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Abstract 

Volatility managed portfolios take less risk when volatility is high, and more risk when 

volatility is low. Moreira and Muir (2017) employ a simple methodology which scales factor 

exposure by the inverse of realized variance. Daniel and Moskowitz (2013) propose a more 

complex method which scales factor exposure by forecasted Sharpe ratio, and demonstrate 

theoretically that this is superior to just using variance. We examine this proposition by 

employing their strategy on the stock market factors studied in Moreira and Muir’s paper.  To 

isolate the performance impact of individual return and forecast methods, we also create 

strategies for all combinations of return and variance forecast in Moreira and Muir’s paper and 

Daniel and Moskowitz’s. 

Both the simple and more complex methods produce large alphas and increased Sharpe 

ratios over buy-and-hold strategies for a wide range of factors. More interestingly, complicating 

volatility management beyond that of Moreira and Muir (2017) only has a modest impact on 

alphas and Sharpe ratios. The more complex variance forecast is not much better than a random 

walk forecast, and forecasting returns with the more complex methodology does generally not 

improve performance. The notable exception is Daniel and Moskowitz’s (2013) momentum 

factor. Complex volatility management does, however, entail other desirable properties. It 

results in less volatile weights, which reduce transaction and liquidity costs. It also generates 

more desirable return distributions with improved skewness and kurtosis, which reduce 

downside risk. 
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1. Introduction 

Volatility managed portfolios take less risk when volatility is high, and more risk when 

volatility is low. Thereby, they seek to take advantage of variations in the risk-return tradeoff. 

In their 2017 paper, Moreira and Muir employ a simple, constant volatility management 

strategy on a selection of factors. Their method scales exposure by the inverse of realized 

variance in a similar vein to Barroso and Santa-Clara (2015). The performance of several of 

these factors improves considerably, yielding better Sharpe ratios and significant abnormal 

returns which survive controls for asset pricing models and transaction costs (Moreira & Muir, 

2017).  

For the goal of maximizing in-sample unconditional Sharpe ratio, Daniel and Moskowitz 

(2013) demonstrate theoretically that a dynamic volatility management strategy is superior to a 

constant one for factors with time-varying Sharpe ratios. They also show empirically that this 

applies in practice to their momentum factor. A dynamic volatility management strategy scales 

exposure to a factor by its forecasted Sharpe ratio.  

All the factors in Moreira and Muir’s (2017) paper have time-varying Sharpe ratios, as 

shown in Figure 1. Consequently, the use of a dynamic volatility management strategy on the 

factors studied in Moreira and Muir’s paper should in theory improve their performance further. 

We seek to do this by employing Daniel and Moskowitz’s (2013) dynamic volatility 

management strategy on the stock market factors examined in Moreira and Muir’s paper. These 

are the market, size, value, momentum, profitability, return on equity, investment, and betting-

against-beta factors1.  

To establish a benchmark of simple volatility management performance against which 

we will compare more complex methods, we start by detailing the volatility management 

method used by Moreira and Muir (2017). From this point forward, we may refer to this method 

as Moreira and Muir’s method for the sake of readability. The volatility managed factors 

obtained are first regressed on the unmanaged factors, and subsequently with added controls 

for Fama and French’s market, size and value factors (1993). We may hereafter refer to Fama 

and French’s market, size and value factors as Fama-French’s three factor model. Seven out of 

ten volatility managed factors produce statistically significant abnormal returns in both 

regression specifications. With the exception of Daniel and Moskowitz’s (2013) and Fama-

                                                           
1 We study two different momentum portfolios, Fama-French’s (2012) momentum and Daniel and Moskowitz’s 

(2013) momentum. We also study two investment portfolios, Fama-French’s (2015) investment factor and Hou, 

Xue and Zhang’s (2014) investment factor. Further details are outlined in the data section.   
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French’s (2012) momentum portfolios, which generate respective annual alphas of 20 and 10 

percent, the magnitudes of the annual alphas range from one to six percent with additional 

controls for Fama-French’s three factors. These results illustrate the efficacy of simple volatility 

management, and are in accordance with those of Moreira and Muir. 

 

 

Figure 1: Sharpe ratios over a five-year rolling period for the market, size, value, momentum, profitability, 

return on equity, investment, and betting-against-beta factors studied in Moreira and Muir (2017), in 

addition to Daniel and Moskowitz’s momentum portfolio (2013). 

 

Having established a benchmark against which we can compare more complex methods, 

we proceed by employing the more complex, dynamic volatility management method of Daniel 

and Moskowitz (2013) on the same set of factors. This constitutes an expansion of the paper, 

as their method was originally only employed on momentum. The difference from Moreira and 

Muir’s method is that Daniel and Moskowitz forecast return in addition to variance, and that 

they forecast variance in a more complex manner by means of a GJR-GARCH process. For 

readability, we may from now on refer to the dynamic volatility management method in Daniel 

and Moskowitz (2013) as Daniel and Moskowitz’s method.  

We test the efficacy of Daniel and Moskowitz’s method in the same manner as we did 

with Moreira and Muir’s, by regressing its managed factors on the unmanaged factors with and 

without Fama-French’s three factors as additional controls. This yields similar results with 

significant abnormal return for seven out of ten factors when controlling for Fama-French’s 

three factors. As one might expect, it is the factor for which the method is designed, momentum, 

which sees the largest improvement with annual alphas of 21 percent for Daniel and 
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Moskowitz’s (2013) momentum and 10 percent for Fama-French’s (2012) momentum. The 

remaining five factors generate annual abnormal returns of three to six percent. 

Having found that both Moreira and Muir’s and Daniel and Moskowitz’s method appear 

to yield considerable improvements on the unmanaged factors, we next seek to examine 

whether the latter, more complex method outperforms the former and more simple. To test 

whether Daniel and Moskowitz’s method performs better than Moreira and Muir’s, we regress 

Daniel and Moskowitz’s managed factors on Moreira and Muir’s managed factors and the 

unmanaged factors, with and without Fama-French’s three factors as additional controls.  

The market, value and return on equity factors generate significant abnormal returns. 

Additionally, there is weaker evidence at the ten percent significance level that the size and two 

momentum factors generate abnormal returns. The magnitude of the improvement ranges from 

one to three percent annually. Thus, there seems to be some evidence that Daniel and 

Moskowitz’s method improves on Moreira and Muir’s. 

To further assess the difference in performance, we also compute the Sharpe ratios of the 

unmanaged and managed factors. We find that some form of volatility management yields 

higher Sharpe ratios than unmanaged factors for all ten factors but Fama-French’s (2015) 

investment factor. Further, Daniel and Moskowitz’s more complex method generates a higher 

Sharpe ratio than Moreira and Muir’s for eight out of the ten factors. While the improvements 

in Sharpe ratio from the unmanaged to the managed factors can be large at up to 58 ppt., the 

differences in Sharpe ratio between Moreira and Muir’s method and Daniel and Moskowitz’s 

are more moderate with improvements of up to seven ppt.  

Although Daniel and Moskowitz’s method appears to moderately outperform Moreira 

and Muir’s, there are issues with its real-time implementability. We find that Daniel and 

Moskowitz (2013) use future information embedded in the coefficients of both their return and 

variance forecasts. We therefore propose a modified version of Daniel and Moskowitz’s 

method. Instead of using the full sample to forecast return and variance, we employ expanding 

window forecasts with a ten-year training period. Modifying their method in this manner 

ensures that only information available ex ante is used.  

This raises the question of whether the use of future information affects the performance 

of Daniel and Moskowitz’s method. To test this, we regress the modified version of the strategy 

on the original, the unmanaged factor and Fama-French’s three factor model. Due to the use of 

a ten-year training period in the modified version, we need to match the samples by cutting the 

first ten years of observations for the original method to get an accurate comparison. The 
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resulting alphas are never statistically significantly different from zero, meaning that the 

original version does not seem to benefit from the use of future information in this sample. 

We previously established that Daniel and Moskowitz’s original method appears to 

moderately outperform Moreira and Muir’s for some factors. Since both the variance and return 

forecasts are different in Moreira and Muir’s method and Daniel and Moskowitz’s, we cannot 

determine whether differences in performance stem from variations in return or variance 

forecast. Next, we seek to examine what drives these differences in performance. Although we 

found no difference in performance between our modification of Daniel and Moskowitz’s 

method and the original, we employ our modified version for the remainder of the thesis as it 

is implementable in real-time.  

To examine what drives the differences in performance between Moreira and Muir’s 

method and our modified version of Daniel and Moskowitz’s, we create a strategy for each 

combination of return and variance forecast. Daniel and Moskowitz (2013) and Moreira and 

Muir (2017) collectively contain two different variance forecasts, and three different return 

forecasts. The variance and return forecasts can thus be combined in six unique ways, yielding 

six unique volatility management strategies. Four of these are new combinations, which we 

coin hybrid strategies. The remaining two are effectively our modified Daniel and Moskowitz 

method and Moreira and Muir’s method. Adding these four new strategies allows us to isolate 

the performance impact of different variance and return forecasts. 

For every factor, we report the Sharpe ratio of the six strategies. Eight out of ten factors 

benefit from volatility management of some kind. More importantly, there are generally small 

differences in Sharpe ratio between the simple method of Moreira and Muir and the five more 

complex methods. Daniel and Moskowitz’s (2013) momentum and Hou, Xue and Zhang’s 

(2014) investment factor benefit the most from more complex volatility management methods, 

with respective improvements in Sharpe ratio of seven and six ppt. In the case of Daniel and 

Moskowitz’s momentum it is the complex variance forecast which improves performance, 

while it is the return forecast which adds to performance for the investment factor. For the 

remaining cases where a more complex method outperforms Moreira and Muir’s method and 

the unmanaged factor, the magnitude of the improvement is 4 ppt. or less. There is no clear 

pattern in whether the return or the variance forecast drives these mild improvements.    

Thus, the improvements in Sharpe ratio of complicating volatility management beyond 

that of Moreira and Muir’s method generally appear to be modest. To further examine these 

differences, we report the alphas generated by regressing each hybrid strategy and our modified 

version of Daniel and Moskowitz’s method on the unmanaged factor, Moreira and Muir’s 
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managed factor and Fama-French’s three factor model. The results of these regressions give 

further indication that there are generally either no or modest gains in complicating volatility 

management. There are only three out of 50 cases where a more complex method than Moreira 

and Muir’s produces significant abnormal return.  

Unsurprisingly, two out of three cases are for Daniel and Moskowitz’s (2013) momentum 

factor, the factor for which the complex return and variance forecast are designed. They both 

generate an annual abnormal return of roughly 3.5 percent. The remaining case is for Hou, Xue 

and Zhang’s (2014) investment factor. It sees an abnormal return of roughly one percent. There 

is also weaker evidence at the ten percent significance level that two other hybrid methods 

outperform Moreira and Muir’s, one for Daniel and Moskowitz’s momentum and one for the 

return on equity factor.  Since only three out of 50 complex strategies outperform Moreira and 

Muir’s method, it is difficult to deduce which combination of return and variance forecast, if 

any, is best suited to outperforming a simple volatility management strategy. 

In more general terms, these findings indicate that it is hard to materially increase Sharpe 

ratios and abnormal returns by complicating volatility management beyond Moreira and Muir’s 

method, which uses a random walk forecast for variance and a time constant to scale factor 

exposure.  In light of Daniel and Moskowitz’s proof that the optimal portfolio weight is 

proportional to Sharpe ratio and not just variance (2013), this suggests that the more complex 

variance forecast is not much better than a random walk forecast. It also indicates that it has 

proved difficult to forecast returns with Daniel and Moskowitz’s methodology.  

However, complicating volatility management strategies beyond that of Moreira and 

Muir (2017) may generate other desirable properties. We show that the more complex methods 

generally entail less volatile weights. To the extent that transaction and liquidity costs are non-

zero, this indicates that the performance of the complex methods may be somewhat better in 

relative terms than what our initial results suggest.  

Additionally, more sophisticated volatility management seems to generate more desirable 

return distributions with higher skewness and lower kurtosis than Moreira and Muir’s method. 

It thus appears that complex volatility management is better at reducing downside risk. This 

seems like an appropriate feature given that the initial purpose of Daniel and Moskowitz’s 

method was to reduce momentum crash risk (2013). 

It is also worth noting that the strategies explored in this thesis use the same methodology 

for all factors. There may be benefit in tailoring different variance and return forecasts to the 

properties of the different factors, as opposed to using a one-size-fits-all approach. The fact that 

complex volatility management performs better than Moreira and Muir’s method for the factor 
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for which it was originally designed, Daniel and Moskowitz’s (2013) momentum, indicates that 

this may be a fruitful area for future research.  

Our thesis consists of four main parts: Data, empirical analysis, discussion and 

conclusion. The data section describes the sources of the factors used, while the empirical 

analysis presents our methods and results. The discussion addresses a selection of issues, while 

the final section concludes.  
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2. Data  

The market (MKT), size (SMB), value (HML), momentum (MomF), profitability (RMW) 

and investment (CMA) factors are obtained from Kenneth French’s website (2019). Daniel and 

Moskowitz’s (2013) momentum factor (MomD) is obtained from Kent Daniel’s website 

(2019)2.  Daniel and Moskowitz’s momentum portfolio is formed differently from Fama-

French’s (2012), using the 10th and 90th percentiles of past performance as opposed to the 30th 

and 70th, as the respective cut-off points for winners and losers. Hou, Xue and Zhang’s (2014) 

investment (IA) and return on equity (ROE) factors were kindly provided by Lu Zhang via e-

mail3. Frazzini and Pedersen’s (2014) betting-against-beta (BAB) factor is gathered from 

AQR’s webpage (2019). We include monthly and daily data for all above factors. This gives us 

daily and monthly return series for ten factors, the periods of which are detailed in Table 1.  

 

Table 1. Periods of daily and monthly factor return series. 

Factor Daily Monthly 

MKT 1926/07/01 -2018/12/31 1926/07 - 2018/12 

SMB 1926/07/01 -2018/12/31 1926/07 - 2018/12 

HML 1926/07/01 -2018/12/31 1926/07 - 2018/12 

MomF 1926/11/03 - 2018/12/31 1926/12 - 2018/12 

MomD 1927/01/03 - 2013/03/28 1927/01 - 2013/03 

RMW 1963/07/01 - 2018/12/31 1963/07 - 2018/12 

CMA 1963/07/01 - 2018/12/31 1963/07 - 2018/12 

BAB 1930/12/01 - 2018/12/31 1930/12 - 2018/12 

IA 1967/01/03 - 2017/12/29 1967/01 - 2017/12 

ROE 1967/01/03 - 2017/12/29 1967/01 - 2017/12 

   

 

 

 

 

                                                           
2 There are several momentum portfolios which are formed differently available on Kent Daniel’s webpage (2019). 

We use the same portfolios as Daniel and Moskowitz (2013). These are the daily and monthly series of momentum 

portfolios sorted on total return with breakpoints computed from all firms, not just NYSE firms.  

3 Lu Zhang’s email address is: zhang.1868@osu.edu. 
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3. Empirical analysis 

In the empirical analysis we first analyze the performance of Moreira and Muir’s constant 

volatility management method for the factors listed in the data section. This is done is 

subsection A. In subsection B we employ Daniel and Moskowitz’s dynamic method on the 

same factors to see if it improves performance further. Next, we modify Daniel and 

Moskowitz’s method so that it only takes ex ante information as input and becomes 

implementable in real-time. This is laid out in subsection C. Finally, in subsection D, we create 

a strategy for each combination of return and variance forecast. This allows us to examine what 

drives the differences in performance between Moreira and Muir’s method and our modified 

version of Daniel and Moskowitz’s. 

A. Moreira and Muir’s method 

Our empirical analysis starts by constructing volatility managed portfolios using Moreira 

and Muir’s method. To avoid confusion, the following diagram describes the terminology we 

will use throughout this paper.  

 

 

Figure 2: Notation and terminology 

 

On each rebalancing date, exposure to every factor is scaled by the inverse of its realized 

variance and a time constant. The volatility managed holding period return is thus given by the 

following expression: 

 

 𝑓𝑡+1
𝑀𝑀 =

𝑐

𝑅𝑉𝑡(𝑓)
𝑓𝑡+1 

 

(1) 

Where 𝑓𝑡+1 is the holding period excess return of the buy-and-hold factor portfolio, 𝑅𝑉𝑡(𝑓) is 

the realized variance, and 𝑐 is a constant that scales exposure to the factor. The parameter 𝑐 is 
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set such that the full sample standard deviation of the managed portfolio equals that of the buy-

and-hold portfolio4. The superscript ”MM” is used in 𝑓𝑡+1
𝑀𝑀 to indicate that the factor is volatility 

managed using Moreira and Muir’s method.  

The realized variance is the monthly variance of the 22 daily returns leading up to and 

including the rebalancing date. It is given by: 

 

 

𝑅𝑉𝑡(𝑓) = ∑ (𝑓𝑡−1+𝑑 −
∑ (𝑓𝑡−1+𝑑)1

𝑑=1/22

22
 )

21

𝑑=1/22

 

 

(2) 

Future monthly variance is thus effectively modelled as a random walk without drift. After 

completing this portfolio construction, each factor has a monthly time series of unmanaged 

returns, 𝒇, and one of volatility managed returns, 𝒇𝑴𝑴.  

Univariate regressions of 𝒇𝑴𝑴 on 𝒇 are then conducted factor by factor. The model 

specification is given by: 

 

𝑓𝑡+1
𝑀𝑀 = 𝛼 + 𝛽𝑓𝑡+1 + 𝜖𝑡+1 (3) 

A significant and positive 𝛼 implies that the volatility managed factor has a higher Sharpe 

ratio than the unmanaged factor. If the factor in question is systematic and contains pricing 

information for a large set of assets and strategies, a positive alpha also implies that the mean-

variance frontier is expanded by the volatility managed portfolio (Moreira & Muir, 2017). In 

addition to the univariate regressions, we also control for the Fama-French three factor model 

and the unmanaged factor. The results are presented in Table 2. 

Despite using a bigger sample than Moreira and Muir5 (2017), the results are very similar 

to what they report. Several of the factors have significant alphas, both in the univariate case 

and controlling for Fama-French’s three factor model. This speaks to the efficacy of adjusting 

exposure according to realized variance.  

Having presented the replication of Moreira and Muir’s method, we will turn to the 

alternative volatility management strategy of Daniel and Moskowitz (2013). 

                                                           
4 The choice of 𝑐 does not affect the Sharpe ratio of the volatility managed portfolio. Therefore, the use of future 

data to compute it does not bias the results.  
5 See Table A1 in appendix A for the replication of Moreira and Muir’s (2017) results where our sample matches 

theirs. 
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Table 2 

Volatility-managed alphas with Moreira and Muir’s method 

In Panel A, we run monthly time series regressions of volatility managed returns à la Moreira and Muir (2017) 

on the unmanaged returns for each factor, 𝑓𝑡+1
𝑀𝑀 = 𝛼 + 𝛽𝑓𝑡+1 + 𝜖𝑡+1. In Panel B, Fama-French’s three factor 

model is used as an additional control in the regressions from Panel A. The samples are 1926-2018 for MKT, 

SMB, HML and MomF; 1963-2018 for RMW and CMA; 1967-2017 for ROE and IA; 1927-2013 for MomD 

and 1930-2018 for BAB. All factors are annualized by scaling monthly returns by 12 and standard errors are 

robust for heteroscedasticity. 

Panel A: Univariate Regressions 

 (1) (2) (3) (4) (5) (6) (7) (8) (11) (10) 

 σ σ σ σ σ σ σ σ σ σ 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

MKT 0.61***          

 (0.06)          

           

SMB  0.61***         

  (0.08)         

           

HML   0.57***        

   (0.07)        

           

MomF    0.48***       

    (0.07)       

           

MomD     0.53***      

     (0.06)      

           

RMW      0.60***     

      (0.08)     

           

CMA       0.69***    

       (0.05)    

           

ROE        0.66***   

        (0.06)   

           

IA         0.72***  

         (0.05)  

           

BAB          0.59*** 

          (0.05) 

           

Alpha (α) 4.59*** -0.50 1.68* 12.0*** 23.5*** 2.51*** 0.35 5.06*** 1.61*** 6.33*** 

 (1.53) (0.88) (0.98) (1.65) (2.96) (0.82) (0.64) (0.97) (0.62) (0.97) 

N 1109 1109 1109 1105 1034 665 665 610 610 1056 

R2 0.37 0.37 0.33 0.23 0.28 0.36 0.48 0.43 0.51 0.35 

RMSE 50.7 30.3 34.3 49.3 88.0 20.9 17.3 22.8 15.8 30.6 

Panel B: Alphas controlling for Fama-French’s three factors 

Alpha (α) 5.14*** -0.28 2.37** 10.0*** 20.4*** 3.17*** -0.083 5.42*** 1.09* 5.82*** 

 (1.54) (0.86) (0.99) (1.54) (2.83) (0.83) (0.65) (0.99) (0.61) (0.95) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
 



  17 

B. Daniel and Moskowitz’s method 

There are three main differences between the volatility management of Moreira and Muir 

(2017) and that of Daniel and Moskowitz (2013). First, Daniel and Moskowitz forecast variance 

and return, as opposed to just variance. Second, they forecast variance differently from the 

random walk used by Moreira and Muir. Finally, Daniel and Moskowitz’s method is intended 

for the momentum factor, while Moreira and Muir’s method is intended for a broad selection 

of factors.  

The volatility managed holding period return using Daniel and Moskowitz’s method is 

given by: 

 

𝑓𝑡+1
𝐷𝑀 =

1

2𝜆
(

𝜇̂𝑡

𝜎̂𝑡
2) 𝑓𝑡+1 

 

(4) 

Here, 𝜇̂𝑡 is the return forecast, 𝜎̂𝑡
2 is the variance forecast, and 𝜆 is a constant that scales 

exposure to the factor. We use the superscript “DM” to indicate that the factor is volatility 

managed using Daniel and Moskowitz’s method.  

The variance forecast is done by first fitting a GARCH model originally proposed by 

Glosten, Jagannathan and Runkle (1993), to each factor’s daily returns. It is defined as: 

 

𝑓𝑡 = 𝜇 + 𝜖𝑡 

 

(5) 

Where 𝜖𝑡 ~ 𝒩(0, 𝜎𝐺,𝑡
2 ), and 𝜎𝐺,𝑡

2  is governed by the process: 

 

𝜎𝐺,𝑡
2  = 𝜔 + 𝛽𝜎𝐺,𝑡−1

2 + (𝛼 + 𝛾𝐼(𝜖𝑡−1 < 0)) 𝜖𝑡−1
2  

 

(6) 

𝐼(𝜖𝑡−1 < 0) is a dummy that takes the value of one if 𝜖𝑡−1 < 0 and zero otherwise. The 

parameter set {𝜇̂, 𝜔̂, 𝛽̂, 𝛼̂, 𝛾} is estimated using maximum likelihood over the full sample of daily 

returns for each factor6. This is used to compute 𝜎𝐺,𝑡
2 , of which we take the root to obtain the 

GJR-GARCH volatility, 𝜎𝐺,𝑡. The realized standard deviation of the six months (126 days) 

preceding the start of the rebalancing month, 𝜎126,𝑡, is then computed. Next, the realized 

volatility of the 22 days following the rebalancing date is created, 𝜎22,𝑡+1.  

                                                           
6See Table B3 in appendix B for the maximum likelihood estimates, {𝜇̂, 𝜔̂, 𝛽̂, 𝛼̂, 𝛾} for each factor. 
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We thus have a daily time series of GJR-GARCH volatility, 𝜎𝐺,𝑡, six months realized 

volatility, 𝜎126,𝑡, and next month’s realized volatility, 𝜎22,𝑡+1.  These are filtered to contain 

rebalancing dates only, changing their frequency from daily to monthly. After preparing the 

data, the following regression is run on the full sample of each factor7: 

 

𝜎22,𝑡+1 = 𝛼 + 𝛽1𝜎126,𝑡 + 𝛽2𝜎𝐺,𝑡 + 𝜖𝑡 

 

(7) 

The coefficients {𝛼̂, 𝛽̂1, 𝛽̂2} are extracted and used to forecast variance on every rebalancing 

date: 

 

𝜎̂𝑡
2 = (𝛼̂ +  𝛽̂1𝜎126,𝑡 + 𝛽̂2𝜎𝐺,𝑡)

2
 

 

(8) 

Equation 8 gives the denominator used in Daniel and Moskowitz’s (2013) volatility 

management strategy from Equation 4. This is the first component of Daniel and Moskowitz’s 

method. The second is the numerator, which is the return forecast.   

We start the process of forecasting returns by creating a monthly bear market indicator, 

𝐼𝐵,𝑡. It equals one if the cumulative market return8 in the 24 months leading up to the rebalancing 

date is negative, and zero otherwise. Next, we compute the realized market variance of the six 

months (126 days) preceding the start of the rebalancing month, 𝜎𝑚,𝑡
2 . This daily series is filtered 

to only include rebalancing dates, transforming its frequency to monthly. Next, an interaction 

term between the realized market variance and the bear market indicator is generated, 

(𝜎𝑚,𝑡
2 × 𝐼𝐵,𝑡).  

The entire process thus yields three monthly time series: 𝐼𝐵,𝑡, 𝜎𝑚,𝑡
2  and (𝜎𝑚,𝑡

2 × 𝐼𝐵,𝑡). The 

following two regressions are then run on the full sample for each factor: 

 

𝑓𝑡 = 𝑐 + 𝛿1𝐼𝐵,𝑡−1 + 𝛿2𝜎𝑚,𝑡−1
2 + 𝛿3(𝜎𝑚,𝑡−1

2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡 (9) 

  

𝑓𝑡 = 𝜈 + 𝛾(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡 

 

(10) 

                                                           
7 See Table B4 in appendix B for the regression output from Equation 7 for each factor.  
8 The monthly market return series used to create the monthly bear market indicator, 𝐼𝐵,𝑡, is the value-weighted 

market index obtained from the CRSP database (Wharton Research Data Services, 2019). 
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We use the estimated coefficients {𝑐̂, 𝛿1, 𝛿2, 𝛿3} and {𝜈̂, 𝛾}  to forecast returns in the following 

two ways: 

 

𝜇̂𝑡
∗ = 𝑐̂ + 𝛿1𝐼𝐵,𝑡−1 + 𝛿2𝜎𝑚,𝑡−1

2 + 𝛿3(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) (11) 

  

𝜇̂𝑡 = 𝜈̂ + 𝛾(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) 

 

(12) 

Both specifications given by Equation 11 and Equation 12 are shown in Daniel and 

Moskowitz’s paper (2013)9, but they use Equation 11 when volatility managing their 

momentum portfolio. However, one must keep in mind that Equation 11 was conceived by 

Daniel and Moskowitz for the purpose of forecasting returns for their momentum portfolio. 

Consequently, there is no reason to expect that it will work for all ten factors included in this 

thesis. Indeed, 𝛿1and 𝛿2 are not significantly different from zero at the 95 percent confidence 

level for the majority of the factors in this thesis. However, 𝛾, is statistically significant at the 

95 percent confidence level for the majority of factors for Equation 1210.  

We find a Sharpe ratio of 1.17 in the sample 1927-2013 when volatility managing Daniel 

and Moskowitz’s (2013) momentum both when using equations 11 and 12 to forecast returns. 

This is close to the 1.18 reported by Daniel and Moskowitz, and suggests that the results are 

insensitive to the choice of return forecasting method.  

Due to the lack of statistical significance when using Equation 11 and the identical 

performance in terms of Sharpe ratio, we choose to forecast returns using the simpler, univariate 

specification in Equation 12 for all factors in our thesis.  

To recapitulate, Daniel and Moskowitz’s volatility management (2013) produces two 

monthly time series, 𝜎̂𝑡
2 and 𝜇̂𝑡. These are combined in 𝑓𝑡+1

𝐷𝑀 =
1

2𝜆
(

𝜇̂𝑡

𝜎̂𝑡
2) 𝑓𝑡+1 to compute the 

monthly time series of volatility managed returns à la Daniel and Moskowitz, 𝒇𝑫𝑴. As in 

Moreira and Muir (2017), the constant 𝜆 is chosen so that the full sample volatility of 𝒇𝑫𝑴 is 

equal to that of the unmanaged factor returns, 𝒇11.  

                                                           
9 Equations 11 and 12 correspond to columns five and four, respectively, in Table 7 of Daniel and Moskowitz’s 

paper (2013).  

10 See Table B1 in appendix B for the regression output from equations 9 and 10 for each factor.  
11 As in the case of Moreira and Muir’s method, the choice of λ has no bearing on the Sharpe ratio of Daniel and 

Moskowitz’s method.  
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Then we run univariate regressions of 𝒇𝑫𝑴 on 𝒇 for all ten factors. We also report alphas 

after adding additional controls in the form of Fama-French’s three factors. The results are 

presented in Table 3. As was the case using Moreira and Muir’s volatility management method, 

several factors produce significant alphas both in the case of the univariate regressions and with 

additional controls for Fama-French’s three factors. Also similar to Moreira and Muir’s method, 

MomF and MomD benefit the most from volatility management. They produce annual alphas 

of 10 and 21 percent, respectively, controlling for Fama-French’s three factor model.  
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Table 3 

Volatility-managed alphas with Daniel and Moskowitz’s method 
In Panel A, we run monthly time-series regressions of volatility managed returns à la Daniel and Moskowitz 

(2013) on the unmanaged returns for each factor 𝑓𝑡+1
𝐷𝑀 = 𝛼 + 𝛽𝑓𝑡+1 + 𝜖𝑡+1. In Panel B, Fama-French’s three 

factor model is used as an additional control in the regressions from Panel A. The samples are 1927-2018 for 

MKT, SMB, HML and MomF; 1964-2018 for RMW and CMA; 1967-2017 for ROE and IA, 1927-2013 for 

MomD and 1931-2018 for BAB. All factors are annualized by scaling monthly returns by 12 and standard 

errors are robust for heteroscedasticity. 

Panel A: Univariate Regressions 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 σ σ σ σ σ σ σ σ σ σ 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

MKT 0.74***          

 (0.058)          

           

SMB  0.82***         

  (0.045)         

           

HML   0.63***        

   (0.081)        

           

MomF    0.40***       

    (0.094)       

           

MomD     0.53***      

     (0.06)      

           

RMW      0.67***     

      (0.083)     

           

CMA       0.77***    

       (0.047)    

           

ROE        0.66***   

        (0.073)   

           

IA         0.84***  

         (0.050)  

           

BAB          0.70*** 

          (0.054) 

           

Alpha (α) 4.35*** 0.86 2.17** 13.9*** 23.5*** 1.97** 0.27 5.77*** 0.96** 5.11*** 

 (1.31) (0.63) (0.92) (1.92) (3.42) (0.78) (0.57) (1.08) (0.47) (0.94) 

N 1102 1102 1102 1098 1034 657 657 602 602 1049 

R2 0.544 0.679 0.391 0.158 0.28 0.444 0.596 0.441 0.714 0.488 

RMSE 43.3 21.7 32.7 51.8 88.0 19.5 15.3 22.8 12.0 27.1 

Panel B: Alphas controlling for Fama-French’s three factors 

Alpha (α) 4.99*** 0.69 2.98*** 10.1*** 20.6*** 2.71*** -0.14 5.77*** 0.64 4.36*** 

 (1.31) (0.63) (0.92) (1.61) (3.11) (0.77) (0.58) (1.06) (0.48) (0.91) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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To see if Daniel and Moskowitz’s more complex method yields better performance than 

the simpler method of Moreira and Muir, we run two regressions. In the first regression, we run 

the factors managed by Daniel and Moskowitz’s method, 𝒇𝑫𝑴, on the unmanaged factors, 𝒇, 

and the factors managed according to Moreira and Muir’s method, 𝒇𝑴𝑴. It is thus given by the 

following expression: 

 

𝑓𝑡+1
𝐷𝑀 = 𝛼 + 𝛽1𝑓𝑡+1

𝑀𝑀 + 𝛽2𝑓𝑡+1 + 𝜖𝑡+1 (13) 

In the second regression we use the same specification as in the first, but add Fama-French’s 

three factor model as an additional control:  

 

𝑓𝑡+1
𝐷𝑀 = 𝛼 + 𝛽1𝑓𝑡+1

𝑀𝑀 + 𝛽2𝑓𝑡+1 + 𝛽3𝑀𝐾𝑇𝑡+1 + 𝛽4𝑆𝑀𝐵𝑡+1 + 𝛽5𝐻𝑀𝐿𝑡+1 + 𝜖𝑡+1 (14) 

 

The results are presented in Table 4. Without controlling for Fama-French’s three factor 

model, Daniel and Moskowitz’s volatility management method generates statistically 

significant abnormal returns at the five percent level for SMB, both momentum portfolios and 

ROE. There is also weak evidence at the ten percent significance level in the case of HML.  

Adding controls for Fama-French’s three factor model renders the alphas of both 

momentum portfolios and the SMB factor only weakly significant with a ten percent 

significance level. This implies that the alphas reported in Panel A for these factors partly reflect 

exposure to the risk factors embedded in Fama-French’s three factor model, rather than actual 

abnormal return. With controls for Fama-French’s three factors, there is no evidence that Daniel 

and Moskowitz’s method improves on Moreira and Muir’s for the RMW, CMA, IA and BAB 

factors.  

The factors which Daniel and Moskowitz’s method does improve on are MKT, HML and 

ROE. It is worth noting that there is evidence at the five percent significance level that MKT 

and HML produce abnormal return with controls for Fama-French’s three factors, but not 

without. This appears to be due to HML acting as a hedge for MKT managed with Daniel and 

Moskowitz’s method, and MKT acting as a hedge for HML managed according to Daniel and 

Moskowitz’s method12. Surprisingly, there is only weak evidence that Daniel and Moskowitz’s 

method improves on the factor for which it was designed, momentum, but seems to improve on 

a few for which it was not intended to be used. 

                                                           
12 The market factor when volatility managed according to Daniel and Moskowitz’s method loads negatively on 

HML, and HML when volatility managed in the same way loads negatively on MKT.   
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Table 4 

Testing whether Daniel and Moskowitz’s method improves on Moreira and Muir’s 

In Panel A, we run the factors managed by Daniel and Moskowitz’s method on the unmanaged factors and the factors 

managed according to Moreira and Muir’s method. In Panel B, we add controls for Fama-French’s three factors. A 

significantly positive alpha implies that Daniel and Moskowitz’s method produces abnormal returns in excess of 

systematic risk exposure that is not explained by exposure to Moreira and Muir’s method either, indicating that 

Daniel and Moskowitz’s method outperforms Moreira and Muir’s. The samples are 1927-2018 for MKT, SMB, 

HML and MomF; 1964-2018 for RMW and CMA; 1967-2017 for ROE and IA, 1927-2013 for MomD and 1931-

2018 for BAB. All factors are annualized by scaling monthly returns by 12 and standard errors are robust for 

heteroscedasticity 

Panel A: Alphas controlling for Moreira and Muir’s method and the unmanaged factor 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

           

Alpha (𝛼) 1.23 1.08** 0.98* 4.94*** 5.85*** -0.50 0.15 1.66** -0.12 0.093 

 (0.81) (0.50) (0.55) (1.31) (1.59) (0.36) (0.34) (0.67) (0.33) (0.55) 

N 1102 1102 1102 1098 1027 657 657 602 602 1049 

R2 0.829 0.773 0.779 0.527 0.784 0.875 0.865 0.787 0.881 0.800 

RMSE 26.5 18.3 19.7 38.9 48.5 9.26 8.85 14.1 7.75 16.9 

Panel B: Alphas with additional controls for Fama-French’s three factors 

           

Alpha (𝛼) 1.70** 0.82* 1.42*** 2.27* 2.76* -0.096 0.090 1.35** -0.074 -0.29 

 (0.79) (0.49) (0.53) (1.22) (1.54) (0.36) (0.35) (0.68) (0.34) (0.53) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Next, we compute the annualized Sharpe ratios of every factor’s unmanaged returns and 

those obtained using Moreira and Muir’s and Daniel and Moskowitz’s volatility management 

methods. We use the formula below, where 𝐸[𝑓𝑡] is the expected excess return and 𝜎𝑡(𝑓𝑡) is the 

standard deviation of factor 𝑓, both over the full sample.  

 

𝑆𝑅𝑓 = √12
𝐸[𝑓𝑡]

𝜎(𝑓𝑡)
 

 

(15) 

The annualized appraisal ratios are also computed using the same formula as Moreira and 

Muir (2017): 

 

𝐴𝑅𝑓 = √12
𝛼𝑓

𝑅𝑀𝑆𝐸𝑓
 

 

(16) 
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Where 𝛼𝑓 is the univariate alpha of the volatility managed version of factor 𝑓, using Moreira 

and Muir’s method or that of Daniel and Moskowitz. RMSE is the root mean squared error, 

given by:  

 

𝑅𝑀𝑆𝐸𝑓 = √
1

𝑛
∑(𝑓𝑡 − 𝑓𝑡)

2
𝑛

𝑡=1

    

 

Where 𝑓𝑡 is the monthly returns predicted by the model, and 𝑓𝑡 is the observed values. The 

results of equations 15 and 16 are compiled in Table 5. 

Table 5 shows that the Sharpe ratios of all factors but CMA are improved by volatility 

management, either using Moreira and Muir’s or Daniel and Moskowitz’s methods. Particularly 

strong improvements occur for MomF, MomD, ROE and BAB. This indicates that the improved 

performance of volatility managed portfolios relative to unmanaged portfolios is persistent 

across a wide range of factor strategies. These findings are in line with those found by Moreira 

and Muir (2017).  

Comparing performance across volatility management methods, we find that Daniel and 

Moskowitz’s method yields higher Sharpe ratios than Moreira and Muir’s for eight out of ten 

factors. These are the MKT, SMB, HML, CMA, MomF, MomD, ROE and IA factors. However, 

the improvements are generally quite modest, with the largest increases in Sharpe ratio being 

seven and five percentage points for both the momentum portfolios and ROE, respectively. This 

indicates that Daniel and Moskowitz’s method does improve on Moreira and Muir’s across a 

wide range of factors, but that the gains are generally modest.  

The fact that the gains in Sharpe ratio are modest seems to fit well with the overall results 

of Table 4. As evidenced by Panel B in Table 4, Daniel and Moskowitz’s method only improves 

on three out of ten factors relative to Moreira and Muir’s method at the five percent significance 

level. For these factors, the magnitude of the improvement is small with an annual alpha of 1.7 

percent as the maximum. Overall, abnormal returns in Panel B of Table 4 seem to be associated 

with gains in Sharpe ratio in Table 5 from using Daniel and Moskowitz’s method over Moreira 

and Muir’s. 

It is worth noting that Daniel and Moskowitz’s method is meant for their momentum 

portfolio. We therefore forecast returns for all factors using a model that was specifically 

tailored to respond to the properties of momentum portfolios (Daniel & Moskowitz, 2013).  
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As such, it seems plausible that the use of different return forecasting models for different 

factors could further improve the performance of Daniel and Moskowitz’s method. The same 

argument does not apply to the variance forecast, as it is not tailored for momentum specifically, 

but made for general use (Glosten , Jagannathan, & Runkle, 1993). Even if Daniel and 

Moskowitz’s (2013) return forecast is not suited for factors other than their momentum 

portfolio, it is possible that their variance forecast does benefit the volatility management of 

other factors.  

However, there are issues with regards to the real-time implementability of Daniel and 

Moskowitz’s volatility management method. For a strategy to be implementable in real time, it 

must only use information available on the rebalancing date to adjust exposure on the 

rebalancing date.  

The variance forecast in Daniel and Moskowitz’s method relies on the coefficients 

{𝛼̂, 𝛽̂1, 𝛽̂2} extracted from the regression in Equation 7, which is estimated once on the full 

sample. The forecasted volatility parameter, 𝜎𝐺,𝑡 also relies on a GJR-GARCH process using 

the full sample. 

Similarly, the return forecast relies on {𝜈̂, 𝛾} obtained from the regression in Equation 10, 

which is estimated once on the full sample. This means that they are effectively forecasting 

variance and returns using future information contained in {𝛼̂, 𝛽̂1, 𝛽̂2}, 𝜎𝐺,𝑡 and {𝜈̂, 𝛾}. Thus, 

their proposed strategy is not implementable in real time.  

The goal of the next subsection is to modify Daniel and Moskowitz’s method so that it 

only uses information available ex ante in forecasts of variance and return, and thus can be 

implemented in real time. This will allow us to tell how much of the improvement found using 

Daniel and Moskowitz’s method comes from the use of future information, and how much is 

attributable to the efficacy of the methodology.  
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 Table 5  

Sharpe ratios and appraisal ratios of volatility managed portfolios  
For every unmanaged and managed factor we include the annualized Sharpe ratio 𝑆𝑅𝑓 = √12

𝐸[𝑓𝑡]

𝜎(𝑓𝑡)
 and the annualized 

appraisal ratio 𝐴𝑅𝑓 = √12
𝛼𝑓

𝑅𝑀𝑆𝐸𝑓
 in parentheses. The samples are 1926-2018 for MKT, SMB, HML and MomF; 

1963-2018 for RMW and CMA; 1967-2017 for ROE and IA, 1927-2013 for MomD and 1931-2018 for BAB.   

Factor Unmanaged Moreira and Muir (2017) Daniel and Moskowitz (2013) 

MKT 0.43 0.51 0.55 

  (0.31) (0.35) 

    

SMB 0.23 0.10 0.27 

  (-0.06) (0.14) 

    

HML 0.37 0.35 0.41 

  (0.17) (0.23) 

    

RMW 0.41 0.58 0.53 

  (0.42) (0.35) 

    

CMA 0.50 0.39 0.42 

  (0.07) (0.06) 

    

MomF 0.49 0.98 1.05 

  (0.84) (0.93) 

    

MomD 0.59 1.10 1.17 

  (0.93) (0.93) 

    

ROE 0.74 1.07 1.15 

  (0.77) (0.88) 

    

IA 0.74 0.76 0.77 

  (0.35) (0.28) 

    

BAB 0.75 1.01 0.99 

  (0.72) (0.65) 
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C. Modified Daniel and Moskowitz method 

The volatility managed holding period return using our modified, ex ante Daniel and 

Moskowitz method is given by the following expression: 

 

𝑓𝑡+1
𝐷𝑀𝑋 =

1

2𝜆
(

𝜇̂𝑋,𝑡

𝜎̂𝑋,𝑡
2 ) 𝑓𝑡+1 

 

(17) 

We use the superscript “DMX” to indicate that the factor is volatility managed using Daniel 

and Moskowitz’s method with only information known ex ante. Similarly, subscript “X” means 

that the return and variance forecasts are made using ex ante information only. To make Daniel 

and Moskowitz’s method implementable in real time, we use expanding window forecasts of 

variance and return with a ten-year training period. This is illustrated below. Since we use an 

expanding window forecast, our estimation period grows as the rebalancing date, T, approaches 

the end of the full sample 

 

 

Figure 3: Division of sample into training and test period. 

 

We use the same GJR-GARCH process as before, but now refit the model on an 

expanding window for each rebalancing date in the test sample: 

 

𝑓𝑡 = 𝜇𝑡 + 𝜖𝑡 

 

(18) 

Where 𝜖𝑡 ~ 𝒩(0, 𝜎𝐺,𝑡
2 ), and 𝜎𝐺,𝑡

2  is governed by the process: 
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𝜎𝐺,𝑡
2  = 𝜔𝑡 + 𝛽𝑡𝜎𝐺,𝑡−1

2 + (𝛼𝑡 + 𝛾𝑡𝐼(𝜖𝑡−1 < 0)) 𝜖𝑡−1
2  

 

(19) 

We still forecast GJR-GARCH variance daily, but the difference from before is that we 

now get a new parameter set every month, {𝜇̂𝑡, 𝜔̂𝑡 , 𝛽̂𝑡, 𝛼̂𝑡 , 𝛾𝑡} instead of a fixed set of 

parameters. This yields a daily series of ex ante GJR-GARCH volatility forecasts given by: 

 

 

𝜎𝐺𝑋,𝑡 = √𝜔̂𝑡 + 𝛽̂𝑡𝜎𝐺,𝑡−1
2 + (𝛼̂𝑡 + 𝛾𝑡𝐼(𝜖𝑡−1 < 0)) 𝜖𝑡−1

2  

 

(20) 

 

Otherwise, we use the same six-months realized volatility, 𝜎126,𝑡, as specified in 

subsection B. Instead of using future information in the form of next month’s realized volatility, 

𝜎22,𝑡+1, we modify it to instead be the realized volatility of the rebalancing month, 𝜎22,𝑡.    

We thus have a daily time series of ex ante GJR-GARCH volatility, 𝜎𝐺𝑋,𝑡, six-months 

realized volatility, 𝜎126,𝑡 and realized volatility in the rebalancing month, 𝜎22,𝑡. The time series 

𝜎𝐺𝑋,𝑡 and, 𝜎126,𝑡 are lagged by one month (22 days), producing 𝜎𝐺𝑋,𝑡−1 and, 𝜎126,𝑡−1. Next, we 

filter {𝜎22,𝑡, 𝜎𝐺𝑋,𝑡−1, 𝜎126,𝑡−1} to only contain rebalancing dates, changing the frequency of the 

data from daily to monthly.  

The realized volatility in the rebalancing month, 𝜎22,𝑡, is then regressed on the lagged six-

months realized volatility and the lagged ex ante GJR-GARCH volatility.  

 

𝜎22,𝑡 = 𝛼 + 𝛽1𝜎126,𝑡−1 + 𝛽2𝜎𝐺𝑋,𝑡−1 + 𝜖𝑡 

 

(21) 

This is done for all rebalancing dates on an expanding window in the test period. We thus 

obtain a new set of coefficients every month, {𝛼̂𝑡, 𝛽̂1,𝑡, 𝛽̂2,𝑡}. These reflect the relationship 

between past volatility and contemporaneous volatility. To forecast next month’s variance, we 

combine {𝛼̂𝑡, 𝛽̂1,𝑡, 𝛽̂2,𝑡} with the contemporaneous 𝜎126,𝑡 and 𝜎𝐺𝑋,𝑡 variables. The formula is 

defined as follows: 

 

𝜎̂𝑋,𝑡
2 = (𝛼̂𝑡 +  𝛽̂1,𝑡𝜎126,𝑡 +  𝛽̂2,𝑡𝜎𝐺𝑋,𝑡)

2
 (22) 
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This constitutes the denominator in our modified Daniel and Moskowitz method, used in 

Equation 17. The next step is to forecast returns using only information known ex ante.  

As previously discussed, it is the fact that the regressions in equations 9 and 10 are run 

on the full sample which biases Daniel and Moskowitz’s (2013) return forecast. Thus, we need 

to refit the regressions every rebalancing date on an expanding window, again using a training 

period of ten years. This way, the regression coefficients will not contain future information.  

None of the variables used in the original return forecast are biased by the use of future 

information. Therefore, there is no need to modify the monthly time series consisting of the 

bear market indicator, 𝐼𝐵,𝑡, the six months market variance, 𝜎𝑚,𝑡
2 , and the interaction term 

combining them both (𝜎𝑚,𝑡
2 × 𝐼𝐵,𝑡).  

For every rebalancing date, we run the following regressions. They are equivalent to 

equations 9 and 10.  

 

𝑓𝑡 = 𝑐 + 𝛿1𝐼𝐵,𝑡−1 + 𝛿2𝜎𝑚,𝑡−1
2 + 𝛿3(𝜎𝑚,𝑡−1

2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡 
(23) 

 

𝑓𝑡 = 𝜈 + 𝛾(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡 

 

 

(24) 

We get one set of coefficients per rebalancing date, {𝑐̂𝑡, 𝛿1,𝑡, 𝛿2,𝑡, 𝛿3,𝑡} and {𝜈̂𝑡, 𝛾𝑡}. Returns are 

then forecasted using equivalent specifications as in equations 11 and 12: 

 

𝜇̂𝑋,𝑡
∗ = 𝑐̂𝑡 + 𝛿1,𝑡𝐼𝐵,𝑡−1 + 𝛿2,𝑡𝜎𝑚,𝑡−1

2 + 𝛿3,𝑡(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) (25)  

 

 

𝜇̂𝑋,𝑡 = 𝜈̂𝑡 + 𝛾𝑡(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) 

 

 

 

(26) 

These correspond to equations 11 and 12, but only use information which is available ex ante. 

Again, we choose to employ the simpler, univariate forecast13. Therefore, Equation 26 

                                                           
13To assess the implications of our choice, we have made an alternative version of Table 6 in Table B2 of appendix 

B. The only difference is that we let our modified Daniel and Moskowitz method use the multivariate return 

forecast instead of the univariate version in Table 6. Comparing the two tables, we see that the alphas generated 

are very similar in magnitude and significance. The only material exception is the IA factor which seems to benefit 

more from the multivariate forecast than the univariate one. Overall, these results indicate that performance as 

measured by alpha is largely insensitive to the choice of return forecast method. 
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constitutes the numerator in our modified Daniel and Moskowitz method. The constant, 𝜆, is 

chosen in the same way as in subsection B.  

To summarize, our modified version of Daniel and Moskowitz’s volatility management 

method produces a monthly time series of variance forecasts, 𝜎̂𝑋,𝑡
2  and a monthly time series of 

return forecasts, 𝜇̂𝑋,𝑡. These are combined in 𝑓𝑡+1
𝐷𝑀𝑋 =

1

2𝜆
(

𝜇̂𝑋,𝑡

𝜎̂𝑋,𝑡
2 ) 𝑓𝑡+1 to compute the monthly 

time series of ex ante volatility managed returns à la Daniel and Moskowitz (2013), 𝒇𝑫𝑴𝑿.  

Next, we run univariate regressions of 𝒇𝑫𝑴𝑿 on 𝒇 for all ten factors and report alphas 

after controlling for Fama-French’s three factors in addition to the unmanaged factor. The 

results are presented in Table 6. 
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Table 6 

Volatility-managed alphas with the modified Daniel and Moskowitz method 
In Panel A, we run monthly time-series regressions of volatility managed returns using our modified Daniel 

and Moskowitz method on the unmanaged returns for each factor, 𝑓𝑡+1
𝐷𝑀𝑋 = 𝛼 + 𝛽𝑓𝑡+1 + 𝜖𝑡+1. In Panel B, 

Fama-French’s three factor model is used as an additional control in the regressions from Panel A. The samples 

are 1937-2018 for MKT, SMB, HML and MomF; 1973-2018 for RMW and CMA; 1977-2017 for ROE and 

IA, 1937-2013 for MomD and 1941-2018 for BAB. All factors are annualized by scaling monthly returns by 

12 and standard errors are robust for heteroscedasticity. 

Panel A: Univariate Regressions 

 (1) (2) (3) (4) (5) (6) (7) (8) (11) (10) 

 σ σ σ σ σ σ σ σ σ σ 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

MKT 0.78***          

 (0.04)          

           

SMB  0.80***         

  (0.06)         

           

HML   0.77***        

   (0.05)        

           

MomF    0.51***       

    (0.06)       

           

MomD     0.63***      

     (0.07)      

           

RMW      0.60***     

      (0.09)     

           

CMA       0.77***    

       (0.06)    

           

ROE        0.68***   

        (0.08)   

           

IA         0.75***  

         (0.06)  

           

BAB          0.74*** 

          (0.05) 

           

Alpha (α) 1.71 0.23 0.68 6.80*** 19.9*** 0.31 0.39 6.10*** 1.21* 4.05*** 

 (1.12) (0.65) (0.67) (1.50) (2.86) (0.99) (0.61) (1.15) (0.63) (0.86) 

N 981 981 981 981 912 542 542 488 488 934 

R2 0.60 0.64 0.59 0.26 0.40 0.36 0.59 0.46 0.57 0.55 

RMSE 34.1 20.9 21.8 41.5 71.8 22.1 15.2 22.4 14.7 23.1 

Panel B: Alphas controlling for Fama-French’s three factors 

Alpha (α) 1.70 0.03 1.07 5.85*** 17.6*** 0.62 0.04 5.47*** 0.76 3.46*** 

 (1.15) (0.69) (0.69) (1.67) (2.90) (1.17) (0.62) (1.16) (0.62) (0.86) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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At first glance, it seems that restricting the information used for return and variance 

forecasts reduces alphas for nearly all factors. Only four factors have significantly positive 

alphas at the five percent level using our modified Daniel and Moskowitz method, as opposed 

to seven using the original method. These are the momentum portfolios, ROE and BAB. 

Comparing Panel B in Table 6 to Panel B in Table 3, it thus seems that the performance of 

Daniel and Moskowitz’s method is substantially weakened when restricting it to ex ante 

information.  

Note however, that the factors in Table 6 have ten years shorter samples due to the test 

period in our modified method. As such, the results are not directly comparable between the 

original Daniel and Moskowitz method in Table 3 and our modified Daniel and Moskowitz 

method in Table 6.  

For a more accurate comparison, we cut the samples of the volatility managed factors 

which use the original Daniel and Moskowitz method to match those of our modified method. 

Then we regress 𝒇𝑫𝑴𝑿 on 𝒇 and 𝒇𝑫𝑴, as given below: 

 

𝑓𝑡+1
𝐷𝑀𝑋 = 𝛼 + 𝛽1𝑓𝑡+1

𝐷𝑀 + 𝛽2𝑓𝑡+1 + 𝜖𝑡+1 (27) 

 

We also add controls for Fama-French’s three factors, yielding the following specification: 

 

𝑓𝑡+1
𝐷𝑀𝑋 = 𝛼 + 𝛽1𝑓𝑡+1

𝐷𝑀 + 𝛽2𝑓𝑡+1 + 𝛽3𝑀𝐾𝑇𝑡+1 + 𝛽4𝑆𝑀𝐵𝑡+1 + 𝛽5𝐻𝑀𝐿𝑡+1 + 𝜖𝑡+1  (28) 

 

The regression output for both specifications is presented in Table 7. 

Panel A of Table 7 shows that there is no difference in performance between our modified 

version of Daniel and Moskowitz’s method and the original for all but the BAB factor, despite 

the original method’s use of future information. Adding controls for Fama-French’s three factor 

model in Panel B eliminates this one remaining difference. This implies that the alpha reported 

in Panel A for the BAB factor was due to exposure to systematic risk contained in Fama-

French’s three factor model. Thus, it removes the somewhat surprising initial result that the 

BAB factor performs better using the method which restricts information to that available ex 

ante.  

In total, by looking at Panel B, there appears to be no difference between the modified 

and original method. Surprisingly, the use of future information does not seem to matter much 



  33 

for performance. All variations in alpha between Panel B in Table 3 and Panel B in Table 6 

seem to be due to the change in sample, not the change in method.  

As there is no evidence that the original and modified Daniel and Moskowitz methods 

differ in terms of performance after the ten-year training period, one would expect differences 

in performance to stem from the training period. The MKT, HML and RMW factors no longer 

seem to benefit from volatility management when the first ten years are cut out of the sample. 

This indicates that Daniel and Moskowitz’s original method works well in the first ten years of 

the sample for these factors, relative to the unmanaged factors. For the MKT and HML factors, 

the training period encompasses a highly volatile time period in the form of the Great 

Depression. It seems likely that the difference between unmanaged and managed strategies in 

such climates will be particularly large. Thus, the omission of the Great Depression from MKT 

and HML’s samples seems like a plausible explanation for why these factors no longer generate 

abnormal returns when volatility managed using our modified Daniel and Moskowitz method.   

It could be the case that the use of future information is insignificant, so that the modified 

and original version of Daniel and Moskowitz’s method are equivalent in the first ten years of 

the sample. There could also be differences between the two in either direction, though one 

would expect future information to benefit rather than impede performance. Since we use all 

available data for all factors, we cannot test for the importance of future information in the first 

ten years of the sample. 

Although we found no difference in performance between our modification of Daniel and 

Moskowitz’s method and the original, we employ our modified version for the remainder of the 

thesis as it is implementable in real-time. 

We have seen that volatility management improves performance for a wide range of 

factors, both when using Moreira and Muir’s simple method and Daniel and Moskowitz’s more 

complicated one. The goal of the next subsection is to analyze where the improvements of 

volatility managed factors relative to unmanaged factors come from, and what drives 

differences in performance between Moreira and Muir’s method and our modified version of 

Daniel and Moskowitz’s method.  
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Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

D. Hybrid strategies 

Since both the variance and return forecasts are different in Moreira and Muir’s and our 

modified version of Daniel and Moskowitz’s method, we cannot determine whether differences 

in performance stem from the differences in return or variance forecast. To isolate the impact 

of each individual component, we create a strategy for each combination of return and variance 

forecasts in Moreira and Muir’s method and our modified version of Daniel and Moskowitz’s 

method. This allows us to pinpoint where changes in performance come from for each factor, 

i.e. whether they come from changes in variance forecast or changes in return forecast.  

There are three return forecast methods. The first is the time constant, 𝑐, from Moreira 

and Muir’s paper14 (2017). The second is our modified Daniel and Moskowitz (2013) univariate 

forecast from Equation 26, 𝜇̂𝑋,𝑡, given by: 

 

𝜇̂𝑋,𝑡 = 𝜈̂𝑡 + 𝛾𝑡(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) 

 

                                                           
14 Moreira and Muir (2017) do not refer to the time constant as a return forecast, but mathematically it serves much 

of the same purpose as Daniel and Moskowitz’s (2013) return forecasts. We have therefore coined it a return 

forecast in some instances to simplify the explanation of our hybrid strategies.  

Table 7 

Testing the importance of Daniel and Moskowitz’s (2013) use of future information 
Panel A shows the alphas generated by regressing the factors managed using our modified version of Daniel and Moskowitz’s 

method on those managed using their original method and the unmanaged factors. Panel B adds controls for Fama-French’s 

three factors. Significant alphas indicate that the use of future information in Daniel and Moskowitz’s original method matters 

for its performance, relative to our modified method which only uses ex ante information. The samples are 1937-2018 for 

MKT, SMB, HML and MomF; 1973-2018 for RMW and CMA; 1977-2017 for ROE and IA, 1937-2013 for MomD and 1941-

2018 for BAB. All factors are annualized by scaling monthly returns by 12 and standard errors are robust for heteroscedasticity 

Panel A: Alphas controlling for Daniel and Moskowitz’s original method and the unmanaged factor 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

           

Alpha (𝛼) 0.051 -0.66 -0.27 0.74 0.70 -0.42 -0.23 0.40 0.33 0.97** 

 (0.60) (0.42) (0.31) (1.19) (0.92) (0.91) (0.40) (0.39) (0.36) (0.47) 

N 981 981 981 981 912 542 542 488 488 934 

R2 0.906 0.821 0.910 0.505 0.933 0.456 0.827 0.907 0.881 0.900 

RMSE 16.6 14.7 10.1 33.9 23.9 20.3 9.84 9.31 7.70 10.8 

Panel B: Alphas with additional controls for Fama-French’s three factors 

Alpha (𝛼) 0.11 -0.31 -0.10 1.02 0.75 -0.29 -0.35 0.57 0.13 0.66 

 (0.62) (0.45) (0.31) (1.40) (0.92) (1.07) (0.41) (0.40) (0.37) (0.48) 
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Finally, there is our modified Daniel and Moskowitz (2013) multivariate return forecast from 

Equation 25, 𝜇̂𝑋,𝑡
∗ , given by: 

𝜇̂𝑋,𝑡
∗ = 𝑐̂𝑡 + 𝛿1,𝑡𝐼𝐵,𝑡−1 + 𝛿2,𝑡𝜎𝑚,𝑡−1

2 + 𝛿̂3,𝑡(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) 

 

There are two variance forecast methods. The first of which is Moreira and Muir’s (2017) 

realized variance from Equation 2, 𝑅𝑉𝑡:  

 

𝑅𝑉𝑡(𝑓) = ∑ (𝑓𝑡−1+𝑑 −
∑ (𝑓𝑡−1+𝑑)1

𝑑=1/22

22
 )

21

𝑑=1/22

 

 

The other is our modified version of Daniel and Moskowitz’s (2013) variance forecast from 

Equation 22, 𝜎̂𝑋,𝑡
2 : 

𝜎̂𝑋,𝑡
2 = (𝛼̂𝑡 +  𝛽̂1,𝑡𝜎126,𝑡 +  𝛽̂2,𝑡𝜎𝐺𝑋,𝑡)

2
 

 

Combining these return and variance forecasts yields six different strategies for adjusting 

exposure according to variance and return, detailed in Table 8 below. 

 

Table 8 

Six unique volatility management strategies 
Formulas for the weights used in the six volatility management strategies, which combine different 

forecasts of variance and return. The bottom right cell corresponds to Moreira and Muir’s volatility 

management method, while the middle left cell is our modified Daniel and Moskowitz method. The 

remaining four are new volatility management strategies which we coin hybrid strategies. The hybrid 

strategies and the modified version of Daniel and Moskowitz’s method comprise what we call the complex 

volatility management strategies.  

          Variance forecast method 

Return forecast method 𝜎̂𝑋,𝑡
2  𝑅𝑉𝑡 

𝜇̂𝑋,𝑡
∗  

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝜎̂𝑋,𝑡
2 ) 

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝑅𝑉𝑡
) 

𝜇̂𝑋,𝑡 

1

2𝜆
(

𝜇̂𝑋,𝑡

𝜎̂𝑋,𝑡
2 ) 

1

2𝜆
(

𝜇̂𝑋,𝑡

𝑅𝑉𝑡
) 

𝑐 

𝑐

𝜎̂𝑋,𝑡
2  

𝑐

𝑅𝑉𝑡
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The bottom right cell corresponds to Moreira and Muir’s volatility management method, 

while the middle left cell is our modified Daniel and Moskowitz method. The remaining four 

are new volatility management strategies which we coin hybrid strategies. Since we already 

computed the monthly time series of every return and variance forecast, all that remains is to 

combine them according to Table 8. This yields six monthly time series of volatility managed 

returns for each of the ten factors, giving a total of 60 return series. The annualized Sharpe ratio 

of each strategy for every factor is presented in Table 9.  

Table 9 shows that for the factors SMB, HML, MKT and CMA there is either no benefit 

to be had from any form of volatility management, or modest gains. All types of volatility 

management are worse than an unmanaged strategy in the case of SMB and HML, while there 

are modest gains of four ppt. or less to be had by volatility managing MKT and CMA. 

Some form of volatility management is considerably better than an unmanaged strategy 

for the factors MomD, MomF, ROE, BAB, RMW and IA. Relative to unmanaged strategies, 

the biggest improvements in absolute terms come from managing the two momentum portfolios 

and the ROE factor, with gains of 40 to 50 ppt. The remaining three factors, RMW, BAB and 

IA, experience a gain of 15 to 22 ppt.  

However, only a selection of these six factors materially benefit from more complex 

volatility management than what is proposed by Moreira and Muir (2017). These are MomD 

and IA with gains of seven and six ppt., respectively. All of the gain for MomD comes from 

forecasting variance with Daniel and Moskowitz’s method. It is worth noting that Fama-

French’s (2012) momentum does not receive the same benefit. As Daniel and Moskowitz’s 

(2013) momentum portfolio is formed using more fine-grained cutoff points for winners and 

losers, this could indicate that the benefits of complex volatility management are generated in 

the extremes of the spectrum of winners and losers.  

Interestingly, all of the gain for IA comes from predicting factor return using the 

multivariate forecast proposed by Daniel and Moskowitz (2013). The remaining four, MomF, 

RMW, ROE and BAB, do either not benefit from more complex volatility management 

methods than Moreira and Muir’s, or only see modest gains of up to four ppt. There is no clear 

pattern in whether the return or the variance forecast drives these mild improvements. 

It comes as a surprise that the return forecast does not add material value to the factor for 

which it was designed, MomD, but does add value for a factor for which it was not devised, IA. 

While there seems to be a theoretical foundation for its use in the former case, to our knowledge 

that is not the case for the latter. Given our previous discussion in subsection B about the 

univariate and multivariate return forecasts, given by equations 12 and 11 respectively, it is also 
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surprising that it is the multivariate return forecast which adds value. Recall that the majority 

of the coefficients for the multivariate return forecasts were not statistically significant at the 

five percent level.  
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Table 9 

Sharpe ratios of six volatility management strategies 
We create one volatility management strategy for each of the six combinations of variance forecast, (𝜎̂𝑋,𝑡

2 , 𝑅𝑉𝑡), 

and return forecast, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), for each of the ten factors. Here, (𝜎̂𝑋,𝑡

2 , 𝑅𝑉𝑡), are our modified version of 

Daniel and Moskowitz’s (2013) variance forecast and Moreira and Muir’s (2017) realized variance, 

respectively. The return forecasts, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), are Moreira and Muir’s time constant, our modified univariate 

Daniel and Moskowitz return forecast and our modified multivariate Daniel and Moskowitz return forecast, 

respectively. This yields six monthly time series of volatility managed returns for each of the ten factors, a total 

of 60 return series. For each of them, we calculate the annualized Sharpe ratio. The samples are 1937-2018 for 

MKT, SMB, HML and MomF; 1973-2018 for RMW and CMA; 1977-2017 for ROE and IA, 1937-2013 for 

MomD and 1941-2018 for BAB.  

     Variance forecast method 

Factor 

Unmanaged 

Sharpe ratio Return forecast method 
𝜎̂𝑋,𝑡

2  𝑅𝑉𝑡 

MKT  

 𝜇̂𝑋,𝑡
∗  

0.46 0.41 

0.49 𝜇̂𝑋,𝑡 
0.49 0.44 

 𝑐 
0.52 0.48 

SMB 

 𝜇̂𝑋,𝑡
∗  

0.19 0.09 

0.21 𝜇̂𝑋,𝑡 
0.19 0.12 

 𝑐 
0.14 0.09 

HML 

 𝜇̂𝑋,𝑡
∗  

0.38 0.37 

0.43 𝜇̂𝑋,𝑡 
0.40 0.36 

 𝑐 
0.42 0.38 

MomF 

 𝜇̂𝑋,𝑡
∗  

0.79 0.98 

0.55 𝜇̂𝑋,𝑡 
0.77 0.98 

 𝑐 
0.90 0.99 

MomD 

 𝜇̂𝑋,𝑡
∗  

1.16 1.08 

0.69 𝜇̂𝑋,𝑡 
1.18 1.12 

 𝑐 
1.18 1.11 

RMW 

 𝜇̂𝑋,𝑡
∗  

0.25 0.25 

0.42 𝜇̂𝑋,𝑡 
0.30 0.38 

 𝑐 
0.56 0.64 

CMA 

 𝜇̂𝑋,𝑡
∗  

0.61 0.61 

0.57 𝜇̂𝑋,𝑡 
0.49 0.48 

 𝑐 
0.53 0.52 

ROE 

 𝜇̂𝑋,𝑡
∗  

1.17 1.15 

0.81 𝜇̂𝑋,𝑡 
1.24 1.20 

 𝑐 
1.23 1.20 

IA 

 𝜇̂𝑋,𝑡
∗  

0.70 0.76 

0.61 𝜇̂𝑋,𝑡 
0.65 0.71 

 𝑐 
0.64 0.70 

BAB 

 𝜇̂𝑋,𝑡
∗  

0.92 1.02 

0.85 𝜇̂𝑋,𝑡 
1.04 1.12 

 𝑐 
1.03 1.10 
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To further explore these findings, we regress the volatility managed return series of the 

modified Daniel and Moskowitz method, Moreira and Muir’s method, and the four hybrid 

strategies on the unmanaged factor return and Fama-French’s three factors. The alphas of these 

regressions are presented in Table 10.  

MKT, SMB, HML and CMA did not materially benefit from any form of volatility 

management in terms of Sharpe ratio. Neither of them has significant alphas at the five percent 

significance level. The other factors all have at least one positive and significant alpha. The 

factors which had higher improvement in Sharpe ratio generally also have higher alphas. 

In summary, the results from Table 10 seem to corroborate the findings from Table 9. 

The same factors which did not benefit from volatility management in terms of Sharpe ratio, 

MKT, SMB, HML and CMA, did not get any positive and significant alphas. The remaining 

factors, i.e. both momentum portfolios, RMW, IA, ROE and BAB, all had increased Sharpe 

ratios from volatility management. For these there is little variation in alpha generated by going 

from the simple strategy proposed by Moreira and Muir (2017), to any of the more sophisticated 

strategies.  

To further examine the performance impact of complicating volatility management 

beyond that of Moreira and Muir (2017), we regress the factors managed according to our 

modified Daniel and Moskowitz method and the hybrid strategies, 𝒇𝑪, on the unmanaged 

factors, 𝒇, and the factors managed according to Moreira and Muir’s method, 𝒇𝑴𝑴. Here the 

superscript “C” stands for “Complex”. The regression specification is given by:  

 

𝑓𝑡+1
𝐶 = 𝛼 + 𝛽1𝑓𝑡+1

𝑀𝑀 + 𝛽2𝑓𝑡+1 + 𝜖𝑡+1 (29) 

 

We then add Fama-French’s three factor model as an additional control, yielding the following 

regression specification:  

 

𝑓𝑡+1
𝐶 = 𝛼 + 𝛽1𝑓𝑡+1

𝑀𝑀 + 𝛽2𝑓𝑡+1 + 𝛽3𝑀𝐾𝑇𝑡+1 + 𝛽4𝑆𝑀𝐵𝑡+1 + 𝛽5𝐻𝑀𝐿𝑡+1 + 𝜖𝑡+1  (30) 

 

If 𝛼 is statistically significantly positive, it means that the complex method generates 

return which cannot be entirely explained by Moreira and Muir’s method, the unmanaged factor 

and Fama-French’s three factor model. These alphas are computed for the five complex 

strategies for every factor and presented in Table 11.  
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Table 10 

Alphas for six volatility management strategies  
We create one volatility management strategy for each of the six combinations of variance forecast, (𝜎̂𝑋,𝑡

2 , 𝑅𝑉𝑡) 

and return forecast, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), for each of the ten factors.  Here, (𝜎̂𝑋,𝑡

2 , 𝑅𝑉𝑡), are our modified version of 

Daniel and Moskowitz’s (2013) variance forecast and Moreira and Muir’s (2017) realized variance, 

respectively. The return forecasts, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), are Moreira and Muir’s time constant, our modified univariate 

Daniel and Moskowitz return forecast and our modified multivariate Daniel and Moskowitz return forecast, 

respectively. We regress the volatility managed return series of each of these strategies on the unmanaged factor 

return and Fama-French’s three factors. The alphas of these regressions are presented in this table with standard 

errors in parenthesis. The samples are 1937-2018 for MKT, SMB, HML and MomF; 1973-2018 for RMW and 

CMA; 1977-2017 for ROE and IA, 1937-2013 for MomD and 1941-2018 for BAB. All factors are annualized 

by scaling monthly returns by 12, and standard errors are robust for heteroscedasticity. 

Factor 

1

2𝜆
(

𝜇̂𝑋,𝑡

𝜎̂𝑋,𝑡
2 ) 

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝜎̂𝑋,𝑡
2 ) 

𝑐

𝜎̂𝑋,𝑡
2  

1

2𝜆
(

𝜇̂𝑋,𝑡

𝑅𝑉𝑡
) 

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝑅𝑉𝑡
) 

𝑐

𝑅𝑉𝑡
 

MKTα 1.70 1.91 1.85* 1.78 1.82 1.97 

 (1.15) (1.27) (1.04) (1.40) (1.46) (1.34) 

       

SMBα  0.03 0.04 -0.09 -0.55 -0.73 -0.58 

 (0.69) (0.85) (0.67) (0.82) (0.90) (0.81) 

       

HMLα 1.07 0.96 1.13* 0.89 1.12 0.86 

 
(0.69) (0.70) (0.66) (0.82) (0.80) (0.79) 

       

RMWα 0.62 1.08 2.56*** 1.51 1.10 3.45*** 

 
(1.17) (1.27) (0.91) (1.16) (1.19) (0.98) 

       

CMAα 0.039 0.99 0.41 0.28 1.16 0.56 

 
(0.62) (0.63) (0.64) (1.54) (0.71) (0.73) 

       

MomFα 5.85*** 6.16*** 7.58*** 9.79*** 10.1*** 9.72*** 

 
(1.67) (1.65) (1.46) (1.49) (1.49) (1.43) 

       

MomDα 17.6*** 17.3*** 17.3*** 19.4*** 18.5*** 18.5*** 

 
(2.90) (2.83) (2.59) (2.98) (2.90) (2.71) 

       

ROEα 5.47*** 5.55*** 5.35*** 5.91*** 6.01*** 5.78*** 

 
(1.16) (1.19) (1.05) (1.21) (1.22) (1.15) 

       

IAα 0.76 1.55** 0.75 1.25* 2.05*** 1.31* 

 
(0.62) (0.68) (0.63) (0.70) (0.72) (0.70) 

       

BABα 3.46*** 3.42*** 3.59*** 5.61*** 5.49*** 5.55*** 

 
(0.86) (1.06) (0.81) (0.88) (1.02) (0.88) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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There are three complex methods which seem to outperform Moreira and Muir’s. Daniel 

and Moskowitz’s (2013) momentum portfolio looks to benefit the most. Employing Daniel and 

Moskowitz’s variance forecast and either their univariate return forecast or Moreira and Muir’s 

(2017) time constant, generates respective annual alphas of 3.7 and 3.4 percent.  

As was the case with Sharpe ratios in Table 9, Fama-French’s (2012) momentum does 

not receive the same benefit as Daniel and Moskowitz’s (2013). This is a further indication that 

the benefits of complex volatility management are generated in the extremes of the spectrum of 

winners and losers.  

Hou, Xue and Zhang’s (2014) investment factor, IA, also benefits modestly from more 

complex volatility management. Combining a multivariate return forecast with Moreira and 

Muir’s (2017) realized variance generates an annual alpha of 0.85 percent. Additionally, there 

is weaker evidence at the ten percent significance level that two more complex methods 

outperform Moreira and Muir’s, a further case for MomD and one for ROE.  

Table 11 

Do complex methods outperform Moreira and Muir’s method? 

We create one volatility management strategy for each of the six combinations of variance forecast, (𝜎̂𝑋,𝑡
2 , 𝑅𝑉𝑡), and return 

forecast, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), for each of the ten factors. Here, (𝜎̂𝑋,𝑡

2 , 𝑅𝑉𝑡), are our modified version of Daniel and Moskowitz’s 

(2013) variance forecast and Moreira and Muir’s (2017) realized variance, respectively. The return forecasts, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), 

are Moreira and Muir’s time constant, our modified univariate Daniel and Moskowitz return forecast and our modified 

multivariate Daniel and Moskowitz return forecast, respectively. We regress the returns of factors volatility managed using 

our complex strategies on the unmanaged factor, the factor managed using Moreira and Muir’s method and Fama-French’s 

three factors. If the alphas produced are statistically significantly positive, it implies that the more complex volatility 

management methods outperform the simpler Moreira and Muir method.  The samples are 1937-2018 for MKT, SMB, HML 

and MomF; 1973-2018 for RMW and CMA; 1977-2017 for ROE and IA, 1937-2013 for MomD and 1941-2018 for BAB. All 

factors are annualized by scaling monthly returns by 12, and standard errors are robust for heteroscedasticity. 

Complex 

strategy 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

           

1

2𝜆
(

𝜇̂𝑋,𝑡

𝜎̂𝑋,𝑡
2 ) 

0.33 0.24 0.45 1.34 3.74** -0.46 -0.35 1.01 -0.27 -0.32 

(0.64) (0.59) (0.35) (1.53) (1.75) (1.07) (0.38) (0.65) (0.32) (0.57) 

           

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝜎̂𝑋,𝑡
2 ) 

0.51 0.11 0.38 1.42 2.66* 0.15 0.66 0.80 0.56 0.55 

(0.78) (0.84) (0.46) (1.51) (1.60) (1.21) (0.50) (0.73) (0.48) (1.08) 

           

𝑐

𝜎̂𝑋,𝑡
2  

0.58 0.28 0.51 1.73 3.44** -0.26 -0.050 1.01* -0.33 -0.30 

(0.54) (0.38) (0.32) (1.18) (1.36) (0.34) (0.24) (0.56) (0.29) (0.44) 

           

1

2𝜆
(

𝜇̂𝑋,𝑡

𝑅𝑉𝑡
) 

-0.25 -0.13 0.018 -0.17 1.01 0.055 -0.79 0.17 -0.012 0.23 

(0.28) (0.55) (0.14) (0.29) (1.07) (1.04) (0.69) (0.26) (0.20) (0.29) 

           

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝑅𝑉𝑡
) 

-0.22 -0.53 0.30 0.27 -0.36 -0.0093 0.74 0.083 0.85** 1.21 

(0.45) (0.86) (0.33) (0.67) (1.10) (1.10) (0.49) (0.33) (0.40) (1.03) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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More importantly, only three out of 50 complex strategies generate statistically significant 

alphas at the five percent level. Since so few strategies outperform Moreira and Muir’s method, 

it is difficult to deduce which combination of return and variance forecast, if any, is best suited 

to outperforming a simple volatility management strategy. Indeed, it suggests that there is rarely 

considerable value gained by complicating volatility management strategies beyond that of 

Moreira and Muir (2017).  

We previously found that Daniel and Moskowitz’s original method moderately 

outperforms Moreira and Muir’s, and that there is no difference in performance between the 

original and modified versions of Daniel and Moskowitz’s method. One might therefore expect 

our modified Daniel and Moskowitz method to outperform Moreira and Muir’s, and it may 

seem dissonant that there are so few instances where that is the case. 

However, one must keep in mind that the modified version of Daniel and Moskowitz’s 

method has a ten-year shorter sample than the original due to its ten-year training period. Thus, 

our initial finding that Daniel and Moskowitz’s original method outperforms Moreira and 

Muir’s seems to depend on the inclusion of this period.  

Overall, these findings indicate that it is hard to materially increase Sharpe ratios and 

abnormal returns by complicating volatility management beyond that of Moreira and Muir 

(2017), which uses a random walk forecast for variance and a time constant to scale factor 

exposure. As Daniel and Moskowitz present proof that the optimal portfolio weight is 

proportional to Sharpe ratio and not just variance (2013), this suggests that the more complex 

variance forecast is not much better than a random walk forecast. It also indicates that it has 

proved difficult to forecast returns with Daniel and Moskowitz’s methodology.  

On the other hand, the most considerable improvement is generated where we would 

expect it to be, namely the factor for which Daniel and Moskowitz’s method was designed, 

MomD. This gives reason to believe that there may be promise for complex volatility 

management if one tailors different variance and return forecasts to the properties of the 

different factors, as opposed to using a one-size-fits-all approach. 

Thus far we have only evaluated performance by Sharpe ratio and abnormal return. Even 

though complex volatility management generally does not appear to yield large improvements 

over Moreira and Muir (2017) along these measures, it may generate other desirable properties. 

This will be looked at in the next section.  
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4. Discussion 

In this part of the thesis, we first seek to highlight some methodological issues. Then we 

will discuss the sensitivity of our findings, notably to frictions such as transaction and liquidity 

costs. Finally, we will consider how the higher order moments skewness and kurtosis vary 

across different volatility management strategies.   

Moreira and Muir’s and Daniel and Moskowitz’s volatility management methods can be 

critiqued for their use of the time constants, 𝑐 and 𝜆. In both cases they are calculated using the 

full sample standard deviation of unmanaged returns, thus using future information. As we 

explained in subsections A and B, this does not affect the Sharpe ratio of the managed factors. 

It does, however, affect the magnitude of the weights invested in the factor, and may thereby 

impact transaction and liquidity costs. Depending on the magnitude of the proposed weights, 

they may in the worst case make the investment infeasible due to leverage and shorting 

constraints.  

Faced with such frictions, Sharpe ratio becomes a function of the magnitude of the 

weights, and thus also of the time constants 𝑐 and 𝜆. As such, if these frictions exist, one can 

no longer get away with choosing 𝑐 and 𝜆 in the same way without biasing the performance 

measures of the managed portfolios by the use of future information. This is because 𝑐 and 𝜆 

will propose weights which are artificially stable when computed on the full sample, as opposed 

to only using information available ex ante. 

While we acknowledge these methodological issues, Moreira and Muir (2017) find that 

their strategy is robust to transaction costs for those factors where good measures of such costs 

are available. If the weights proposed by the more complex volatility management strategies 

are less volatile than those proposed by Moreira and Muir’s method, then these strategies are 

likely to entail less trading. Thus, they are also likely to survive transaction costs and to incur 

less liquidity costs15.  

To examine whether this is the case, we report the standard deviation of the weights 

proposed by Moreira and Muir’s method and the more complex strategies in Table 12. The 

standard deviations of the weights proposed by Moreira and Muir’s method are in column 

seven, while columns two through six contain those of the more complex strategies. The 

complex methods generally propose weights which are considerably less volatile than Moreira 

                                                           
15 We acknowledge that this is a relatively unsophisticated way of examining this question. Transaction and 

liquidity costs are not only functions of the amount of trading. To fully take account of transaction and liquidity 

costs, a more thorough empirical analysis would be required.  
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and Muir’s, except for MomF. This suggests that the performance of these strategies would also 

survive transaction costs, and that they seem likely to incur less liquidity costs.  

On closer inspection, we see that the driver of the reduced volatility of the weights is 

switching from a random walk forecast of variance, 𝑅𝑉𝑡, to the more sophisticated variance 

forecast from Daniel and Moskowitz (2013), 𝜎̂𝑋,𝑡
2 . If anything, adding Daniel and Moskowitz’s 

return forecasts seems to increase the volatility of the weights. Thus, it seems that the best 

strategy to implement when faced with such frictions, would be the one in column four which 

uses the sophisticated variance forecast and no return forecast. It does not seem particularly 

surprising that the general-purpose variance forecast works for several factors, while the return 

forecasts tailored to momentum do not seem to work for other factors than momentum. Notably, 

the return forecasts neither seem to work for momentum. 

More generally, when taking into account frictions, the complex volatility management 

methods seem more likely to outperform Moreira and Muir’s simple method due to their less 

volatile weights. More complex methods thus seem to have some desirable properties in real-

world application since they require less trading activity. This adds some nuance to our previous 

findings, which indicate that there is generally little value added in complicating volatility 

management beyond Moreira and Muir’s method. Next, we will examine whether complex 

volatility management adds further benefit by improving the higher order moments of skewness 

and kurtosis.    

In the empirical analysis we evaluate the performance of different volatility management 

strategies using Sharpe ratio and estimates of abnormal return. However, the initial purpose of 

volatility management was to reduce momentum crash risk (Daniel & Moskowitz, 2013; 

Barroso & Santa-Clara, 2015). The extent to which this was achieved was partly assessed by 

evaluating the higher order moments of skewness and kurtosis of the volatility managed 

momentum portfolios, relative to the unmanaged momentum factors.  

To examine the effects of volatility management through an additional lens, we will do 

the same exercise on all factors examined in this thesis. We present the skewness and kurtosis 

of all volatility management methods for all factors in Table 13. A decrease in kurtosis and an 

increase in skewness reduces downside risk (Barroso & Santa-Clara, 2015), as it skews the 

return distribution towards positive values while simultaneously thinning down the tails. 

Some form of volatility management improves the skewness of the monthly return 

distribution for all factors, and improves kurtosis for seven out of ten factors. More importantly, 

one or more complex methods improve skewness relative to Moreira and Muir’s method for 

eight out of ten factors, and improves kurtosis for nine out of ten factors. Finally, at least one 
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complex method improves both skewness and kurtosis compared to Moreira and Muir’s method 

for five out of ten factors. These are the MKT, RMW, CMA and both momentum factors.  

Thus, complex volatility management skews the return distribution towards positive 

values while simultaneously thinning down the tails for several factors, thereby reducing 

downside risk relative to Moreira and Muir’s method. This is further indication that there may 

be benefit in complicating volatility management beyond that of Moreira and Muir (2017), 

despite the general lack of considerable improvement in Sharpe ratio and abnormal return. 
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Table 12 

The volatility of weights for six volatility management strategies  
We create one volatility management strategy for each of the six combinations of variance forecast, (𝜎̂𝑋,𝑡

2 , 𝑅𝑉𝑡), 

and return forecast, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), for each of the ten factors. Here, (𝜎̂𝑋,𝑡

2 , 𝑅𝑉𝑡), are our modified version of 

Daniel and Moskowitz’s (2013) variance forecast and Moreira and Muir’s (2017) realized variance, 

respectively. The return forecasts, (𝑐, 𝜇̂𝑋,𝑡 , 𝜇̂𝑋,𝑡
∗ ), are Moreira and Muir’s time constant, our modified univariate 

Daniel and Moskowitz return forecast and our modified multivariate Daniel and Moskowitz return forecast, 

respectively. We compute the standard deviations of the weights of each strategy and tabulate them below. The 

samples are 1937-2018 for MKT, SMB, HML and MomF; 1973-2018 for RMW and CMA; 1977-2017 for 

ROE and IA, 1937-2013 for MomD and 1941-2018 for BAB.  

Factor 

1

2𝜆
(

𝜇̂𝑋,𝑡

𝜎̂𝑋,𝑡
2 ) 

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝜎̂𝑋,𝑡
2 ) 

𝑐

𝜎̂𝑋,𝑡
2  

1

2𝜆
(

𝜇̂𝑋,𝑡

𝑅𝑉𝑡
) 

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝑅𝑉𝑡
) 

𝑐

𝑅𝑉𝑡
 

MKT 0.74 0.77 0.63 1.17 1.19 1.04 

       

SMB 0.58 0.80 0.68 0.85 0.96 0.96 

       

HML 0.74 0.77 0.63 1.17 1.19 1.04 

       

MomF 4.99 4.87 3.65 1.51 1.60 1.52 

       

MomD 0.83 0.94 0.85 1.12 1.22 1.20 

       

RMW 0.82 1.11 0.88 0.94 1.25 1.12 

       

CMA 0.73 0.81 0.79 2.04 1.02 1.00 

       

ROE 0.74 0.85 0.73 0.95 1.01 0.93 

       

IA 0.80 0.82 0.78 0.88 0.90 0.89 

       

BAB 0.68 0.83 0.68 1.02 1.11 1.06 
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Table 13 

Skewness and kurtosis of six volatility management strategies 

Panel A shows the skewness of returns for the four hybrid strategies in addition to the modified version of Daniel and 

Moskowitz’s method, Moreira and Muir’s and the unmanaged factor. Panel B shows the kurtosis of returns for the four hybrid 

strategies in addition to the modified version of Daniel and Moskowitz’s method, Moreira and Muir’s and the unmanaged factor. 

This is done for the market, size, value, momentum, investment, profitability, return on equity and betting-against-beta factors.  

The samples are 1937-2018 for MKT, SMB, HML and MomF; 1973-2018 for RMW and CMA; 1977-2017 for ROE and IA, 

1937-2013 for MomD and 1941-2018 for BAB. 

Factor 

1

2𝜆
(

𝜇̂𝑋,𝑡

𝜎̂𝑋,𝑡
2 ) 

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝜎̂𝑋,𝑡
2 ) 

𝑐

𝜎̂𝑋,𝑡
2  

1

2𝜆
(

𝜇̂𝑋,𝑡

𝑅𝑉𝑡
) 

1

2𝜆
(

𝜇̂𝑋,𝑡
∗

𝑅𝑉𝑡
) 

𝑐

𝑅𝑉𝑡
 

Unmanaged 

factor 

 

Panel A: Skewness of returns 

 

MKT -0.38 3.18 0.20 0.61 -1.14 0.47 -0.53 

SMB -0.37 -0.15 0.36 1.54 1.04 0.69 0.77 

HML -0.43 0.38 -0.03 0.51 0.70 1.98 0.69 

MomF 0.01 0.25 0.46 0.65 0.94 0.64 -1.72 

MomD -0.07 0.45 0.35 1.50 1.17 -0.34 -1.38 

RMW -0.11 0.44 0.47 0.59 0.87 0.48 -0.34 

CMA 0.56 1.04 0.37 0.20 1.18 -0.56 0.38 

ROE 1.40 0.51 1.13 -0.94 1.05 1.32 -0.66 

IA 0.03 0.68 0.64 0.32 0.57 0.99 0.22 

BAB 0.25 0.68 0.93 0.97 1.12 0.79 -0.63 

 

Panel B: Kurtosis of returns 

 

MKT 2.56 53.25 22.16 1.61 29.11 3.05 3.18 

SMB 2.85 9.55 9.12 10.25 5.89 3.97 6.99 

HML 2.32 3.15 14.86 1.26 2.62 14.85 5.38 

MomF 9.20 3.24 8.71 2.40 3.46 3.86 13.66 

MomD 9.68 3.05 2.22 9.91 6.70 6.40 7.85 

RMW 8.05 7.31 2.60 2.34 4.65 14.73 11.95 

CMA 6.01 11.31 2.17 31.21 5.42 5.61 1.79 

ROE 12.00 6.65 8.51 22.01 5.74 8.39 4.74 

IA 3.39 79.24 11.98 1.58 3.24 8.38 1.77 

BAB 9.35 71.16 7.87 39.91 6.76 5.28 4.38 
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5. Conclusion 

Both Moreira and Muir’s and the more complex volatility management methods produce 

large alphas and increased Sharpe ratios over buy-and-hold strategies for a wide range of 

factors. More interestingly, complicating volatility management beyond the simple method of 

Moreira and Muir only has a modest impact on alphas and Sharpe ratios. The notable exception 

is Daniel and Moskowitz’s (2013) momentum factor.  

In light of Daniel and Moskowitz’s proof that the optimal portfolio weight is proportional 

to Sharpe ratio and not just variance (2013), this suggests that the more complex variance 

forecast is not much better than a random walk forecast. It also indicates that it has proved 

difficult to forecast returns with Daniel and Moskowitz’s methodology.  

Complex volatility management does, however, entail other desirable properties. It results 

in less volatile weights, which reduces transaction and liquidity costs. It also generates more 

desirable return distributions with improved skewness and kurtosis, which reduce downside 

risk. This seems like an appropriate feature given that the initial purpose of Daniel and 

Moskowitz’s method was to reduce momentum crash risk (2013). 

The strategies explored in this thesis use the same methodology for all factors. There may 

be benefit in tailoring different variance and return forecasts to the properties of the different 

factors, as opposed to using a one-size-fits-all approach. The fact that complex volatility 

management outperforms Moreira and Muir’s method for the factor for which it was originally 

designed, Daniel and Moskowitz’s (2013) momentum, indicates that this may be a fruitful area 

for future research.  
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Appendix A: Replicating Moreira and Muir (2017)  

 

 

Table A1 

Replication of Moreira and Muir’s method 
In Panel A, we run monthly time-series regressions of volatility managed returns à la Moreira and Muir (2017) on the 

unmanaged returns for each factor, 𝑓𝑡+1
𝑀𝑀 = 𝛼 + 𝛽𝑓𝑡+1 + 𝜖𝑡+1. In Panel B, Fama-French’s three factor model is used as 

an additional control in the regressions from Panel A. The samples are 1926-2015 for MKT, SMB, HML and MomF; 

1963-2015 for RMW and CMA; 1967-2015 for ROE and IA and 1930-2012 for BAB. All factors are annualized by 

scaling monthly returns by 12 and standard errors are robust for heteroscedasticity. 

Panel A: Univariate Regressions 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 σ σ σ σ σ σ σ σ σ 

 MKT SMB HML MomF RMW CMA ROE IA BAB 

MKT 0.60***         

 (0.06)         

          

SMB  0.61***        

  (0.08)        

          

HML   0.57***       

   (0.08)       

          

MomF    0.48***      

    (0.07)      

          

RMW     0.60***     

      (0.08)     

          

CMA      0.69***    

       (0.05)    

          

ROE       0.68***   

        (0.06)   

          

IA        0.71***  

        (0.05)  

          

BAB         0.57*** 

          (0.05) 

          

          

Alpha (α) 4.45*** -0.51 1.78* 12.5*** 2.61*** 0.45 5.14*** 1.84*** 5.90*** 

 (1.56) (0.91) (1.02) (1.71) (0.88) (0.68) (1.02) (0.65) (1.00) 

N 1065 1065 1065 1060 621 621 575 575 975 

R2 0.371 0.369 0.322 0.228 0.351 0.467 0.440 0.496 0.349 

RMSE 50.9 30.9 34.9 50.2 21.6 17.8 23.3 16.2 30.1 

Panel B: Alphas controlling for Fama-French three factors 

Alpha (α) 5.04*** -0.29 2.48** 10.4*** 3.44*** -0.083 5.60*** 1.27** 5.43*** 

 (1.57) (0.90) (1.03) (1.60) (0.89) (0.65) (1.04) (0.65) (0.98) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Appendix B: Replicating Daniel and Moskowitz (2013) 

Daniel and Moskowitz’s (2013) return forecasts 

Table B1 contains the regression output of the univariate and multivariate return forecasts 

of Daniel and Moskowitz’s original method. Table B2 reports the alphas generated by the 

modified Daniel and Moskowitz’s method using the multivariate return forecast. Since the 

alphas generated are very similar to those in Table 6 where the univariate forecast is used, it 

suggests that the performance of the modified Daniel and Moskowitz method is insensitive to 

the choice of return forecast method.  

 

Table B1 

Daniel and Moskowitz’s (2013) return forecasts 

Panel A shows the output of the univariate regression from Equation 10 used to forecast returns by Daniel and 

Moskowitz (2013): 𝑓𝑡 = 𝜈 + 𝛾(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡.  Panel B shows the output from their multivariate regression 

from Equation 9: 𝑓𝑡 = 𝑐 + 𝛿1𝐼𝐵,𝑡−1 + 𝛿2𝜎𝑚,𝑡−1
2 + 𝛿3(𝜎𝑚,𝑡−1

2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡. The variables have a monthly frequency. 

The samples are 1927-2018 for MKT, SMB, HML and MomF; 1964-2018 for RMW and CMA; 1967-2017 for ROE 

and IA, 1927-2013 for MomD and 1931-2018 for BAB. 

Panel A: Regression output for the univariate return forecast 

𝑓𝑡 = 𝜈 + 𝛾(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

𝛾 -0.000 0.002*** -0.000 -0.005*** -0.097*** -0.000 -0.000 -0.003*** -0.000 -0.001 

 (-0.03) (3.03) (-0.51) (-5.31) (-5.63) (-0.06) (-0.11) (-4.23) (-0.15) (-1.16) 

           

𝜈̂ 0.007*** 0.001 0.0038*** 0.009*** 0.020*** 0.003*** 0.003*** 0.007*** 0.004*** 0.007*** 

 (3.85) (1.20) (3.50) (6.09) (7.04) (2.96) (3.57) (6.35) (5.01) (6.91) 

Panel B: Regression output for the multivariate return forecast 
 𝑓𝑡 = 𝑐 + 𝛿1𝐼𝐵,𝑡−1 + 𝛿2𝜎𝑚,𝑡−1

2 + 𝛿3(𝜎𝑚,𝑡−1
2 × 𝐼𝐵,𝑡−1) + 𝜖𝑡 

 

𝛿3 
-0.001 -0.000 -0.001 -0.004* -0.009** -0.001 -0.004** -0.003* -0.003** 0.000 

 (-0.28) (-0.07) (-0.64) (-1.94) (-2.28) (-0.60) (-2.52) (-1.65) (-2.00) (0.27) 

           

𝛿2 
0.001 0.001 -0.000 -0.001 -0.002 0.001 0.002 -0.001 0.001 -0.001 

 (0.64) (0.83) (-0.16) (-0.62) (-0.76) (0.37) (1.53) (-0.62) (0.83) (-0.55) 

           

𝛿1 
-0.002 0.007** 0.005 -0.001 0.005 0.003 0.011*** 0.002 0.001*** -0.003 

 (-0.37) (2.04) (1.18) (-0.11) (0.54) (0.77) (3.48) (0.56) (3.38) (-0.85) 

           

𝑐̂ 0.006*** -0.000 0.004** 0.001*** 0.021*** 0.002 0.001 0.007*** 0.003** 0.008*** 

 (2.60) (-0.06) (2.41) (4.91) (5.55) (1.63) (0.75) (4.56) (2.14) (5.38) 

t-statistics in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table B2 

Volatility-managed alphas with the modified Daniel and Moskowitz 

method using the multivariate return forecast 
In Panel A, we run monthly time-series regressions of volatility managed returns using our modified Daniel 

and Moskowitz method with the multivariate return forecast on the unmanaged returns for each factor, 𝑓𝑡+1
𝐷𝑀𝑋 =

𝛼 + 𝛽𝑓𝑡+1 + 𝜖𝑡+1. In Panel B, Fama-French’s three factor model is used as an additional control in the 

regressions from Panel A. The samples are 1937-2018 for MKT, SMB, HML and MomF; 1973-2018 for RMW 

and CMA; 1977-2017 for ROE and IA, 1937-2013 for MomD and 1941-2018 for BAB. All factors are 

annualized by scaling monthly returns by 12 and standard errors are robust for heteroscedasticity. 

Panel A: Univariate Regressions 

 (1) (2) (3) (4) (5) (6) (7) (8) (11) (10) 

 σ σ σ σ σ σ σ σ σ σ 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

MKT 0.72***          

 (0.054)          

           

SMB  0.65***         

  (0.057)         

           

HML   0.75***        

   (0.065)        

           

MomF    0.47***       

    (0.059)       

           

MomD     0.59***      

     (0.061)      

           

RMW      0.31***     

      (0.075)     

           

CMA       0.67***    

       (0.061)    

           

ROE        0.61***   

        (0.075)   

           

IA         0.67***  

         (0.063)  

           

BAB          0.57*** 

          (0.064) 

           

Alpha (α) 1.68 0.57 0.58 7.38*** 20.1*** 0.96 1.57** 6.04*** 1.84*** 4.29*** 

 (1.23) (0.81) (0.68) (1.52) (2.80) (1.14) (0.68) (1.17) (0.69) (1.18) 

N 981 981 981 981 912 542 542 488 488 934 

R2 0.521 0.428 0.559 0.218 0.354 0.097 0.449 0.368 0.455 0.329 

RMSE 37.5 26.3 22.5 42.5 74.3 26.1 17.5 24.3 16.5 28.1 

Panel B: Alphas controlling for Fama-French’s three factors 

Alpha (α) 1.91 0.040 0.96 6.16*** 17.3*** 1.08 0.99 5.55*** 1.55** 3.42*** 

 (1.27) (0.85) (0.70) (1.65) (2.83) (1.27) (0.63) (1.19) (0.68) (1.06) 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Daniel and Moskowitz’s (2013) variance forecasts 

Table B3 shows the maximum likelihood estimates of the GJR-GARCH parameters 

detailed in equations 5 and 6, for all ten factors. We use the R-package “rugarch” created by 

Alexios Ghalanos to compute them. 

𝑓𝑡 = 𝜇 + 𝜖𝑡 

Where 𝜖𝑡 ~ 𝒩(0, 𝜎𝐺,𝑡
2 ), and 𝜎𝐺,𝑡

2  is governed by the process: 

𝜎𝐺,𝑡
2  = 𝜔 + 𝛽𝜎𝐺,𝑡−1

2 + (𝛼 + 𝛾𝐼(𝜖𝑡−1 < 0)) 𝜖𝑡−1
2  

 

Table B4 shows the output of the regression from Equation 7 used to forecast variance by 

Daniel and Moskowitz (2013). 

 

Table B3 

Maximum likelihood estimates of the GJR-GARCH parameters 
Glosten, Jagannathan and Runkle’s (1993) model is run on the daily time series of return for each factor, producing a set of 

maximum likelihood estimates of the GJR-GARCH parameters for each factor. The samples are 1927-2018 for MKT, SMB, 

HML and MomF; 1964-2018 for RMW and CMA; 1967-2017 for ROE and IA, 1927-2013 for MomD and 1931-2018 for 

BAB. 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

𝜇̂ 0.000375 0.000021 0.000085 0.000382 0.000855 0.000116 0.000087 0.000316 0.000162 0.000316 

 (8.3048) (0.87438) (3.65243) (14.2105) (14.4838) (5.42551) (3.7709) (11.5843) (6.53361) (11.5843) 

           

𝜔̂ 
0.000001 0.000000 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 

 (4.1685) (0.96923) (1.04791) (1.5900) (1.7099) (0.91835) (1.3548) (1.1679) (0.63835) (1.1679) 

           

𝛼̂ 
0.036107 0.079880 0.094655 0.146755 0.110629 0.050048 0.072473 0.062769 0.057613 0.062769 

 (10.7879) (13.4443) (16.7936) (18.4166) (9.6366) (25.6606) (30.5783) (30.3044) (23.6690) (30.3044) 

           

𝛽̂ 
0.894835 0.900253 0.902455 0.861815 0.895763 0.944164 0.936114 0.941677 0.948406 0.941677 

 (176.672) (144.177) (164.737) (130.920) (84.1376) (369.949) (332.537) (331.571) (341.882) (331.571) 

 

 

𝛾 
0.106460 0.035537 0.002542 -0.019140 -0.016395 0.003357 -0.025839 -0.018177 -0.019477 -0.018177 

 (16.1847) (7.92282) (0.57878) (-3.4161) (-3.2748) (0.87850) (-6.0407) (-4.3379) (-5.0841) (-4.3379) 

t-statistics in parentheses. 

 

 

 



  54 

t-statistics in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B4 

 Regression output for Daniel and Moskowitz’s (2013) variance forecast  
Daniel and Moskowitz’s (2013) variance forecast is applied to every factor by regressing the factor’s volatility in the next 

month , 𝜎22𝑡+1, on its six-month realized volatility, 𝜎126,𝑡 and its GJR-GARCH forecasted volatility, 𝜎𝐺,𝑡 . The regression 

specification is: 𝜎22𝑡+1 = 𝛼 + 𝛽1𝜎126,𝑡 + 𝛽2𝜎𝐺,𝑡 + 𝜖𝑡. The time series are monthly, and the samples are: 1927-2018 for MKT, 

SMB, HML and MomF; 1964-2018 for RMW and CMA; 1967-2017 for ROE and IA, 1927-2013 for MomD and 1931-2018 for BAB 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 MKT SMB HML MomF MomD RMW CMA ROE IA BAB 

𝛽̂1 0.2920*** 0.3550*** 0.3556*** 0.2210*** 0.2189*** 0.1180*** 0.1701*** 0.0894*** 0.0859* 0.3960*** 

 (11.10) (12.14) (11.88) (7.94) (7.04) (2.92) (4.03) (2.18) (1.83) (10.66) 

           

𝛽̂2 0.6071*** 0.4990*** 0.5230*** 0.6080*** 0.6603*** 0.7720*** 0.7170*** 0.7840*** 0.7980*** 0.3960*** 

 (24.86) (18.90) (18.87) (23.98) (21.47) (19.30) (17.40) (19.45) (16.86) (8.84) 

           

𝛼̂ 0.0005* 0.0005*** 0.0004*** 0.0008*** 0.0008** 0.0003*** 0.0003*** 0.0004*** 0.0004*** 0.0011*** 

 (1.95) (4.02) (3.41) (5.01) (2.36) (3.59) (3.46) (3.87) (3.62) (6.57) 


