
Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization: Spring semester, 2015

Computer Science

Open / Restricted access

Writer:

Heine Furubotten

. .

(Writer’s signature)

Faculty supervisor:

Hein Meling

External supervisor(s):

Thesis title:

The Autograder Project:

Improving software engineering skills through automated feedback on programming exer-

cises

Credits (ECTS):

Key words:

Digital Learning, Continuous Integration,

Version Contol, Test-Driven Development,

Autograder, Grading

Pages: .

+ enclosure:

Stavanger,

Date/year

Front page for master thesis

Faculty of Science and Technology

Decision made by the Dean October 30th 2009

The Autograder Project:

Improving software engineering skills

through automated feedback on

programming exercises

by

Heine Furubotten

A thesis submitted in partial fulfillment for the

degree of Computer Science

in the

Faculty of Science and Technology

Department of Electrical and Computer Engineering

June 2015

http://ide.uis.no

Declaration of Authorship

I, Heine Furubotten, declare that this thesis titled, ’The Autograder Project:

Improving software engineering skills through automated feedback on programming ex-

ercises’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“When you talk, you are only repeating what you already know. But if you listen, you

may learn something new.”

- J. P. McEvoy

Abstract

Many students find it difficult to learn programming skills. One reason for this difficulty

is that feedback from teaching staff is often slow. The Autograder aims to improve

student learning through rapid feedback and to stimulate self-learning. The Autograder

project provides a web-frontend and a server back-end that has been developed for au-

tomatically correcting and evaluating solutions to programming exercises submitted by

students. Correcting and evaluating student submissions are based on teacher written

test cases, which the submitted solutions should pass. From this the students get rapid

feedback and a score on the programming assignments. Autograder depends on a cus-

tom built continuous integration service, test-driven development and a version control

system to deliver its services.

The Autograder has been successfully used in a master-level course at the University

in Stavanger. Students and teaching staff was monitored and interviewed through their

assignment work. Autograder provided an efficient way for the students to reach their

potential, through rapid feedback on submitted exercises. The teaching staff got a better

overview of the students progress, which made it easier to follow up each student. They

was relieved from the burden of manually correcting assignments and could more easily

identify pain points in the exercises. Together with oral examination in the lab, the

test results obtained through the Autograder was used as the basis for grading the lab

assignments. The lab submissions made it much easier for the teaching staff to prepare

for the oral examination. Although we cannot draw strong conclusions at this point in

time, we have some data points that seem to indicate that student learning has improved

also on the final written exam.

Acknowledgements

The author would like to thank Hein Meling for valuable discussions and input through-

out the making of the Autograder application and project details. Would also thank him

for using his course Distributed Systems as an use case in this thesis. Tormod Erevik

Lea created all the test cases used in the Distributed Systems course and was a valuable

asset in designing the project and application. The author thanks for his efforts, which

was a huge contribution for making the full scale use case possible. When investigating

how the software industry work with their software stack, Stig Rune Malterud and Leon

Mwazange took the time to answer our questions. For taking their time to help, the

author is thankful. A special thanks are going out to all the students of 2015 in the Dis-

tributed Systems course for valuable feedback during the project and helping improving

the application.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

1 Introduction 1

2 Motivation 4

3 Background 6

3.1 Industrial Workflows and Tools . 6

3.2 Version Control . 7

3.3 Continuous Integration . 8

3.4 Test-Driven Development . 8

4 Hypothesis 10

5 Autograder Prototype 13

5.1 Installation . 15

5.2 GitHub Communication . 16

5.3 User Management . 16

5.4 Course Management . 18

5.5 Continuous Integration Service . 21

5.6 Web Service . 24

5.6.1 Students Panel . 25

5.6.2 Teachers Panel . 27

5.6.3 Admin Panel . 29

5.6.4 Scoreboard . 30

5.6.5 Profile Page . 31

5.6.6 Help Pages . 32

5.7 Game Engine . 32

6 Autograder Work Process 35

6.1 Submitting Test Cases . 35

6.2 Score Reporting . 37

v

Contents vi

6.3 Student Work Process . 39

7 Use Cases 40

7.1 Test Frameworks . 40

7.2 Distributed Systems . 41

8 Results 43

8.1 Usability . 44

8.2 Student Learning . 45

8.3 Student Follow Up . 47

8.4 Grading Improvements . 48

8.5 Gamification . 51

8.6 Preparation for Industrial Workflows and Tools 52

9 Future Work 54

9.1 Code Coverage . 54

9.2 Advanced Cheat Detection with Code Analysis 55

9.3 Task Board . 55

9.4 Improved Game Engine . 56

9.5 Specified Test Data Parsing . 56

9.6 Automated Test Case Generation . 58

10 Conclusion 59

A Github Application Codes 60

B Web Service Statistics 63

C Git Setup Instructions 65

D Autograder Usage Survey 67

Bibliography 77

1
Introduction

When teaching advanced programming courses at colleges and universities, it is common

to give the students a practical way of learning the academic material, often in the form

of lab assignments. Lab assignments provides a good way of letting the students get

hands on experience, allowing them to get a deeper understanding of the course material.

However letting all the students dive into the assignments and creating lots of diverse

solution to the problem will often, especially for advanced programming assignments,

lead to less control over what the individual students actually have learned and what

they have accomplished through the assignments. From a students perspective it can

also be hard to get all of the aspects in an assignment right while waiting for feedback

on their work. Teachers usually have limited time for each course and cannot always

deliver detailed feedback on the solution to every student on demand. With todays work

process the students might miss some details of the curriculum.

The idea of having the students solutions digitally corrected is not a new one. Solutions

for having the students manually upload their codes for static analysis and then getting a

report back about the state of the code is one of these solutions. These systems means the

students will have to finish their software and then upload their solutions to a website

and it will be analysed in this system. Another system is to have students solution

runned through test cases in their editor and upload the results to a remote server,

1

Introduction 2

through plugins. These solutions have an impractical way to hand in and process the

solutions, and are not rooted in how the students will work when they have graduated.

In this thesis we try to systemize the workflow for both students and teachers for the

workflow practiced in the software industry, and make the process, from students working

on their solutions to teachers receiving the finished solution, more user friendly. This

new workflow has also been monitored to investigate the effect this has on the students

and teaching staff. The system developed for this thesis also tries to generalize the

system for use in as many courses and lab environments as possible. From this an

application named Autograder was created. This application have a custom continuous

integration service for automatic building of students solutions, and a web service to

deliver the results back to both students and teaching staff. This application is also

fully implemented with GitHub, a git management system. This integration makes the

course management as automatic as possible and gives a practical way of managing

solutions.

The workflow and application was put in use at the University of Stavanger in a master-

level course. From this course the lab project was fully managed through the Autograder

project. Students worked on their assignments through GitHub and got feedback on

their code through the continuous integration service. The teaching staff could monitor

student progress and had better data to base their grading on.

During the test period at the University of Stavanger the students and teaching staff

was interviewed and asked about how the new workflow and application affected the

lab work. Students got asked how their learning was affected by Autograder. Teachers

was asked how Autograder had an impact on their view on students needs and the

grading process. The lab project was also finished with an anonymous survey among

the students.

From the responses given from the students it was revealed the students benefitted from

the feedback by being able to faster finding areas where they needed improve their

solution. There was also an agreement among the students they benefited positively

from getting more experience from the workflow used in the industry. Teacher reported

from interviews they benefitted from Autograder through easier management of student

solutions, relieved from the burden of manually correcting the assignments, could easier

find pain points in the assignments and obtained more data for the grading process. The

potential for improvements for both student learning and data for grading process was

also reflected in the grades given while using Autograder.

The successful use at the University of Stavanger shows good potential from using sys-

tems like Autograder. Both students and teaching staff both benefited positively from

Introduction 3

this project, and made the students more independent from the teaching staff. With fur-

ther development the services delivered from Autograder might benefit more for courses

on colleges and universities. Such environments as massive open online courses, where

students have limited connection to the teaching staff, might also have a great benefit

from this.

2
Motivation

Developing, managing, and providing feedback on lab exercises for advanced software

systems is demanding in a number of ways. The teaching staff may invest a huge amount

of resources in developing and managing such lab exercises. In addition, manually

reviewing and grading such lab exercises is also a huge undertaking, and requires a

substantial amount resources, especially in courses with many students. This often

leads to long delays between student submission of a lab exercise, and when the student

gets feedback on their code. Furthermore, this model of manually correcting handins

is not rooted in how software is developed in the real world. When students heads out

to work in the software industry they do not have teachers telling them if their work is

correct or not. The students need to be prepared to make those decisions themselves.

As established above, being able to give the required feedback as early as possible is

of significant importance. Student surveys conducted at Augustana College shows that

early assignments and fast feedback will give the students a better perspective [9].

Getting the feedback early enough helps them to focus on which part of their assignments

need work in order to get a more well defined answer. This claim is supported by a survey

conducted at the University of Stavanger as well [8]. Furthermore, teachers capacity is

also limited, as they often have other responsibilities than teaching one class, and that

limits how much immediate feedback can be given. Getting through all the answers

from every student will take time, especially in courses with a lot of students attending.

4

Motivation 5

This may place a significant constraint on how quickly the necessary feedback will reach

the student. The longer it takes, the less valuable the feedback will be for the student.

Resorting to digital learning and software to do some or most of the work going through

student handins would give a unique advantage for both students and teachers.

Providing the students with a tool that they can interact with at any given time, to

tell them if their work produces the correct answers, will make it possible to give rapid

feedback. The students can get feedback while working on the assignment, and with this

feedback may have more relevant questions to ask teachers or teaching assistants when

necessary. When it comes to assignment feedback, the teachers also have a tool that

will make this work easier and saves resources that can be used to guide the students in

the right direction.

Another difficulty this will solve is preparing the students for working life, where the

software industry is increasingly adopting continuous integration and test-driven devel-

opment to validate their software. By providing rapid feedback on assignments, this

process will be highly coupled with the use of a continuous integration service. The im-

portance of continuous integration in industry has been highlighted in Morten Mossige’s

work on this topic [11]. Thus silently training the students to use such a system holds

great potential for the industry and preparing the students for how the industry operates,

or should operate.

With these ideas in mind we propose an automatic feedback system for lab assignments

that can be verified automatically. The primary target will be computer science courses,

where programming assignments are widely used. By specifying test cases that can

validate the submissions of each student or group of students for the desired behavior

of the submitted code. This system would also need to provide the students a way to

view their test results at any given time and place. Students should be able to complete

their assignments both on and off campus. When students commit a code change, this

would need to be picked up the system in order to generate feedback to the students

instantly.

3
Background

This section will explain some of the techniques and work processes behind the Auto-

grader project. The Autograder project build upon well known tools, techniques and

processes to get the students on the right track. The background for chosen work process

in the Autograder project is discussed below.

3.1 Industrial Workflows and Tools

To better prepare the students for working life in the software industry, some infor-

mal talks with the commercial sector in Stavanger has been initiated, specifically with

developers from Bouvet and Capgemini. The topic of the conversations was how they

work on a day-to-day basis and what kind of tools are important, both on an indi-

vidual basis and when working together as a team. The talks uncovered that there is

several problematic areas where students would benefit from better practice before be-

ginning their careers in the software industry. In their day-to-day work, these companies

practice pair-programming, code-reviews and test-driven development. These strategies

have help them build up robust code bases in their projects, and while practicing said

strategies better solutions became possible.

6

Background 7

Another issue discussed was the practice of dividing large tasks into smaller, more man-

ageable tasks. Thus, teaching students to maintain a task board and work on smaller

tasks one at the time would simplify the workflow and make the overall task appear

more manageable. Finally, we also discussed the use of tools such as version control and

continuous integration as a convenient way to easily integrate the functionality that the

developers commit to version control. With these tools they have found that it becomes

much easier to keep track of how far everyone have gotten with their work, and how

much of this has been correctly implemented.

3.2 Version Control

Version control is a system that allows you to track file changes over time. Version

control has become a valuable tool for many software projects, and especially when

many people work on the same project [5]. Examples of frequently used version control

systems for software projects are Git, SVN and Mercurial [6].

Version controlling is also highly used in the industry today, which makes it valuable to

use in the Autograder project. This system will not only be a good way to get students

familiar with using such a tool, but will also be helpful in keeping track of the source

code, for both students and teachers.

When designing the automated feedback system the specific version control system cho-

sen was Git. Git is a widely used version control system and is a system most students

will encounter after finishing their degree. Git has also many good options when it

comes to hosting of repositories. One such hosting service is GitHub. Github provides

an online service, with an excellent web interface. Through this interface you can track

your repositories and also look into other open source repositories.

GitHub will enable the students to quickly see the value of using version control systems.

This is due to their well designed user interface. The user interface they use are focused

on core elements in the version control process. It easily show which files are currently

tracked, and from these files you can find all previous versions. It is also easy to compare

earlier versions. Another great thing with using GitHub is their highly available REST

API. This API makes the process of making third party application easy. They also

provide OAuth through their API and thus makes it easy to log users in using Github

accounts.

Background 8

3.3 Continuous Integration

A continuous integration (CI) environment include the use of automated building and

testing of a shared code repository. Developers use this to frequently integrate their

work, possibly many times a day. For each of integration, a build and test process

verifies for the developer how well the integration worked. Potential errors that occurs

can then be found by tests in this progress. The use of CI provides a way to develop

cohesive software more rapidly and reduces integration problems at release time [7].

Normal use of CI involves an integration server. This server waits and listen to eventual

updates to the code repository. When an update arrives, the system extracts the code

and starts a build process. This also includes running all the tests present in the repos-

itory. A build is considered successful when the code compiles and all the tests pass.

If any of them fail you will have an unsuccessful integration, and you need to resolve

the problem that make one or more of the tests fail. The integration process can also

measure how much of the code is covered by the current test and fail an integration on

how well the code is covered. When a successful build is achieved, the integration server

can also start a deployment of the new integration. This is called continuous delivery.

Today there are many CI tools that can be set up to track a software stack. Many

is developed to work together with a specific set of version control systems, and some

programming languages even has this built in to their development tools. Services with

such goals are systems like Travis CI [3], which is an online CI tightly linked to GitHub

repositories, and Jenkins [1], which is a CI developed to support a lot of different build

jobs and can run on self-hosted infrastructure.

The ideas behind CI is a valuable concept for this project. To be able to provide

the students with feedback quickly, the continuous integration can automatically start

integration of work done by the students. When this is linked with a version control

system, any edits to the code repository could trigger a new build and analysing how

well the integration went, this can be used to tell the student how well that particular

integration went. Continuous integration is also valuable and widely used in the industry.

Introducing the students to such a tool will give them practice in using these tools when

starting work for the software industry.

3.4 Test-Driven Development

Test-driven development or TDD is a way to develop software where you make imple-

mentations in small iterations at a time by defining the desired functionality first. When

Background 9

starting a new function or feature for your programming stack, you start with defining

what this feature will do. When this is done a test case is built. These test cases are

built to check for the desired functionality and will fail at first. Then the functionality is

developed and tested against the test case. This is then repeated until the tests passes.

This process is often affiliated with extreme programming and similar agile development,

where it is a core practice [12]. No matter how the programming process is, the test-

driven development can be adopted. However it might not be in a central part of the

programming process. Using TDD can be a valuable tool controlling the condition of

a software stack, and it can limit having a long line of bug trails [4]. If the tests are

carefully crafted, the main problem, which introduced a bug, could be found at an early

stage. TDD is used to provide the continuous integration process with test cases to

check the integration validity.

This practice can be used in the Autograder project to test if the code implemented

by the students give the desired effect. Teachers write test cases to go through code

implemented by the students, defined by a code template. If the students makes func-

tionality not tracked by the teachers test case, they should write their own tests to meet

the required code coverage. This makes it easy to test what the students write and also

if the students wants to write some of the code outside the template, it allows them to

do so while practicing use of TDD.

4
Hypothesis

As described in the motivation section, there is a slow feedback problem in today’s

teaching of software development. Where the students need to wait several days or even

weeks before getting feedback whether their solution is a good one or not. To tackle

this slow feedback problem, we propose the following hypothesis: by applying software

engineering practices from the software industry, the learning process can be improved

through rapid feedback.

By using a continuous integration service to automatically evaluate students work, rapid

feedback can be delivered to the students. Using test-driven development to test for

wanted behavior and implementations can make it possible see in detail what each

student has been able to complete correctly and what remains.

With faster testing of students code and the possibility to give students feedback through

these tests, the theory is that students can more quickly identify and close their gap in

knowledge. The rationale for this idea is that when the students are working on their

assignments, getting feedback there-and-then makes it easier to understand the feedback.

Moreover, teachers can also identify pain points in the assignments that can be used to

shift the focus in lectures to these pain points, or to improve the assignment description.

While students work on their assignment, they often need to know where they stand in

order to know if their solution need more work or not. This is only possible with some

10

Hypothesis 11

kind of feedback. Students can of course create their own test to see if it fits within

their understanding of the course material. However if their understanding is incorrect

or incomplete, they cannot detect this on their own. This feedback has to come from

a member of the teaching staff, and today’s work process forces them to either wait for

an answer over email or wait until there is a offical help session at the lab facilities,

typically once a week. While waiting for help the students might be left with a lot of

unused time, time they could use on learning the specifics of the course material. With

rapid feedback given through continuous integration and test-driven development, it is

reasonable to say students will be left with more time to actually work on aspects of

the course where it is needed. With a fast way of verifying if they have understood

something correct or not, lets them divert their attention to where it is needed, instead

of waiting for the teaching staff telling them so.

This rapid feedback gives the teaching staff a huge advantage too, as they do not need

to go through all of the student submissions to give needed feedback and answering the

same questions multiple times. In the automatic feedback given through testing students

code automatically answers the students right away, when they needed this feedback.

Having the students code automatically evaluated gives good feedback to the teaching

staff as well. The teaching staff can see over the test results from all the students and

find common problems the students make. With this information, teachers time can

be spent on those problem areas, thus diverting the teaching over on areas where the

students need it the most.

In the grading process, the teachers have another advantage. All the students have

handed in the assignments and put them through the tests, and with this information,

the teaching staff can make a more informed decision when grading. All of the students

are put up against the same set of tests and are thereby judged more fairly, assuming

that they don’t cheat. Also having access to the students code through GitHub, allows

the teaching staff to view the code and can possibly identify which students have a better

solution compared to other solutions. Another way of easing the grading process.

Students are not only at universities and colleges to learn, it is also a place to prepare

them for a working environment. This means the universities and colleges need to

train their students in the methods and practices used in the software industry. After

examining how the software industry works, it becomes apparent that it is not only

the pure programming part that is important. The ability to use the tools and work

processes used in the industry is also important.

In the industry, employees need to be able to work independently and as a team. They

also need to have knowledge about how they work together on larger project and to

Hypothesis 12

validate the correctness of the programs that they develop. Setting the Autograder to

an environment similar to what they will face after graduation, has theoretically a huge

potential for preparing the students for the industry. Having the working environment

and handin procedure through a version control system, like git, providing the feedback

through a continuous integration process and validating the solution through tests, gives

the students the necessary training needed to understand the work process.

The Autograder project also wants to stimulate more students to collaborate with each

other to improve their understanding and simplify the learning process of the curriculum.

When the students work on their assignments in an online environment, it is also natural

to ask questions and get help online. There is also a huge potential from students learning

from each other. Students often work in groups and might be fragmented. The problem

that needs to be solved is how to make the students learn from each other across different

groups in a good way. A way to make the students ask each other questions and stimulate

them to answer each others questions is to reward students for this. The students can

ask their questions openly to the entire class in order to start a discussion about the

topic, and any student can contribute to this discussion. Giving the students rewards

on each step in this process can possibly motivate the students to ask more questions

and thus learn more from the other students.

5
Autograder Prototype

As established in the hypothesis, the setting of an automated feedback system, Auto-

grader, needs to be closely tied to the industrial work method. Because of this, the

autograder application was built to use git and a online git repository management sys-

tem called GitHub. Git would give the students training in the use of a version control

systems, and also serve as a storage system for their assignments. The online nature of

GitHub and the ability to control organization, repositories and members through their

REST API makes them a natural choice. GitHub is also chosen because of their user

interface. Files uploaded are the main focus within their user interface and from the file

view it is also easy to find earlier versions, version history and comparison of versions.

Github also provides supplementary systems to the version control system, such as issue

tracker, statistics, and contribution systems.

The hypothesis also states that students need to have a continuously delivery of feedback

on their assignments to be able to maximize their time while working on assignments.

To deliver this service a custom continuous integration service has been built into the

Autograder prototype. Whenever a student solution to an assignment is uploaded, the

Autograder will build the solution. Autograder’s continuous integration service will be

notified from GitHub when an upload of a new solution has occurred and from this

information the service can immediately start a build. This build will download the

newly submitted student solutions and teacher written test cases, and merge them for

13

Autograder Prototype 14

Figure 5.1: Flow chart showing the steps between students getting a new assignment
to finished test report.

testing in a shared work space. For security reasons this execution takes places in a

virtual machine environment called Docker, and at the end of execution the finished

output is parsed for presentation to students and teaching staff. The build process is

described in more detailed in the continuous integration chapter.

The results and detailed build logs from the test process are available for students and

teaching staff from a web service in the Autograder prototype. This lets the students and

teaching staff access their courses from anywhere in the world at any time. The results

are presented to the students on a page called student panel and will be personalized for

the students for each course. This gives the students a good overview and status of their

assignments. The teachers are also able to access the students results in a web page

called teachers panel, which allows the teaching staff to manage their course and get a

quick summary of all the students progress. From this summary page the teaching staff

can easily gain access the more detailed information about each student, by accessing

the build log. The teaching staff can also fully manage the course from this page, with

the settings page and which students and groups are allowed in the course. From the

web service the teaching staff can also manage users (students and teaching staff) and

repositories on GitHub. This is an automated process. More detailed information about

the automated GitHub management can be read in the chapters user management,

course management and GitHub communication, and a more detailed description of the

web service can be found in the web service chapter.

Autograder Prototype 15

5.1 Installation

The Autograder prototype is a open source project on GitHub. The source code is

located under the name hfurubotten/autograder on GitHub, and have to be cloned from

this location in order to install it. The Autograder prototype is written in Go, and rely

on a few third-party libraries. These third-party libraries include go-github, goauth2,

go-dockerclient, diskv and github-gamification, and need to be cloned as well before

compiling the Autograder prototype. Simplest way to streamline this process is to use

a go get command on the Autograder repository on GitHub. This will download all

the necessary dependencies. When all needed resources is cloned, the prototype can

be compiled. These are the commands needed to download and install Autograder,

assuming you have installed the Go programming language.

1 # Clone source code

2 go get github . com/hfurubotten / autograder

3 # Compile code

4 go i n s t a l l g ithub . com/hfurubotten / autograder

This will produce an executable file called autograder, in the $GOPATH/bin folder.

When starting the Autograder for the first time, we need to provide a number of pa-

rameters. These include:

• Application codes obtained from GitHub.

• The domain name that the application is running on.

• The GitHub username that should be used as the primary administrator for this

instance of Autograder.

The GitHub application codes can be obtained by creating a new application on GitHub’s

web services, and will contain two different codes. How to generate the application codes

from GitHub can be read about in appendix A. The first code that we need to obtain from

GitHub is the application identifier, and the second is a secret code for the application.

This secret code can be viewed as a password for the application and must be kept

strictly confidential.

The Autograder application also needs to know the domain name it is running under.

This is necessary to allow GitHub to redirect back to appropriate location (the specified

domain name), when using the OAuth protocol.

Autograder Prototype 16

The primary administrator of the Autograder application has the ability to give other

users to teacher and administrator privileges when they sign in to the Autograder appli-

cation. The user privileges and how the users interacts with the Autograder application

are explained in the user management chapter.

1 # Pr int s i n s t r u c t i o n s

2 $GOPATH/bin / autograder −help # pr i n t s i n s t r u c t i o n s

3 # Fi r s t s t a r t up

4 $GOPATH/bin / autograder −c l i e n t i d =0987654321 abcdef

5 −s e c r e t=abcdef0123456789fedcba

6 −domain=http :// autograder−app . com

7 −admin=hfurubotten

8 # Normal s t a r t up

9 $GOPATH/bin / autograder

5.2 GitHub Communication

All management of the repositories and users in the organization on GitHub are done

through GitHub’s REST API. This API lets the application perform actions on behalf

of a user and lets the Autograder application create or change repositories, teams, and

users within the organization. When requests using the API are executed an access

token from the teacher are used to authenticate the request. This request can then,

when accepted, perform needed actions in the Autograder application.

In the Autograder prototype GitHub’s REST API is accessed by using a third-party

extension created by Google, under the name go-github. This implementation makes

the requests callable through simple function calls, simplifying the process of managing

the organization on GitHub. This extension makes it possible to connect to GitHub’s

different services, such as the repository service, issue service, organization service, and

user service. These services makes it possible to create, edit, or remove repositories and

users within selected organizations. It also enables the Autograder to add, read, alter

or remove the content within the repositories.

5.3 User Management

When users are accessing the Autograder application they have to authenticate them-

selves with their GitHub account. This authentication is done through the OAuth

protocol. This protocol works by first send the user to GitHub’s web service with an

identifier specific for the Autograder application. This identifier lets GitHub’s services

Autograder Prototype 17

Figure 5.2: Autograders use of the OAuth protocol.

know which application is requesting to have a user authenticated. The user must then

approve that Autograder can access their account. This approval process only needs to

be done the first time, when the user is signing up for the Autograder application. For

students the approval restricts the Autograder application to only look up the GitHub

profile information. Teachers, on the other hand, need to approve access to organiza-

tions and repositories as well. When the user have approved the use of their GitHub

account, they will be directed back to Autograder’s web service. In the backend of the

Autograder application an exchange for an users access token to GitHub is started. This

is done with a user identifier acquired in the redirect back to Autograder’s web service

and a secret application token from the Autograder application. When this is approved

by GitHub’s systems, the access token is received from GitHub. ’

This access token is then used to request for the profile information from the user’s

GitHub account. From the profile information Autograder will try to establish username,

real name, email address, profile avatar and profile link from GitHub’s information,

and store this as user information. If any needed information, e.g. real name and

email address is missing, this will be manually collected through the profile page in the

Autograder web service. When this is collected the access token gets encrypted and

stored with a link to the users GitHub username. The user information will then be

Autograder Prototype 18

stored separately, and can be retrieved using the access token returned from GitHub

while signing in to Autograder. Also when the user signs in, the username is stored in

a session in order to recognize the user between page requests in the web service.

A user can have three different access levels or privileges within the Autograder ap-

plication. This is student access, which all user have as standard, teacher access and

administrator access. The students access gets the user access to signing up for courses

already created in Autograder. A user can only be promoted to the two other access

levels by a user which already holds administrator access. The administrator have ac-

cess to a page named admin panel. In this admin panel the administrator can upgrade

another user with teacher access or administrator access, or both access levels. With

teacher level the user can create new courses within Autograder.

The user information also stores which courses the user is attending, any groups the

user is member of, if the user is a teaching assistant and which courses the user is an

assistant, and which courses the user is a primary teacher for, if the user have teacher

access.

5.4 Course Management

To meet the goal for an industry work setting for the students the Autograder appli-

cation has been fully integrated with GitHub. This integration mean the application

can manage all repositories and members within an organization on GitHub. Organiza-

tions on GitHub can be compared with user on Github where a collection of repositories

are registered under a specific name. However an organization can have a collection of

members under its name, as a user only have itself as member. This organization is the

basis of a course in the autograder application. When a user with teacher access rights

registers a new course through the web service an organization on github will be linked

to this course.

When teachers creates a new course, their GitHub access token will be used to find all the

organizations the teacher have administrator rights to GitHub, through GitHub’s REST

API. From this information the teacher selects the organization which will be used in the

course and links them together. In this linking process the new course will be registered

in Autograders course register. In the registration process the organization name and

the access token for the teacher will be stored with this course. The organization name

will be used as a reference to which organization the autograder application will perform

action against. The access token for the teacher is also stored as an administrator token

and will be used to perform actions on behalf of the user on later stages. The access

Autograder Prototype 19

Figure 5.3: Steps for taken internally by Autograder in order to create needed repos-
itories and teams on GitHub.

token are stored to actually be able to perform actions also when the original teacher is

offline. GitHub is also restricting the API to be used through a user token and not only

the application token.

In the creation process there is also a restriction on GitHub’s organization API, where

it does not allow the creation of new organization from an application. This limitation

means the teacher will have to create the organization themselves on GitHub’s own web

pages. When the organization is created in GitHub the organization will also be visible

in the Autograder application.

In the registration process the Autograder application starts up a process of creating

a set of standard repositories and teams. This process creates the repositories with

course information, test cases and assignments. These repositories are named course-

info, labs-test, labs and glabs, and are the primary repositories used by the students and

the teaching staff. Information about the course, any updates to the course and general

information to the students are uploaded to the course-info repository. The course-info

repository is not required to use, but recommended as this will let the students get all

information from a common place. The three other repositories, labs, glabs and labs-test,

are necessary to use for the autograder application to perform optimal while building

students solutions. labs and glabs are used to distribute the assignments to the students,

where glabs are used for group assignments and labs are for individual assignments.

The teaching staff upload the assignments and any supplementary information, such

as skeleton code, to this repository. Students can then easily clone the data and start

Autograder Prototype 20

Figure 5.4: Relationship between different teams and repositories on GitHub, includ-
ing access rights.

working on their assignments. The labs-test repository will be the repository which stores

test cases for execution on students solutions. This repository will be hidden from the

students and can only be access by the teaching staff and the continuous integration

service.

The creation process will also create a standard team in the organization, the students

team. This team will hold all the students in the course and lets the students have

read access to the course info and labs repositories. New students signing up for the

course will be added to this team automatically. When students are added to this team

GitHubs systems sends out an invitation to join the organization. From this invitation

the user accepts to be a member of the organization on GitHub.

After the course has been created in and the GitHub organization has been set up, the

students and teaching assistants can start signing up for the course in the web service.

When students signs up for a new course the Autograder application will add the student

to the attending list on the course and the list of courses for said user. This signup process

will also add the student to the students team in the GitHub organization. When this is

done the student have to accept the invitation sent from GitHub. When this invitation

is accepted, the teaching staff gets the user up on a list of students waiting for access to

the course. The student have to wait on a teacher to approve the student for the course.

The approval process of students is a control mechanism for the teachers. It will let the

Autograder Prototype 21

teaching staff control exactly who gets access to the course and who gets a repository of

their own.

When a member of the teaching staff accepts a new student. This student need their

own repository on GitHub, a place where the student can upload their solutions. The

moment the students gets approved by the teaching staff, Autograder will connect to

GitHub and create a repository with the student’s username and the suffix “-labs”, and

a corresponding team with write access to the said repository. This will let the student

have their own repository for submitting solutions.

Some courses practice group assignments as well, and to enable this a solution for creat-

ing multi user repositories is also implemented in the Autograder prototype. When the

students submit a group request through the web service, the teaching staff can approve

or discard the group, and when approved the application will create a repository for the

group of students. The group repository will be created with the prefix “group” and

end with the group identifier at the end. After creating the repository the application

will also create a team with the same name on GitHub. This team will be filled with all

the members of the group and given write access to said repository.

A course always begins with one teacher as member when it is created. However some

courses on Universities and colleges have multiple teacher and can also have multiple

teaching assistants. The prototype is constructed to handle these scenarios as well. The

user who created the course is the primary teacher, but a set of other users can be

upgraded to teaching assistants in the course. For a user to be upgraded to a teaching

assistant the user need to first sign up as a student. The primary teacher on the course

then have the option to choose a student to be upgraded. When this student, or user,

gets upgraded, this user will be added to a special team on GitHub. This team is called

the owners team, and will have admin access to the whole organization. Being a member

of the owner team will give the user the same access to the organization and course in

the autograder application as any teacher.

5.5 Continuous Integration Service

In the Autograder prototype there has been developed a custom continuous integration

tool. This tool is the core which the continuous integration service is relying on. When

a student upload their progress to github, the web service gets a notification about this

and will start a build request to the continuous integration service.

The event notification from GitHub gets processed in the web service and will find in

which repository, and in which course, a student has uploaded a new version of their

Autograder Prototype 22

Figure 5.5: Representation of how the continuous integration service receives, process
and deliver build requests.

Figure 5.6: Settings for the continuous integration service in the web service.

assignment. The usernames and course data are checked against stored data, to confirm

the legitimacy of the event, and can then start a build request. This build request tells

the continuous integration service which repository to use and how to build the student

solution.

When the continuous integration service get the build request, it first starts up a new

docker container, where it can run the solution in a clean environment. A docker con-

tainer is a simulated linux operating system which is started from a common virtual

image. This image contains the needed compilers and programs used to compile pro-

gramming code from different languages. This docker container is used each time a new

command will be called for this particular build, and each build has its own container.

Autograder Prototype 23

After starting up a new container, to run the build in, the base path for where the

build should be located in the file system is created. This is an option the teaching staff

can change in the course setting in the web service. The path settings given from the

teaching staff enables them to decide exactly where the repositories should be cloned

and where the build should be executed from in the file system.

The next operation executed from the build process are to clone two of the repositories

on GitHub. First it clones and downloads the student repository, or the group repository,

in the predetermined path, and then clones the labs-test repository which contains the

teacher written test cases. These two repositories then gets merged by copying the

content of the labs-test repository over to the student repository. This operation will

let the test cases be located in the same file location as the files in the student solution,

but this also means that files with the same name in the both repositories will conflict

and result in students version is overwritten. Files in the teacher restricted repository

labs-test are prioritized in order to prevent students overwriting any test cases.

When all the files are present in the same file structure and ready to start testing. The

continuous integration service is built to have custom build and test procedures for each

assignment. This is done through a standard call to script files, written by the teachers.

For each assignment there is a linux shell script which need to be implemented by the

teaching staff to execute their test cases. Script files required are one shared script file

for all the assignments and one for each lab assignment. The first script file is named

dependencies.sh and is ment to run any commands which would be common for all the

assignments. This file can also be empty if not needed. The second file is the test

script itself. This script file will be in a folder named the same as the assignment, and

must contain the commands to start up the testing of students code. These two script

files gets called by the build process in order to get the test results from the students

solutions, with the test file as the last runned script file.

Throughout the build process, the continuous integration service records the standard

output from the commands executed within docker. After the test script is done exe-

cuting the output gets analysed. The analysis finds out how many tests failed and how

many passed. The analysis also looks for any score objects, with more detailed test data,

in this output. If any score objects are present, and have valid course hash ID, it will

use these to calculate a score for the student or group, and if no score objects are found

the basic test data will be used in the score calculation. How the score objects work and

are calculated can be found under the chapter score reporting.

After analysing the data from the standard output, this data is also kept for reviewing of

the students and teaching staff. The score objects are only for giving back information

Autograder Prototype 24

back to the autograder application about internal score progress and are removed from

the test data. However there can be much information in the test data itself for students

and teaching staff to better understand why a test case failed or did not build correctly.

The standard output data gets sanitized for any potential sensitive information, and

then stored in a build report. This build report is the basis of what later on will be

presented to the students in the web service. In the build report, together with the

output data, the score objects and calculated score are stored. This report are then

written to disk under the specific student or group, to be presented for teaching staff

and students when you visits the web service.

5.6 Web Service

Students and teaching staff need to access the test data generated from the continu-

ous integration service and other services from the autograder application in a simple

way. This also needs to be accessible for them from anywhere at any time. The best

way to deliver these specifications is to have a web service. These web services have

been implemented directly into the prototype and works closely with the background

processes.

The web service is designed with a simplicity in mind and have been created with help

of the standard theme from the twitter bootstrap library. This does also make the

web pages mobile friendly, where the pages will automatically scale for any screen size.

Students and teaching staff can then access results from any device they which. The

web pages deliver for the most part only a shell to present the content on the pages.

When the user access a page they download a html file which needs to be filled with

content, and this is controlled by javascripts in the background of the page. Raw data is

retrieved from the web service and then presented in the design on the web pages. This

allows the same data to be reused on multiple web pages, without the need to render

this into the page on each page request, and the data can be refreshed without having

a hard refresh of the web page itself.

This chapter explains in more detail each of the available pageviews in the web service.

Autograder Prototype 25

5.6.1 Students Panel

Test scores and build requests are available for students and the teaching staff through

the web service. Each student have their own personal page for each course they attends.

This page gives the student a list of all the lab assignments and using this list the

students can look up latest build for each assignment. The presentation of test results

are generated from a build report created in the continuous integration service. From a

build report the page generates three different sections with information to the student,

a total assignment score and status, a individual test score summary, and the complete

build log.

Test results from each assignment is presented first of all with a process bar, which shows

a quick summary of the overall progress of the assignment. Under the process bar the

student can find the status of the lab assignment, a status which is shown either as an

active assignment or as approved by the teaching staff, and when the last time the build

was triggered from the student uploading their solution to GitHub.

Together with the overall process information, a summary of the individual test scores is

shown. This is a table of all the data gotten from score objects generated in the teacher

written test cases. This table will show which test generated the score, how many points

the student has gotten within the specific test and how much the test results from the

said test weigh on the total result.

Rest of the page follows with the complete build log. The student can see how many

failed and passed test, or build failures, have been detected. Also the students can read

Autograder Prototype 26

the pure output from the build and test process. Within this output, the students can

look more closely on potential error messages and any feedback generated by the test,

in order to improve the solution.

In the case of group assignments in the lab project, the students also has the possibility

to form groups through the web service. The students can form groups in two ways,

through selecting the students they wants to work with or telling the teaching staff

they want to be put together with any student. When the students have submitted

their group selection, the teachers need to confirm that this is a valid group. When the

group has been approved for lab work, the students gets access to build their solutions

and see results from their shared lab assignments, in the same way as their individual

assignments.

Autograder Prototype 27

5.6.2 Teachers Panel

The teaching staff also have a common page for their course, called teachers panel.

This page is designed to give the teaching staff full control over their course and see a

summary of students results. Teachers panel lets the teaching staff manage the course

and the students from one place. From teachers panel the teaching staff can change the

setting of a course, manage students and groups, look up more detailed and upgrade

users to teaching assistants.

The main view from in teachers panel is the summary of students or groups. There is

two summary views which can be viewed. First summary is of all the students in the

course, and will always be present on teachers panel, even with or without individual

assignments. The students are presented in a table. This table contains student in-

formation, the total score on their assignments and a menu for the individual student.

Information showed about the student are student ID, name and GitHub username.

The results from their assignments are presented with a column for each as percentage

completed of their assignment. If the course have group assignments, there will also be a

possible to see the same view for all the groups in the course. The student information is

then changed out with information about the group, and shows group name and ID and

all students whom are members. The last column in the summary table is a menu for

actions the teaching staff can access for the student or group. This menu enable them to

view the complete build log for the students, send out emails to individual students or

groups, see their GitHub repository, remove groups, and upgrade students to teaching

assistants. Which of the two views, groups or students, are showing when a teacher is

visiting the teachers panel is controlled from the deadlines on the assignment. The view

Autograder Prototype 28

is selected through calculating the nearest deadline of an assignment. The teachers can

also switch between the two in the main menu on teachers panel.

When students sign up for the course or the students submits a new group, this has to

be approved by the teaching staff. Each time the students sign up for course or a group,

they gets added to a list which needs approval. When there is content in this list a new

menu item appears to the teaching staff there is a student or group which needs to be

approved. When a member of the teaching staff toggles this view they get a list of the

students or groups which needs to be approved. They can then either deny or approve

the student or group for the course. Upon approval the system will notice the server

in the background of this and start the creation of repositories and access policies on

GitHub.

Often it is not only the summary which is important for the teaching staff. The complete

build log needs to be reviewed as well. From the list of students or groups the teaching

staff can access this information. From the menu on each student they can get access to

a page which shows the same complete information which is shown on students panel.

Here the teaching staff can see the complete build log, the score summary and the

overall progress. All the different assignments are accessible from this page as well, and

the teacher can select an assignment to view in the main menu on the page.

To control the course as best as possible, the teachers panel have a settings page. In

the settings the teaching staff can change parameters for the course information, the

continuous integration service and the assignments. First section in the settings are the

Autograder Prototype 29

standard course options. These options is the control over course descriptions, number of

assignments and how to interact with GitHub. The description of the course includes a

longer text explaining the course and the name shown within the Autograde application.

The number of assignments, both individual and group assignments, control how many

assignments the system should look for in the data from GitHub repositories. These

setting also controls whether or not the course should make the repositories on GitHub

private, on other words make them only viewable for members with access right to the

repositories.

The next section is options for controlling the continuous integration service. From

the setting in this section the teaching staff can control where in the file system the

students repository should be cloned to. This makes it possible for the teachers to

adjust needed paths for the building process. The other piece of information in the

continuous integration sections is the read only score hash ID. This is the hash value

needed to authenticate score objects from test cases. The hash ID need to be kept

confidential in order to not let the students create fake scores.

The last two section is the settings view is assignment options. These two sections

collect deadline dates and the folder name it goes under within the student’s repository.

The folder names are collected for use in the continuous integration service. When

starting up a build, the continuous integration service needs to know where the different

script files are located and are done through this information. The assignment deadlines

are collected for knowing which assignment is current active one. This information is

collected separately for the group assignments and the individual assignments.

5.6.3 Admin Panel

Autograder Prototype 30

Administrators are the users who have access to manage all the other user in the Auto-

grader application. With an administrator status the user will have access to a web page

named admin panel. From this page the user can see a list of all user registered in the

autograder application, and basic information about the user, eg. the real name of the

user. The admin panel allows the administrators manage the privileges of each individ-

ual user. This allows the administrators to promote or revoke administrator or teacher

privileges from a user. Teacher privilege will let the user create new courses within the

autograder application, and the administrator privilege lets the administrators share the

workload of managing the users.

All users shown in the admin panel will have listed which status the user currently have.

The administrators will have the option to change any of the two higher access levels.

This is done through a button for each of the options. Changing the status is as simple as

pushing the button and then the web page will send a request in the background about

the user getting new privileges. The updated user will be able to see the new options

on their own pages the moment after the administrator have upgraded the privileges.

5.6.4 Scoreboard

With the game engine all courses have their own scoreboard accessible from the student

panel and the teachers panel. The scoreboard shows the top 9 students generating

conversations on GitHub. This page lets the students compete to be the most helpful

student in their class, and to get motivated to generate more to keep their place on the

list. The scoreboard is accessed by a menu item in on either the teachers panel or the

student panel.

Autograder Prototype 31

When students or teachers access this page, the total score for the course is the standard

view. This shows the scores for the students through the total duration of the course.

The list is also decorated with different trophies to make the list seem more privileged

to be on one of the higher positions on the list. When the list loads a animated fade in

effect is implemented. This is created to make a more “wow”-effect from the students,

and making it more fun to interact with. The total course score can be changed to view

last week or month too. This is done through the page menu. The page then loads the

desired score data and pushes them into view for the user on the page.

The data used to present the scoreboard is loaded dynamically when the student pushes

any of the menu items. This loading is done in the background with help of javascript,

and loads the latest information from the server each time.

5.6.5 Profile Page

Each user in the Autograder application have their own profile, which stores information

needed by the system to have optimal service for the user. The first time the users log into

the application they will automatically be redirected to this page for collecting needed

information. Most of the information can be collected from GitHub, but in the cases

where only limited information can be obtained the users have to input this manually

in the profile page. Needed information in the profile is the user’s real name, student

or employer identification and an email address. If any of these pieces are missing the

user will always be redirected back to the profile page, and missing information will be

highlighted. The user can edit or input their information at any time from the profile

page. Each line of information has a edit button and lets the user input new information,

and then upload this for saving on the server.

Autograder Prototype 32

The profile pages does not only show the information added or collected information

from GitHub user profiles. The profile page also show the user’s game status. In the

headline of the profile page you can see the user’s avatar on GitHub with current game

level and progress towards next level, represented by a process bar. All badged the user

has earned will is also viewable in the profile page. More about how the levels and

badges works can be read in the game engine chapter.

5.6.6 Help Pages

To offer support for queries from students and teacher a help page is available. These

pages are available even if the user is signed in or not. The help section gives explanations

about what the autograder project is and how the students can register and sign in to

the Autograder application. The help section is also easily extendable. Finding pages

to view on the help section is fully automatic and a new page only need to be added to

the help folder and the page can be loaded. Provide a new link in the menu and a new

html file and the Autograder application will be able to find and provide the page.

5.7 Game Engine

The Autograder project aims to stimulate more student learning from each other and

collaboration outside their own their usual circles. In order to get the students properly

stimulated a gamification approach was implemented and will give the students points

for actions performed on GitHub, mainly in the issue section of their repositories. The

gamification was implemented in a game engine in the Autograder prototype. The game

engine takes in any action performed by the students on github and process it for point.

Points will be awarded to the students and they can climb on a scoreboard.

The prototype will get notifications about student actions from a web hook created on

each of the students repositories and the assignment repository. Web hooks is a service

from GitHub where an application can get a push notification from GitHub when a

certain action has occurred on their services. For said repositores the webhook have

been edited to give a notification about any action performed on GitHub.

When the game engine got a push notification from GitHub it sorts out the notifications

relevant for the point system. Push events, where students have pushed a new solution to

their repository, are forwarded to the continuous integration service for building. Actions

relevant for giving points to students will be decoded and the student completing the

action will be awarded with points. These points for different actions can be seen in

Autograder Prototype 33

Figure 5.7: Flow chart of how the game engine receives action notifications and
rewards students for their efforts.

Action # of points

Comment 50

Open issue 70

Close issue 20

Reopen issue 20

Issue assignment action 10

Issue label action 10

Table 5.1: List of points earned from each type action on GitHub.

table 5.1. Here comments, giving actual value back to other students, give most points,

and organizing and sorting the issues, for better overview, gives less points. Currently

supported actions are within the issue service on GitHub.

When a student gets points this will be stored in the user profile. This process of giving

points will also result in giving the students higher and higher game level and badges.

These game levels and badges will start off easy and get harder and harder to conquer.

The game levels can be viewed on their profile page and current level are represented

alongside their name and a process bar shows the progress towards next level. Game

levels are purely calculated from the number of points the student have obtained, and

the number of points needed for each level can be seen in table 5.2.

Badges on the other end is calculated by number of times a certain action is completed.

When an action is completed by a student this counts on the different badges. Current

badges accessible in the game engine are talker badge for creating comments, issuer badge

for new issues, assigner badge for assigning issues and the labeler badge for labeling

issues. These badges will be unlocked one by one from when the student completes

one of the said actions. Badges are shown on the profile page with a trophy for each

of them, and they can range in value by how many actions are completed on each of

them. The values the students can obtain on them are bronze, silver, gold, platinum,

Autograder Prototype 34

Game level # of points needed

1 0

2 100

3 500

4 1 000

5 2 500

6 6 000

7 10 000

8 14 000

9 20 000

Table 5.2: Points needed for each level in game engine.

and onyx, where bronze is the lowest one and onyx is the most valuable. The progress

on the badges are also shown underneath the badge themselves.

Points obtained by students will also be registered within the course the action was

created. These points will be stored in a list of all the students. The points will be the

basis for a scoreboard, where the students can compete for a top position among their

peers for collaboration efforts. This scoreboard stores points gained per user overall, for

each month and each week, and have a individual scoreboard for each of these periods.

The overall scoreboard will count all the points generated by the students and shows

a descending list of the nine students currently on the top. The two other scoreboards

will reset itself for each new month and week, and start counting points within the new

period.

6
Autograder Work Process

This section will explain the normal work process within the Autograder project. How

the students will work on their assignments and get rapid feedback and how teachers

can write best possible test cases for their courses will be gone through.

6.1 Submitting Test Cases

In order to be able to supply feedback in Autograder’s continuous integration service, it

relies on teacher written test cases. Through the test cases written by the teaching staff,

the Autograder application gets supplied results which tells Autograder how to present

progress for the students. When the students upload their solutions to GitHub and the

continuous integration service are notified to start a build, it needs a set of test cases to

execute on the student’s solution. These tests are the teacher written test cases.

The teaching staff have to develop a set of test cases to use when testing student code.

The continuous integration service expect the test cases to either be in students git

repository or in the git repository named labs-test. The labs-test repository is a repos-

itory only accessible for the teaching staff, and will be hidden for the students, if the

course is a private course. This extra git repository for teacher specific code and test

cases is a security implementation. On private courses the labs-test repository will be

35

Autograder Work Process 36

hidden, thus preventing the students reverse engineering the test cases when trying to

pass the assignments.

The hidden labs-test repository enables the teachers to also test for extra behavior,

or have extended behavior testing, on students solutions. A good way to get extra

insurance on what the students actually know about the course material. The hidden

labs-test repository insures that the students can not reverse engineer the test cases to

pass the assignments, but it is however a good practice to give the students some test

cases which is open and clear for the students. This lets the students have some sort

of confirmation of their work before uploading their code. A smaller test sample will

let the students test if their code is on the right track before having it runned through

the continuous integration service. The labs-test repository files will also have higher

priority than students written files. If the students tries to overwrite the test files with

new data, this will be stopped by the prioritizing of the files in the labs-test repository.

This also has to be in the mind when teachers writes test cases. There cannot be any

files with the same name in both students repository and the labs-test repository. The

student’s file would be overwritten.

In order to be able to run all the teacher written test, and to be able to support as many

languages as possible, the teachers also need to supply a way to start up all the test cases.

This is solved through having custom shell scripts runned as standard instead of calling

the test cases directly. There are two script files for each lab assignment which will be

runned when the continuous integration service starts up. One for the dependencies,

which is intended to contain commands common for all the lab assignments. The second

script file is intended to run the tests it self. These script files need to be supplied as well,

from the teacher, in order to get the continuous integration service set up for running

test cases on students solutions.

After running the test cases, the test results will be parsed and give a score back to

the students with how many test cases passes or fails. It is a very basic way of giving

a progress reports back to the students, and it will only show any progress when a

test passes perfectly. However using score reporting the teachers can report back more

detailed and specified data to the continuous integration service. This can be reported

back by using a JSON object. When a test is running it could collect more detailed test

informations, for instance each tested value, and summarize the a partial score. This

score object can then be sent to the output stream where it will be picked up by the

continuous integration service. Teachers can then, with the JSON score object, send

back more detailed progress to the students from within the test cases.

Autograder Work Process 37

The continuous integration service can also work without the need for teacher written

test cases. Students can supply the test cases themselves. Then the students write test

cases for their own code and those will be runned through the continuous integration

service. The teaching staff still need to supply the script files, which runs the test cases.

This script need to be able to start up any test the students mye write to actually run

them. In the case of student written test cases, the autograder application will not

supply any feedback about the course material. Due to the fact that all the test cases

is supplied by the students, they will only test for behaviour in their knowledge and

show which test cases passes on any given time. Testing through students written test

cases can however be valuable for the teaching staff. It will immediately be clear, for

the teaching staff, what test cases have been written by the students, and can therefore

be helpful in the grading process, for instance when looking on code handed in by the

students. If the course material includes use of students written code, it is recommended

to use both teacher and student written test cases.

6.2 Score Reporting

When the continuous integration service have runned the test cases started up by the

script files, it will try to interpret the data given back through the standard and error

output. The most basic parsing of test data is to only look after the test itself, and

report back to the teaching staff and student how many test passed and failed. However

the continuous integration service also have a way to be delivered more specific test

data.

When the test cases are executed the test itself can count up how many of the subset

values a student’s solution is passing, and give a more detailed picture of how the progress

is of each student. After a test is finished, the test can output a specific JSON object

in order to tell the integration service about the internal progress of a test. This JSON

object, call a score object, contains information about which test it comes from, max

score possible on the test, actual score reached by the student, how much weight the

specific test should have on the total progress and lastly a security code.

If the continuous integration service finds a JSON object which can be parsed into a score

object, it will switch over from the basic pass/fail test reporting to the more detailed test

reporting. When the continuous integration service detects one or more score objects

in the output data, it will use this information to calculate the score given through the

web service to the student and teaching staff. When reading the different score objects

a percentage between 0 and 100 will be calculated, using the following formula:

Autograder Work Process 38

weighttotal =

n∑
i=0

weighti (6.1)

scoretaski =
scorei

maxscorei
(6.2)

scoretotal =

n∑
i=0

scoretaski ·
weighti

weighttotal
(6.3)

Through the formula the Autograder web service knows how the progress can be pre-

sented to the students and teaching staff in form of a process bar in the web service.

This gives the students and teachers a simple way to get updated on their assignment

progress.

The score objects also provides an uninformed way of telling how each test scored indi-

vidually, and this also gets presented in the web service. Besides the process bar, giving

a overall progress representation, each of the individual test will be presented as a list.

This list shows the different test names, and the total influence the test matter on total

progress.

1 {
2 Sec r e t s t r i n g // the unique i d e n t i f i e r f o r your course

3 TestName s t r i n g // Name o f the t e s t s that i s covered

4 Score i n t // The s co r e the student has accompl ished

5 MaxScore i n t // Max sco r e p o s s i b l e to get on t h i s s p e c i f i c t e s t (s)

6 Weight i n t // The weight o f t h i s t e s t (s)

7 }

Listing 6.1: JSON structure of score object.

The structure of the score object can be seen in listing 6.1 To be able to pick up on the

score object it need to be in JSON, and have the properties TestName, Score, MaxScore,

Weight and Secret. The TestName property tells the name of the origin test. Score,

MaxScore and Weight tells how much the student has scored on the test of the possible

max score, and the Weight tells how much of the total progress the score should count.

The property Secret is a hexadecimal hash value specific for the course. This value

ensures score objects only comes from test cases controlled by the teaching staff, and

not from students trying to get a higher score. The hash value can be found in the course

setting in the web service, and must not be shared with the students. Any score objects

containing a different hash value than the designated for the specific will be ignored.

Autograder Work Process 39

6.3 Student Work Process

When the students work on the assignments they receive all their assignments and

supplementary code through the shared repository called labs for individual assignments

and glabs for group assignments, on GitHub. From this repository the students will

either copy the content over to their repository, or clone this repository directly from

GitHub and put their own repository up as a remote location in git. The students can

then download their assignments from a common place, managed by the teaching staff,

and upload their assignment progress to their own private repository.

Setting up their git repository clone on their own computer is the only action needed

for the students to actually begin on their assignments. They have the assignments and

can start work on it as soon as they downloads this from the designed repository. While

working on their assignment the procedure will be as normal, where they pick up the

assignment, read up on the material needed to complete the tasks and implements their

solution.

After a while the students feel confident they have a full or partial solution for the task

presented in the assignment and can upload the implementation to GitHub. When they

do this Autograder is notified and starts the testing of their solution. As soon as the

test is finished running their solution, the results are presented to the students in the

web service. The build log and the score will tell the students if there are need for

improvements, and where the test cases shows an incomplete implementation. From

this information the students can immediately see where they need to focus their energy

to achieve a better solution. After reading the build log and test data, the students can

go back to working on their assignments or do more research on the assignment and

start over until they are satisfied with their solution.

Uploading their solutions to GitHub is not only encouraged to do when students want to

test their solution. Often the course practice group assignments, which means students

need to collaborate with other students in the same repository. With multiple students

working on the solution for an assignment the students should upload their progress for

sharing with other participants. If the students uploads their progress regularly it is

easier for everyone involved to keep track of progress.

7
Use Cases

Two use cases has been set up to find out how well the theory of the Autograder project

works and how capable the autograder application are in different situations. First use

case have tested the autograder application for different programming languages and

different ways to test the code. The second use case was on the course Distributed

system at the University of Stavanger. In the last use case the autograder application

was tested over a whole semester on actual students.

7.1 Test Frameworks

First use case in the Autograder Project was to test the capabilities of the application

itself. Three different possible ways to use the Autograder application was put in use.

The first of all the golang test framework was tested with autograder, this was also the

test framework used in functionality testing while developing the prototype. The second

usability test was to use plain shell scripts to report back students progress. With shell

scripts the solutions was tested simply by checking output generated by the program,

and what exit status it reported back. Third usability test was on the programming

language Java, and is the most extensive usability test in this use case.

40

Use Cases 41

The most widely used programming language at colleges and universities in Norway is

Java. Java also has an extensive testing framework called JUnit. Thus, it is important

that the Autograder can perform automatic testing and parse results for Java-based lab

assignments.

In order to validate the capability of the Autograder to test Java-based assignments,

we took some of the exam exercises from the year 2010, and adapted them to a simple

introductory course for Java. These exercises was created to test a student’s ability

in the most important aspects in object-oriented programming in Java, ranging from

inheritance, composition, interfaces and abstract classes. The basic tasks was to create

different types of mathematical sequences, one class for each of the following: Fibonacci,

geometrical and arithmetical sequences.

In order to test how many of the assignments a potential student had managed to

complete, a set with unit test was adapted to validate the answers submitted by a

student. These unit tests also contained different score counters, which is reported to

the autograder system and used to present the progress of the student submitting a

solution.

The functionality test of this test case of the autograder project was done in house,

which means the introductory Java course put into the autograder application has not

been presented to a live set of students. Simulated students have gone through the lab

exercises and tested the different stages through the lab work process. The results from

this experiment confirms that the Autograder is fully capable of working with Java-based

test cases.

7.2 Distributed Systems

One of the main objectives of this thesis is to find out how the students react to having

better and faster feedback on their assignments. This use case explores the process of

how the students work with their lab assignments and how their learning are affected

by rapid feedback. The effect on students always having their current progress tracked

also had to be explored. The psychological effect on students wanting to learn is of

great importance. The interest to actually learn the details of the curriculum among the

students holds large potential, where they can learn much from actually study course

material in more detail. Another aspect which was in large interest is the possibility to

have the students learn from each other and to the stimulate the students to ask more

questions, not only to the teaching staff, but also to each other.

Use Cases 42

To explore these aspects of the autograder project, the autograder application has been

used in the course Distributed systems [DAT520] at the University of Stavanger. The

distributed systems course features a large lab part in distributed programming. This

lab part of the course expected the students to create a distributed system in order to

get a closer connection to how it works in practice. More specifically the students are

have to create a leader and failure detector, and make this work with a paxos algorithm.

The lab project given to the student was a graded project which weighed 40% of their

total grade in the course. Within the lab project the implementation of the paxos,

failure detector and leader detector algorithms was weighed 40% of the grade, and the

remaining 60% was weighed for the implementation of a network layer to transport the

paxos messages between different machines running their software. In the lab project

only the core curriculum was tested with help from the Autograder application. This

means only the paxos, failure detector and leader detector algorithms was provided

feedback for and confirmed with the continuous integration service. The remaining

network layer was kept open for student interpretation.

For this use case the assignments was rewritten to fit into the Autograder projects work

process. The assignments was adapted to be checked within the Autograder application.

Manuals for the how the students should sign up for the course, understand their test

results, use GitHub and new policies was created. Thanks to Tormod Erevik Lea a

complete set with test cases was developed for the paxos lab. These test cases was

upload to the labs-test repository and was subjected to the students solutions, and also

a set of dumbed down test cases was delivered out to the students, to enable the students

to partially test their solutions locally.

A new practice started from this use case, which has not been used before, was to

have the students getting their assignments approved by a member of the teaching staff

at the lab facilities within the lab hours. With this practice the teaching staff got a

presentation of the work done by the students and could see if the students knew what

they had implemented. Before a member of the teaching staff would approve a lab, the

students needed to have at least 60% completion of the assignment.

At the end of the lab project the complete work done by the students would be tested

in a lab exam. This exam was a 15 min presentation and question session. At the lab

exam the students would present their solution one by one, and not as a group used in

the assignment approval process. The individual question session tested the individual

student for the knowledge needed to complete the lab project, and to be able to tell if

the work is due to a single individual or a actual collective group effort.

8
Results

This section will go through the findings from the two use cases for the Autograder

project. The usability chapter will go through the usability for different test frameworks

and the findings from this testing of the application. Most of this chapter will however be

based on the findings from applying the Autograder project on the Distributed Systems

course at University of Stavanger. In this course the lab project was fully managed

from the autograder application and assignments was confirmed through the test cases

developed for the course and the in lab approval process. From the use of the Autograder

project in distributed systems results was collected through interviews of both students

and teaching staff, and an anonymous survey at the end of the course.

Throughout the course periodical interviews of the students was performed. In this

interviews the students was asked questions about how the Autograder project affected

the their work with the assignments. Among these questions it was asked if the students

was able to work more structured with the rapid feedback in Autograder, if they felt

the approval process and grading had improved or not, if they felt more motivated to go

more in detail about the curriculum and if they felt more confident of their solutions.

The teaching staff was also interviewed on regular intervals. In these interviews the

subject was about how they were able to follow up on the students, how well they

knew the different students solutions, if there was easier to detect problem areas in the

43

Results 44

assignments and if they easier could find sufficient basis to grade the students in a fair

way.

At the end of the lab project the students was also asked to fill out an anonymous

survey [2]. This survey let them answer questions about the use of version control,

continuous integration and test driven development in the Autograder project and how

it could impact their future, how the Autograder project affected how they worked on

the assignments, how they think the autograder could be improved and how assignments

was compared to earlier years. This survey was created to get the most honest and open

opinions from the student’s total impression.

8.1 Usability

The usability of the continuous integration service was tested through three different

test frameworks. These test frameworks was junit in Java, Golang test framework and a

simple shell script to verify the solutions. These three possible ways to deliver test data

back to the autograder application was tested by writing simple test cases, uploading

them to a test course on GitHub and then simulating a student working on passing these

test cases. When simulating the student working on the solution the continuous integra-

tion service delivered fast and steadily results back from the build process. While testing

different test frameworks within the continuous integration service the Autograder ap-

plication started and executed the build each time. This suggest that the continuous

integration service are able to run many different test frameworks without problems.

Since the test frameworks in this test are very different from each other also shows that

it would probably be able to run many more types of test frameworks as well.

Another perspective the usability use case showed was the ability to parse the lower

level of test data generated. The test cases was as mentioned very different from each

other, and the continuous integration service was mainly developed with the Golang test

framework in mind. For Golang test data, it could easily pick up and the number of

passed, failed and build failures within the test data. However when the two other test

frameworks was tested, the continuous integration service struggled at times to pick up

on the right keywords in the test data. This lead to missing data in the presentation of

failed, passed and build failures.

However in higher level of test feedback, where internal test scoring was used, the con-

tinuous integration service managed to pick up the correct information each time. This

internal test scoring is the more detailed information returned about the internals of a

Results 45

test case. This score reporting follows a strict format for reporting back information

and showed itself to work at all times with any of the test framework.

Even though the lower parsing of lower test data failed at some frameworks, the Auto-

grader application gave back the complete build log for the test cases and did not limit

the student from getting the feedback they needed and with use of the score reporting

the student would also not be blocked from knowing their score.

In the Distributed Systems use case an important aspect about the feedback itself also

emerged. Test cases developed for the Distributed systems course followed the natural

feedback format from the Golang. The feedback informing about which action failed

within a test was given by telling which function failed, what the expected values was

and what was gotten instead. After using these test cases with the students, it showed

itself not to be the best practice to use for students trying to learn. Many students

reported back they often struggled to actually understand what was wrong in their

solution by simply getting information about what was expected and what was gotten

instead. They could not easily understand what part of the algorithm they had a wrong

understanding off with this limited information.

From the problems students had with the feedback they got, it showed itself that any

feedback are not always good feedback. When using test driven development to educate

students about something new they need to have a reference to educational material

with their normal feedback. It can be hard to find out what actually is expected from

a algorithm by only examin values coming in and out of simple functions. Best practice

found while testing in the distributed systems course was to have a combination between

references to the curriculum and a natural test feedback for the test framework. With

this combination the students could look up an aspect of the algorithm if they needed

better understanding of it, and also be able to find minor errors in their code, for instance

finding typos.

8.2 Student Learning

Through the use case in distributed systems course the students the students worked

hard on the assignments and truly put the Autograder application up for testing. Statis-

tics from the version control system and the web service showed that the students work

steadily with their assignments throughout the semester, with peaks around the deliv-

ery dates, as illustrated in figure 8.1. The students ended up generating 2567 commits

to their repositories and generating at least as many build requests in the continuous

integration service. The statistics also showed the web service had 2365 sessions on the

Results 46

Figure 8.1: All commits created by students distributed over time.

autograder web site and 9975 pageviews. The number of commits and sessions are very

close compared to each other and could suggest the students often visited the autograder

web service for a closer inspection of their score. The number of page views generated

by 31 students and a teaching staff of three suggests that the autograder application var

frequently used and an important part of the lab project.

While the application was frequently used the total impact on students work process are

also of importance. Through the interviews the students could report the rapid feedback

had a positive impact on their work.

From the beginning the students the students felt they could easier start up with their

assignments when they already had some parts put together for them. Often when the

students get a completely open assignment, it is hard to know exactly know where to

start in order to build the best possible solution. The test cases used in the course

demanded the students to implement their code in some predetermined name spaces.

This gave them a good starting point to start implementing their solutions. While they

normally had to wonder about where to start, the students reported they could start

on learning the material important for the course much sooner. Thus giving them more

time to understand the material.

Better management of their time was also reported through other parts of the lab project.

The student praised the possibility actually get their lab assignments checked while

working on the. This gave them a quick way to see if they had understood the algorithms

in the course or not. In the cases where aspects of the algorithms was unclear for them,

they easily found out they had not fully understood the algorithm. With the feedback

given they could find gaps in their knowledge and they could find the areas where they

needed to research the algorithms more closely. Many students reported they could

understand the lab material better when they got rapid feedback on what they had

done correctly or not.

Through the lab project the students also reported back they managed to use their time

better. Usually when they got stuck on their assignment they would use much time

on requesting help to solve their problems. With the feedback they got from testing

their assignments they could easier find out why the problem had occurred, and with

Results 47

the information gathered from the test data they managed to faster find their way back.

These two scenarios given back from the students makes a strong connection to the

reasoning in the hypothesis, where the students can free up time to learn the curriculum

in more detail with rapid feedback.

Another important aspect with the assignments is the stress level the students have

before handing in their solutions. This stress often comes from not knowing if they

actually have understood the material correctly when handing their solution in. With

the normal handin procedure they also need to wait a longer period before getting an

answer to this. The long wait is often because the teaching staff actually need to go

through all the answers afterwards, before giving feedback. Many students reported

much of the stress was removed when they could test their solution on beforehand, and

thus get more confident on how good their solution is before they handed it in.

The rapid feedback has shown itself to be very useful in helping the students to learn the

curriculum better, and make them more confident with their answers. However there was

also reported back a positive side with having a score given back to the students while

they worked. This total assignment progress showed them how far they have gotten

on the assignments, and this was also a good motivation factor. With the percentages

rising higher and higher on their process bar, they got really motivated to get more.

One of the students mentioned in the survey it was good to see how far they were from

the goal, and even if it was on 98%, which well above approved, they still wanted to get

those last two percentages. This shows the actual representation of how much they have

completed drives them to actually learn more just to get full completion score.

The students also had a written exam in the course covering many of the same aspects

as the lab project. After correcting the answers given in these exams there could also

be seen an increase in knowledge among the students compared to earlier years. This

increase in knowledge showed itself in the questions covering the same parts of the

curriculum as the lab project. When taking the fact that the students wanted to dig a

little deeper into the curriculum while working on the lab assignments into account, it

looks like the improved learning in the lab project also has influenced what the student

knew on the written exam. A powerful signal that the students also manages to carry

with them the knowledge they obtained in the lab project.

8.3 Student Follow Up

One important task for the teaching staff is to follow up and help the students where

it is needed. The students often ask the teacher about problem areas they have in the

Results 48

assignments, and might need further guidance from the teaching staff to resolve the

problem. If there is only one or two who get such a problem, there not much time lost

from guiding these students. However it raises a problem when many students ask about

the exact same problem, and often each of these students use a lot of time to research

their problem beforehand.

With Autograder in place the teaching staff can monitor the students more closely since

they have direct access to each student’s test data. When this while having this data on

the teacher’s fingertips, the teachers can easier see if the students are having problems

with one particular area. When one or two students asked about a specific problem, the

test data made it easy to research if more students had the same problem, but had not

asked the teaching staff.

This scenario was also a problem during the distributed system course. The students

was struggling with implement a certain part of the network layer and looking at the

implementation submitted already by the students and using the test data, the teaching

staff could detect a area where students needed a bit of extra guidance. Resolving this a

longer description of how to solve the problem was published to the students and made

the problem more manageable for the students.

In the distributed system course the test data showed itself useful for easily finding pain

points in the assignments, and made teaching staff able to resolve this at a much earlier

point in the assignments process.

Another useful side with the information the autograder application delivered was when

students asked for help with specifics in their programming code. From the test data

the teaching staff could see which test cases failed and for what reason, and from the

autograder web page the teaching staff could easily trace the problem to a section in the

code. This made the process of helping the students much faster as the test results lead

to a better insight to their code. From the autograder application it also was easy to

find the students code for review, helping speeding up the process of finding a problem

in the students programming code.

8.4 Grading Improvements

The process of grading students final product can be a tiring process. The teaching

staff need go through all of the students solutions and find out how each student solved

the assignments, and how well the solution is. This process takes time, which often is

limited, and can in many circumstances lead to too little overall knowledge of the details

within students solutions.

Results 49

From the interviews of the teaching staff in distributed systems it was revealed they had

earlier years had too little overview of what each student had implemented and if they

actually had created a solution which contained all the details needed for a complete

solution. As with this year’s course there was also a lab exam previous years at the

end of the lab project, but in the limited time of 15 minutes it is hard to reveal if the

students had implemented all details within the parameters of the algorithms. With

such a huge lab project as in distributed system it is also hard for the teaching staff to

read through and understand the entire implementation of all the students within the

grading deadline.

The teaching staff reported they got a much better overview of the work of each student

with the Autograder project. Compared to earlier years they knew which details the

student managed to solve of each algorithm. The overview of test results given through

the Autograder application made it possible to see which part of the assignment each

student had managed to complete and which parts they had less success rate with. This

new immediate knowledge about what work the students had completed enabled the

teaching staff to ask more specific questions during the lab exam. Having more specified

questions to ask students let the teaching staff explore the knowledge of the student

more closely and could make a better judgement of which grade the student deserved.

The effect of better knowledge about the work completed by the students are reflected

in the grades given in this years course. The ideal grade curve would follow a normal

distribution. This means number of grades would peek around the grade C. Previous

years does however not reflect such a distribution of grades. The statistics for previous

years show a clear peak around the grade A, and decreases in lower grades. According

to the teaching staff this trend had developed because of limited insight in how the

students solution worked. This lead to most of the grading work was based on what the

students was able to show during the lab exam. This grading process lead to students

Results 50

easier getting a higher grade because they could have supposedly good implementations

based on the what they could show in the lab exam.

Looking at the grades from this years students, a clear change in the distribution has

occurred. The distribution peak of the students have shifted to a place between B and

C. This years grades have moved towards the more ideal distribution center of C. Grades

given will always change each year because there are new students. This can account for

some of the changes in the distribution this year. However compared with the grades

from previous years there is a much larger change this year from what has been seen

earlier. According to teaching staff most of the change was due to better understanding

of the solutions given by the students. This allowed the teaching staff to judge more

from how the implementation worked. This could be observed from the test data in the

Autograder application, and made a more accurate assessment of the grade.

Also the students could report they felt the Autograder project had a positive effect on

the grading process. With test cases the students said they felt the judgement of their

assignments where more fair. The test cases were the same which was used on every

student, and this made the sensation of a more fair assessment of their assignments.

Students could also report they felt they would end up with a more justified grade after

the lab assignment, both in negative and positive grades, and removed much of the stress

behind the grading process. The students knew immediately what they had achieved

through their lab project and could easily make a personal estimate about where they

would end up. This is also a positive improvement in the grading process for the student.

Students often have to wait weeks before getting a grade back on their work without

knowing exactly how well their solution represented the expected in the course.

Results 51

8.5 Gamification

One of the goals in the Autograder project is to stimulate more to student collaboration

in order to get them to learn the course material from each other. Often the students

sit in smaller groups and talk to each other there and does not communicate much

with the whole class. This can lead to some students burning in with questions another

student could answer. One way to let the students ask each other questions, learn

from each other on a larger scale and let them contribute to the course, is to let them

have online discussions. However, in order to getting the students to actually start

discussions online without getting pushed into it is to give some sort of motivation.

In an attempt to motivate students to start discussions online on their own, a game

engine was implemented for the Autograder prototype. This game engine rewarded the

students with points and a position on a scoreboard for comments, issues and similar on

GitHub.

The gamification process let the students get points and badges on their Autograder

profile for helping each other and contributions in the course. They can also compare

their contribution efforts on the scoreboard, and see if they have the position they

want among their peers. The scoreboard is implemented to let the student get more

competitive, fighting to be on top of the list.

Through the use case in Distributed systems course very limited results was obtained.

The game engine was introduced for the student on the two last lab assignments and left

them with only a month to familiarize themselves with the new reward system. Some

of the students had in that period managed to put the game engine to use. Some of the

students reported back they felt motivated to have more conversations on GitHub, help

out with the course material and improving the test cases used in the course. Many

of these students reported they were motivated by the scoreboard and actually had

the desired effect. The teaching staff could also report back a increase in issues being

published, comments from the students and help requested online after the game engine

was introduced. This suggests a reward system for the students collaboration, in order

to learn from each other, could function very well.

On a more negative side, some students reported back they felt compelled to create fake

conversions in order to get points. The students who mentioned this problem felt they

needed to come up with conversation topics to collect points to better their effort in the

course. This is not a desired effect, the students should not feel compelled to make up

things to ask about, but actually ask when they have questions and answer when they

have knowledge which could help answer questions from other students.

Results 52

While there is collected some information about how the game engine influence the

students, it was introduced too late in the distributed systems course for an accurate

measurement. Some preliminary results has presented itself. These results show the

students can be stimulated to help each other and present their questions to the other

students instead of waiting for help from the teachers. However requiring the students

to use this system can limit the positive effect of a game engine. To truly see the full

effect of a gamification system on online collaboration would need more testing and

might need a improved game engine. How the gamification process can be improved

and further tested is explained in the further work chapter.

8.6 Preparation for Industrial Workflows and Tools

An aspect in the education of students are to prepare them for the challenges they meet

when heading out in the industry they are learning about. This aspect is one of the

foundations for how the Autograder prototype has been built. The use of the version

control system git, use of continuous integration to deliver builds and use of test driven

development to test the students solutions are the root of the application. This allows

the students to work in a similar environment to what they will be faced with after they

graduate.

Through the Distributed Systems course at University of Stavanger the students need

to control their code through git and have their solutions built and tested through the

continuous integration service. The students also needed to collaborate in groups while

working on their assignments, which meant they had to use the version control system

to sync up their code to each others progress. The collaboration in groups simulates a

team which many companies have working on the same codebase at the same time.

While starting up the course most student showed they had limited experience from using

git or git like systems. They needed some tutoring before managing to set up their git

repositories and connecting this to the remote storage. Some of the work needed to

set up correct git connections in the course are considered advanced, but these aspects

was documented in detailed manuals [10] to give the students best possible chance to

manage this on their own. Manuals provided through private assignment descriptions

are provided in Appendix D. Through the setup process, the teaching staff got many

questions about the basic aspects of git, suggesting the students did not have a good

enough foundation in their knowledge of git. Many students also asked often about

how to upload and save their progress to the remote storage. Knowing this, its a clear

sign students need more practical experience with using git, and quite possible version

Results 53

control systems. Through the course the students also showed they managed the process

of uploading and controlling their repositories better.

The industry does not only use a version control system to manage their codebase, they

also use testing and often automatic testing. This is where the test driven development

and continuous integration comes into the picture. In the distributed system course the

students was introduced to this through teacher written test and having these automat-

ically runned in the Autograder application. Students have the possibility to interact

with a continuous integration service and see how it works, and see how test can check

how their programs. It can certainly teach the students something, but through the use

in the distributed system course they did not really get a first hand try at the use of

these practices. This is an opinion among the students also, the students reported they

did not get a direct contact with the test driven environment.

It is not within the topic of this course to actually teach the students of how test driven

development works or how the continuous integration can benefit them, but it is a goal

of the Autograder project to silent train the students to use such practices. From the

results found while using autograder in the distributed systems course it is clear the

students could learn much of the use of version control in their courses, but in the other

end silently training the students in test driven development can be a harder task. In

order to solve this the students need a more hands on approach, where the students can

write their own tests. To actually achieve this goal fully, courses could let the students

write their own test. This will let the students get practical experience with test driven

development. A setting requested by some students [2], and in their opinion get a better

preparation before graduating.

9
Future Work

Several teachers at the University of Stavanger are already planning to adopt Auto-

grader in their programming courses in the Fall semester of 2015, and the project has

been awarded a grant from Prekubator TTO to continue development. This section

will explain some beneficial extensions, which can make the Autograder project more

practical and better equipped for the future.

9.1 Code Coverage

In most colleges and universities teaching test driven development is also a part of the

education. This means students will need to write their own test cases in order to pass

the course. In current version of the Autograder application, test cases are used to

validate students solutions, and a way to test how well the students have implemented

their tests are needed.

One way of testing how well the test cases work is to measure the coverage they have.

Coverage is the amount of original code the test cases actually go through when runned.

This can tell the teachers how much of the students code are actually tested.

54

Future Work 55

Most of the test frameworks have the option to deliver coverage analysis, and Autograder

should be able to read the coverage reported back from the test framework. When

reading the standard output from the build and search for the format the code coverage

is given in can let the continuous integration service know how much coverage the test

cases have. This information can then be stored with the test data and be available for

both students and teachers.

9.2 Advanced Cheat Detection with Code Analysis

Often there is a problem that students getting a bit behind on their assignments and

get the temptation to cheat. Autograder project have been created to make the lab

environment easier to manage and easier to grade, and a ways to easily detect acts of

cheating is a huge step in this direction. An extension to the autograder application

which makes it possible to detect where students have copied each other need to be

created.

The easiest way of checking if a solution is a copy of another is to do a differential check.

This checks how many of the lines in the code is similar to each other. This solution is

however fairly easy for the students to work around, and most common way to trick it

is to change function and variable names.

To overcome this challenge a more advanced analysis is needed. While changing the

names of entities within the code does nothing to the compiled version of the program-

ming code, changes to the structure however will have a larger impact. It is also the

different structures of the programming code which makes the solutions from students

different from each other and are the basis of the assignment. Because of this fact

the structure itself need to be analysed, and a cheat detection extension to Autograder

application should include a structural analysis rather than just a differential analysis.

9.3 Task Board

Task boards are widely used in the industry. When given a task to implement new

software or feature, this main task is broken up into many smaller tasks. While breaking

it down to smaller tasks this larger task is made more manageable. With each smaller

task you have one simple thing that needs to be implemented and could be finalized in

a short amount of time. Tasks are also often set up with a deadline where it needs be

finished implemented.

Future Work 56

This way of working is most useful when there is a team working on a common goal.

Then each team member can pick a task to complete and pick a new task to work with

after this. It becomes a easy way to divide the main task between all of team members.

This task board can be implemented in the automatic feedback system by having a

designated page for showing a task board for each group or user in a course. These

tasks can be added by the teacher or by the users themselves. When a teacher put up

tasks, it will be distributed to all the taskboard in that course. User will only post task

to their own task board. As the users work through their task, these task get marked

with the username and a in development tag, to show that a user is working on that

task, and when a task is finished, it gets tagged with a ended tag.

9.4 Improved Game Engine

In the current version of Autograder there is implemented a game engine. This game

engine are not fully tested or optimized for full use. Some preliminary test results have

been collected about using gamification to stimulate improvement in course software

and online collaboration. These results showed conflicted results where some students

thought they needed to invent conversions to get points and some felt motivated to ask

more and help with the course material.

Even though the game engine was a partial success, it was introduced too late to actually

get accurate results. Also the game engine should be further developed to get the best

possible impact on a possible use case.

Improvements to the game engine can be done by include it better in the assignments

and actual work process of the assignments, such as making it count at the final score

of the assignment. One of the concerns from the students was that they did not get

points for helping each other face to face. Letting the students get point for attending

the lab facilities at help sessions, getting points for asking the teaching staff and similar

scenarios.

9.5 Specified Test Data Parsing

In current Autograder prototype the continuous integration service searches the stan-

dards output for certain keywords in order to find out how many test cases have been

runned, or if there is a build failure. The same technique is also used to find out how

Future Work 57

many test cases has failed or passes. Every test framework has their own way to repre-

sent this information, and the current version of Autograder is mostly optimized to look

for the Golang test framework.

The continuous integration service can run any test framework, which can be started

from command line, and would be able to calculate scores given in any test case. The

problem presents itself when the pure build log is represented. The build log counts

the occurrences of keywords represented by a test case in Golangs test framework, and

because there is different keywords and patterns given in each of the different test frame-

works these new patterns and keywords need to be in the search as well.

With other test frameworks in mind a specified test framework parsing extension is

proposed. This extension should be able to pick up more of the patterns given by other

frameworks and present them in a general way. Often many of the test frameworks also

give data back in form of JSON or XML data as alternatives. This form of data should

also be detected and parsed into readable test data.

In order to achieve the wanted parsing of different test frameworks it is possible to create

a library of different patterns from test frameworks. This library can be implemented by

having a list of text formats which corresponds with the expected output. Running the

build log through this library can let the continuous integration service find out which

type of test framework is used in the build process and decode data accordingly. More

detailed parsing of the build log will make it possible to give more detailed feedback to

the students.

Some test frameworks has the option to deliver the build log in other formats than pure

text. An example of this is the test framework jUnit in Java, where test data can be

delivered in XML format. Other formats are also used by different test frameworks.

Methods for decoding these formats will make the continuous integration service open

for wider usability from test frameworks.

With more specific parsing of test data it also possible to present more specific test

feedback to the students and teaching staff. This can be done through grouping the

test name, status and internal printout from the tests together. With the grouped test

information, it is possible to represent this as individual sections instead of the raw

build log in current version. Since the test data can be shown as individual sections, the

representation of test data can be made more organized. Changing the interface into

sections lets the students and teaching staff to select and read the output from specific

test cases one at a time. This does not only make it more organized, but it would make

the test data easier to read. In current version of autograder represent the test data as

Future Work 58

a complete build log of raw text. With sectioned data, students and teaching staff can

find and investigate a specific test without actually searching through whole build log.

9.6 Automated Test Case Generation

One of the largest tasks with using the Autograder project in different courses is the

amount of work needed to develop test cases for checking the solutions submitted by

the teaching staff. These test cases are also one of the most important part for actually

delivering the feedback to students. If the amount of work needed to create these test

cases could be reduced, a substantial usability improvement of the Autograder would

result.

In many courses the teachers have a solution to their lab assignments ready. By using

these solutions to automatically create test cases for use in the Autograder would save

a substantial amount of time for teachers.

To support automating the generation of test cases from an existing solution, a thorough

survey of existing frameworks is needed. There might exists many good frameworks for

automated test case generation from existing solutions. Using existing frameworks to

execute this job will make it easier to create a good featured solution of this problem.

The different possibilities for test generation need to be mapped and documented for

easy use for the teachers within the Autograder project. Another possibility is to also

build in the most common ones in the Autograder application itself.

10
Conclusion

In this thesis the objective was to improve learning through lab projects more valuable

for both students and teacher. The students need better and more rapid feedback to

faster improve their solutions and be able to learn more through the lab project. The

Autograder project resulted in an application which can be used to automatically build

solutions from the students and stimulate them to easier learn the course curriculum.

Autograder was also tested on a master-level course at University of Stavanger with

success. The students managed to easier work through the lab project and autograder

gave a good way for the students to reach their potential. Through the application

the teaching staff could easily manage their course, was relieved from the burden of

manually correct lab assignments, easily find pain points in the assignments, and have

better material for grading the students.

59

A
Github Application Codes

When installing a new instance of the Autograder application the installer need to get

application codes from GitHub. These application codes a used through the OAuth

protocol and are used to authenticate an application when signing in users through

GitHubs services. Following is a step by step guide to obtain these codes.

1. Go to the page https://github.com/settings/applications

2. Click into “Developer applications”.

60

Appendix A. Github Application Codes 61

3. Click the “Register new application” button.

Appendix A. Github Application Codes 62

4. Application codes will then be available for the user.

B
Web Service Statistics

Following is a summary report of web site statistics, collected through Google Analytics.

63

Go to this reportautograder.ux.uis.no http://autograde…
All Web Site Data

Jan 11, 2015 Jun 1, 2015Audience Overview

Language Sessions % Sessions

1. (not set) 973 41.14%

2. enus 741 31.33%

3. nb 298 12.60%

4. engb 130 5.50%

5. nbno 94 3.97%

6. ru 64 2.71%

7. en 34 1.44%

8. fr 18 0.76%

9. zhcn 10 0.42%

10. nnno 2 0.08%

Overview

 Sessions

February 2015 March 2015 April 2015 May 2015 June…

505050

100100100

Sessions

2,365
Users

1,187
Pageviews

9,975

Pages / Session

4.22
Avg. Session Duration

00:03:57
Bounce Rate

49.13%

% New Sessions

49.68%

Returning Visitor New Visitor

49.7% 50.3%

© 2015 Google

All Sessions
100.00%

C
Git Setup Instructions

This section offers step-by-step instructions on how to complete and hand in Lab 1.

Please refer to the workflow described below also for future labs unless otherwise noted.

The tasks will introduce you to some basic programming in Go. You may find them easy

if you have previous experience with the language, but they serve as a good example of

how to work with Autograder.

1. You will have access to two repositories when you have registered using Autograder.

The first is the labs repository, which is where we will publish all lab assignments,

skeleton code and additional information needed. You only have read access to this

repository. The second repository is your own repository named username-labs.

Username should be substituted with your own GitHub username. You have write

access to this repository. Your answers to the assignments should be pushed here.

2. To get started with the Go part of this lab, you can now use the go get command

to clone the original labs repository. Here is how to do it: On the command

line enter: go get github.com/uis-dat520/labs (ignore the message about no

buildable Go files). This will clone the original labs git repo (not your copy of it.)

This is important because it means that you don’t need to change the import path

in the source files to use your own repository’s path. That is, when you make a

65

Appendix C. Git Setup Instructions 66

commit and push to submit your handin, you don’t have to change this back to

the original import path.

3. Change directory to: cd $GOPATH/src/github.com/uis-dat520/labs. Next, run

the following command:

1 g i t remote add labs https : // github . com/uis−dat520/username−l ab s

where username should be replaced with your own GitHub username. The above

command adds your own username-labs repository as a remote repository on your

local machine. This means that once you’ve modified some files and committed

the changes locally, you can run: git push labs to have them pushed up to

your own username-labs repository on GitHub.

4. If you make changes to your own username-labs repository using the GitHub web

interface, and want to pull those changes down to your own computer, you can run

the command: git pull labs master. In later labs, you will work in groups. This

approach is also the way that you can download (pull) your group’s code changes

from GitHub, assuming that another group member has previously pushed it out

to GitHub.

5. As time goes by we (the teaching staff) will be publishing updates to the original

labs repo, e.g. new lab assignments. To see these updates, you will need to run

the following command: git pull origin master.

6. For the first set of labs we will provide you with skeleton code and a set of tests.

Thus, you will have to implement the missing pieces of the skeleton code, and

verify that your implementation passes the available tests. Note that Autograder

will run an additional set of test cases to verify your implementation. Not all tests

must pass to get a passing grade.

D
Autograder Usage Survey

Following is the survey sent to all students in Distributed system course at the end of

the lab project.

67

Autograder usage survey
After the use of the prototype application of Autograder in DAT520, we would like to ask you
what you think.

This survey only covers the part of the assignments covered in the autograder application
and the autograder project. This means the code which was validated within the autograder
application online. In other word, the paxos part. The focus will be on the learning process
and if the application and work methods have helped you to get through the DAT520 course
material.

Within the survey autograder is referenced in two ways, and might need a bit of clarification.
We reference towards the autograder application and the autograder project. The autograder
application is the web pages you get up when you go to look at your handed in answers and
test scores. The autograder project is the overall project where the university is
experimenting with giving instantaneous feedback on your assignments. This project also
tries to stimulate to more cross group and student learning where students can learn from
each other online and asking questions from anywhere, to anyone and at any time.

All answers are anonymous and are not traceable back to any single person. This survey will
be a part of the master thesis Heine Furubotten is writing, and might be used in other papers
released regarding the autograder project. We thank you for all answers.

*Required

Your first thoughts

1. What is your first and honest opinion? *
Fist of all what is your first thought and honest about the autograder project? Do you
have any thoughts about the strong and weak sides of having your assignments within
an automatic feedback system, such as the autograder application?

Backgroud

2. Have you used any automatic validation
frameworks before?
In connection to your education have you
used any frameworks to validate your
assignments automatically? If yes, please
note them below.

3. Have you worked with git/GitHub before this course? *
Mark only one oval.

 Yes

 No

4. Have you work with Test Driven Development(TDD) before? *
Mark only one oval.

 Yes

 No

5. Have you worked with Continuous Integration(CI) before? *
Mark only one oval.

 Yes

 No

 Unsure

6. Have you taken this course earlier? *
There is quite a few students who took this course previously. If you are one of those
who took the class before, we would like to ask some questions to be able to compare it
to previous years.
Mark only one oval.

 Yes

 No Skip to question 12.

Compared to earlier years

7. Did autograder provide better feedback compared to earlier? *
Compared to earlier years, have the autograder project given you more or the needed
feedback to understand the course material?
Mark only one oval.

 Yes

 No

 Unsure

8. Do you think it was easier to see the correctness of your assignments this year? *
Mark only one oval.

 Yes

 No

 Unsure

9. Was the course material easier to understand this year? *
Was it easier to understand the course material with the feedback given from autograder?
Mark only one oval.

 Yes

 No

 Unsure

10. Is there anything you think was done better in the lab assignments last year?

11. What are your view on the changes done to this year lab assignments?

Assignment handling

12. Do you think using git to handle your assignments is a good solution? *
Mark only one oval.

 Yes

 No

 Unsure

13. Do you think using GitHub to storing your assignments is a good solution? *
Mark only one oval.

 Yes

 No

 Unsure

14. Do you think using git is an advantage for you long term? *
Git and other version control systems are heavily used many places in the industry. Do
you feel its an advantage to use git at the university, before heading out in working life?
Mark only one oval.

 Yes

 No

 Unsure

15. Do you think using GitHub is an advantage for you long term? *
GitHub is a much used resource in the open source and other communities. Do you feel
its an advantage to use GitHub at the university, before heading out in working life?
Mark only one oval.

 Yes

 No

 Unsure

16. Any comments on the use of git and GitHub?

17. Do you think using Test Driven Development (TDD) to validate assignment tasks is
a good solution? *
Mark only one oval.

 Yes

 No

 Unsure

18. Do you think your experience with TDD within autograder give you an advantage
long term? *
Writing test to validating the correctness of code is often used in the industry. Do you
think you get an advantage by having TDD as a part of the validation process, regards to
using this later?
Mark only one oval.

 Yes

 No

 Unsure

19. Any comments to the use of TDD?

20. Was it valuable for you to have your assignments continuously built in
autograder? *
The autograder application uses an adapted Continuous Integration environment to
always build your solutions. Was it valuable for you to always get your code built and
tested each time you pushed it to github?
Mark only one oval.

 Yes

 No

 Unsure

21. Do you think it is an advantage for you to have worked within a CI environment
long term? *
CI environments are often used in the industry to continuously check the state of a code
base at all time. This is also often used together with TDD. Your experience with this in
the autograder project, will you say this gives you an advantage before heading out to
working life?
Mark only one oval.

 Yes

 No

 Unsure

22. Any comments to the use of CI in autograder?

Assignment work process

23. Did the test let you better/faster understand the needed parts with the
assignments? *
With the feedback and the continuous builds in the autograder application, was it easier
to understand the needed parts of the assignements?
Mark only one oval.

 Yes

 No

 Unsure

24. Do you feel you got the feedback needed to understand the different task? *
Mark only one oval.

 Yes

 No

 Unsure

25. If No to previous question, what was missing in the feedback?

26. To get the tests to pass what did you focus on?
Tick all that apply.

 Reverse engineer the tests

 Understanding the algorithms

 Replicating the pseudo code given

 Other:

27. Is it better to reference the algorithm themselves? *
Would it be easier to understand the algorithms themselves if feedback given had
referenced to what part of the algorithm was failing?
Mark only one oval.

 Yes

 No

 Unsure

28. Is it better to have a combo between algorithm reference and todays feedback? *
Would you say it is better to use both reference to the algorithm themselves and the test
failure data used today?
Mark only one oval.

 Yes

 No

 Unsure

29. Any comments on the feedback given through autograder?

Alternative work processes

30. Do you believe completely open assignments had worked better? *
Do you believe completely open assignments would have been a better choice? This
practice has been used earlier years and featured the possibility to do the assignments
freely within golang. By completely open assignments, we mean assignments without
sceleton code and any previously handed out code from the teaching staff.
Mark only one oval.

 Yes

 No

 Unsure

31. Do you think the lab assignments would be easier without the sceleton code and
locked in code setup? *
Mark only one oval.

 Yes

 No

 Unsure

32. If Yes to previous question, would it still be simpler without any automatic
feedback at all?
Mark only one oval.

 Yes

 No

 Unsure

33. If autograder had been used in other courses on the university would you see that
as an advantage? *
We are looking into using autograder in other courses on the university. If autograder was
used in other courses at the university, would that make it easier to use this work
process?
Mark only one oval.

 Yes

 No

 Unsure

34. Is there certain courses at the university
where you think autograder could be put
to good use?

35. Any other comments about how autograder could be used?

Point system
In the middle of the course we introduced a point system, which could influence your grade
positive. This system was put in place in an effort to stimulate questions being asked and
tried solved by other students. The points where given in order to give you as a student
something back for helping each other.

The point system was not meant to be extra work towards the assignments, but a way for
you as a students to help each other getting the answers needed, even when the teaching
staff was not available.

This system was introduced a bit late in the course, but we would like to ask for some
feedback in order to improve it for later use.

36. Do you feel the point system worked as intended? *
Mark only one oval.

 Yes

 No

 Unsure

37. Did you feel more motivated to ask your questions with the point system in place?
*
In other words, did you have more motivation to put your questions on github when you
knew you would get points back for doing so?
Mark only one oval.

 Yes

 No

 Unsure

38. Did you feel a barrier to post your questions knowing everyone could see your
post? *
Mark only one oval.

 Yes

 No

 Unsure

39. With the ability to see the top contributors in the autograder application, did you
feel competitive to get on top of this list? *
Mark only one oval.

 Yes

 No

 Unsure

40. Do you think it would be a good idea to get points for lab attendance also? *
Mark only one oval.

 Yes

 No

 Unsure

Powered by

41. Was there a technical barrier preventing you from posting your questions? *
eg. problems with github or similar
Mark only one oval.

 Yes

 No

 Unsure

42. If there was a technical barrier, then what was your problem?

43. Any comments you can give towards the point system?

Last comments

44. Any last thoughts you want to share?
After going though all the questions and had the time to think more about certain aspects
about the autograder project, is there anything, good or bad, you want us to know about?

Bibliography

[1] Meet Jenkins - Jenkins - Jenkins Wiki. URL https://wiki.jenkins-ci.org/

display/JENKINS/Meet+Jenkins.

[2] Autograder Usage Survey. URL https://docs.google.com/forms/d/

1VYHWTpBig8os5AqXF7p4jXDJrFJrw1j0uQpI9vsh1Dk/viewanalytics.

[3] Travis CI: Getting started. URL http://docs.travis-ci.com/user/

getting-started/.

[4] Kent Beck. Test-driven Development: By Example. 2003. ISBN 0321146530. URL

http://www.google.no/books?hl=no&lr=&id=gFgnde_vwMAC&pgis=1.

[5] Collabnet. Rapid Subversion Adoption Validates Enterprise Readiness and Chal-

lenges Traditional Software Configuration Management Leaders. Collabnet, 2007.

URL http://www.open.collab.net/news/press/2007/svn_momentum.html.

[6] Shaumik Daityari. Version Control Software in 2014: What

are Your Options?, 2014. URL http://www.sitepoint.com/

version-control-software-2014-what-options/.

[7] Martin Fowler. Continuous Integration, 2006. URL http://martinfowler.com/

articles/continuousIntegration.html.

[8] Heine Furubotten. Feedback to DAT320 Operating Systems -

Google Forms, 2014. URL https://docs.google.com/forms/d/

1CrTc7peFM6CXPfFrLECixmNqB1qw6jRBO5QVAyUrcMI/viewanalytics#start=

publishanalytics.

[9] Marksalisbury. What if early feedback made your students work harder? (Spoiler

Alert) — Delicious Ambiguity, 2014. URL http://www.augustana.edu/blogs/

ir/?p=1100.

[10] Hein Meling, Tormod Erevik Lea, and Heine Furubotten. GitHub manuals. URL

https://github.com/uis-dat520/course-info.

77

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
https://docs.google.com/forms/d/1VYHWTpBig8os5AqXF7p4jXDJrFJrw1j0uQpI9vsh1Dk/viewanalytics
https://docs.google.com/forms/d/1VYHWTpBig8os5AqXF7p4jXDJrFJrw1j0uQpI9vsh1Dk/viewanalytics
http://docs.travis-ci.com/user/getting-started/
http://docs.travis-ci.com/user/getting-started/
http://www.google.no/books?hl=no&lr=&id=gFgnde_vwMAC&pgis=1
http://www.open.collab.net/news/press/2007/svn_momentum.html
http://www.sitepoint.com/version-control-software-2014-what-options/
http://www.sitepoint.com/version-control-software-2014-what-options/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://docs.google.com/forms/d/1CrTc7peFM6CXPfFrLECixmNqB1qw6jRBO5QVAyUrcMI/viewanalytics#start=publishanalytics
https://docs.google.com/forms/d/1CrTc7peFM6CXPfFrLECixmNqB1qw6jRBO5QVAyUrcMI/viewanalytics#start=publishanalytics
https://docs.google.com/forms/d/1CrTc7peFM6CXPfFrLECixmNqB1qw6jRBO5QVAyUrcMI/viewanalytics#start=publishanalytics
http://www.augustana.edu/blogs/ir/?p=1100
http://www.augustana.edu/blogs/ir/?p=1100
https://github.com/uis-dat520/course-info

Bibliography 78

[11] Morten Mossige, Arnaud Gotlieb, and Hein Meling. Testing robot controllers

using constraint programming and continuous integration. Information and

Software Technology, 57:169–185, January 2014. ISSN 09505849. doi: 10.

1016/j.infsof.2014.09.009. URL http://linkinghub.elsevier.com/retrieve/

pii/S0950584914002080.

[12] Craig Murphy. Improving Application Quality Using Test-Driven Development

(TDD), 2005. URL http://www.methodsandtools.com/archive/archive.php?

id=20.

http://linkinghub.elsevier.com/retrieve/pii/S0950584914002080
http://linkinghub.elsevier.com/retrieve/pii/S0950584914002080
http://www.methodsandtools.com/archive/archive.php?id=20
http://www.methodsandtools.com/archive/archive.php?id=20

