(cos(0.5*api*m_alpha_FAM) -
(m_C_FAM*sin(@.5*api*m_alpha_FAM)))));

lambda_sw = (pow(radius, 1-m_alpha_FAM))*((cos((api/4)*(1-
m_alpha_FAM))*((pow(sin(@.5*api*m_alpha_FAM),2))-
((m_k1/m_k2)*(pow(cos(@.5*api*m_alpha_FAM),2)))+(m_C_FAM*(1+(m_k1/m_k2))*cos(@.5*api*m_al
pha_FAM)*sin(@.5*api*m_alpha_FAM))))-(sin((api/4)*(1-
m_alpha_FAM))*((((m_k1/m_k3)+(m_k2/m_k3))*cos(0@.5*api*m_alpha_FAM)*sin(@.5*api*m_alpha_FA
M))+((m_k2/m_k3)*m_C_FAM*(pow(cos(@.5*api*m_alpha_FAM),2)))-
((m_k1/m_k3)*m_C_FAM*(pow(sin(@.5*api*m_alpha_FAM),2))))));

lambda_s = (pow(radius, 1-m_alpha_FAM))*((cos((api/4)*(1-
m_alpha_FAM))*((pow(sin(@.5*api*m_alpha_FAM),3))-
(m_C_FAM*(m_k2/m_k3)*(pow(cos(0.5*api*m_alpha_FAM),3)))+(m_C_FAM*(1+(m_k1/m_k2)+(m_k1/m_k
3))*cos(@.5*%api*m_alpha_FAM)*(pow(sin(@.5*api*m_alpha_FAM),2)))-
(((m_k1/m_k2)+(m_k1/m_k3)+(m_k2/m_k3))*sin(@.5*api*m_alpha_FAM)*(pow(cos(@.5*api*m_alpha_
FAM),2)))))+(sin((api/4)*(1-
m_alpha_FAM))*((m_C_FAM*(m_k1/m_k4)*(pow(sin(@.5*api*m_alpha_FAM),3)))+(((m_k1*m_k3)/(m_k
2*m_ka4))*(pow(cos(0.5*api*m_alpha_FAM),3)))-
(((m_k1/m_ka)+(m_k2/m_ka)+(m_k3/m_k4))*cos(0.5*api*m_alpha_FAM)*(pow(sin(@.5*api*m_alpha_
FAM),2)))-
(m_C_FAM*(((m_k1*m_k3)/(m_k2*m_k4))+(m_k2/m_ka4)+(m_k3/m_k4))*sin(0.5*api*m_alpha_FAM)*(po
w(cos(@.5*api*m_alpha_FAM),2))))));

if (XI_x > XQ_x & & XI_y > XQ_y)
{

if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
lambda_y = (-m_k1*m_C_FAM)*(pow(delta_x, 1-
m_alpha_FAM));
gamma_y = (lambda_y)/(lambda_s - lambda_c);

}
else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{
lambda_x = (-m_k1*((cos(@.5*api*m_alpha_FAM))-
(m_C_FAM*sin(@.5*api*m_alpha_FAM))))*(pow(delta_y, 1-m_alpha_FAM));

gamma_x = (lambda_x)/(lambda_w - lambda_c);

}

else if (XQ_x > XI_x && XI_y > XQ_y)
{

if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
lambda_y = (-
m_k3*((((m_k1/m_k3)+(m_k2/m_k3))*cos(0.5*api*m_alpha_FAM)*sin(@.5*api*m_alpha_FAM))+(m_C_
FAM*(m_k2/m_k3)*(pow(cos(0.5*api*m_alpha_FAM),2)))-
(m_C_FAM*(m_k1/m_k3)*(pow(sin(@.5*api*m_alpha_FAM),2)))))*(pow(delta_x, 1-m_alpha_FAM));

gamma_y = (lambda_y)/(lambda_sw - lambda_w);



else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{
lambda_x = (-m_k1*((cos(@.5*api*m_alpha_FAM))-
(m_C_FAM*sin(@.5*api*m_alpha_FAM))))*(pow(delta_y, 1-m_alpha_FAM));

gamma_x = (lambda_x)/(lambda_w - lambda_c);

}

else if (XQ_x > XI_x && XQ.y > XI_y)
{

if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
lambda_y = (-
m_k3*((((m_k1/m_k3)+(m_k2/m_k3))*cos(0.5*api*m_alpha_FAM)*sin(@.5*api*m_alpha_FAM))+(m_C_
FAM*(m_k2/m_k3)*(pow(cos(@.5*api*m_alpha_FAM),2)))-
(m_C_FAM*(m_k1/m_k3)*(pow(sin(0.5*api*m_alpha_FAM),2)))))*(pow(delta_x, 1-m_alpha_FAM));

gamma_y = (lambda_y)/(lambda_sw - lambda_w);
}
else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{
lambda_x =

(m_k3*((cos(0.5*api*m_alpha_FAM)*((pow(sin(@.5*api*m_alpha_FAM),2))-
((m_k1/m_k2)*(pow(cos(0.5*api*m_alpha_FAM),2)))+(m_C_FAM*(1+(m_k1/m_k2))*cos(@.5*api*m_al
pha_FAM)*sin(@.5*api*m_alpha_FAM))))+(sin(@.5*api*m_alpha_FAM)*((((m_k1/m_k3)+(m_k2/m_k3)
)*cos(@.5*api*m_alpha_FAM)*sin(@.5*api*m_alpha_FAM))+(m_C_FAM*(m_k2/m_k3)*(pow(cos(@.5*ap
i*m_alpha_FAM),2)))-
(m_C_FAM*(m_k1/m_k3)*(pow(sin(@.5*api*m_alpha_FAM),2)))))))*(pow(delta_y, 1-
m_alpha_FAM));

gamma_x = (lambda_x)/(lambda_sw - lambda_s);

}

else if (XI_x > XQ_x && XQ_y > XI_y)
{

if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
lambda_y = (-m_k1*m_C_FAM)*(pow(delta_x, 1-
m_alpha_FAM));
gamma_y = (lambda_y)/(lambda_s - lambda_c);
}
else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{

lambda_x =
(m_k3*((cos(@.5*api*m_alpha_FAM)*((pow(sin(@.5*api*m_alpha_FAM),2))-
((m_k1/m_k2)*(pow(cos(0.5*api*m_alpha FAM),2)))+(m_C_FAM*(1+(m_k1/m_k2))*cos(@.5*api*m_al
pha_FAM)*sin(0@.5*api*m_alpha_FAM))))+(sin(@.5*api*m_alpha_FAM)*((((m_k1/m_k3)+(m_k2/m_k3)
)*cos(@.5*api*m_alpha FAM)*sin(@.5*api*m_alpha_FAM))+(m_C_FAM*(m_k2/m_k3)*(pow(cos(0.5*ap



i*m_alpha_FAM),2)))-
(m_C_FAM*(m_k1/m_k3)*(pow(sin(@.5*api*m_alpha_FAM),2)))))))*(pow(delta_y, 1-
m_alpha_FAM));

gamma_x = (lambda_x)/(lambda_sw - lambda_s);

}
}
}
else
{
if (Geometric)
{
gamma_y = fabs(delta_y/delta_x)*0.5*sqrt(m_k1*m_k2);
gamma_x = fabs(delta_x/delta_y)*0.5*sqrt(m_k1*m_k2);
}
else
{
if (XI_x > XQ_x & & XI_y > XQ_y)
{
if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{

gamma_y =
fabs(delta_y/delta_x)*((m_k1*m_k4)/(m_k1l+m_k4));

}
else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) //
The "&&..." addition is only present as an aditional check

{

gamma_x =
fabs(delta_x/delta_y)*((m_k1*m_k2)/(m_ki+m_k2));

}
}

else if (XQ_x > XI_x & & XI_y > XQ.y)

{
if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{

gamma_y =
fabs(delta_y/delta_x)*((m_k2*m_k3)/(m_k2+m_k3));

}
else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) //

The "&&..." addition is only present as an aditional check
{
gamma_x =
fabs(delta_x/delta_y)*((m_k1*m_k2)/(m_k1l+m_k2));
}
}

else if (XQ_x > XI_x && XQ.y > XI_y)
{



if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The

"&&..." addition is only present as an aditional check
{
gamma_y =
fabs(delta_y/delta_x)*((m_k2*m_k3)/(m_k2+m_k3));
}
else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) //
The "&&..." addition is only present as an aditional check
{
gamma_x =

fabs(delta_x/delta_y)*((m_k3*m_k4)/(m_k3+m_k4));
}

}

else if (XI_x > XQ_x && XQ.y > XI_y)

{
if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{

gamma_y =
fabs(delta_y/delta_x)*((m_k1*m_k4)/(m_k1l+m_k4));
}

else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) //

The "&&..." addition is only present as an aditional check

{

gamma_x =

fabs(delta_x/delta_y)*((m_k3*m_k4)/(m_k3+m_k4));

}

}
}
}

RnPoint normalVec = m_C.u_getNormalVector_0u(PI, PK);

if ((fabs(normalVec.u_getElement_0Ou(1l)) <= m_Ftol) ? (ret = gamma_x) : (ret =
gamma_y));

return ret;
}
realS FAM2DSGDiscritization::computeMatrixContributionAtBoundary(const int ihat, const
int itilde, const int khat, const int ghat, const ArrayS<realS>& alphal, const
ArrayS<realS>& alpha2, const bool atBoundary, const bool edgeAtBoundary)
{
realS ret=0.0;
double delta_x
double delta_y
double gamma_x
double gamma_y

B

3

B
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OO0

B

Pair<int,int> PQ(@, ghat);
Pair<int,int> PI(2, ihat);
Pair<int,int> PK(1, khat);



RnPoint XQ = m_C.u_getCoordinate_0u(PQ);
double XQ_x = XQ.u_getElement_0u(®);
double XQ_y = XQ.u_getElement_0u(l1);

RnPoint XI = m_C.u_getCoordinate_0u(PI);
double XI_x = XI.u_getElement_0u(0);
double XI_y = XI.u_getElement_0u(l1);
RnPoint XK = m_C.u_getCoordinate_0u(PK);
double XK_x = XK.u_getElement_0u(®);
double XK_y = XK.u_getElement_0u(1l);
RnPoint vl = XK;

vl -= XQ;

RnPoint v2 = XI;

v2 -= XQ;

delta_x = XI_x - XQ_x;// Half actual delta_x in the grid!!!!
delta_y = XI_y - XQ_y;// Half actual delta_y in the grid!!!!

if (edgeAtBoundary)

{
if (fabs(alphal[m_C.u_findBoundaryPosition_Qu(PK)]) <= m_Ftol)
{
//We have a Neumann (i.e. flux) B.C.
gamma_x = 0.0;
gamma_y = 0.0;
}
else
{
//We have a Dirichlet (i.e. imposed pressure) B.C.
gamma_x = fabs(delta_y/delta_x)*m_perm[ihat];
gamma_y = fabs(delta_x/delta_y)*m_perm[ihat];
}
}
else
{

ArrayS<int> neigh;

m_C.u_getNeighbours RF(PK, 2, neigh);// the '2' is hardcoded due to 2D
space, for different problem dimensions, use 'problemDimension'....?

int ihatN = (neigh[@] == ihat) ? neigh[1] : neigh[@];

gamma_x =
fabs(delta_y/delta_x)*((m_perm[ihat]*m_perm[ihatN])/(m_perm[ihat]+m_perm[ihatN

gamma_y =
fabs(delta_x/delta_y)*((m_perm[ihat]*m_perm[ihatN])/(m_perm[ihat]+m_perm[ihatN

}
RnPoint normalVec = m_C.u_getNormalVector_Ou(PI, PK);

if ((fabs(normalVec.u_getElement_0Ou(1l)) <= m_Ftol) ? (ret = gamma_x) : (ret =
gamma_y));

return ret;



Appendix C: Finite Analytic Method Code Implementation (Anisotropic)

#include "FAMANI2DSGDiscritization.h"
#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

FAMANI2DSGDiscritization: :FAMANI2DSGDiscritization()
m_alpha_FAM(©.0),
m_C_FAM(0.0),
m_permxx(),
m_permxy (),
m_permyy (),

m_C(),

m_ ki 1 1(e.e),
m_ki 1 2(0.8),
m_ki 2 2(0.0),

m_k1 tilde_1(0.9),
m_k1 tilde_2(0.9),
m_k2_1 1(0.0),

m_k2_1 2(0.8),

m_k2_2 2(0.0),
m_k2_tilde_1(0.9),
m_k2_tilde_2(0.9),
m_k3_1 1(0.0),
m_k3_ 1 2(0.0),

m_k3_2 2(0.9),
m_k3_tilde_1(0.9),
m_k3_tilde 2(0.9),
m_k4 1 1(0.0),
m_k4 1 2(0.0),
m_k4 2 2(0.0),
m_k4_tilde_1(0.9),
m_k4_tilde 2(0.9),
m_theta_tilde 1(90.9),
m_theta_tilde 2(0.9),
m_theta_tilde_3(90.0),
m_theta_tilde 4(0.9),
m_k1(0.0),

m_k2(0.0),

m_k3(0.0),

m_k4(0.0),
m_Ftol(0.00000001),
m_useFAMScheme(true)

{
}
FAMANI2DSGDiscritization: :~FAMANI2DSGDiscritization()
{

}
void FAMANI2DSGDiscritization::setup(const CSnShape& C, const ArrayS<realS>& permxx,

const ArrayS<realS>& permxy, const ArrayS<realS>& permyy)

{



mC = C;

m_permxx = permxx;
m_permxy = permxy;

m_permyy = permyy;

}

void FAMANI2DSGDiscritization::computeEigenValuesAndRotation(const Pair<int,int> Pghat,
const int ihat, const bool atBoundary)

{

int il
int i2
int i3 =
int i4

)

)

)

OO0

)

//Must find control volume neighbores "Pghat", use a CSnShape 'getNeighbors....’

if (!atBoundary)
{
ArrayS<int> neigh;
m_C.u_getNeighbours_RF(Pghat, 2, neigh);// the '2' is hardcoded due to 2D
space, for different problem dimensions, use ‘'problemDimension'....?
il = neigh[0];
i2 = neigh[1];
i3 = neigh[2];
i4 = neigh[3];

//Must first find the correct quadrant for ihat:
double FTOLL = ©.000001;

Pair<int, int> Pihat(2, ihat);

RnPoint XI = m_C.u_getCoordinate_Ou(Pihat);
RnPoint XQ = m_C.u_getCoordinate_ou(Pghat);
double XI_x = XI.u_getElement_0u(9);

double XI_y = XI.u_getElement_0u(1);
double XQ_x = XQ.u_getElement_0u(®);
double XQ_y = XQ.u_getElement_0u(1);

int whichQuad = -1;
if ((XI_x-XQ_x) > FTOLL &% (XI_y-XQ_y) > FTOLL)

//1 quadrant
whichQuad = 1;

else if ((XQ_x-XI_x) > FTOLL && (XI_y-XQ_y) > FTOLL)

{
//2 quadrant
whichQuad = 2;
}
else if ((XQ_x-XI_x) > FTOLL && (XQ_y-XI_y) > FTOLL)

//3 quadrant
whichQuad = 3;
}
else if ((XI_x-XQ_x) > FTOLL && (XQ_y-XI_y) > FTOLL)

{
//4 quadrant
whichQuad = 4;
¥

else



{

cout << "Something is terribly wrong!!! Program is stopped...
exit(9);
¥
if (whichQuad == 1)//ihat in first quadrant
{
if (i1 == ihat)
{
il = neigh[9];
i2 = neigh[1];
i3 = neigh[2];
i4 = neigh[3];
}
else if (i2 == ihat)
{
il = neigh[1];
i2 = neigh[2];
i3 = neigh[3];
i4 = neigh[0];
}
else if (i3 == ihat)
{
il = neigh[2];
i2 = neigh[3];
i3 = neigh[0];
i4 = neigh[1];
b
else if (i4 == ihat)
{
il = neigh[3];
i2 = neigh[9];
i3 = neigh[1];
i4 = neigh[2];
}
}
else if (whichQuad == 2)//ihat in second quadrant
{

if (il == ihat)

{

i1 =
i2 =
i3 =
i4 =
}

else
{

i1 =
i2 =
i3 =
i4 =
}

else
{

i1 =
i2 =
i3 =
i4 =

neigh[3];
neigh[0];
neigh[1];
neigh[2];

if (i2 == ihat)

neigh[0];
neigh[1];
neigh[2];
neigh[3];

if (i3 == ihat)

neigh[1];
neigh[2];
neigh[3];
neigh[0];

<< endl;



}
else if (i4 == ihat)
{
il = neigh[2];
i2 = neigh[3];
i3 = neigh[0];
i4 = neigh[1];
}
}
else if (whichQuad == 3)//ihat in third quadrant
{
if (i1 == ihat)
{
il = neigh[2];
i2 = neigh[3];
i3 = neigh[@];
i4 = neigh[1];

else if (i2 == ihat)

il = neigh[3];
i2 = neigh[0];
i3 = neigh[1];
i4 = neigh[2];

else if (i3 == ihat)
{
il = neigh[@];
i2 = neigh[1];
i3 = neigh[2];
i4 = neigh[3];
}
else if (i4 == ihat)
{
il = neigh[1];
i2 = neigh[2];
i3 = neigh[3];
i4 = neigh[9];
}
b
else if (whichQuad == 4)//ihat in fourth quadrant
{
if (i1 == ihat)
{
il = neigh[1];
i2 = neigh[2];
i3 = neigh[3];
i4 = neigh[0];

else if (i2 == ihat)
il = neigh[2];
i2 = neigh[3];
i3 = neigh[9];
i4 = neigh[1];

else if (i3 == ihat)



il = neigh[3];
i2 = neigh[0];
i3 = neigh[1];
i4 = neigh[2];

else if (i4 == ihat)

il = neigh[0];
i2 = neigh[1];
i3 = neigh[2];
i4 = neigh[3];

}

}

m_kil 1 1 = m_permxx[il];
m_kil 1 2 = m_permxy[il];
m_kl 2 2 = m_permyy[il];
m_k2_ 1 1 = m_permxx[i2];
m_k2_1 2 = m_permxy[i2];
m_k2_2 2 = m_permyy[i2];
m_k3 1 1 = m_permxx[i3];
m_k3_1 2 = m_permxy[i3];
m_k3_2_2 = m_permyy[i3];
m_k4 1 1 = m_permxx[i4];
m_k4_1_2 = m_permxy[i4];
m_k4_2_2 = m_permyy[i4];
}

Eigen::VectorXd vec_yaxis(2);
vec_yaxis(0) = 0;
vec_yaxis(1l) = 1;

Eigen::VectorXd eigvec_1_1(2);
Eigen::VectorXd eigvec_1 2(2);
Eigen::VectorXd eigvec_2_1(2);
Eigen::VectorXd eigvec_2_2(2);
Eigen::VectorXd eigvec_3_1(2);
Eigen::VectorXd eigvec_3_2(2);
Eigen::VectorXd eigvec_4_1(2);
Eigen::VectorXd eigvec_4_2(2);

double eigval_1_1 = 0.0;
double eigval 1 2 = 0.0;
double eigval 2 1 = 0.0;
double eigval_2_2 = 0.0;
double eigval 3 1 = 0.0;
double eigval_3_2 = 0.0;
double eigval 4 1 = 0.0;
double eigval 4 2 = 0.0;



eigval 1 1 = 0.5%(m_k1 2 2 + m_ k1 1 1 +
sqrt((m_k1_ 1 1*m k1 1 1)+(4*m_ki_1 2*m_k1 1 2)-
(2*m_k1_ 1 1*m_k1 2 2)+(m_k1_2 2*m ki 2 2)));

eigval 1 2 = 0.5%(m_k1 2 2 + m k1 1 1 -
sqrt((m_k1_ 1 1*m k1 1 1)+(4*m_k1_1 2*m k1 1 2)-
(2*m_k1_ 1 1*m_k1 2 2)+(m_k1_2 2*m ki 2 2)));
0.5%(m_k2_ 2 2 + m k2_1 1 +
sqrt((m_k2_1 1*m_k2_1_1)+(4*m_k2_1 2*m_k2 1 2)-
(2*m_k2_1 1*m_k2_2 2)+(m_k2_2 2*m_k2_ 2 2)));

eigval 2 2 = 0.5%(m_k2_2 2 + m_k2_1 1 -
sqrt((m_k2_1 1*m_k2_1 1)+(4*m_k2_1 2*m_k2_1_2)-
(2*m_k2_1 1*m_k2_2 2)+(m_k2_2 2*m_k2_ 2 2)));
0.5%(m_k3 2 2 + m k3 11 +
sqrt((m_k3_1 1*m k3 _1_1)+(4*m_k3_1 2*m_k3 1 _2)-
(2*m_k3_1 1*m_k3_2 2)+(m_k3_2 2*m_k3 2 2)));

0.5*(m_k3_2 2 + m_k3_1.1 -
sqrt((m_k3_1 1*m_k3_ 1 1)+(4*m_k3_1 2*m_k3_1_2)-
(2*m_k3_1 1*m_k3_2 2)+(m_k3_2 2*m_k3 2 2)));
eigval 4 1 = 0.5%¥(m_k4_2 2 + m_k4_1 1 +
sqrt((m_k4_1 1*m_k4_1_1)+(4*m_kd 1 2*m_k4 1 _2)-
(2*m_k4_1 1*m_k4_2 2)+(m_k4_2 2*m_k4 2 2)));

eigval 4 2 = 0.5*(m_k4_2 2 + m_ k4 1 1 -
sqrt((m_k4_1 1*m_k4_1_1)+(4*m_kd 1 2*m_k4 1 _2)-
(2*m_k4_1 1*m_k4_2 2)+(m_k4_2 2*m_k4 2 2)));

eigval 2 1

eigval 3 1

eigval 3_2

if (fabs(m_ki_1_2)
if (fabs(m_k2_1_2)
if (fabs(m_k3_1_2)
if (fabs(m_k4_1_2)

eigvec_1_1(0)
eigvec_1_1(1)
eigvec_1_2(0)
eigvec_1_2(1)

eigvec_2_1(0)
eigvec_2_1(1)
eigvec_2_2(0)
eigvec_2_2(1)

eigvec_3_1(0)
eigvec_3_1(1)
eigvec_3_2(0)
eigvec_3_2(1)

eigvec_4_1(0)
eigvec_4 1(1)
eigvec_4_2(0)
eigvec_4_2(1)

m_k1l tilde_1
m_k1_tilde_2
m_k2_tilde_1
m_k2_tilde_2
m_k3_tilde_1
m_k3_tilde 2
m_k4_tilde_1
m_k4 tilde 2

< m_Ftol)
< m_Ftol)
< m_Ftol)
< m_Ftol)
eigval 1 1 -
m kl 1 2;

eigval_1 2 -
m kil 1 2;

eigval_2 1 -
m_ k2 1 2;
eigval 2 2 -
m k2 1 2;

eigval_3_1 -
m k3 1 2;
eigval 3 2 -
m_k3_1_2;

eigval 4 1 -

=m_kd4 1 2;

eigval 4 2 -
m_k4_1_2;

eigval 1 1;
eigval 1 _2;
eigval 2 1;
eigval 2 2;
1-
2
1
2

eigval 3 1;

eigval 3

)

)

)

eigval

_4_
eigval 4_

m_k3_2_2;

m_k3_2 2;

m_ k4 2 2;

m_ k4 2 2;

m_Ftol);
m_Ftol);
m_Ftol);
m_Ftol);



m_theta_tilde 1 =
acos(eigvec_1_1.dot(vec_yaxis)/(eigvec_1_1.norm()*vec_yaxis.norm()));
m_theta_tilde_2 =
acos(eigvec_2_ 1.dot(vec_yaxis)/(eigvec_2_1.norm()*vec_yaxis.norm()));
m_theta_tilde 3 =
acos(eigvec_3_1.dot(vec_yaxis)/(eigvec_3_1.norm()*vec_yaxis.norm()));
m_theta_tilde 4 =
acos(eigvec_4_1.dot(vec_yaxis)/(eigvec_4_1.norm()*vec_yaxis.norm()));

}
void FAMANI2DSGDiscritization::computeHelpValuesUVAndPhiForAlpha(double& phi_1 1, double&

phi_2 1, double& phi_1 2, double& phi_2 2,

double& u_1_1, double& u_1 2, double& u_2_1, double& u_2_ 2, double& u_3_1, double&
u_3 2, double& u_4 1, double& u_4 2,

double& v_1 1, double& v_1_ 2, double& v_2 1, double& v_2 2, double& v_3_1, double&
v_3 2, double& v_4_1, double& v_4_2, const double& alpha)

{
double api = atan(1.90)*4;

double a_1 1 y = 0.0;
double a_1 1 x = 0.0;
double a_1 2 y = 0.0;
double a_1 2 x = 0.0;
double a_2 1 y = 0.0;
double a_2 1 x = 0.0;
double a_ 2 2 y = 0.0;
double a_2 2 x = 0.0;
double a_3_ 1 y = 0.0;
double a_3 1 x = 0.0;
double a_3 2 y = 0.90;
double a_3 2 x = 0.0;
double a_ 4 1y = 0.0;
double a_4 1 x = 0.0;
double a_ 4 2 y = 0.0;
double a_4 2 x = 0.0;
double b_1 1 y = 0.0;
double b_1 1 x = 0.0;
double b_1 2 y = 0.0;
double b_1 2 x = 0.0;
double b_ 2 1 y = 0.0;
double b_2 1 x = 0.0;
double b_2 2 y = 0.0;
double b_ 2 2 x = 0.0;
double b_ 3 1y = 0.0;
double b_3 1 x = 0.0;
double b_3 2 0.0;
double b_3 2 x = 0.0;
double b_ 4 1 y = 0.0;
double b 4 1 x = 0.0;
double b_4 2 y = 0.0;
double b_4 2 x = 0.0;

|
|
|
-

double x_1_y = 1.09;//the below is VERY important: setting for when 'x' or 'y' is
zero, which in turn can cancel the other (which is why it is set to one)

double x_ 1 x = 0.0;

double x_ 2 y = 1.0;

double x 2 x = 0.0;



|
I-l>
xX <
1

. e

double

N

|
|
.

double x_ 3 y = 1.0;
double x_3_x = 0.0;
double x_ 4 y = 1.0;
double x_4 x = 0.0;
double y 1 y = 0.0;
double y 1 x = 1.0;
double y 2 y = 0.0;
double y 2 x = 1.0;
double y 3 y = 0.0;
double y_3 x = 1.0;
double y 0.0

y 1.0

double x_hat_1 y =
((x_1_y*cos(m_theta_tilde_1))+(y_1_y*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_1);

double x_hat_1_x =
((x_1_x*cos(m_theta_tilde_1))+(y_1_x*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_1);

double x_hat_2_y =
((x_2_y*cos(m_theta_tilde_2))+(y_2_y*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_1);

double x_hat_2 x =
((x_2_x*cos(m_theta_tilde_2))+(y_2_x*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_1);

double x_hat_3 y =
((x_3_y*cos(m_theta_tilde_3))+(y_3_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);

double x_hat_3_x =
((x_3_x*cos(m_theta_tilde_3))+(y_3_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);

double x_hat_4 y =
((x_4_y*cos(m_theta_tilde_4))+(y_4_y*sin(m_theta_tilde _4)))/sqrt(m_k4_tilde_1);

double x_hat_4 x =
((x_4_x*cos(m_theta_tilde_4))+(y_4_x*sin(m_theta_tilde_4)))/sqrt(m_k4_tilde_1);

double y hat_1 y = ((y_1_y*cos(m_theta_tilde_1))-
(x_1_y*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_2);

double y _hat_1 x = ((y_1_x*cos(m_theta_tilde _1))-
(x_1_x*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_2);

double y_hat_2 y = ((y_2_y*cos(m_theta_tilde_2))-
(x_2_y*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_2);

double y _hat_2 x = ((y_2_x*cos(m_theta_tilde_2))-
(x_2_x*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_2);

double y _hat_3 y = ((y_3_y*cos(m_theta_tilde_3))-
(x_3_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde 2);

double y_hat_3_x = ((y_3_x*cos(m_theta_tilde_3))-
(x_3_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_2);

double y_hat_4 y = ((y_4_y*cos(m_theta_tilde_4))-
(x_4_y*sin(m_theta_tilde_4)))/sqrt(m_k4_tilde_2);

double y hat 4 x = ((y_4_x*cos(m_theta_tilde 4))-
(x_4_x*sin(m_theta_tilde_4)))/sqrt(m_k4_tilde_2);

double theta_hat_1_y
double theta_hat_1_x
double theta_hat_2_y
double theta_hat_2_x
double theta_hat_3_y

(0)-m_theta_tilde_1;

(0.5*api)-m_theta_tilde_1;
(api)-m_theta_tilde_2;
(0.5*api)-m_theta_tilde_2;
(-api)-m_theta_tilde_3;

double theta_hat_ 3 x (-0.5*api)-m_theta_tilde_3;

double theta_hat 4 y (0)-m_theta_tilde 4;

double theta_hat_4 x = (-0.5*api)-m_theta_tilde_4;

double radius_1 y = sqrt((x_hat_1 y*x _hat_1 y)+(y_hat_ 1 y*y hat 1 y));
double radius_1_x = sqrt((x_hat_1_x*x_hat_1 x)+(y_hat_1_x*y hat_1 x));
double radius_2_y = sqrt((x_hat_2_y*x_hat_2_y)+(y_hat_2_y*y hat_2 y));
double radius_2_x = sqrt((x_hat_2_x*x_hat_2_x)+(y_hat_2_x*y hat_2 x));



double
double
double
double

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

radius_3_y
radius_3_x
radius_4 vy
radius_4 x

dx_dx_1 y
dx_dx_1 x
dx_dx_2_y
dx_dx_2_x
dx_dx_3_y
dx_dx_3_x
dx_dx_4_ y
dx_dx_4_x
dy dy 1y
dy _dy_1 x
dy dy 2 y
dy dy 2 x
dy dy 3y
dy dy 3 x
dy dy 4 y
dy _dy_ 4 x

sqrt((x_hat_3_y*x_hat_3_y)+(y_hat_3_y*y hat 3 vy));
sqrt((x_hat_3_x*x_hat_3_x)+(y_hat_3_x*y hat_3 x));
sqrt((x_hat_4_y*x_hat_4 y)+(y_hat_4_y*y hat_4_y));
sqrt((x_hat_4_x*x_hat_4 x)+(y_hat_4 x*y hat_4_x));

cos(m_theta_tilde_1)/sqrt(m_k1_tilde_1);
cos(m_theta_tilde_1)/sqrt(m_k1_tilde_1);
cos(m_theta_tilde_2)/sqrt(m_k2_tilde_1);
cos(m_theta_tilde_2)/sqrt(m_k2_tilde_1);
cos(m_theta_tilde_3)/sqrt(m_k3_tilde_1);
cos(m_theta_tilde_3)/sqrt(m_k3_tilde_1);
cos(m_theta_tilde_4)/sqrt(m_k4_tilde_1);
cos(m_theta_tilde_4)/sqrt(m_k4_tilde_1);
cos(m_theta_tilde_1)/sqrt(m_k1_tilde_2);
cos(m_theta_tilde_1)/sqrt(m_k1_tilde 2);
cos(m_theta_tilde_2)/sqrt(m_k2_tilde 2);
cos(m_theta_tilde_2)/sqrt(m_k2_tilde_2);
cos(m_theta_tilde_3)/sqrt(m_k3_tilde_2);
cos(m_theta_tilde_3)/sqrt(m_k3_tilde_2);
cos(m_theta_tilde_4)/sqrt(m_k4_tilde_2);
cos(m_theta_tilde_4)/sqrt(m_k4_tilde 2);

dtheta_dx_1_y
dtheta_dx_1_x
dtheta_dx_2_y
dtheta_dx_2_x
dtheta_dx_3_y
dtheta_dx_3_x
dtheta_dx_4_y
dtheta_dx_4_x
dtheta_dy_1 y
dtheta_dy_1 x
dtheta_dy_2_y
dtheta_dy_2_ x
dtheta_dy_3 y
dtheta_dy_3_x
dtheta_dy 4 y
dtheta_dy_4 x

at_1_y/(pow(radius_1 vy,
at_1_x/(pow(radius_1_x,
at_2_y/(pow(radius_2_y,
at_2_x/(pow(radius_2_x,
at_3_y/(pow(radius_3_y,
at_3_x/(pow(radius_3_x,
at_4_y/(pow(radius_4 vy,
hat_4_x/(pow(radius_4 x,
(x_hat_1_y/(pow(radius_1 vy,
(x_hat_1_x/(pow(radius_1_x,
(x_hat_2_y/(pow(radius_2_vy,
(x_hat_2_x/(pow(radius_2_x,
(x_hat_3_y/(pow(radius_3_ vy,
(x_hat_3_x/(pow(radius_3_x,
(x_hat_4_y/(pow(radius_4 vy,
(x_hat_4_x/(pow(radius_4_x,

(-y_h
(-y_h
(-y_h
(-y_h
(-y_h
(-y_h
(-y_h
(-y_

2)))*(1-alpha);
2)))*(1-alpha);
2)))*(1-alpha);
2)))*(1l-alpha);
2)))*(1-alpha);
2)))*(1-alpha);
2)))*(1l-alpha);
2)))*(1-alpha);
2)))*(1-alpha);
2)))*(1-alpha);
2)))*(1-alpha);
2)))*(1-alpha);
)*(1-alpha);
(1-alpha);
(1-alpha);

2))
2))
2))
2)))*(1-alpha);

)*
)*
)*

dr_dx_1 y
dr_dx_1_x
dr_dx_2_ vy
dr_dx_2 x
dr_dx_3_y
dr_dx_3_x
dr_dx_ 4 y
dr_dx_4_x
dr_dy 1 vy
dr_dy_1 x
dr_dy_ 2 y
dr_dy 2 x
dr_dy 3y
dr_dy_3_x
dr_dy 4 y
dr_dy_4 x

(x_hat_1_y/radius_1_y)*(pow(radius_1 vy,
(x_hat_1_x/radius_1_x)*(pow(radius_1_x,
(x_hat_2_y/radius_2_y)*(pow(radius_2_y,
(x_hat_2_x/radius_2_x)*(pow(radius_2_x,
(x_hat_3_y/radius_3_y)*(pow(radius_3_y,
(x_hat_3_x/radius_3_x)*(pow(radius_3_x,
(x_hat_4_y/radius_4_y)*(pow(radius_4_y,
(x_hat_4_x/radius_4 x)*(pow(radius_4_x,
(y_hat_1_y/radius_1_y)*(pow(radius_1_y,
(y_hat_1 x/radius_1 x)*(pow(radius_1_x,
(y_hat_2_y/radius_2_y)*(pow(radius_2_y,
(y_hat_2_x/radius_2_x)*(pow(radius_2_x,
(y_hat_3_y/radius_3_y)*(pow(radius_3 vy,
(y_hat_3_x/radius_3_x)*(pow(radius_3_x,
(y_hat_4_y/radius_4_y)*(pow(radius_4_y,
(y_hat_4_x/radius_4 x)*(pow(radius_4 x,

-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);
-alpha))*(1-alpha);

a_1l1y = (pow(radius_1_y, 1-alpha))*cos(theta_hat_1_y*(1-alpha));



(pow(radius_1_x, 1-alpha))*cos(theta_hat_1_ x*(1-alpha));
(pow(radius_2_y, 1-alpha))*cos((theta_hat_2_y-(0.5*api))*(1-alpha));
(pow(radius_2_x, 1-alpha))*cos((theta_hat_2_x-(0.5*api))*(1-alpha));

3.1y = (pow(radius_3_y, 1-alpha))*cos((theta_hat_3_y+api)*(1-alpha));//The plus
or minus PI has to do with the direction of orientation. Seeing as how our calcualtion go
from -PI to +PI,

a_3 1 x = (pow(radius_3_x, 1l-alpha))*cos((theta_hat_3 x+api)*(1-alpha));//when
calculating from the positive side (2 quadrant), one must have +PI, and vice versa
(applied one all 3 quadrant equations)

a_4 1y = (pow(radius_4_y, 1-alpha))*cos((theta_hat_4_y+(@.5*api))*(1-alpha));

a_4 1 x = (pow(radius_4 x, 1-alpha))*cos((theta_hat_4 x+(@0.5*api))*(1-alpha));
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b 11y = (pow(radius_1_y, 1-alpha))*sin(theta_hat_1_y*(1-alpha));

b 11 x = (pow(radius_1_x, 1-alpha))*sin(theta_hat_1_x*(1-alpha));

b 21y =-(pow(radius_2_y, 1-alpha))*sin((theta_hat_2_y-(@.5*api))*(1-alpha));
b 2 1 x = -(pow(radius_2_x, 1-alpha))*sin((theta_hat_2 x-(@.5*api))*(1-alpha));
b 31y = -(pow(radius_3_y, 1-alpha))*sin((theta_hat_3_y+api)*(1-alpha));

b 3 1 x = -(pow(radius_3_x, 1-alpha))*sin((theta_hat_3 x+api)*(1-alpha));

b 41y = (pow(radius_4 vy, 1-alpha))*sin((theta_hat_4 y+(0.5*api))*(1-alpha));
b 4 1 x = (pow(radius_4 x, 1-alpha))*sin((theta_hat_4 x+(@.5*api))*(1-alpha));

a_1 2y = (mkl 1 2*dx_dx_1_y*((dr_dx_1 y*cos(theta_hat_1_y*(1-alpha)))+(-
dtheta_dx 1_y*(pow(rad1us 1y, 1- alpha))*51n(theta hat_1_y*(1- alpha)))))
+(m_k1_2 2*dy dy 1 y*((dr_dy_1_y*cos(theta_hat_1_y*(1-alpha)))+(-
dtheta_dy_1_y*(pow(radius_1_y, 1-alpha))*sin(theta_hat_1_y*(1-alpha)))));
a_1 2 x = (m_k1l 1 1*dx_dx_1_x*((dr_dx_1_x*cos(theta_hat_1_x*(1-alpha)))+(-
dtheta_dx_1 x*(pow(radius_1_x, 1-alpha))*sin(theta_hat_1_x*(1-alpha)))))
+(m_k1_1 2*dy _dy 1 x*((dr_dy_1_x*cos(theta_hat_1_x*(1-alpha)))+(-
dtheta_dy_1_x*(pow(radius_1 _x, 1l-alpha))*sin(theta_hat_1_x*(1-alpha)))));
a_2 2y = (m_k2_1_ 2*dx_dx_2_y*((dr_dx_2_y*cos((theta_hat_2_y-(0.5*api))*(1-
alpha)))+(-dtheta_dx_2_y*(pow(radius_2_y, 1-alpha))*sin((theta_hat_2_y-(0.5*api))*(1-

alpha)))))
+(m_k2_2 2*dy dy 2 y*((dr_dy_2_y*cos((theta_hat_2 y-(@.5*api))*(1-
alpha)))+(-dtheta_dy_2_y*(pow(radius_2_y, 1-alpha))*sin((theta_hat_2_y-(0.5*api))*(1-
alpha)))));
a_2 2 x = (m_k2_ 1 1*dx_dx_2 x*((dr_dx_2_ x*cos((theta_hat_2_x-(0.5*api))*(1-
alpha)))+(-dtheta_dx_2_x*(pow(radius_2_x, 1-alpha))*sin((theta_hat_2_ x-(0.5*api))*(1-

alpha)))))
+(m_k2_1 2*dy_dy 2_x*((dr_dy_2_x*cos((theta_hat_2_x-(0.5*api))*(1-
alpha)))+(-dtheta_dy_2_ x*(pow(radius_2_x, 1-alpha))*sin((theta_hat_2_ x-(0.5*api))*(1-
alpha)))));
a_3 2y = (m_k3_1 2*dx_dx_3_y*((dr_dx_3_y*cos((theta_hat_3_y+api)*(1-alpha)))+(-
dtheta_dx_3_y*(pow(radius_3_y, 1l-alpha))*sin((theta_hat_3_y+api)*(1-alpha)))))
+(m_k3_2 2*dy_dy 3 _y*((dr_dy_3_y*cos((theta_hat_3_y+api)*(1-
alpha)))+(-dtheta_dy_3_y*(pow(radius_3_y, 1-alpha))*sin((theta_hat_3_y+api)*(1-
alpha)))));
a_3 .2 x = (m_k3_1 1*dx_dx_3_x*((dr_dx_3_x*cos((theta_hat_3_x+api)*(1-alpha)))+(-
dtheta_dx_3_x*(pow(radius_3_x, 1l-alpha))*sin((theta_hat_3_x+api)*(1-alpha)))))
+(m_k3_1 2*dy_dy 3 x*((dr_dy_3_x*cos((theta_hat_3_x+api)*(1-
alpha)))+(-dtheta_dy_3_ x*(pow(radius_3_x, 1-alpha))*sin((theta_hat_3_x+api)*(1-
alpha)))));
a_4 2y = (m_k4_1 2*dx_dx_4_y*((dr_dx_4_y*cos((theta_hat_4 y+(0.5*api))*(1-
alpha)))+(-dtheta_dx_4_y*(pow(radius_4 vy, 1-alpha))*sin((theta_hat_4 y+(0.5*api))*(1-

alpha)))))

+(m_k4_2 2*dy dy 4 y*((dr_dy_4_y*cos((theta_hat_4 y+(0.5*api))*(1-
alpha)))+(-dtheta_dy_4 y*(pow(radius_4 vy, 1-alpha))*sin((theta_hat_4 y+(0.5*api))*(1-
alpha)))));



a_4
alpha)))+(
alpha)))))

2 x = (m_k4_1_1*dx_dx_4 x*((dr_dx_4_ x*cos((theta_hat_4_x+(0.5*api))*(1-
-dtheta_dx_4_x*(pow(radius_4_x, 1l-alpha))*sin((theta_hat_4_x+(0.5*api))*(1-

+(m_k4_1 2*dy_dy 4 x*((dr_dy_4 x*cos((theta_hat_4_x+(0.5*api))*(1-
alpha)))+(-dtheta_dy_4 x*(pow(radius_4 x, 1-alpha))*sin((theta_hat_4 x+(0.5*api))*(1-
alpha)))));

b 12y = (mkl 1 2*dx_dx_1_y*((dr_dx_1_y*sin(theta_hat_1_y*(1-
alpha)))+(dtheta_dx_1_y*(pow(radius_1_y, 1l-alpha))*cos(theta_hat_1_y*(1-alpha)))))
+(m_k1_2 2*dy dy 1 y*((dr_dy_1_y*sin(theta_hat_1_y*(1-
alpha)))+(dtheta_dy 1 _y*(pow(radius_1_y, 1-alpha))*cos(theta_hat_1_y*(1-alpha)))));
b 12 x = (m_k1_1 1*dx dx_1 x*((dr_dx_1_x*sin(theta_hat_1_x*(1-
alpha)))+(dtheta_dx_1_x*(pow(radius_1_x, 1l-alpha))*cos(theta_hat_1_x*(1-alpha)))))
+(m_k1_1 2*dy dy 1 x*((dr_dy_1_x*sin(theta_hat_1_x*(1-
alpha)))+(dtheta_dy_1 x*(pow(radius_1_x, 1l-alpha))*cos(theta_hat_1_x*(1-alpha)))));
b 22y =-((mk2_1_2*dx_dx_2_y*((dr_dx_2_y*sin((theta_hat_2_y-(0.5*api))*(1-
alpha)))+(dtheta_dx_2_y*(pow(radius_2_y, 1-alpha))*cos((theta_hat 2_y-(0.5%api))*(1-

alpha)))))
+(m_k2_2 2*dy_dy 2_y*((dr_dy_2_y*sin((theta_hat_2_y-
(0.5*api))*(1-alpha)))+(dtheta_dy_2_y*(pow(radius_2_y, 1-alpha))*cos((theta_hat_2_y-
(0.5%api))*(1-alpha))))));
b 2 2 x = -((m_k2_1_1*dx_dx_2_x*((dr_dx_2_x*sin((theta_hat_2_x-(@.5*api))*(1-
alpha)))+(dtheta_dx_2_x*(pow(radius_2_x, 1-alpha))*cos((theta_hat_2_x-(0.5*api))*(1-

alpha)))))
+(m_k2_1 2*dy_dy 2 _x*((dr_dy_2_x*sin((theta_hat_2_x-
(0.5*api))*(1-alpha)))+(dtheta_dy_2_ x*(pow(radius_2_ x, 1l-alpha))*cos((theta_hat_2_x-
(8.5*api))*(1-alpha))))));
b 32y =-((m_k3_1_2*dx_dx_3_y*((dr_dx_3_y*sin((theta_hat_3_y+api)*(1-
alpha)))+(dtheta_dx_3_y*(pow(radius_3_y, 1-alpha))*cos((theta_hat_3_y+api)*(1-alpha)))))
+(m_k3_2 2*dy dy 3 y*((dr_dy_3_y*sin((theta_hat_3_y+api)*(1-
alpha)))+(dtheta_dy 3_y*(pow(radius_3_y, 1-alpha))*cos((theta_hat_3_y+api)*(1-
alpha))))));
b 32 x=-((m_k3_1 1*dx_dx_3 x*((dr_dx_3_x*sin((theta_hat_3_x+api)*(1-
alpha)))+(dtheta_dx_3_x*(pow(radius_3_x, 1-alpha))*cos((theta_hat_3_x+api)*(1-alpha)))))
+(m_k3_1 2*dy dy 3 x*((dr_dy_3 x*sin((theta_hat_3_ x+api)*(1-
alpha)))+(dtheta_dy_3_ x*(pow(radius_3_x, 1l-alpha))*cos((theta_hat_3 x+api)*(1-
alpha))))));
b 42y = (mk4 1 2*dx _dx_4_y*((dr_dx_4_y*sin((theta_hat_4_y+(0.5*api))*(1-
alpha)))+(dtheta_dx_4_y*(pow(radius_4_ y, 1-alpha))*cos((theta_hat_4_y+(0.5%api))*(1-

alpha)))))

+(m_k4_2 2*dy_dy 4 y*((dr_dy_4 y*sin((theta_hat_4 y+(0.5*api))*(1-
alpha)))+(dtheta_dy _4_y*(pow(radius_4 vy, 1-alpha))*cos((theta_hat_4_y+(0.5*api))*(1-
alpha)))));

b 42 x = (m_k4_ 1 1*dx_dx_4 x*((dr_dx_4 x*sin((theta_hat_4_x+(@.5*api))*(1-
alpha)))+(dtheta_dx_4_x*(pow(radius_4_x, 1l-alpha))*cos((theta_hat_4_x+(0.5*api))*(1-
alpha)))))

+(m_k4_1 2*dy dy 4 x*((dr_dy_4 x*sin((theta_hat 4 x+(©.5*api))*(1-
alpha)))+(dtheta_dy_4_x*(pow(radius_4 x, 1-alpha))*cos((theta_hat_4_x+(0.5*api))*(1-
alpha)))));

ulil=((a41y*b 12 y)-(a 42 y*b 11y))/((a_1 1 y*b 12 y)-
(a_1 2 y*b 1 1 vy));

uilz2=(-(a_41y*al2y)(a_d2y*al1l1ly))/((a_1_1 y*b 1 2 y)-
(a_1 2 y*b 1 1 vy));

u21=¢((a11x*p22x)-(a_12x*b 21 x))/((a_2_1 x*b 2 2 x)-
(a_2_2 x*b_2_1 x));



u?22=(-(a_11 x*a_ 2 2 x)+(a_1_2 x*a_2 1 x))/((a_2_1_x*b_2 2 x)-
(a_2_2_x*b_2_1 x));

u31l=((a_21y*b 3 2y)-(a_22y*p 3 1y))/((a_3_1 y*b 3 2 y)-
(a_3_2 y*b 3 1 vy));

u32=(-(a_21y*a32y)t(a_2 2 y*a 3 1y))/((a_3_1 y*b 3 2 y)-
(a_3_2_y*b_3_1y));

u4dl=((a_31x*h 42 x)-(a_3_2 x*b_ 41 x))/((a_4_1 x*b_ 4 2 x)-
(a_4_2_x*b_4 1 x));

u4d 2= (-(a_3 1 x*a_ 4 2 x)+(a_3_2 x*a_4 1 x))/((a_4_1_x*b_4 2 x)-
(a_4_2 x*b_4 1 x));

v11=((b 41 y*H 12 y)-(b42vy*b 11 y))/((a_1_1 y*b 1 2 y)-
(a_1. 2 y*b 1 1 vy));

v.12=(-(b41y*a1l2y)+(b 42 y*a 11y))/((a_1 1 y*b 1 2 y)-
(a_1.2 y*b 1 1 vy));

v_2 1= ((b_1 1 x*b_2 2 x)-(b_1_2 x*b_2 1 x))/((a_2_1_x*b_2 2 x)-
(a_2_2 x*b_2 1 x));

v.2 2 =(-(b_1 1 x*a 2 2 x)+(b_1 2 x*a_2 1 x))/((a_2_1_x*b_ 2 2 x)-
(a_2_2 x*b_ 2 1 x));

v.31=((b_2_1 y*b 3 2 y)-(b_2 2 y*b 3 1 vy))/((a_3_1_y*b 3 2 y)-
(a_3_2_y*b 3 1 vy));

v.32=(-(b_21y*a 32 y)+(b 22 y*a 3 1y))/((a_3_1 y*b 3 2 y)-
(a_3_2 y*b_3 1 y));

v_4 1 = ((b_3 1 x*b_4 2 x)-(b_3_2 x*b_4 1 x))/((a_4_1_x*b_4 2 _x)-
(a_4 2 x*b_4 1 x));

v.4 2= (-(b_3_1 x*a_4 2 x)+(b_3_2 x*a_4 1 x))/((a_4_1_x*b_4 2 x)-
(a_4 2 _x*b_4_1 x));

phi_1 1 = (u_1_1*u_2 1*u_3 1*u 4 1) + (u_1_1*u_2 2*v_3 1*u 4 1) +
(u_1_1*u_2_1*u_3_2*v_4_1) + (u_1_1*u_2 2*v_3 2*v_4 1) + (v_1_1*u_2 1*u_ 3 1*u_4 2) +
(v_1_1*u_2 2*v_3 1*u 4 _2) + (v_1_1*u_2 1*u_3 2*v_4 2) + (v_1_1*u_2 2*v_3 2%y 4 2);

phi_2_1 = (u_1_1*v_2 1*u_3 1*u 4 1) + (u_1_1*v_2 2*v_3 1*u_4_1) +
(u_1_1*v_2 1*u_3 2*v_4 1) + (u_1_1*v_2 2*v_3 2*v_4 1) + (v_1_1*v_2 1*u 3 1*u_4 2) +
(v_1_1*v_2 2*v_3 1*u 4 2) + (v_1_1*v_2 1*u_3 2*v_4 2) + (v_1_1*v_2 2*vy 3 2%y 4 2);

phi_1 2 = (u_1_2*u_2_1*u_3_1*u_4 1) + (u_1_2*u_2 2*v_3 1*u_4.1) +
(u_1_2*u_2_1*u_3_2*v_4_1) + (u_1_2*u_2 2*v_3 2*v_4 1) + (v_1_2*u_2 1*u_3 1*u_4 2) +
(v_1 2*%u_2 2*v_3 1*u_4_2) + (v_1_2*u_ 2 1*u_3 2*v_4 2) + (v_1_2*u_2 2*y_3 2*v 4 2);

phi_2 2 = (u_1_2*v_2 1*u_3 1*u_ 4 1) + (u_1_2*v_2 2*v_3 1*u_4.1) +
(u_1_2*v_2 1*u_3 2*v_4_1) + (u_1_2*v_2 2*v_3 2*v_4 1) + (v_1_2*v_2 1*u 3 1*u_4 2) +
(v_1_2*v_2 2*v_3 1*u 4 2) + (v_1_2*v_2 1*u_3 2*v_4 2) + (v_1_2*v_2 2%y 3 2%y 4 2);

}
void FAMANI2DSGDiscritization::computeHelpValuesUVAndPhi(double& phi_1_1, double&

phi_2_1, double& phi_1_2, double& phi_2_2,

double& u_1_1, double& u_1_2, double& u_2_1, double& u_2_2, double& u_3_1, double&
u_3 2, double& u_4_ 1, double& u_4 2,

double& v_1 1, double& v_1 2, double& v_2 1, double& v_2 2, double& v_3_1, double&
v_3 2, double& v_4_1, double& v_4_2)

{
double api = atan(1.0)*4;
double a_1 1y = 0.0;
double a_1 1 x = 0.0;
double a_1 2 y = 0.0;
double a_1 2 x = 0.0;
double a_2 1 y = 0.0;
double a_2 1 x = 0.0;
double a 2 2 = 0.0;



double a_2 2 x =
double a_3_1 vy =
double a_3_1 x =
double a_ 3 2 y =
double a_3_2 x =
double a_4 1 y =
double a_4 1 x =
double a_4 2 y =
double a_4 2 x =
double b_1 1 y =
double b_1 1 x =
double b_1 2 y =
double b_1 2 x =
double b_ 2 1 y =
double b_2_1 x =
double b_2_2 y =
double b_2 2 x =
double b_ 3 1y =
double b_3_1 x =
double b_ 3 2 y =
double b_3_2 x =
double b_ 4 1 y =
double b_4 1 x =
double b_4 2 y =
double b_4 2 x =
double x_1_y =1
zero, which in turn can
double x_1_ x = @
double x_2_y = 1.
double x_2 x = 0.
double x_3_y = 1.
double x_3 x = 0.
double x_4 y = 1.
double x_4 _x = @.
double y 1 y = 0.
double y 1 x = 1.
double y 2 y = 0.
double y 2 x = 1.
double y 3 y = 0.
double y_3 x = 1.
double y_ 4 y = 0.
double y_4 x = 1.
double x_hat_1_y
((x_1_y*cos(m_theta_tild

double x_hat_1_x
((x_1_x*cos(m_theta_tilde_1))+(y_1_x*sin(m_theta_tilde_1)))/sqrt(m_k1_tilde _1);
double x_hat_2_y =
((x_2_y*cos(m_theta_tilde_2))+(y_2_y*sin(m_theta_tilde _2)))/sqrt(m_k2_tilde_1);
double x_hat_2_x
((x_2_x*cos(m_theta_tilde_2))+(y_2_x*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_1);
double x_hat_3 y =
((x_3_y*cos(m_theta_tilde_3))+(y_3_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);
double x_hat_3_x
((x_3_x*cos(m_theta_tilde_3))+(y_3_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);
double x_hat_4 y =
((x_4_y*cos(m_theta_tilde_4))+(y_4_y*sin(m_theta_tilde_4)))/sqrt(m_k4_tilde_1);
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e_1))+(y_1_y*sin(m_theta_tilde_1)))/sqrt(m_k1_tilde_1);



double x_hat_4 x =
((x_4_x*cos(m_theta_tilde_4))+(y_4 x*sin(m_theta_tilde_4)))/sqrt(m_k4_tilde_1);

double y _hat_1 y = ((y_1_y*cos(m_theta_tilde_1))-
(x_1_y*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_2);

double y_hat_1 x = ((y_1_x*cos(m_theta_tilde_1))-
(x_1_x*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_2);

double y_hat_2 y = ((y_2_y*cos(m_theta_tilde_2))-
(x_2_y*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_2);

double y_hat_2 x = ((y_2_x*cos(m_theta_tilde_2))-
(x_2_x*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_2);

double y_hat_3_y = ((y_3_y*cos(m_theta_tilde_3))-
(x_3_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_2);

double y_hat_3_x ((y_3_x*cos(m_theta_tilde_3))-
(x_3_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_2);

double y _hat_4 vy ((y_4_y*cos(m_theta_tilde_4))-
(x_4_y*sin(m_theta_tilde_4)))/sqrt(m_k4_ tilde_2);

double y_hat_4 x = ((y_4_x*cos(m_theta_tilde_4))-
(x_4_x*sin(m_theta_tilde_4)))/sqrt(m_k4_tilde_2);

double theta_hat_1_y
double theta_hat_1 x
double theta_hat_2_y
double theta_hat_2_x
double theta_hat_3_y

(0)-m_theta_tilde_1;

(0.5*api)-m_theta_tilde_1;
(api)-m_theta_tilde_2;
(0.5*api)-m_theta_tilde_2;
(-api)-m_theta_tilde_3;

double theta_hat_3_x = (-0.5*api)-m_theta_tilde_3;

double theta_hat 4. y (0)-m_theta_tilde 4;

double theta_hat_4_x = (-0.5*api)-m_theta_tilde_4;

double radius_1_y = sqrt((x_hat_1_y*x_hat_1_y)+(y_hat_1_y*y hat_1 y));
double radius_1_x = sqrt((x_hat_1_x*x_hat_1_x)+(y_hat_1_x*y hat_1_x));
double radius_2_y = sqrt((x_hat_2_y*x_hat_2_y)+(y_hat_2_y*y hat_2 y));
double radius_2_x = sqrt((x_hat_2_x*x_hat_2_x)+(y_hat_2_x*y hat_2_x));
double radius_3_ y = sqrt((x_hat_3_y*x_hat_3_y)+(y_hat_3_y*y hat_3 y));
double radius_3_x = sqrt((x_hat_3_x*x_hat_3_x)+(y_hat_3_x*y hat_3 x));
double radius_4 y = sqrt((x_hat_4_y*x_hat_4 _y)+(y_hat_4 y*y hat_4_y));
double radius_4 x = sqrt((x_hat_4_x*x_hat_4 x)+(y_hat_4 x*y hat_4 _x));

double dx_dx_1 y = cos(m_theta_tilde_1)/sqrt(m_k1_tilde 1);
double dx_dx_1 x = cos(m_theta_tilde_1)/sqrt(m_k1_tilde 1);
double dx_dx_2_y = cos(m_theta_tilde_2)/sqrt(m_k2_tilde_1);
double dx_dx_2 x = cos(m_theta_tilde_2)/sqrt(m_k2_tilde 1);
double dx_dx_3_y = cos(m_theta_tilde_3)/sqrt(m_k3_tilde_1);
double dx_dx_3_x = cos(m_theta_tilde_3)/sqrt(m_k3_tilde_1);
double dx_dx_4_ y = cos(m_theta_tilde_4)/sqrt(m_k4 tilde_1);
double dx_dx_4_x = cos(m_theta_tilde_4)/sqrt(m_k4_tilde_1);
double dy _dy 1 y = cos(m_theta_tilde_1)/sqrt(m_ki_tilde_2);
double dy dy 1 x = cos(m_theta_tilde_1)/sqrt(m_ki_tilde_2);
double dy_dy 2 y = cos(m_theta_tilde_2)/sqrt(m_k2_tilde_2);
double dy_dy 2 x = cos(m_theta_tilde_2)/sqrt(m_k2_tilde_2);
double dy _dy 3 y = cos(m_theta_tilde_3)/sqrt(m_k3 _tilde 2);
double dy_dy_3_x = cos(m_theta_tilde_3)/sqrt(m_k3_tilde_2);
double dy dy 4 y = cos(m_theta_tilde_4)/sqrt(m_k4_tilde 2);
double dy_dy 4 x = cos(m_theta_tilde_4)/sqrt(m_k4_tilde 2);

double dtheta_dx_1
double dtheta_dx_ 1
double dtheta_dx_2
double dtheta_dx_ 2

at_1_y/(pow(radius_1_y, 2)))*(1-m_alpha_FAM);
at_1 x/(pow(radius_1 x, 2)))*(1-m_alpha_FAM);
at_2 y/(pow(radius_2_y, 2)))*(1-m_alpha_FAM);
at_2 x/(pow(radius_2 x, 2)))*(1-m_alpha_FAM);

y = (-y_h
X (-y_h
y = (-y_h
X (-y_h



double
double
double
double
double
double
double
double
double
double
double
double

double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
double
m_alpha_FAM);
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dtheta_dx_3_y
dtheta_dx_3_x
dtheta_dx_4_y
dtheta_dx_4_x
dtheta_dy_1_ y
dtheta_dy_1_x
dtheta_dy_2_ y
dtheta_dy_2_x
dtheta_dy_3_y
dtheta_dy_3 x
dtheta_dy_4_ y
dtheta_dy_4 x

(-y_
(-y_
(-y_
(-y_

(x_hat_1_y/(pow(radius_1_y,
(x_hat_1_x/(pow(radius_1_x,
(x_hat_2_y/(pow(radius_2_vy,
(x_hat_2_x/(pow(radius_2_x,
(x_hat_3_y/(pow(radius_3_y,
(x_hat_3_x/(pow(radius_3_x,
(x_hat_4_y/(pow(radius_4 vy,
(x_hat_4_x/(pow(radius_4 x,

hat_3_y/(pow(radius_3_y, 2)))*(1-m_alpha_FAM);
hat_3_x/(pow(radius_3_x, 2)))*(1-m_alpha_FAM);
hat_4_y/(pow(radius_4_y, 2)))*(1-m_alpha_FAM);
hat_4 x/(pow(radius_4 x, 2)))*(1-m_alpha_FAM);

2)))*(1-m_alpha_FAM);
2)))*(1-m_alpha_FAM);
2)))*(1-m_alpha_FAM);
2)))*(1-m_alpha_FAM);
2)))*(1-m_alpha_FAM);
2)))*(1-m_alpha_FAM);
2)))*(1-m_alpha_FAM);
2)))*(1-m_alpha_FAM);

dr_dx_ 1 y
dr_dx_1 x
dr_dx_2_ y
dr_dx_2_x
dr_dx_3_y
dr_dx_3_x
dr_dx_ 4 y
dr_dx_4_x
dr_dy_ 1 y
dr_dy_1 x
dr_dy_2_y
dr_dy_2 x
dr_dy 3_y
dr_dy 3 x
dr_dy_4_y

dr_dy_4 x

= (pow(radius_3 vy,
m_alpha_FAM));//The plus or minus

(pow(radius_1 vy,
(pow(radius_1_x,
(pow(radius_2_y,

(pow(radius_2_x,

(x_hat_1_y/radius_1_y)*(pow(radius_1 vy,
(x_hat_1_x/radius_1 x)*(pow(radius_1_x,
(x_hat_2_y/radius_2_y)*(pow(radius_2_y,
(x_hat_2_x/radius_2_x)*(pow(radius_2_x,
(x_hat_3_y/radius_3_y)*(pow(radius_3_y,
(x_hat_3_x/radius_3_x)*(pow(radius_3_x,
(x_hat_4_y/radius_4 y)*(pow(radius_4_y,
(x_hat_4_x/radius_4 x)*(pow(radius_4_x,
(y_hat_1 y/radius_1_y)*(pow(radius_1_y,
(y_hat_1 x/radius_1 x)*(pow(radius_1_x,
(y_hat_2_y/radius_2_y)*(pow(radius_2_y,
(y_hat_2_x/radius_2_x)*(pow(radius_2_x,
(y_hat_3_y/radius_3_y)*(pow(radius_3_y,
(y_hat_3_x/radius_3_x)*(pow(radius_3_x,
(y_hat_4_y/radius_4_y)*(pow(radius_4_y,

(y_hat_4_x/radius_4_x)*(pow(radius_4_x,

as how our calcualtion go from -PI to +PI,
= (pow(radius_3 x, 1-m_alpha_FAM))*cos((theta_hat 3 x+api)*(1-

a_31x

m_alpha_FAM));//when calculating from the positive side (2 quadrant), one must have +PI,

and vice versa (applied one all 3 quadrant equations)

-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-
-m_alpha_FAM))*(1-

-m_alpha_FAM))*(1-

1-m_alpha_FAM))*cos(theta_hat_1_y*(1-m_alpha_FAM));
1-m_alpha_FAM))*cos(theta_hat_1_x*(1-m_alpha_FAM));
1-m_alpha_FAM))*cos((theta_hat_2_y-(0.5*api))*(1-

1-m_alpha_FAM))*cos((theta_hat_2_x-(0.5*api))*(1-

1-m_alpha_FAM))*cos((theta_hat_3 y+api)*(1-
PI has to do with the direction of orientation. Seeing



a_4 1y = (pow(radius_4_y, 1-m_alpha_FAM))*cos((theta_hat_4_y+(0.5*api))*(1-
m_alpha_FAM));

a_4 1 x = (pow(radius_4 x, 1-m_alpha_FAM))*cos((theta_hat_4 x+(@.5*api))*(1-
m_alpha_FAM));

y = (pow(radius_1_y, 1-m_alpha_FAM))*sin(theta_hat_1_y*(1-m_alpha_FAM));
x = (pow(radius_1_x, 1-m_alpha_FAM))*sin(theta_hat_1_x*(1-m_alpha_FAM));
y = -(pow(radius_2_y, 1-m_alpha_FAM))*sin((theta_hat_2_y-(0.5*api))*(1-
x = -(pow(radius_2_ x, 1-m_alpha_FAM))*sin((theta_hat_2_x-(©.5*api))*(1-

1
1
1
)
1
)
1y = -(pow(radius_3_y, 1-m_alpha_FAM))*sin((theta_hat_3_y+api)*(1-
)
1
)
1
)
1
)

b 31
m_alpha_FAM));

b 3 1 x = -(pow(radius_3_x, 1-m_alpha_FAM))*sin((theta_hat_3 x+api)*(1-
m_alpha_FAM));

b 41y = (pow(radius_4_y, 1-m_alpha_FAM))*sin((theta_hat_4_y+(@.5*api))*(1-
m_alpha_FAM));

b 41 x = (pow(radius_4_x, 1-m_alpha_FAM))*sin((theta_hat_4_ x+(@.5*api))*(1-
m_alpha_FAM));

a_1 2y = (m_kl 1 2*dx_dx_1_y*((dr_dx_1_y*cos(theta_hat_1_y*(1-m_alpha_FAM)))+(-

dtheta_dx_1_y*(pow(radius_1_y, 1-m_alpha_FAM))*sin(theta_hat_1_y*(1-m_alpha_FAM)))))

+(m_k1_2 2*dy_dy 1 y*((dr_dy_1_y*cos(theta_hat_1_y*(1-
m_alpha_FAM)))+(-dtheta_dy 1 y*(pow(radius_1_y, 1-m_alpha_FAM))*sin(theta_hat_1_y*(1-
m_alpha_FAM)))));

a_1 2 x = (m_k1_ 1 1*dx_dx_1_x*((dr_dx_1 x*cos(theta_hat_1_x*(1-m_alpha_FAM)))+(-
dtheta_dx_1_x*(pow(radius_1_x, 1-m_alpha_FAM))*sin(theta_hat_1_x*(1-m_alpha_FAM)))))

+(m_k1_1 2*dy_dy 1 x*((dr_dy_1_x*cos(theta_hat_1_x*(1-
m_alpha_FAM)))+(-dtheta_dy 1 x*(pow(radius_1_x, 1-m_alpha_FAM))*sin(theta_hat_1_x*(1-
m_alpha_FAM)))));

a_2 2y = (m_k2 1 2*dx_dx_2_y*((dr_dx_2_y*cos((theta_hat_2_y-(0.5*api))*(1-
m_alpha_FAM)))+(-dtheta_dx_2_y*(pow(radius_2_y, 1-m_alpha_FAM))*sin((theta_hat_2_y-
(0.5*api))*(1-m_alpha_FAM)))))

+(m_k2_2 2*dy_dy 2 y*((dr_dy_2_y*cos((theta_hat_2_y-(0.5*api))*(1-
m_alpha_FAM)))+(-dtheta_dy 2_y*(pow(radius_2_y, 1-m_alpha_FAM))*sin((theta_hat_2_y-
(0.5*api))*(1-m_alpha_FAM)))));

a_2 2 x = (m_k2_1 1*dx_dx_2_x*((dr_dx_2_x*cos((theta_hat_2_x-(0.5*api))*(1-
m_alpha_FAM)))+(-dtheta_dx_2_x*(pow(radius_2_x, 1-m_alpha_FAM))*sin((theta_hat_2_x-
(0.5*api))*(1-m_alpha_FAM)))))

+(m_k2_1 2*dy_dy 2 x*((dr_dy_2_x*cos((theta_hat_2_x-(0.5*api))*(1-
m_alpha_FAM)))+(-dtheta_dy 2_x*(pow(radius_2_x, 1-m_alpha_FAM))*sin((theta_hat_2_x-
(0.5*api))*(1-m_alpha_FAM)))));

a_3 2y = (m_k3 1 2*dx_dx_3_y*((dr_dx_3_y*cos((theta_hat_3_y+api)*(1-
m_alpha_FAM)))+(-dtheta_dx_3_y*(pow(radius_3 vy, 1-
m_alpha_FAM))*sin((theta_hat_3_y+api)*(1-m_alpha_FAM)))))

+(m_k3_2 2*dy_dy 3 y*((dr_dy_3_y*cos((theta_hat_3_y+api)*(1-
m_alpha_FAM)))+(-dtheta_dy 3 y*(pow(radius_3_ vy, 1-
m_alpha_FAM))*sin((theta_hat_3_y+api)*(1-m_alpha_FAM)))));

a_3 2 x = (m_k3_1 1*dx_dx_3_x*((dr_dx_3_x*cos((theta_hat_3_x+api)*(1-
m_alpha_FAM)))+(-dtheta_dx_3_ x*(pow(radius_3_x, 1-
m_alpha_FAM))*sin((theta_hat_3_x+api)*(1-m_alpha_FAM)))))

+(m_k3_1 2*dy dy 3 x*((dr_dy_3_x*cos((theta_hat_3 x+api)*(1-
m_alpha_FAM)))+(-dtheta_dy 3 x*(pow(radius_3 x, 1-
m_alpha_FAM))*sin((theta_hat_3_x+api)*(1-m_alpha_FAM)))));

a4 2y = (mka4 1 2*dx dx_ 4 _y*((dr_dx_4_y*cos((theta_hat_4_y+(@.5*api))*(1-
m_alpha_FAM)))+(-dtheta_dx_4_y*(pow(radius_4 vy, 1-
m_alpha_FAM))*sin((theta_hat_4 y+(0.5*api))*(1-m_alpha_FAM)))))



+(m_k4_2 2*dy_dy 4 y*((dr_dy_4 y*cos((theta_hat_4_y+(0.5*api))*(1-
m_alpha_FAM)))+(-dtheta_dy_4_y*(pow(radius_4 vy, 1-
m_alpha_FAM))*sin((theta_hat_4 y+(@.5*api))*(1-m_alpha_FAM)))));

a_4 2 x = (m_k4_1 1*dx_dx_4_x*((dr_dx_4_x*cos((theta_hat_4_x+(@.5*api))*(1-

m_alpha_FAM)))+(-dtheta_dx_4_x*(pow(radius_4 x, 1-
m_alpha_FAM))*sin((theta_hat_4 x+(@.5*api))*(1-m_alpha_FAM)))))

+(m_k4_1 2*dy_dy 4 x*((dr_dy_4 x*cos((theta_hat_4_ x+(0.5*api))*(1-
m_alpha_FAM)))+(-dtheta_dy_ 4 x*(pow(radius_4 x, 1-
m_alpha_FAM))*sin((theta_hat_4 x+(©.5*api))*(1-m_alpha_FAM)))));

b 12y = (mkl 1 2*dx_dx_1_y*((dr_dx_1 y*sin(theta_hat_1_y*(1-
m_alpha_FAM)))+(dtheta_dx_1_y*(pow(radius_1_y, 1-m_alpha_FAM))*cos(theta_hat_1_y*(1-
m_alpha_FAM)))))

+(m_k1_2 2*dy dy 1 y*((dr_dy_1_y*sin(theta_hat_1_y*(1-
m_alpha_FAM)))+(dtheta_dy 1 y*(pow(radius_1_y, 1-m_alpha_FAM))*cos(theta_hat_1_y*(1-
m_alpha_FAM)))));

b 12 x = (m k1 1 1*dx_dx_1_x*((dr_dx_1 x*sin(theta_hat_1_x*(1-
m_alpha_FAM)))+(dtheta_dx_1_x*(pow(radius_1_x, 1-m_alpha_FAM))*cos(theta_hat_1_x*(1-
m_alpha_FAM)))))

+(m_k1_1 2*dy_dy 1 x*((dr_dy_1_x*sin(theta_hat_1_x*(1-
m_alpha_FAM)))+(dtheta_dy 1 x*(pow(radius_1 x, 1-m_alpha_FAM))*cos(theta_hat_1 x*(1-
m_alpha_FAM)))));

b 22y =-((mk2_1 2*dx_dx_2_y*((dr_dx_2_y*sin((theta_hat_2_y-(0.5*api))*(1-
m_alpha_FAM)))+(dtheta_dx_2_y*(pow(radius_2_y, 1-m_alpha_FAM))*cos((theta_hat_2_ y-
(0.5*api))*(1-m_alpha_FAM)))))

+(m_k2_2 2*dy_dy 2_y*((dr_dy_2_y*sin((theta_hat_2_y-
(0.5*api))*(1-m_alpha_FAM)))+(dtheta_dy 2 y*(pow(radius_2_ vy, 1-
m_alpha_FAM))*cos((theta_hat_2_y-(0.5*api))*(1-m_alpha_FAM))))));

b 2 2 x = -((m_k2_1_1*dx_dx_2_x*((dr_dx_2_x*sin((theta_hat_2_x-(0.5*api))*(1-
m_alpha_FAM)))+(dtheta_dx_2_ x*(pow(radius_2_ x, 1-m_alpha_FAM))*cos((theta_hat_2_ x-
(0.5*api))*(1-m_alpha_FAM)))))

+(m_k2_1_2*dy_dy 2_x*((dr_dy_2_x*sin((theta_hat_2_x-
(0.5*api))*(1-m_alpha_FAM)))+(dtheta_dy 2 x*(pow(radius_2_ x, 1-
m_alpha_FAM))*cos((theta_hat_2_x-(@.5*api))*(1-m_alpha_FAM))))));

b 32y =-((m_k31 2*dx_dx_3 y*((dr_dx_3_y*sin((theta_hat_3_y+api)*(1-
m_alpha_FAM)))+(dtheta_dx_3_y*(pow(radius_3 vy, 1-
m_alpha_FAM))*cos((theta_hat_3_y+api)*(1-m_alpha_FAM)))))

+(m_k3_2 2*dy dy 3 y*((dr_dy_3_y*sin((theta_hat_3_y+api)*(1-
m_alpha_FAM)))+(dtheta_dy_3_y*(pow(radius_3 vy, 1-
m_alpha_FAM))*cos((theta_hat_3_y+api)*(1-m_alpha_FAM))))));

b 3 2 x = -((m_k3_1_1*dx_dx_3_x*((dr_dx_3_x*sin((theta_hat_3_x+api)*(1-
m_alpha_FAM)))+(dtheta_dx_3_x*(pow(radius_3 x, 1-
m_alpha_FAM))*cos((theta_hat_3_ x+api)*(1-m_alpha_FAM)))))

+(m_k3_ 1 2*dy dy 3 x*((dr_dy_3 x*sin((theta_hat_3_ x+api)*(1-
m_alpha_FAM)))+(dtheta_dy 3 x*(pow(radius_3 x, 1-
m_alpha_FAM))*cos((theta_hat_3_x+api)*(1-m_alpha_FAM))))));

b 42y = (mk4 1 2*dx dx_ 4 _y*((dr_dx_4 y*sin((theta_hat_4_y+(@.5*api))*(1-
m_alpha_FAM)))+(dtheta_dx_4_y*(pow(radius_4_y, 1-
m_alpha_FAM))*cos((theta_hat_4 y+(0.5*api))*(1-m_alpha_FAM)))))

+(m_k4_2 2*dy dy 4 y*((dr_dy_4 y*sin((theta_hat 4 y+(0.5*api))*(1-
m_alpha_FAM)))+(dtheta_dy 4_y*(pow(radius_4_y, 1-
m_alpha_FAM))*cos((theta_hat_4 y+(0.5*api))*(1-m_alpha_FAM)))));

b 4 2 x = (m_k4_1_1*dx_dx_4_x*((dr_dx_4 x*sin((theta_hat_4_ x+(0.5%api))*(1-
m_alpha_FAM)))+(dtheta_dx_4_x*(pow(radius_4 x, 1-
m_alpha_FAM))*cos((theta_hat_4 x+(0.5*api))*(1-m_alpha_FAM)))))

+(m_k4 1 2*dy_dy 4 x*((dr_dy_4 x*sin((theta_hat_4 x+(@0.5*api))*(1-
m_alpha_FAM)))+(dtheta_dy 4 x*(pow(radius_4_x, 1-
m_alpha_FAM))*cos((theta_hat 4 x+(©.5*api))*(1-m_alpha_FAM)))));



ulil-=((a_41y*b12y)-(ad42y*b 11y))/((a_1_1 y*b 1 2 y)-
(a_1_2 y*b_1.1y));

ul?2-=¢(-(a_41y*al2y)(ad2y*al1ly))/((a_1_1 y*b 1 2 y)-
(a_1_2_y*b_1.1y));

u21-=((a_11x*b 22 x)-(a_1 2 x*b 2 1 x))/((a_2_1_x*b_ 2 2 x)-
(a_2_2 x*b_2 1 x));

u?22=(-(a_11 x*a 2 2 x)+(a_1_2 x*a_2 1 x))/((a_2_1_x*b_2 2 x)-
(a_2_2 x*b_2 1 x));

u31l=((a_21y*b 3 2y)-(a_22y*b 3 1y))/((a_3_1 y*b 3 2 y)-
(a_3_2_y*b_3_1y));

u32=(-(a_2_1y*a 3 2y)+(a_2_2 y*a 3 1y))/((a_3_1_y*b 3 2 y)-
(a_3_2_y*b_3_1.y));

u4d1l=((a_3_1 x*b 4 2 x)-(a_3_2 x*b_4 1 x))/((a_4_1_x*b_4 2 x)-
(a_4 2 _x*b_4_1 x));

ud?2=(-(a_3_1x*a 4 2 x)+(a_3_2 x*a_4_1 x))/((a_4_1_x*b_4_ 2 x)-
(a_4 2 x*b_4_1 x));

v.11=((b_41y*b 12 y)-(b42y*b 11y))/((a_1_1 y*b 1 2 y)-
(a_1_2 y*b_1.1y));

v.12=(-(b41y*a1l2y)+(b 42 y*¥a 11y))/((a_1 1 y*b 1 2 y)-
(a_1_2_y*b_1.1.y));

v_2 1= ((b_1 1 x*b_2 2 x)-(b_1_2 x*b_2 1 x))/((a_2_1_x*b_2 2 x)-
(a_2_2 x*b_2 1 x));

v.22=(-(b_1.1 x*a_2 2 x)+(b_1 2 x*a_2 1 x))/((a_2_1_x*b_2 2 x)-
(a_2_2 x*b_2_1 x));

v.31=((b_2_1 y*b 3 2 y)-(b_2 2 y*b 3 1 vy))/((a_3_1_y*b 3 2 y)-
(a_3_2_y*b_3_1.y));

v.32=(-(b21y*a32y)+(b22y*a31y))/((a_31y*b 32 y)-
(a_3_2_y*b_3_1.y));

v_4 1 = ((b_3 1 x*b_4 2 x)-(b_3_2 x*b_4 1 x))/((a_4_1_x*b_4 2 x)-
(a_4 2 _x*b_4_1 x));

v_4 2 = (-(b_3_1 x*a_4 2 x)+(b_3 2 x*a_4 1 x))/((a_4_1_x*b_4 2 x)-
(a_4 2 _x*b_4_1 x));

phi_1 1 = (u_1_1*u_2 1*u 3 1*u 4 1) + (u_1_1*u_2 2*v_3 1*u 4 1) +
(u_1_1*u_2_1*u_3_2*v_4_1) + (u_1_1*%u_2 2*v_3 2*v_4 1) + (v_1_1*u_2 1*u_ 3 1*u_4 2) +
(v_1_1*u_2 2*v_3 1*u_4_2) + (v_1_1*%u_2 1*u_3 2*v_4 2) + (v_1_1*u_2 2*v_3 2*v_4 2);

phi_2 1 = (u_1_1*v_2 1*u 3 1*u 4 1) + (u_1_1*v_2 2*v_3 1*u 4 1) +
(u_1_1*v_2 1*u_3 2*v_4 1) + (u_1_1%v_2 2*v_3 2*v_4 1) + (v_1_1*v_2 1*u_3 1*u_ 4 2) +
(v_1_1*v_2 2*v_3 1*u 4 2) + (v_1_1*v_2 1*u_3 2*v_4 2) + (v_1_1*v_2 2%y 3 2%y 4 2);

phi_1 2 = (u_1_2*u_2 1*u_3 1*u 4 1) + (u_1_2*u_2 2*v_3 1*u 4 1) +
(u_1_2*u_2_1*u_3 2*v_4 1) + (u_1 2*u_2 2*v_3 2*v_4 1) + (v_1_2*u_2_1*u_3 1*u_ 4 2) +
(v_1 2*%u_2 2*v_3 1*u 4 2) + (v_1_2*u 2 1*u_3 2*v_4 2) + (v_1_2*u_2 2*v_3 2%y 4 2);

phi_2 2 = (u_1_2*v_2 1*u_3 1*u 4 1) + (u_1_2*v_2 2*v_3 1*u 4 1) +
(u_1_2*v_2 1*u_3 2*v_4 1) + (u_1 2*v_2 2*v_3 2*v_4 1) + (v_1 2*v_2 1*u_3 1*u_ 4 2) +
(v_1 2*v_2 2*v_3 1*u 4 2) + (v_1_2*v_2 1*u_3 2*v_4 2) + (v_1_2*v_2 2%y 3 2%y 4 2);

}
void FAMANI2DSGDiscritization::computeAlphaAndC(const Pair<int,int> Pghat, const int
ihat, const bool atBoundary)

{
if (!atBoundary)

{



//This (under) must probably be changed when isotropic testing is

finished//
m_alpha_FAM = NewtonSecant();
m_C_FAM = ComputeC();
[ [ FF kst sk sk ok sk sk ok sk skok skok sk sk sk sk ok ok sk sk kst ok ok ok sk skok sk ok ok /
cout << "alpha = " << m_alpha_FAM << endl;
//$$$$$$$$$$$$$$$ JUST A TEMPORARY SOLUTION $3$$$$3$$$$$$$$$$$$
m_useFAMScheme = (fabs(m_alpha_FAM) < 1.0) ? true : false;
}
else
{
//NOT NECCESARY!!!!
}
}

realS FAMANI2DSGDiscritization::computeRHSContribution(const int ihat, const int khat,
const int ghat, const ArrayS<realS>& g)
{

double ret = 90.0;

Pair<int,int> PQ(@, ghat);

Pair<int,int> PK(1, khat);

Pair<int,int> PI(2, ihat);

double delta_x = 0.0;

double delta_y = 0.0;

RnPoint XQ = m_C.u_getCoordinate_ou(PQ);
double XQ_x = XQ.u_getElement_0u(9);
double XQ_y = XQ.u_getElement_0u(1);
RnPoint XI = m_C.u_getCoordinate_0u(PI);

double XI_x = XI.u_getElement_0u(9);
double XI_y = XI.u_getElement_0u(1);
delta_x = fabs(XI_x - XQ_x);// Half actual delta_x in the grid!!!!

delta_y = fabs(XI_y - XQ.y);// Half actual delta_y in the grid!!!!

RnPoint normalVec = m_C.u_getNormalVector_Ou(PI, PK);
if (m_C.u_boundaryIndex_0u(PK))

{
if ((fabs(normalVec.u_getElement_0Qu(1l)) <= m_Ftol) ? (ret =
(delta_y/delta_x)*m_permxx[ihat]*g[m_C.u_findBoundaryPosition_@u(PK)]) : (ret =
(delta_x/delta_y)*m_permxx[ihat]*g[m_C.u_findBoundaryPosition_0u(PK)]));
}

return (-1.0)*ret;

}
realS FAMANI2DSGDiscritization::AlphaFunction(const double& alpha)

{
double api = atan(1.0)*4;
double alpha_func_result = 0.9;

double phi_1 1
double phi_2 1 =
double phi_1 2
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double phi_2 2 = 0.0;

double u_1 1 = 0.90;

double u_1 2 = 0.90;

double u_2_1 = 0.0;

double u_2 2 = 0.90;

double u_3_1 = 0.90;

double u_3 2 = 0.0;

double u_4 1 = 0.90;

double u_4_ 2 = 0.0;

double v_1 1 = 0.0;

double v_1 2 = 0.0;

double v_2 1 = 0.0;

double v_2 2 = 0.0;

double v_3_1 = 0.0;

double v_3 2 = 0.0;

double v_4 1 = 0.0;

double v_4 2 = 0.0;

computeHelpValuesUVAndPhiForAlpha(phi_1_1, phi_2_ 1, phi_1 2, phi_2 2, u_1 1,
ul?2,u21,u?22,u31,u32,uéd41,ud?2,v11,v12,v21,v22,v31,
v_3 2, v_41, v.4 2, alpha);

alpha_func_result = (phi_1_1*phi_2 2) - (phi_1_2*phi 2 1) - phi_1 1 - phi_2 2 +
1.0;

return alpha_func_result;
}
realS FAMANI2DSGDiscritization::NewtonSecant()
{

double alpha_nml =
double alpha_n = 1.
double F_derive = 0.
double F_func = 0.0;
bool converged = false;

@.1;//m_Ftol;
0-0.101;//m_Ftol;
9;

while (!converged)
{
F_func = AlphaFunction(alpha_n);
F_derive = (F_func - AlphaFunction(alpha_nml))/(alpha_n - alpha_nml);
//Secant appox.
cout << "AlphaFunction(alpha_nml) =
alpha_nml = alpha_n;
alpha_n -= (F_func/F_derive); //Newton update
cout << "alpha_n = " << alpha_n << F_func = " << F_func <«
" F_func/F_derive = " << F_func/F_derive << endl;
converged = (fabs(alpha_n - alpha_nml) < m_Ftol) ? true : false;
//Convergence requirement

"

<< AlphaFunction(alpha_nml) << endl;

F_derive =
<< F_derive <«

}

return alpha_n;
}
realS FAMANI2DSGDiscritization::ComputeC ()
{

double api = atan(1.90)*4;
double c¢_from_phi = 0.0;

0.0;
0.9;

)

double phi_1_ 1
double phi_2 1



double phi_1 2 = 0.0;
double phi_2 2 = 0.0;
double u_1 1 = 0.90;
double u_1 2 = 0.0;
double u_2 1 = 0.90;
double u_2 2 = 0.0;
double u_3_1 = 0.0;
double u_3_2 = 0.90;
double u_4_1 = 0.0;
double u_4_ 2 = 0.0;
double v_1 1 = 0.0;
double v_1 2 = 0.0;
double v_2 1 = 0.0;
double v_2 2 = 0.0;
double v_3 1 = 0.0;
double v_3 2 = 0.0;
double v_4 1 = 0.0;
double v_4 2 = 0.0;

|
|
.

computeHelpValuesUVAndPhi(phi_1_1, phi_2 1, phi_1 2, phi_ 2 2, u 11, u 1 2, u 21,
,u31l,u32,u41,ud2,v11,v12,v21,v22,v31,v32,v41,

c_from_phi = (phi_1_1 - 1)/(-phi_2_1);
//c_from_phi = (phi_1 2)/(1 - phi_2_2);

return c_from_phi;
}
void FAMANI2DSGDiscritization::computeLambdas(const int ihat, const int itilde, const int
khat, const int ghat, double& lambda_c, double& lambda_w, double& lambda_sw, double&
lambda_s, double& lambda_c_x, double& lambda_c_y, double& lambda_sw_x, double&
lambda_sw_y)
{

double api = atan(1.90)*4;

double theta_xycoord = 0.90;

double flux_part_1 1 = 0.0;
double flux_part_1 2 = 0.0;
double flux_part_2 1 = 0.0;
double flux_part_2 2 = 0.0;

Pair<int,int> PQ(@, ghat);
Pair<int,int> PI(2, ihat);
Pair<int,int> PK(1, khat);

RnPoint XQ = m_C.u_getCoordinate_ou(PQ);
double XQ_x = XQ.u_getElement_0u(®);
double XQ_y = XQ.u_getElement_0u(1);
RnPoint XI = m_C.u_getCoordinate_0Ou(PI);
double XI_x = XI.u_getElement_0u(®);
double XI_y = XI.u_getElement_0u(1);
RnPoint XK = m_C.u_getCoordinate_0u(PK);
double XK_x .u_getElement_o0u(9);
double XK_y = XK.u_getElement_0Ou(1);

"
x
~

double delta_x
double delta_y

fabs(XI_x - XQ_x);// Half actual delta_x in the grid
fabs(XI_y - XQ_y);// Half actual delta_y in the grid,



double x_hat_1 =
((delta_x*cos(m_theta_tilde_1))+(delta_y*sin(m_theta_tilde _1)))/sqrt(m_ki_tilde_1);
double y hat_1 =
((delta_y*cos(m_theta_tilde_1))+(delta_x*sin(m_theta_tilde_1)))/sqrt(m_k1_tilde_2);
double radius_hat_1 = sqrt((x_hat_1*x_hat_1) + (y_hat_1*y hat_1));
double theta_hat_1 = (api/4) - m_theta_tilde_1;

double x_hat_2 =
((delta_x*cos(m_theta_tilde_2))+(delta_y*sin(m_theta_tilde_2)))/sqrt(m_k2_tilde_1);
double y_hat_2 =
((delta_y*cos(m_theta_tilde_2))+(delta_x*sin(m_theta_tilde _2)))/sqrt(m_k2_tilde_2);
double radius_hat_2 = sqrt((x_hat_2*x_hat_2) + (y_hat_2*y hat_2));
double theta_hat_2 = (3*api/4) - m_theta_tilde_2;

double x_hat_3 =
((delta_x*cos(m_theta_tilde_3))+(delta_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);

double y_hat_3 =
((delta_y*cos(m_theta_tilde_3))+(delta_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_2);

double radius_hat_3 = sqrt((x_hat_3*x_hat_3) + (y_hat_3*y hat_3));

double theta_hat_3 = (-3*api/4) - m_theta_tilde_3;

double x_hat_4 =
((delta_x*cos(m_theta_tilde_4))+(delta_y*sin(m_theta_tilde _4)))/sqrt(m_k4 tilde_1);

double y_hat_4 =
((delta_y*cos(m_theta_tilde_4))+(delta_x*sin(m_theta_tilde _4)))/sqrt(m_k4 tilde_2);

double radius_hat_4 = sqrt((x_hat_4*x_hat_4) + (y_hat_4*y hat_4));

double theta_hat_4 = (-api/4) - m_theta_tilde_4;

double
double

N

double phi_1 1 = 0.0;
double phi_2 1 = 0.0;
double phi_1_2 = 0.0;
double phi_2_2 = 0.0;
double u_1 1 = 0.0;
double u_1 2 = 0.0;
double u_2 1 = 0.0;
double u_2 2 = 0.0;
double u_3 1 = 0.0;
double u_3 2 = 0.0;
double u_4 1 = 0.0;
double u_4 2 = 0.0;
double v_1 1 = 0.0;
double v_1 2 = 0.0;
double v_.2 1 = 0.0;
double v_2 2 = 0.0;
double v_3 1 = 0.0;
double v.3 2 = 0.0;

v 1 0.0

v_4 2 =10.0

N

computeHelpValuesUVAndPhi(phi_1_1, phi_2 1, phi_1 2, phi_ 2 2, u_1 1, u 12, u 21,

u22,u31,u32,ud4l1,ud42,v11,v12,v21,v22,v31,v32,v41,
v_4 2);

double A 1 = 1.9;

double B_1 = A 1*m_C_FAM;

double A 2 = (A 1*u 2 1) + (B_1*v_2 1);



double B_2 = (A _1*u_2_2) + (B_1*v_2 2);
double A 3 = (A 2*u_3_ 1) + (B_2*v_3_1);
double B_3 = (A 2*u_3 2) + (B_2*v_3_2);
double A_ 4 = (A 3*u_4_1) + (B_3*v_4_1);
double B_4 = (A _3*u_4_2) + (B_3*v_4 2);

lambda_c = (A_1*(pow(radius_hat_1, 1-m_alpha_FAM))*cos(theta_hat_1*(1-
m_alpha_FAM))) + (B_1*(pow(radius_hat_1, 1-m_alpha_FAM))*sin(theta_hat_1*(1-
m_alpha_FAM)));

lambda_w = (A_2*(pow(radius_hat_2, 1-m_alpha_FAM))*cos((theta_hat_2-(api/2))*(1-
m_alpha_FAM))) - (B_2*(pow(radius_hat_2, 1-m_alpha_FAM))*sin((theta_hat_2-(api/2))*(1-
m_alpha_FAM)));

lambda_sw = (A_3*(pow(radius_hat_3, 1-m_alpha_FAM))*cos((theta_hat_3+api)*(1-
m_alpha_FAM))) - (B_3*(pow(radius_hat_3, 1-m_alpha_FAM))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

lambda_s = (A_4*(pow(radius_hat_4, 1-m_alpha_FAM))*cos((theta_hat_4+(api/2))*(1-
m_alpha_FAM))) + (B_4*(pow(radius_hat_4, 1-m_alpha_FAM))*sin((theta_hat_4+(api/2))*(1-
m_alpha_FAM)));

if (XI_x > XQ_x & & XI_y > XQ_y)
{

if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
theta_xycoord = 0.0;
delta_y = 0.0;
x_hat_1 =
((delta_x*cos(m_theta_tilde_1))+(delta_y*sin(m_theta_tilde_1)))/sqrt(m_k1_tilde_1);
y_hat_1 =

((delta_y*cos(m_theta_tilde_1))+(delta_x*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_2);
radius_hat_1 = sqrt((x_hat_1*x_hat_1) +
(y_hat_1*y hat_1));
theta_hat_1 = theta_xycoord - m_theta_tilde_1;

flux_part_1_1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_1_2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(-y_hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-m_alpha_FAM))*(-
y_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2_1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2 2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));

lambda_c_y =
delta_x*((m_k1_1 2*(cos(m_theta_tilde_1)/sqrt(m_k1_tilde_1))*(flux_part_1_1+flux_part_1_2
))+(m_k1 2 2*(cos(m_theta_tilde_1)/sqrt(m_k1_tilde 2))*(flux_part_2_1+flux_part_2_2)));
}



else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
theta_xycoord = api/2;
delta_x = 0.0;
x_hat_1 =
((delta_x*cos(m_theta_tilde_1))+(delta_y*sin(m_theta_tilde_1)))/sqrt(m_ki1_tilde_1);
y_hat_1 =
((delta_y*cos(m_theta_tilde_1))+(delta_x*sin(m_theta_tilde_1)))/sqrt(m_k1_tilde_2);
radius_hat_1 = sqrt((x_hat_1*x_hat_1) +
(y_hat_1*y hat_1));
theta_hat_1 = theta_xycoord - m_theta_tilde_1;

flux_part_1 1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_1_2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(-y_hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-m_alpha_FAM))*(-
y_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2_1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2_2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));

lambda_c_x =

delta_y*((m_k1_1_1*(cos(m_theta_tilde_1)/sqrt(m_ki1_tilde_1))*(flux_part_1_1+flux_part_1_2
))+(m_k1_ 1 2*(cos(m_theta_tilde_1)/sqrt(m_k1_tilde_2))*(flux_part_2_1+flux_part_2_2)));

}

else if (XQ_x > XI_x && XI_y > XQ.y)
{

if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
theta_xycoord = -api;
delta_y = 0.9;
x_hat_3 =
((delta_x*cos(m_theta_tilde_3))+(delta_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);
y_hat_3 =

((delta_y*cos(m_theta_tilde_3))+(delta_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_2);
radius_hat_3 = sqrt((x_hat_3*x_hat_3) +
(y_hat_3*y_hat_3));
theta_hat_3 = theta_xycoord - m_theta_tilde_3;

flux_part_1 1 = (A _3*(pow(radius_hat_3, -
m_alpha_FAM))*(x_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(x_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

flux_part_1 2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(-y_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-



m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-m_alpha_FAM))*(-
y_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-m_alpha_FAM)));

flux_part_2_1 = (A_3*(pow(radius_hat_3, -
m_alpha_FAM))*(y_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(y_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

flux_part_2 2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-
m_alpha_FAM)));

lambda_sw_y =
delta_x*((m_k3_1 2*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_1))*(flux_part_1_1+flux_part_1_ 2
))+(m_k3_2 2*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_2))*(flux_part_2_ 1+flux_part_2 2)));

else if (XK y > XQ y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
theta_xycoord = api/2;
delta_x = 0.0;
x_hat_1 =
((delta_x*cos(m_theta_tilde_1))+(delta_y*sin(m_theta_tilde_1)))/sqrt(m_k1_tilde_1);
y_hat_1 =
((delta_y*cos(m_theta_tilde_1))+(delta_x*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_2);
radius_hat_1 = sqrt((x_hat_1*x_hat_1) +
(y_hat_1*y hat_1));
theta_hat_1 = theta_xycoord - m_theta_tilde_1;

flux_part_1_1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_1_2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(-y _hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-m_alpha_FAM))*(-
y_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2_1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2_ 2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));

lambda_c_x =
delta_y*((m_ki1_1 1*(cos(m_theta_tilde_1)/sqrt(m_ki1_tilde_1))*(flux_part_1_1+flux_part_1_2
))+(m_k1_1 2*(cos(m_theta_tilde_1)/sqrt(m_k1_tilde_2))*(flux_part_2_1+flux_part_2_2)));

}

else if (XQ_x > XI_x && XQ.y > XI_y)
{

if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{



theta_xycoord = -api;

delta_y = 0.0;

x_hat_3 =
((delta_x*cos(m_theta_tilde_3))+(delta_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);

y_hat_3 =
((delta_y*cos(m_theta_tilde_3))+(delta_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_2);

radius_hat_3 = sqrt((x_hat_3*x_hat_3) +
(y_hat_3*y hat_3));

theta_hat_3 = theta_xycoord - m_theta_tilde_3;

flux_part_1 1 = (A_3*(pow(radius_hat_3, -
m_alpha_FAM))*(x_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(x_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

flux_part_1 2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(-y_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-m_alpha_FAM))*(-
y_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-m_alpha_FAM)));

flux_part_2_1 = (A_3*(pow(radius_hat_3, -
m_alpha_FAM))*(y_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(y_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

flux_part_2_2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-
m_alpha_FAM)));

lambda_sw_y =
delta_x*((m_k3_1 2*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_ 1))*(flux_part_1 1+flux_part_1 2
))+(m_k3_2 2*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_2))*(flux_part_2_1+flux_part_2_2)));
}

else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
theta_xycoord = (-api)/2;
delta_x = 0.0;
x_hat_3 =
((delta_x*cos(m_theta_tilde_3))+(delta_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);
y_hat_3 =
((delta_y*cos(m_theta_tilde_3))+(delta_x*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_2);
radius_hat_3 = sqrt((x_hat_3*x_hat_3) +
(y_hat_3*y hat_3));
theta_hat_3 = theta_xycoord - m_theta_tilde_3;

flux_part_1_ 1 = (A_3*(pow(radius_hat_3, -
m_alpha_FAM))*(x_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(x_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

flux_part_1 2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(-y_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-m_alpha_FAM))*(-
y_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-m_alpha_FAM)));

flux_part_2_1 = (A_3*(pow(radius_hat_3, -
m_alpha_FAM))*(y_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(y_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));



flux_part_2 2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-
m_alpha_FAM)));

lambda_sw_x =

delta_y*((m_k3_1 1*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_1))*(flux_part_1_1+flux_part_1 2
))+(m_k3_1 2*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_2))*(flux_part_2_1+flux_part_2_2)));

}

else if (XI_x > XQ_x && XQ_y > XI_y)
{

if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&R..."
addition is only present as an aditional check

{
theta_xycoord = 0.90;
delta_y = 0.0;
x_hat_1 =
((delta_x*cos(m_theta_tilde_1))+(delta_y*sin(m_theta_tilde_1)))/sqrt(m_ki_tilde_1);
y_hat_1 =

((delta_y*cos(m_theta_tilde_1))+(delta_x*sin(m_theta_tilde_1)))/sqrt(m_k1_tilde_2);
radius_hat_1 = sqrt((x_hat_1*x_hat_1) +
(y_hat_1*y hat_1));
theta_hat_1 = theta_xycoord - m_theta_tilde_1;

flux_part_1_1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(x_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_1_2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(-y_hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-m_alpha_FAM))*(-
y_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2_1 = (A_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*cos(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, -
m_alpha_FAM))*(y_hat_1/radius_hat_1)*sin(theta_hat_1*(1-m_alpha_FAM)));
flux_part_2_2 = (-A_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*sin(theta_hat_1*(1-
m_alpha_FAM)))+(B_1*(pow(radius_hat_1, 1-
m_alpha_FAM))*(x_hat_1/(radius_hat_1*radius_hat_1))*cos(theta_hat_1*(1-m_alpha_FAM)));

lambda_c_y =
delta_x*((m_k1_1 2*(cos(m_theta_tilde_1)/sqrt(m_k1_tilde_1))*(flux_part_1_1+flux_part_1_2
))+(m_k1_2 2*(cos(m_theta_tilde_1)/sqrt(m_ki_tilde_2))*(flux_part_2_1+flux_part_2 2)));

else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
theta_xycoord = (-api)/2;
delta_x = 0.0;
x_hat_3 =
((delta_x*cos(m_theta_tilde_3))+(delta_y*sin(m_theta_tilde_3)))/sqrt(m_k3_tilde_1);
y_hat_3 =
((delta_y*cos(m_theta_tilde_3))+(delta_x*sin(m_theta_tilde _3)))/sqrt(m_k3_tilde_2);



radius_hat_3 = sqrt((x_hat_3*x_hat_3) +
(y_hat_3*y_hat_3));

theta_hat_3 = theta_xycoord - m_theta_tilde_3;

flux_part_1 1 = (A_3*(pow(radius_hat_3, -
m_alpha_FAM))*(x_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(x_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

flux_part_1 2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(-y_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-m_alpha_FAM))*(-
y_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-m_alpha_FAM)));

flux_part_2 1 = (A_3*(pow(radius_hat_3, -
m_alpha_FAM))*(y_hat_3/radius_hat_3)*cos((theta_hat_3+api)*(1-m_alpha_FAM)))-
(B_3*(pow(radius_hat_3, -m_alpha_FAM))*(y_hat_3/radius_hat_3)*sin((theta_hat_3+api)*(1-
m_alpha_FAM)));

flux_part_2_2 = (-A_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*sin((theta_hat_3+api)*(1-
m_alpha_FAM)))-(B_3*(pow(radius_hat_3, 1-
m_alpha_FAM))*(x_hat_3/(radius_hat_3*radius_hat_3))*cos((theta_hat_3+api)*(1-
m_alpha_FAM)));

lambda_sw_x =
delta_y*((m_k3_1_1*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_1))*(flux_part_1_1+flux_part_1 2
))+(m_k3_1 2*(cos(m_theta_tilde_3)/sqrt(m_k3_tilde_2))*(flux_part_2_1+flux_part_2 2)));
}
}
}
realS FAMANI2DSGDiscritization::computeMatrixContribution(const int ihat, const int
itilde, const int khat, const int ghat, const ArrayS<realS>& alphal, const ArrayS<realS>&
alpha2, const bool atBoundary)

{
realS ret=0.0;

double api = atan(1.90)*4;
double delta_x = 0.0;
double delta_y = 0.0;
double theta = 0.09;
double radius = 0.0;
double gamma_x = 0.0;
double gamma_y = 0.0;

Pair<int,int> PQ(@, ghat);
Pair<int,int> PI(2, ihat);
Pair<int,int> PK(1, khat);

RnPoint XQ = m_C.u_getCoordinate_ou(PQ);
double XQ_x = XQ.u_getElement_0u(®);

double XQ_y = XQ
RnPoint XI = m_C
double XI_x = XI
double XI_y = XI
RnPoint XK = m_C
double XK_x
double XK_y

"
x
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XK

RnPoint v1
vl -= XQ;
RnPoint v2

XK;

XI;

.u_getElement_ou(l);
.u_getCoordinate_ou(PI);
.u_getElement_o0u(9);
.u_getElement_o0u(1);
.u_getCoordinate_0u(PK);
.u_getElement_o0u(9);
.u_getElement_o0u(1);



v2 -= XQ;
theta = acos(vl.u_dot_0u(v2)/(vl.u_norm2_0u()*v2.u_norm2_0u()));

delta_x = fabs(XI_x - XQ_x);// Half actual delta_x in the grid!!!!

delta_y = fabs(XI_y - XQ.y);// Half actual delta_y in the grid!!!!

radius = sqrt((delta_x*delta_x)+(delta_y*delta_y));

bool Geometric = false; //This should be turned true and “m_notHarmonicScheme =
false” if the geometric mean calcualtions are desired

if (m_useFAMScheme)
{

double lambda_c
double lambda_w
double lambda_s 5
double lambda_sw = 0.0;
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double lambda_c_x = 0.0;
double lambda_c_y = 0.0;
double lambda_sw_x = 0.0;
double lambda_sw_y = 0.0;

computeLambdas(ihat, itilde, khat, ghat/*This might be sketchy, must
ask!!1*/, lambda_c, lambda_w, lambda_sw, lambda_s, lambda_c_x, lambda_c_y, lambda_sw_x,
lambda_sw_y);

if (XI_x > XQ_x & & XI_y > XQ_.y)
{

if (XK_x > XQ_x && fabs(XK_y - XQ_.y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
gamma_y = (-lambda_c_y)/(lambda_s - lambda_c);

}
else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{
}

gamma_x = (-lambda_c_x)/(lambda_w - lambda_c);
}

else if (XQ_x > XI_x & & XI_y > XQ.y)
{

if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
gamma_y = (lambda_sw_y)/(lambda_sw - lambda_w);

}
else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check

{
}

gamma_x = (-lambda_c_x)/(lambda_w - lambda_c);

}

else if (XQ_x > XI_x && XQ.y > XI_y)
{



if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The "&&..."
addition is only present as an aditional check

{
gamma_y = (lambda_sw_y)/(lambda_sw - lambda_w);
}
else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
gamma_x = (lambda_sw_x)/(lambda_sw - lambda_s);
}
}
else if (XI_x > XQ_x && XQ_y > XI_y)
{

if (XK_x > XQ_x &% fabs(XK_y - XQ_y) <= m_Ftol) // The "8&..."
addition is only present as an aditional check

{
//lambda_y = (-m_k1*m_C_FAM)*(pow(delta_x, 1-
m_alpha_FAM));
gamma_y = (-lambda_c_y)/(lambda_s - lambda_c);
}
else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
gamma_x = (lambda_sw_x)/(lambda_sw - lambda_s);
}
}
}
else
{
if (Geometric)
{
gamma_y = fabs(delta_y/delta_x)*0.5*sqrt(m_k1*m_k2);
gamma_x = fabs(delta_x/delta_y)*0.5*sqrt(m_ki*m_k2);
}
else
{
if (XI_x > XQ_x && XI_y > XQ_y)
{
if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
gamma_y =
fabs(delta_y/delta_x)*((m_k1_tilde_1*m_k4_tilde_1)/(m_k1_tilde_1+m_k4_tilde_1));
}
else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) //
The "&&..." addition is only present as an aditional check
{
gamma_x =
fabs(delta_x/delta_y)*((m_k1_tilde_1*m_k2_tilde_1)/(m_k1_tilde_1+m_k2_tilde 1));
}

}



else if (XQ_x > XI_x && XI_y > XQ.y)

{
if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
gamma_y =
fabs(delta_y/delta_x)*((m_k2_tilde_1*m_k3_tilde_1)/(m_k2_tilde_1+m_k3_tilde_1));
}
else if (XK_y > XQ_y && fabs(XK_x - XQ_x) <= m_Ftol) //
The "&&..." addition is only present as an aditional check
{
gamma_x =
fabs(delta_x/delta_y)*((m_k1_tilde_1*m_k2_tilde_1)/(m_k1_tilde_1+m_k2_tilde_1));
}
}
else if (XQ_x > XI_x && XQ.y > XI_y)
{
if (XQ_x > XK_x && fabs(XK_y - XQ_y) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
gamma_y =
fabs(delta_y/delta_x)*((m_k2_tilde_1*m_k3_tilde_1)/(m_k2_tilde_1+m_k3_tilde_1));
}
else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) //
The "&&..." addition is only present as an aditional check
{
gamma_x =
fabs(delta_x/delta_y)*((m_k3_tilde_1*m_k4_tilde_1)/(m_k3_tilde_1+m_k4_tilde_1));
}
}
else if (XI_x > XQ_x &% XQ.y > XI_y)
{
if (XK_x > XQ_x && fabs(XK_y - XQ_y) <= m_Ftol) // The
"&&..." addition is only present as an aditional check
{
gamma_y =
fabs(delta_y/delta_x)*((m_k1_tilde_1*m_k4_tilde_1)/(m_k1_tilde_1+m_k4_tilde_1));
}
else if (XQ_y > XK_y && fabs(XK_x - XQ_x) <= m_Ftol) //
The "&&..." addition is only present as an aditional check
{
gamma_x =
fabs(delta_x/delta_y)*((m_k3_tilde_1*m_k4_tilde_1)/(m_k3_tilde_1+m_k4 tilde_1));
}
}

}

//Fungerer kun ved isotropi, md bruke en annen skjema (MPFA)



RnPoint normalVec = m_C.u_getNormalVector_0Ou(PI, PK);

if ((fabs(normalVec.u_getElement_Ou(1l)) <= m_Ftol) ? (ret = gamma_x) : (ret =
gamma_y));

return ret;
}
realS FAMANI2DSGDiscritization::computeMatrixContributionAtBoundary(const int ihat, const
int itilde, const int khat, const int ghat, const ArrayS<realS>& alphal, const
ArrayS<realS>& alpha2, const bool atBoundary, const bool edgeAtBoundary)
{
realS ret=0.0;
double delta_x
double delta_y
double gamma_x
double gamma_y

nn
. e

OO0
(OO
FEESERN

)

Pair<int,int> PQ(@, ghat);
Pair<int,int> PI(2, ihat);
Pair<int,int> PK(1, khat);

RnPoint XQ = m_C.u_getCoordinate_ou(PQ);
double XQ_x = XQ.u_getElement_0u(9);
double XQ_y = XQ.u_getElement_oOu(l);
RnPoint XI = m_C.u_getCoordinate_0Ou(PI);
double XI_x = XI.u_getElement_0u(9);
double XI_y = XI.u_getElement_0u(1);
RnPoint XK = m_C.u_getCoordinate_0u(PK);

double XK_x = XK.u_getElement_0u(9);
double XK_y = XK.u_getElement_0u(1);
RnPoint vl = XK;

vl -= XQ;

RnPoint v2 = XI;

v2 -= XQ;

delta_x = XI_x - XQ_x;// Half actual delta_x in the grid!!!!
delta_y = XI_y - XQ_y;// Half actual delta_y in the grid!!!!

if (edgeAtBoundary)

{
if (fabs(alphal[m_C.u_findBoundaryPosition_ Ou(PK)]) <= m_Ftol)
{
//We have a Neumann (i.e. flux) B.C.
gamma_X = 0.0;
gamma_y = 0.0;
}
else
{
//We have a Dirichlet (i.e. imposed pressure) B.C.
gamma_x = fabs(delta_y/delta_x)*m_permxx[ihat];
gamma_y = fabs(delta_x/delta_y)*m_permxx[ihat];
¥
}

else



ArrayS<int> neigh;

m_C.u_getNeighbours_RF(PK, 2, neigh);// the '2' is hardcoded due to 2D
space, for different problem dimensions, use 'problemDimension'....?

int ihatN = (neigh[@] == ihat) ? neigh[1] : neigh[@];

gamma_x =
fabs(delta_y/delta_x)*((m_permxx[ihat]*m_permxx[ihatN])/(m_permxx[ihat]+m_permxx[ihatN]))

; gamma_y =
fabs(delta_x/delta_y)*((m_permxx[ihat]*m_permxx[ihatN])/(m_permxx[ihat]+m_permxx[ihatN]))

J

}

RnPoint normalVec = m_C.u_getNormalVector_ Ou(PI, PK);

if ((fabs(normalVec.u_getElement_Ou(1l)) <= m_Ftol) ? (ret = gamma_x) : (ret =
gamma_y));

return ret;



Appendix D: Setup Routines for the Finite Analytic Method

Setup Routine for Isotropic Finite Analytic Method:

void TempmodEI::u_setupFAM2DSG_lu(const int &PeriodicBC, const CSnShape &C, const ArrayS<
realS > &gExternalSurfaces,

const ArrayS< realS > &alphalExternalSurfaces, const ArrayS< realS >
&alpha2ExternalSurfaces, const ArrayS< realS > &gWells,

const ArrayS< realS > &alphalWells, const ArrayS< realS > &alpha2Wells, const
ArrayS<realS>& perm)

{
mC=C;

//New treatment of BC's such that wells and holes can also be treated
ArrayS< realS > m_g;

ArrayS< realS > m_alphal;

ArrayS< realS > m_alpha2;
m_C.u_createConstBoundaryConditionData_0g(2,gExternalSurfaces,ghells,m g);

m_C.u_createConstBoundaryConditionData_0g(@0, alphalExternalSurfaces,alphalWells,m_alphal);
m_C.u_createConstBoundaryConditionData_0g(1,alpha2ExternalSurfaces,alpha2Wells,m_alpha2);

MeshShape SV;

SV . u_setShape_1u(1);

int mLength = m_C . u_cellCount_@Gu(m_C . u_cellDimension_0u());
SV . u_changeElement_1u(@, mLength);

MeshShape Smat;

Smat . u_setShape_1u(2);

Smat . u_changeElement_1u(®, mLength);

Smat . u_changeElement_1u(1, mLength);

int gLength = m_C . u_cellCount_ou(®);

ArrayS< realS > innerHelp;

ArrayS< ArrayS< MeshPoint > > AMP(mLength);

ArrayS< MeshPoint > innerAMP;

ArrayS< int > innerLengthAMP(mLength);

ArrayS< ArrayS< realS > > Out(mLength);

ArrayS< realS > OutBC(mLength, 0.9);

for (int ihatloc = @;(ihatloc < mLength); (ihatloc ++))

{
(innerAMP = m_C . u_getMatrixStencil_CDSmet_0u(Smat, ihatloc));
innerLengthAMP . u_changeElement_lu(ihatloc, innerAMP . u_getSize 0Qu());
AMP.u_changeElement_1u(ihatloc, innerAMP);
}
int ghat;
int z;
int k;

J
int kMax;



int itildeMax;

int ihatn;

int nuFIndex;

int khat;

int cellDim = m_C . u_cellDimension_0u();
Pair< int, int > PQ(@, 9);

Pair< int, int > PGn(cellDim, ©);
Pair< int, int > PGnm1((cellDim - 1), 9);
ArrayS< int > arl(2);

ArrayS< int > ar2(2);

ArrayS< int > ar3(2);

ArrayS< int > ar5(3);

arl . u_changeElement_1u(@, 9);

arl . u_changeElement_1u(1l, cellDim);
ar2 . u_changeElement_1u(@, 9);

ar2 . u_changeElement_1u(1, cellDim);
ar3 . u_changeElement_1u(0, 0);

ar3 . u_changeElement_1u(1l, (cellDim - 1));
ar5 . u_changeElement_1u(9, 0);

ar5 . u_changeElement_1u(1, (cellDim - 1));
ar5 . u_changeElement_1u(2, cellDim);
int v_arl1[MAXLOCARRAYSIZE];

int v_ar3[MAXLOCARRAYSIZE];

int v_ar5[MAXLOCARRAYSIZE];

MeshShape shi;

MeshShape sh2;

MeshShape sh3;

MeshShape sh5;

MeshPoint mp1l;

MeshPoint mp2;

MeshPoint mp3;

MeshPoint mp5;

(v_ari[@] = gLength);

(v_ar3[@] = gqLength);

(v_ar5[@] = gLength);

realS integrationValue;

ArrayS< ArrayS< int > > kzTab;
ArrayS< int > kTab;

ArrayS< int > zTab;

int bkTab[ARRAYMAXSIZE];

int bzTab[ARRAYMAXSIZE];

int LT;

int LGIE;

int Lq;

ArrayS< int > ari(2);

ari . u_changeElement_1u(®@, cellDim);
ari . u_changeElement_1u(1, 0);

int v_ari[MAXLOCARRAYSIZE];

(v_ari[@] = mLength);

MeshShape shi;

MeshPoint mpi;

FAM2DSGDiscritization FAMNum;
FAMNum.setup(m_C, perm);

for (int ihat = ©@;(ihat < mLength); (ihat ++))

{
PGn . u_updateSecond_1u(ihat);



(LT
(Lqg

(v_
shi .
mpi .
mpi .

inn
for

{

= innerLengthAMP[ihat]);

=m_C . u_getStencil Omet_0u(PGn, 0));
ari[1] = Lag);
u_setShape_1u(2, v_ari);
u_setPoint_1u(shi, 9);
u_changeElement_1u(@, ihat);
erHelp . u_copy_ 1u(LT, 0.0);

(int g = 0;(q < Lq); (q ++))

mpi . u_changeElement_1lu(l, q);
(ghat = m_C . u_gammaF_Omet_Ou(ari, mpi));
PQ . u_updateSecond_1u(ghat);
bool atBoundary = m_C.u_boundaryIndex_0u(PQ);
FAMNum. computeAlphaAndC(PQ, ihat, atBoundary);
(kMax = m_C . u_getStencil Omet_Ou(PQ, (cellDim - 1)));
(itildeMax = m_C . u_getStencil Omet_Ou(PQ, cellDim));

(v_arl[1] = itildeMax);
(v_ar3[1] = kMax);
(v_ar5[1] = kMax);

(v_ar5[2] = 2);

shl . u_setShape_1u(2, v_arl);

mpl . u_setPoint_1lu(shl, 9);

sh2 . u_setShape_1u(2, v_arl);

mp2 . u_setPoint_1u(sh2, 0);

sh3 . u_setShape_1u(2, v_ar3);

mp3 . u_setPoint_1u(sh3, 9);

sh5 . u_setShape_1u(3, v_ar5);

mp5 . u_setPoint_1lu(sh5, 9);

mpl . u_changeElement_1u(@, ghat);
mp2 . u_changeElement_1u(@, ghat);
mp3 . u_changeElement_1u(@, ghat);
mp5 . u_changeElement_1u(@, ghat);

//Now computes the "special" kz-table
m_C.u_findTopPathIndices_0g(ihat, q, kzTab);

kTab = kzTab[@];

zTab = kzTab[1];

//Note that each of the two rows in kzTab are arrays of equal length
LGIE = kTab.u_getSize 0u();

for (int iv=0; iv<LGIE; iv++)

{
k

z

kTab[iv];
zTab[iv];

mp3 . u_changeElement_1u(1, k);
mp5 . u_changeElement_1u(1, k);
mp5 . u_changeElement_1u(2, z);
khat = m_C.u_gammaF_Omet_0u(ar3, mp3);
PGnml.u_updateSecond_1lu(khat);

PGn . u_updateSecond_1lu(ihat);
nuFIndex = m_C.u_nuF_Omet_Ou(ihat, ar5, mp5);
mpl . u_changeElement_1u(1l, nuFIndex);

if (atBoundary)

{
mp2.u_changeElement_1u(1,0);//important when at boundary !



integrationValue = FAMNum.computeRHSContribution(ihat, khat, ghat, m_g);
OutBC.u_changeElement_1lu(ihat,OutBC[ihat] + integrationvalue);
}

for (int t=0; t<LT; t++)

{
integrationValue = 0.0;
MeshPoint t_18;
AMP[ihat].u_getElement_og(t, t_18);
int itilde = m_C.u_itildeFromSparsityPattern_Ou(ghat,t_18);

if (itilde >= 0)

{
mp2.u_changeElement_1lu(1,itilde);
int ihatm;
t_18.u_getElement_0g(1l, ihatm);

Pair<int,int> Pkhatt(1,khat);
Pair<int,int> Pihatm(2,ihatm);
Pair<int,int> Pihatt(2,ihat);
bool edgeAtBoundary = m_C.u_boundaryIndex_0u(Pkhatt);
int Idiag = (ihat == ihatm) ? 2 : 1;
//***************************************************************************************
%k % ok ok %k

if (!atBoundary)

if (m_C.u_isNeighbour_0u(Pkhatt, Pihatm))

{

integrationValue =
FAMNum. computeMatrixContribution(ihat, itilde, khat, ghat, m_alphal, m_alpha2,
atBoundary);

}
else
{
integrationValue = 0.0;
}
}
else
{

if (!edgeAtBoundary)
{
if (m_C.u_isNeighbour_ou(Pkhatt, Pihatm))

{
integrationvalue =
FAMNum. computeMatrixContributionAtBoundary(ihat, itilde, khat, ghat, m_alphal, m_alpha2,
atBoundary, edgeAtBoundary);

}
else
{
integrationVvalue = 0.0;
}
}
else
{

if (ihat == ihatm)
{ //NOTE: Here the following SHOULD be true:
vertex IS at boundary and edge IS at boundary!!!



integrationValue =
FAMNum. computeMatrixContributionAtBoundary(ihat, itilde, khat, ghat, m_alphal, m_alpha2,
atBoundary, edgeAtBoundary);
}

else

{
}

integrationValue = 0.0;

}

//***************************************************************************************
>k 3k 3k %k Xk %k k

innerHelp.u_changeElement_1lu(t,innerHelp[t] + (pow(-
1.9,Idiag)*integrationvalue));

}
}//end of for loop for 't' and 'LT'

}
}
Out.u_changeElement_1u(ihat,innerHelp);

}

//must now fill the m_Spart and the m_RHSpart variables:
//m_Spart . u_copy_1lu(Smat, AMP, Out);
//m_RHSpart . u_copy_1u(SV, OutBC);
if (m_deltat <= 0.0)
{
m_Spart.u_copy_1u(Smat,AMP,Out);
m_RHSpart.u_copy_1u(SV,OutBC);
}
//If we are to solve a parabolic problem, we do the additional setup here:
else if (m_deltat > 0.9)
{
//We first create the necessary vector consisting of one's.
ArrayS<realS> help(mLength, 1.0);
m_Vpart.u_copy_1u(SV,help);

for (int ihat = ©@; ihat < mLength; ihat++)

{
CSnShapeGIndex GI(cellDim,ihat);
realS vol = m_C.u_getVolume_0Ou(GI);
LT = innerLengthAMP[ihat];
innerHelp = Out[ihat];
//NBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNB
//We divide by the negative volume
//in order to fix the
//correct sign for the parabolic problem:
//IS THIS CORRECT???
//NBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNB
for (int t=0; t<LT; t++)
{
innerHelp.u_changeElement_1lu(t,innerHelp[t]/(vol));
}
Out.u_changeElement_1lu(ihat, innerHelp);
OutBC.u_changeElement_1u(ihat,OutBC[ihat]/(-vol));



m_Spart.u_copy_1u(Smat,AMP,0ut);
m_RHSpart.u_copy_1u(SV,OutBC);
}

if ((PeriodicBC == 1))
{

//In order to obtain a unique solution, pressure must be
//prescribed at a single point in the domain of the PDE.
//We prescribe the pressure (i.e. the solution) to be
//zero (0.0) at the middle of the domain.

ArrayS< MeshPoint > matrowMcentral;

(m_Spart . u_getSparsityPoints_0Qu() . u_getElement_0g)((mLength / 2),
matrowMcentral);

MeshPoint mpr;

realS perval;

int mL = matrowMcentral . u_getSize 0Qu();

for (int m = @;(m < mL); (m ++))

{
matrowMcentral . u_getElement_O0g(m, mpr);
{
int c_19;
mpr . u_getElement_0g(0, c_19);
{
int 1_19;
mpr . u_getElement_0g(1, 1 _19);
(perval = ((c_19 ==1.19) ? 1.0 : 0.9));
}
m_Spart . u_setData_lu(mpr, perVal);
}
}

//must also make sure that the right hand side is zero for "specified row".
ArrayS< MeshPoint > matrowH;

(m_RHSpart . u_getSparsityPoints_Qu() . u_getElement_0g)((mLength / 2), matrowH);
matrowH . u_getElement_0g(0, mpr);

m_RHSpart . u_setData_lu(mpr, 0.0);



Setup Routine for Anisotropic Finite Analytic Method:

void TempmodEI::u_setupFAMANI2DSG_lu(const int &PeriodicBC, const CSnShape &C, const
ArrayS< realS > &gExternalSurfaces,

const ArrayS< realS > &alphalExternalSurfaces, const ArrayS< realS >
&alpha2ExternalSurfaces, const ArrayS< realS > &gWells,

const ArrayS< realS > &alphallWells, const ArrayS< realS > &alpha2Wells, const
ArrayS<realS>& perm_xx, const ArrayS<realS>& perm_xy, const ArrayS<realS>& perm_yy)

{
mC = C;

ArrayS< realS > m_g;

ArrayS< realS > m_alphal;

ArrayS< realS > m_alpha2;
m_C.u_createConstBoundaryConditionData_0g(2,gExternalSurfaces,ghells,m_g);

m_C.u_createConstBoundaryConditionData_0g(0,alphalExternalSurfaces,alphalWells,m_alphal);

m_C.u_createConstBoundaryConditionData_0g(1,alpha2ExternalSurfaces,alpha2Wells,m_alpha2);

MeshShape SV;

SV . u_setShape_1u(1);

int mLength = m_C . u_cellCount_Qu(m_C . u_cellDimension_0u());
SV . u_changeElement_1u(@, mLength);

MeshShape Smat;

Smat . u_setShape_1u(2);

Smat . u_changeElement_1u(@, mLength);

Smat . u_changeElement_1u(1, mLength);

int gLength = m_C . u_cellCount_0u(9);

ArrayS< realS > innerHelp;

ArrayS< ArrayS< MeshPoint > > AMP(mLength);

ArrayS< MeshPoint > innerAMP;

ArrayS< int > innerLengthAMP(mLength);

ArrayS< ArrayS< realS > > Out(mLength);

ArrayS< realS > OutBC(mLength, 0.0);

for (int ihatloc = @;(ihatloc < mLength); (ihatloc ++))

{

(innerAMP = m_C . u_getMatrixStencil_CDSmet_Ou(Smat, ihatloc));
innerLengthAMP . u_changeElement_1lu(ihatloc, innerAMP . u_getSize 0u());
AMP.u_changeElement_1u(ihatloc, innerAMP);

}

int ghat;

int z;

int k;

int kMax;

int itildeMax;

int ihatn;

int nuFIndex;

int khat;

int cellDim = m_C . u_cellDimension_0u();
Pair< int, int > PQ(@, 0);

Pair< int, int > PGn(cellDim, ©0);

Pair< int, int > PGnm1((cellDim - 1), 9);



ArrayS< int > arl(2);

ArrayS< int > ar2(2);

ArrayS< int > ar3(2);

ArrayS< int > ar5(3);

arl . u_changeElement_1u(9, 0);

arl . u_changeElement_1u(1l, cellDim);
ar2 . u_changeElement_1u(@, 9);

ar2 . u_changeElement_1u(1, cellDim);
ar3 . u_changeElement_1u(@, 90);

ar3 . u_changeElement_1u(1, (cellDim - 1));
ar5 . u_changeElement_1u(9, 0);

ar5 . u_changeElement_1u(1, (cellDim - 1));
ar5 . u_changeElement_1u(2, cellDim);
int v_arl1[MAXLOCARRAYSIZE];

int v_ar3[MAXLOCARRAYSIZE];

int v_ar5[MAXLOCARRAYSIZE];

MeshShape shi;

MeshShape sh2;

MeshShape sh3;

MeshShape sh5;

MeshPoint mp1l;

MeshPoint mp2;

MeshPoint mp3;

MeshPoint mp5;

(v_ari[@] = gLength);

(v_ar3[@] = gLength);

(v_ar5[@] = gLength);

realS integrationValue;

ArrayS< ArrayS< int > > kzTab;
ArrayS< int > kTab;

ArrayS< int > zTab;

int bkTab[ARRAYMAXSIZE];

int bzTab[ARRAYMAXSIZE];

int LT;

int LGIE;

int Lq;

ArrayS< int > ari(2);

ari . u_changeElement_1u(@, cellDim);
ari . u_changeElement_1u(1, 0);
int v_ari[MAXLOCARRAYSIZE];
(v_ari[@] = mLength);

MeshShape shi;

MeshPoint mpi;

FAMANI2DSGDiscritization FAMNum;
FAMNum.setup(m_C, perm_xx, perm_xy, perm_yy);

for (int ihat = @;(ihat < mLength); (ihat ++))
{
PGn . u_updateSecond_1u(ihat);
(LT = innerLengthAMP[ihat]);
(Lq = m_C . u_getStencil_Omet_0u(PGn, 0));
(v_ari[1] = La);
shi . u_setShape_1u(2, v_ari);
mpi . u_setPoint_1lu(shi, 0);
mpi . u_changeElement_1u(@, ihat);
innerHelp . u_copy 1u(LT, ©.9);



for (int q = 0;(q < Lq); (q ++))
{

mpi . u_changeElement_1u(1, q);

(ghat = m_C . u_gammaF_Omet_Ou(ari, mpi));

PQ . u_updateSecond_1lu(ghat);
bool atBoundary = m_C.u_boundaryIndex_0u(PQ);
FAMNum. computeEigenValuesAndRotation(PQ, ihat, atBoundary);
FAMNum. computeAlphaAndC(PQ, ihat, atBoundary);
(kMax = m_C . u_getStencil Omet_Ou(PQ, (cellDim - 1)));

(itildeMax = m_C . u_getStencil Omet_Ou(PQ, cellDim));

(v_arl[1] = itildeMax);
(v_ar3[1] = kMax);
(v_ar5[1] = kMax);

(v_ar5[2] = 2);

shl . u_setShape_1u(2, v_arl);

mpl . u_setPoint_1lu(shl, 0);

sh2 . u_setShape_1u(2, v_arl);

mp2 . u_setPoint_1u(sh2, 0);

sh3 . u_setShape_1u(2, v_ar3);

mp3 . u_setPoint_1u(sh3, 9);

sh5 . u_setShape_1u(3, v_ar5);

mp5 . u_setPoint_1lu(sh5, 9);

mpl . u_changeElement_1u(@, ghat);
mp2 . u_changeElement_1u(@, ghat);
mp3 . u_changeElement_1u(@, ghat);
mp5 . u_changeElement_1u(@, ghat);

//Now computes the "special" kz-table
m_C.u_findTopPathIndices_0g(ihat, q, kzTab

kTab = kzTab[@];

zTab = kzTab[1];

//Note that each of the two rows in kzTab are arrays of equal length
LGIE = kTab.u_getSize 0u();

for (int iv=0; iv<LGIE; iv++)
{
k
z

kTab[iv];
zTab[iv];

mp3 . u_changeElement_1u(1, k);
mp5 . u_changeElement_1lu(1, k);
mp5 . u_changeElement_1u(2, z);
khat = m_C.u_gammaF_Omet_0u(ar3, mp3);
PGnml.u_updateSecond_1lu(khat);

PGn . u_updateSecond_1lu(ihat);
nuFIndex = m_C.u_nuF_Omet_ou(ihat, ar5, mp5);
mpl . u_changeElement_1u(1l, nuFIndex);

if (atBoundary)
{

mp2.u_changeElement_1u(1,0);//important when at boundary !
integrationValue = FAMNum.computeRHSContribution(ihat, khat, ghat, m_g);

OutBC.u_changeElement_lu(ihat,OutBC[ihat] + integrationvalue);
}



for (int t=0; t<LT; t++)

{
integrationValue = 0.9;

MeshPoint t_18;

AMP[ihat].u_getElement_og(t, t_18);

int itilde = m_C.u_itildeFromSparsityPattern_0u(ghat,t_18);//Should probably

check this later!!??

if (itilde >= 0)

{
mp2.u_changeElement_1u(l,itilde);
int ihatm;
t_18.u_getElement_0g(1l, ihatm);

Pair<int,int> Pkhatt(1,khat);
Pair<int,int> Pihatm(2,ihatm);
Pair<int,int> Pihatt(2,ihat);
bool edgeAtBoundary = m_C.u_boundaryIndex_Ou(Pkhatt);
int Idiag = (ihat == ihatm) ? 2 : 1;
[ Rk stk sk ok stk sk stk sk ok skeokskokok stk sk stk ok stk ok stk sk stk ok sk sk kot sk ok stk ok skl kst sk sk kool stk ko ok
k >k sk >k kok ok

if (!atBoundary)

if (m_C.u_isNeighbour_ou(Pkhatt, Pihatm))

{

integrationValue =
FAMNum.computeMatrixContribution(ihat, itilde, khat, ghat, m_alphal, m_alpha2,
atBoundary);

}
else
{
integrationValue = 0.0;
}
}
else
{

if (!edgeAtBoundary)
{
if (m_C.u_isNeighbour_ou(Pkhatt, Pihatm)
{
integrationValue =
FAMNum. computeMatrixContributionAtBoundary(ihat, itilde, khat, ghat, m_alphal, m_alpha2,
atBoundary, edgeAtBoundary);
//integrationValue = 0.5;

}
else
{
integrationVvalue = 0.0;
}
}
else
{

if (ihat == ihatm)
{ //NOTE: Here the following SHOULD be true:
vertex IS at boundary and edge IS at boundary!!!
integrationValue =
FAMNum. computeMatrixContributionAtBoundary(ihat, itilde, khat, ghat, m_alphal, m_alpha2,
atBoundary, edgeAtBoundary);



integrationValue = 0.0;

}

//***************************************************************************************
>k 3k 3k %k Xk %k k

innerHelp.u_changeElement_1lu(t,innerHelp[t] + (pow(-
1.0,Idiag)*integrationvalue));

}
}//end of for loop for 't' and 'LT'
}
}

Out.u_changeElement_1u(ihat,innerHelp);

}

//must now fill the m_Spart and the m_RHSpart variables:

if (m_deltat <= 0.9)

{
//WE SOLVE THE ELLIPTIC PROBLEM
//must now fill the m_Spart and the m_RHSpart variables:
m_Spart.u_copy_1u(Smat,AMP,Out);
m_RHSpart.u_copy_1u(SV,0OutBC);

}

//If we are to solve a parabolic problem, we do the additional setup here:

else if (m_deltat > 0.9)

{
//We first create the necessary vector consisting of one's.
ArrayS<realS> help(mLength, 1.0);
m_Vpart.u_copy_1u(SV,help);

//We then divide the non-zero elements of m_RHSpart and m_Spart with the actual
element volumes:
for (int ihat = @; ihat < mLength; ihat++)
{
CSnShapeGIndex GI(cellDim,ihat);
realS vol = m_C.u_getVolume_0Ou(GI);
LT = innerLengthAMP[ihat];
innerHelp = Out[ihat];
/ /NBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNB
//We divide by the negative volume
//in order to fix the
//correct sign for the parabolic problem:
//IS THIS CORRECT???
//NBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNBNB
for (int t=0; t<LT; t++)
{
innerHelp.u_changeElement_1lu(t,innerHelp[t]/(vol));
}
Out.u_changeElement_1lu(ihat, innerHelp);
OutBC.u_changeElement_lu(ihat,OutBC[ihat]/(-vol));

}
m_Spart.u_copy_1u(Smat,AMP,Out);



m_RHSpart.u_copy_1u(SV,0utBC);
}

if ((PeriodicBC == 1))
{

//In order to obtain a unique solution, pressure must be
//prescribed at a single point in the domain of the PDE.
//We prescribe the pressure (i.e. the solution) to be
//zero (0.0) at the middle of the domain.

ArrayS< MeshPoint > matrowMcentral;

(m_Spart . u_getSparsityPoints_0Qu() . u_getElement_0g)((mLength / 2),
matrowMcentral);

MeshPoint mpr;

realS perVal;

int mL = matrowMcentral . u_getSize 0Qu();

for (int m = @;(m < mL); (m ++))

{
matrowMcentral . u_getElement_0g(m, mpr);
{
int c_19;
mpr . u_getElement_0g(0, c_19);
{
int 1_19;
mpr . u_getElement_0g(1, 1 _19);
(perval = ((c_19 ==119) ? 1.0 : 0.9));
m_Spart . u_setData_lu(mpr, perVal);
}
}

//must also make sure that the right hand side is zero for "specified row".
ArrayS< MeshPoint > matrowH;

(m_RHSpart . u_getSparsityPoints_0u() . u_getElement_0g)((mLength / 2), matrowH);
matrowH . u_getElement_0g(0, mpr);

m_RHSpart . u_setData_lu(mpr, 0.0);



