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Abstract There exists an overall negative assessment of the performance
of the simulated maximum likelihood algorithm in the statistics literature,
founded on both theoretical and empirical results. At the same time, there
also exist a number of highly successful applications. This paper explains the
negative assessment by the coupling of the algorithm with ”simple importance
samplers”, samplers that are not explicitly parameter dependent. The success-
ful applications in the literature are based on explicitly parameter dependent
importance samplers. Simple importance samplers may efficiently simulate the
likelihood function value, but fail to efficiently simulate the score function,
which is the key to efficient simulated maximum likelihood. The theoretical
points are illustrated by applying Laplace importance sampling in both vari-
ants to the classic salamander mating model.

Keywords importance sampling · salamander mating model · simulation
based estimation

1 Introduction

In many statistical models the likelihood function consists of factors that are
integrals whose solutions are not available in closed form. The main example
is the random effects model in various guises, where a relatively simple model
can be expressed conditional on some vector of latent random variables. The
purpose of such variables is typically to introduce dependence between different
outcomes. Special cases are state space models or spatial models. The most
common variant in applied statistics is the straightforward sort of nonlinear
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or generalized linear model with random effects that are associated with one
or more factors in the model.

Techniques for estimation of such models is a lively research area, where the
main emphasis in the recent decades have been to Bayesian analysis, in par-
ticular to Markov chain Monte Carlo techniques. Both Bayesian analyses and
the Monte Carlo EM algorithm for finding maximum likelihood estimates are
able to solve the problem of integrals not available in closed form through by-
passing direct evaluation of the likelihood function. However, it is also possible
to approach the problem more directly. The simulated maximum likelihood al-
gorithm applies importance sampling to simulate the likelihood function and
uses numerical optimization methods to maximize the simulated likelihood
function.

Simulated maximum likelihood appeared in the core statistics literature
with Geyer and Thompson (1992) and Gelfand and Carlin (1993). Develop-
ment and assessment in the important context of generalized linear mixed
models appeared in McCulloch (1997). In the nonlinear mixed model context,
the method appeared in Pinheiro and Bates (1995). It is always hard to sub-
stantiate that an assessment has the character of being a general consensus
assessment. However, it seems fair to state that in terms of performance, the
method is seen as inferior to the Monte Carlo EM algorithm and more generally
to Monte Carlo Markov chain techniques for statistical inference. By inferior
I mean that the variance in estimated parameters due to the stochasticity of
the simulated likelihood function is large, so that very large importance sam-
ples are required for estimates with a precision comparable of that attained by
other techniques. The negative assessment is most explicit in the theoretical
results in Jank and Booth (2003), and recommendations based on numerical
assessments in e.g. McCulloch (1997) and Jank (2006). More important is the
implicit assessment evident in the sparse treatment of the method in reference
books such as Robert and Casella (2004) or McCulloch and Searle (2001) and
the limited use of the method in most fields of applied statistics.

The above assessment does however not hold universally in the literature.
In a series of papers, following Durbin and Koopman (1997, 2000), simulated
maximum likelihood has been applied in state space models conforming to the
class of generalized linear mixed models. Skaug (2002) and Skaug and Fournier
(2006) apply the method with success to other generalized linear mixed mod-
els. Pinheiro and Bates (1995) do report adequate performance although they
report to prefer other likelihood approximations. In addition, a literature on
simulation based estimation developed early within the econometrics literature
concerning models with limited dependent variables, with successful applica-
tions, see Hajivassiliou and Ruud (1994) or Stern (1997) for surveys. There is
thus a discord between the negative assessment in the statistics literature and
a number of successful practical applications. The problem of resolving this
discord is to some extent exacerbated by the fact that simulated maximum
likelihood estimator may well be heavy tailed, so that an apparently successful
practical application may actually be misleading.
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The contribution of this article is to point out that the perceived com-
putational inferiority of simulated maximum likelihood is closely related to
definitions or implementations of the simulated likelihood functions in terms
of importance sampling distributions that are not explicitly parameter depen-
dent, ”simple importance sampling” in the terminology adopted below. The
heuristics for developing importance samplers for use with simulated maxi-
mum likelihood should be different from the heuristics for developing impor-
tance samplers for simulating scalars, as typefied by the ”optimal importance
sampler” discussed in expositions of simulated maximum likelihood in e.g.
McCulloch and Searle (2001) or Jank (2006). The reason is that the key to
efficient simulated maximum likelihood estimation is efficient simulation of
the score function, not the likelihood function value. Efficient simulation of
the score function requires explicitly parameter dependent (EPD) importance
samplers. Simple importance sampling leads to a positive lower bound for the
stochastic variability of the simulated maximum likelihood estimator, origi-
nally derived by Jank and Booth (2003), where it is interpreted as a limitation
of simulated maximum likelihood per se. There is no such bound for simulated
maximum likelihood based on EPD importance sampling. EPD importance
samplers giving smooth estimates of smooth functions may be constructed
using a simple transformation formula. The successful applications of simu-
lated maximum likelihood in the literature are characterized by use of EPD
importance sampling.

The theoretical points are illustrated by estimation and simulation results
based on the well known salamander mating model from McCullagh and Nelder
(1989). The simulated likelihood functions are based on Laplace importance
samplers, with both simple and EPD versions. It is intrinsically difficult to
evaluate simulated maximum likelihood based on simple importance sampling,
because the method is prescribed as an iterative method with informal conver-
gence criteria. However, the asymptotic efficiencies (in the importance sample
size) of both estimators are functions of the variances of the simulated score
functions evaluated at the exact maximum likelihood, and these can easily be
compared.

I first demonstrate that maximum likelihood estimates can easily be found
to high precision using EPD Laplace importance sampling. The asymptotic
efficiency of both estimators are then compared based on repeated evaluations
of score function at the approximate maximum likelihood. Even with an im-
portance sample of 100 times the size, 5 out of 6 parameters would vary more
based on the simple importance sampler compared to the corresponding EPD
importance sampler. The variability of simulated maximum likelihood esti-
mates based on simple Laplace importance sampling is of the same order of
size as the estimated theoretical lower bound for simple importance samplers,
giving standard deviations of 2-5 times the lower bound.
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2 Simulated maximum likelihood

The reason for using simulation based estimation methods is typically that
the likelihood function is not available is closed form. Let the exact likelihood
function L(θ) be defined for a vector of parameters θ ∈ Θ, by the multidimen-
sional integral

∫

exp(f(x, θ))dx, with x vector valued. The dependence of the
likelihood function on data is supressed.

The simulated maximum likelihood algorithm proceeds by simulating the
likelihood function, and finding the maximum of the simulated function, typi-
cally by numerical optimization methods. A general formula for simulation of
functions through importance sampling is

L̂(θ) =
1

n

n
∑

i=1

exp(f(xi, θ))

π(xi; θ)
. (1)

where x1, . . . , xn is a random sample from the distribution characterized by
the density function π(x; θ). The role of this importance sampling distribution
is traditionally to provide a good estimate of the integrand to be simulated.

Because formula (1) requires different importance samples for different θ,
properties such as continuity and differentiability of the exact likelihood func-
tion is not preserved in the simulated likelihood function. Since such properties
are important for finding maxima and evaluating parameter uncertainty, it is
essential in the simulated maximum likelihood context to use some technique
that bases the simulated likelihood function on common random numbers for
different θ.

The approach that I will refer to as simple importance sampling in the
following is based on the formula

L̂s(θ; θ0) =
1

n

n
∑

i=1

exp(f(xi, θ))

π(xi; θ0)
, (2)

where x1, . . . , xn is a random sample from the distribution characterized by
π(x; θ0), where the role of θ0 is to ensure that π is a good importance sampler
for θ in the neighborhood of θ0. Clearly, the importance sample is not explicitly
dependent on the parameter θ. In a series of expositions of simulated maxi-
mum likelihood, such as Kuk and Cheng (1999), Kuk (1999), McCulloch and
Searle (2001) and Robert and Casella (2004), simulated maximum likelihood
is defined in terms simple importance sampling.

Suppose random variables X with distribution π(x; θ) may be generated
by X = g(Z; θ), where Z is a random variable with density function πz(z), and
g is a continuously differentiable function with nonsingular Jacobian w.r.t. Z,
denoted J(θ, Z). We can then, by transformation from the random variable X
to the random variable Z, replace equation (1) with

L̂(θ) =
1

n

n
∑

i=1

|J(θ, zi)|
exp(f(g(zi, θ); θ))

πz(zi)
, (3)
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where z1, . . . , zn is a random sample from the distribution characterized by
the density function πz(z). I refer to this approach as explicitly parameter
dependent (EPD) importance sampling, although the crucial point is not ex-
plicitness per se, but the combination of explicitness with common random
numbers. The technique has not been described at such a general level before,
but is still widely applied without noting the conceptual difference from simple
importance sampling, see Section 3 for examples and references to applications.
The main novelty of this article is pointing out that EPD importance sampling
is a distinct technique compared to simple importance sampling, and that this
technique is crucial to computationally efficient implementation of simulated
maximum likelihood.

EPD importance sampling based on common random numbers is widely
applicable, see below for examples, and does not usually require the explicit
use of the formula in equation (3). The technique does however impose some
limitations on the importance sampler. Since g must be a continuous function
of θ, accept-reject algorithms and more advanced samplers that use accept-
reject sampling as building blocks, such as the Metropolis algorithm, are not
compatible with EPD importance sampling.

The properties of SML estimators for a regular case with a well behaved
EPD importance sampler can be summarized as follows:

Assumption 1 (Regular, interior, local maximum likelihood.) L has an interior
strict local maximum at θ̃ ∈ Θ. L is two times continuously differentiable in a
neighborhood of θ̃.

Assumption 2 (Sufficiently dispersed importance sampler.) The random vari-
able derived from Z as

∂(|J(θ, Z)| exp(f(g(Z, θ); θ)))/πz(Z)

∂θ
|θ=θ̃ (4)

has finite variance.

Theorem 1 Under Assumptions 1 and 2, a simulated likelihood function as
defined in equation (3) has a (random) stationary point θ̂n such that

√
n(θ̂n−θ̃)

converges in distribution to N(0, Ω) as n → ∞.

Ω = I−1ΣI−1, (5)

where I is the observed information at θ̃ and Σ is the limit as n → ∞ of the
variance matrix of the simulated score function, ∂ log L̂(θ)/∂θ, evaluated at θ̃,
scaled by

√
n.

Σ can be expressed as the limit as n → ∞ of the variance matrix of
L(θ̃)−1n−1/2

∑n
i=1 Wi, with Wi being realizations of a random variable W de-

rived from Z as

W =
exp(f(x,θ))

π(x;θ)

(

∂f(x,θ)
∂θ − ∂ log π(x;θ)

∂θ + (∂f(x,θ)
∂x − ∂ log π(x,θ)

∂x )∂g(z,θ)
∂θ

)

, (6)

evaluated at θ = θ̃, x = g(Z, θ̃) and z = Z.
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Theorem 1 is partially a concise description of widely known results, with a
straightforward proof assigned to the appendix. E.g. the formula for asymp-
totic variance of simulated maximum likelihood estimators is used for assess-
ments of stochastic variability in software such as SSF-pack (Koopman et al,
1999) or AD model builder (Skaug and Fournier, 2006). However, the spelling
out of the components of W in equation (6) is to my knowledge new. As-
sumption 2 also differs somewhat from the usual specifications of sufficiently
dispersed importance samplers. The performance of simulated maximum like-
lihood under importance samplers that do not achieve finite variance and the
assessment of whether importance samplers do achieve finite variance is an im-
portant issue with simulated maximum likelihood in general, see e.g. Geweke
(1989) or Koopman et al (2009), but is not the topic of the discussion here.

The main topic here is that the asymptotic variance of the simulated max-
imum likelihood estimate depends on the asymptotic variance of the sim-
ulated score function and not the simulated likelihood function value. The
key to computationally efficient implementation of SML is hence importance
samplers that give W as defined in equation (6) with low variance. A sim-
ple importance sampler can be characterized by ∂ log π(xi; θ)/∂θ = 0 and
∂g(z, θ)/∂θ = 0. The optimal simple importance sampler is usually defined as
π(x; θ0) = C exp(f(x, θ̃)), with C a normalizing constant, giving exact likeli-
hood value at θ̃. With this importance sampler, equation (6) simplifies to

W = C−1 ∂f(x, θ)

∂θ
(7)

Thus, even with an optimal importance sampler, giving exact estimates for the
likelihood function, the simulated maximum likelihood estimate varies as long
as the derivative of the integrand with respect to θ depends on x. Hence, a
simple importance sampler cannot really be ”optimal” for use with simulated
maximum likelihood, unless the score function is independent of the random
effects.

The optimal importance sampler for EPD importance sampling is charac-
terized by π(x; θ) = C(θ) exp(f(x, θ)), with C(θ) implicitly defined by

∫

C(θ) exp(f(x, θ))dx = 1. (8)

Such an importance sampler gives zero variance for simulated maximum like-
lihood estimates. Substituting for π(x; θ) in equation (6) gives

W = C(θ)−1 ∂ log C(θ)

∂θ
, (9)

which is deterministic for all values of θ. W is equal to zero with θ = θ̃ because

∂ log C(θ)

∂θ
=

∫

exp(f(x, θ))
∂f(x, θ)

∂θ
dx, (10)
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by implicit differentiation of equation (8). The right hand side of equation
(10) is the derivative of the exact likelihood function, which is of course zero
evaluated at the exact maximum likelihood estimate θ̃.

A real example of an optimal EPD importance sampler is the EPD Laplace
importance sampler as defined below applied to Gaussian linear mixed mod-
els. There are of course other, well known, ways of computing exact estimates
in that case, see e.g. McCulloch and Searle (2001), but as a contrast simu-
lated maximum likelihood based on a simple importance sampler would fail to
find the exact estimates. More generally an efficient importance sampler for
simulated maximum likelihood should be defined as a sampler leading to low
variance in the simulated score function, translating into low variance in the
simulated maximum likelihood estimates, rather than a low variance in the
likelihood function value.

A lower bound for the variance associated with simulated maximum like-
lihood (implicitly, using simple importance sampling) appeared in Jank and
Booth (2003). In short, in our terminology, assume f can be approximated
by a quadratic expansion about its joint maximum in (x, θ), denoted (x∗, θ∗).
Thus, with λ = (x − x∗, θ − θ∗)

f̂(x, θ) ≈ f(x∗, θ∗) − 1

2
λIfλ′, (11)

where If can be partitioned as

If =

(

I11 I12

I21 I22

)

(12)

with dimensions corresponding to the dimensions of x and θ. Then, the ob-
served information can be specified as I = I22 − I21I

−1
11 I21 and

W = (X − x∗)′I12 + Ic(θ − θ∗). (13)

The variance of X is under the optimal simple importance sampler equals I−1
11 ,

and the variance of W follows as Im = I21I
−1
11 I12, the missing information. The

missing information is the difference between what the observed information
would have been if the random effects had been observed, the complete infor-
mation I22, and the observed information.

3 Examples of EPD importance sampling

I will now discuss three examples of EPD importance sampling. The first
example, which is the one I will pursue in the numerical examples below, is
based on Laplace importance sampling. The other two examples illustrate the
broad applicability of EPD importance sampling.

Let x∗(θ) = arg maxx f(x, θ). Further let H(θ) = −∂2f(x, θ)/∂x∂x′, evalu-
ated at x = x∗(θ). Laplace importance sampling proceeds by using the normal
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distribution implied by the quadratic expansion of the log integrand about the
maximum as importance sampling distribution, giving an importance sampler

L̂1(θ) =
1

n

n
∑

i=1

ef(xi,θ)

φ(xi;x∗(θ), (H(θ))−1)
. (14)

where x1, . . . , xn, is a random sample based on the normal distribution with
mean x∗(θ) and precision matrix H(θ). The expression for EPD importance
sampling is found by noting that the sample x1, . . . , xn may be generated by
xi = x∗+C(θ)zi, where z1, . . . , zn are draws from a multivariate, independent,
standard normal distribution, and C(θ) is the Cholesky factor of H(θ)−1. The
density of xi can be expressed using the density of zi, by

φ(xi;x
∗(θ), (H(θ))−1) =

φ(zi; 0; I)

|C(θ)| . (15)

Thus, equation (14) is equivalent to

L̂1(θ) = |C(θ)| 1
n

n
∑

i=1

ef(θ,x∗(θ)+C(θ)zi;X)

φ(zi; 0, I)
, (16)

which is ready for use with EPD importance sampling.
The term Laplace importance sampling was introduced by Kuk (1999) in

the context of the corresponding simple importance sampler, found by substi-
tuting θ0 for θ in the denominator in equation (14) and using the density from
this denominator as an importance sampler.) The main version of the simu-
lated likelihood in Durbin and Koopman (1997, 2000) is equivalent to the EPD
Laplace importance sampler. EPD Laplace importance samplers were also ap-
plied in Pinheiro and Bates (1995), Skaug (2002) and Skaug and Fournier
(2006).

The second example is a very simple EPD importance sampler. Assume
that f(x, θ) = f1(x, θ) + f2(x, θ), where f1 is the log likelihod function, con-
ditional on the random effects and f2 is the log density function of random
effects. Assume that draws based on this density function may be generated
by xi = g(zi, θ), where z1, . . . , zn are some random numbers independent of θ
and g is a smooth function. Now,

L̂2(θ) =
1

n

n
∑

i=1

f1(xi, θ). (17)

The sampling density associated with xi is canceled out by f2. While it might
be stretching the term to describe this as importance sampling, the sam-
pling procedure is certainly explicitly parameter dependent. Still, the per-
formance in a simulated maximum likelihood context should be expected to
be poor. Although such results are not reported, it fares far worse than simple
Laplace importance sampling in the numerical examples below. There are three
main points with this example. First, the definition of EPD importance sam-
plers above is broad. Secondly, EPD importance samplers may be completely
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straightforward. Thirdly, using an EPD importance sampler is not sufficient
for achieving good performance in simulated maximum likelihood estimation.

The third example is the GHK simulation algorithm, developed by Geweke
(1991), Hajivassiliou (1990) and Keane (1993) for simulation of the likelihood
of multinomial probit models. The likelihood under consideration can be ex-
pressed as a product of probabilities of the type

Pr(U1 ≤ 0, . . . , Um ≤ 0), (18)

where U1, . . . , Um are joint normal with expectation and variance matrix de-
pending on the parameters of the model, with the diagonal elements of the
variance set to one without loss of generality. In the following, let m = 2 for
expositional purposes, even though m would necessarily be higher, maybe 4,
for simulation to be necessary for likelihood evaluation. The simplest variant
of the GHK algorithm exploits

Pr(U1 ≤ 0, U2 ≤ 0) = Pr(U1 ≤ 0)Pr(U2 ≤ 0|U1 ≤ 0), (19)

where the first factor is straightforward to evaluate and the second factor is
not. However, if z1, . . . , zn are independent draws from a uniform distribution
on (0, 1),

xi = Φ−1(ziΦ(−µ1)) + µ1, i = 1, . . . , n, (20)

where Φ is the distribution function of the standard normal distribution and
µ1 is the expectation of U1, will give a sample from the distribution of U1,
conditional on U1 ≤ 0. Hence,

Pr(U1 ≤ 0, U2 ≤ 0) ≈ Pr(U1 ≤ 0)n−1
n

∑

i=1

Pr(U2 ≤ 0|U1 = xi). (21)

The extension to m > 2 is straightforward. It is easy to draw values for U2,
conditional on U2 ≤ 0 and conditional on exact values of U1, with a formulas
similar to equation (20). The importance sampler is EPD, as the function
defining xi is parameter dependent and smooth. In addition to providing an
example of the diversity of EPD importance sampling as defined here, the
GHK algorithm is also an example of an EPD importance sampler that has
been applied to simulated maximum likelihood estimation with documented
success. The numerical adequacy of the GHK algorithm in simulated maximum
likelihood has been documented in a number of studies, see e.g. Stern (1997)
for an overview and more in-depth discussion of the algorithm.

4 Numerical illustration - salamander mating

This numerical illustration is confined to the infamous salamander mating
model that first appeared in McCullagh and Nelder (1989). I first briefly il-
lustrate that the exact maximum likelihood can be found to very high preci-
sion using EPD Laplace importance sampling. I then evaluate the difference
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Fig. 1 Histograms of parameter estimates from 1000 replications of simulated maximum
likelihood estimation using EPD Laplace importance sampling with importance sample size
1000.

between simple and EPD Laplace importance sampling by studying the dis-
tributions of score function at the simulated maximum likelihood estimate.
Thirdly, I briefly study how the variability of the estimates based on the sim-
ple Laplace importance sampler relates to the lower bound discussed above.

The salamander mating model originates from an experiment where the
aim was to study how the mating success of salamanders depends on whether
they originate from different populations. A small sample of males and females
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Table 1 Mean, median and standard deviation in 1000 replications of simulated maximum
likelihood estimation using EPD Laplace importance sampling with importance sample size
1000, corresponding to histograms in Figure 1.

Statistic β1 β2 β3 β4 log σ2

f
log σ2

m

Mean 1.3687 -3.0122 -0.4410 3.2619 0.5505 -1.6943
Median 1.3682 -3.0111 -0.4408 3.2606 0.5487 -1.6971
Standard deviation 0.0057 0.0125 0.0023 0.0128 0.0160 0.0554

Table 2 Simulated maximum likelihood estimate of salamander mating model based on
EPD Laplace importance sampling with importance sample size 100 000.

Statistic β1 β2 β3 β4 log σ2

f
log σ2

m

Parameter estimate 1.3688 -3.0120 -0.4409 3.2615 0.5497 -1.6943
Standard error 0.6808 1.0152 0.6925 1.0858 1.6763 0.3515
Simulation error 0.0004 0.0008 0.0002 0.0008 0.0010 0.0046

from two populations were repeatedly matched with potential mating partners
from the same and the other population - and success in mating was recorded
- measured as a binary variable. The mating success is specified as a logit
model. However, since the same salamanders enter several mating attempts,
observations are not independent. To take into account this interdependency
between observations, the model is specified with two random effects associated
with each mating attempt, one for the male and one for the female salamander.
Because the sampling design is not nested, the likelihood function of the model
contains high dimensional integrals.

Specifically, let xi,j be a four-dimensional vector describing which out of
two populations the male j and the female i originate from, with crossed ef-
fects. Let U1, . . . , U10 be independent normal variables, the female random
effects, with expectiation 0 and variance σ2

f , and V1, . . . , V10 independent nor-

mal variables, the male random effects, with expectiation 0 and variance σ2
m.

yi,j are Bernoulli random variables with conditional expectation given by

E(yi,j |Ui, Vj) = h−1(x′

i,jβ + Ui + Vj), (22)

where h is the logit link function. The data used are the ”summer experi-
ment only” variant, where the likelihood function factors into two such 20-
dimensional integrals. The model has been studied in a vast range of articles,
e.g. Karim and Zeger (1992), Lin and Breslow (1996), Shun (1997) and Kuk
(1999), with similar variants also studied in Booth and Hobert (1999) and
Skaug (2002). The maximum likelihood estimate is also found to high preci-
sion in Skaug (2002).

Because simulated maximum likelihood can produce heavy-tailed distribu-
tions of estimates, a documentation of successful application of the method
should arguably include histograms of replicated parameter estimates. Fig-
ure 1 shows histograms based on 1000 parameter estimates of the salamander
mating model based on simulated maximum likelihood using EPD Laplace
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Table 3 Mean and standard deviation in 1000 simulated score functions at approximate
maximum likelihood, based on simple and EPD Laplace importance sampling with impor-
tance sample size 1000.

Method Statistic β1 β2 β3 β4 log σ2

f
log σ2

m

Simple Mean 0.0051 0.0002 0.0031 0.0007 -0.0082 -0.0024
EPD Mean 0.0009 0.0003 0.0004 0.0010 -0.0033 -0.0003
Simple Std. dev. 0.0025 0.0016 0.0015 0.0010 0.0042 0.0043
EPD Std. dev. 0.0002 0.0001 0.0002 0.0002 0.0010 0.0002

importance sampling with importance sample size 1000. (Here and in the fol-
lowing, standard antithetic variables are used in importance samplers, see e.g.
Durbin and Koopman (1997)) Clearly, the parameters are estimated rather
precisely, and the stochastic variability seems to be adequately good-natured,
although with somewhat heavy one-sided tails. Table 1 gives the corresponding
means, medians and standard deviations. It is clear that even though there are
outliers in the histograms indicating heavy one-sided tails, the means are not
much affected, being very close to the medians. The method works adequately
for the purposes in this numerical example.

Table 2 presents corresponding parameter estimates based on EPD Laplace
importance sampling, but with importance sample size increased to 100 000,
together with standard errors based on the observed information. Further,
the table presents predicted standard deviations of the parameters due to
randomness in the importance sampling, based on the asymptotic limit in
Theorem 1, simulation errors in the following. The parameter estimates are
practically identical to the mean out of 1000 parameter estimates in Table
1. Simulation errors are very low and broadly consistent with the standard
deviations from Table 1.

It is not trivial how to set up a comparison between simple and EPD impor-
tance sampling. Simulated maximum likelihood based on simple importance
sampling is usually prescribed as an iterative method, with new importance
samplers with θ0 in equation (2) based on current θ. This procedure continues
until convergence, at least in the informal sense of having a sequence of two
similar estimates. Simulated maximum likelihood based on EPD importance
sampling is not iterative in the same sense. The solution to this comparison
problem is to assess the asymptotic efficiency of the methods, based on the
variance of the score functions evaluated at the approximate maximum likeli-
hood found above.

Table 3 presents the mean and variances of 1000 simulated score functions
based on simple and EPD importance sampling evaluated at the simulated
maximum likelihood estimate presented in Table 2. The score functions are
simulated as the (analytical) derivatives of the simple and EPD Laplace im-
portance samplers. The importance samples used for computation are identical
for the simple and EPD importance samplers - hence the simulated likelihood
function values are identical, but the scores differ. The means of the score
functions are about 0 for both types of importance sampler, corroborating
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Table 4 Asymptotic ”simulation errors” derived from simulated score functions and ap-
proximated lower bounds based on ”missing information”.

Method β1 β2 β3 β4 log σ2

f
log σ2

m

Sim. err. (simple) 0.0680 0.1262 0.0403 0.1375 0.0637 1.2527
Sim. err. (EPD) 0.0046 0.0098 0.0018 0.0097 0.0135 0.0525
Simple lower bound, appr. 1 0.0331 0.0534 0.0146 0.0450 0.0285 0.3082
Simple lower bound, appr. 2 0.0357 0.0593 0.0155 0.0525 0.0336 0.4214

that we have found the approximate maximum likelihood. The standard devi-
ations of the elements of the score function are from 4 to 20 times as high for
the simple importance sampler. This demonstrates that the disadvantage with
simple importance sampling is not only that the importance sampler ”may
be inaccurate when θ is not close to θ0”, to paraphrase Skaug (2002). It is
inaccurate in the relevant sense also at θ0.

The variance of the score function translates into variance in the simulated
maximum likelihood estimates asymptotically through equation (5). The pre-
dicted simulation errors, the square roots of the diagonal entries of Ω, are
presented in Table 4. The variability varies quite a lot between parameters.
For log σ2

f the simulation error is only between 4 and 5 times as high for the
simple importance sampler. For the other parameters, the simulation error is
13-25 times as high. Thus, even with an importance sample of 100 or 150 times
the size, the simulated maximum likelihood estimate based on simple impor-
tance sampling will have higher simulation error than a simulated maximum
likelihood based on EPD importance sampling for 5 out of 6 parameters.

A final question to assess is to what extent the inferior performance of
the simulated maximum likelihood based on simple importance sampling can
be explained by the lower bound for simple importance samplers discussed
in Section 2. There are two easily available approximations to the missing
information. Both are based on the log integrand in the likelihood function
taken as a function of both parameters and random effects, evaluated at the
parameter values reported in Table 2, together with the posterior mode of the
random effects parameters, x∗(θ). Approximation 1 is the missing informa-
tion computed solely on the basis of the Hessian of this penalized conditional
likelihood function. Approximation 2 uses the observed information that is
the basis for standard errors in Table 2 in place of the observed information
from the penalized conditional likelihood function. The approximated lower
bounds to simulation errors are presented in Table 4 and are quite similar.
The variability of estimates based on the simple Laplace importance sampler
is of the same order of size as the lower bounds, giving about 2-4 times as
high standard deviations as the lower bound. Hence, the poor performance of
the simple Laplace importance sampling algorithm in this example most likely
reflects the drawbacks discussed in Section 2.



14

5 Discussion

Simulated maximum likelihood is a powerful method for approximating the
exact maximum likelihood estimates in models where the likelihood function
contains moderately difficult integrals. A necessary prerequisite for a power-
ful simulated maximum likelihood algorithm is that it is based on explicitly
parameter dependent importance sampling - otherwise efficient simulation of
the score function is not possible. Hence, assessments of simulated maximum
likelihood in the statistics literature based on the simple importance sampling
algorithm are correct in the assessment that this is not a powerful method.
This is however only due to an important deficiency in the importance sam-
pling algorithms applied, not the potential performance of simulated maximum
likelihood per se.

The lack of a clear distinction between simple and EPD importance sam-
pling, or even the lack of consciousness about the existence of the technique
of EPD importance sampling, has hampered research on simulation based es-
timation. Simulated maximum likelihood based on EPD Laplace importance
sampling performs extremely well in a number of cases, including the sala-
mander mating model used here and in examples in Skaug (2002) and Durbin
and Koopman (1997, 2000). There is considerable scope for application of the
method and the method is applied in practice. There are important further
research questions associated with simulated maximum likelihood, in particu-
lar in terms of controlling and diagnosing heavy-tailed variability in estimates,
see Koopman et al (2009). It is important that research on simulated maxi-
mum likelihood recognizes the huge performance difference between simple and
EPD importance sampling. As an example, a recent contribution, Richard and
Zhang (2007), develops a new technique for importance sampling of likelihood
functions containing high dimensional integrals. Their importance sampler is
EPD in the sense defined here, with impressive results. However, it is difficult
to assess whether the results are impressive because an EPD importance sam-
pler is applied or because their new importance sampling technique performs
well compared to e.g. EPD Laplace importance sampling.
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A Appendix A: Proof of Theorem

Proof As is easily verified through equation (3), the gradient of the simulated likelihood
function at θ̃ is an importance sampler of the gradient of the exact likelihood function at θ̃

and thus converges a.s. to 0 as n → ∞.

The gradient of the simulated likelihood function at θ̃ is the mean of i.i.d. random
variables, W from equation (6). (Found by taking the derivatives in equation (3) and substi-
tuting terms). By Assumption 2, W has finite variance, and the central limit theorem can be
applied: The gradient of the simulated likelihood function, scaled by

√
n is asymptotically

normal with expectation 0.

The simulated score function is the ratio of the gradient of the simulated likelihood to
the simulated likelihood. As the simulated likelihood converges a.s. to the exact likelihood, it
also converges to the exact likelihood in probability and the Slutsky theorem can be applied.
Thus also the simulated score function, scaled by

√
n, is asymptotically normal.

Denote the simulated score function at θ̃ by S and its asymptotic variance matrix Σ. In
a neighborhood of θ̃, the simulated score function can be approximated by a linear function
in θ. Thus

s(θ) = S + I(θ − θ̃) (23)

where I is the observed information at θ̃, which is non-singular by Assumption 1. The
solution to the first order condition of the maximization problem is

θn − θ̃ = −I−1S (24)

and the simulated maximum likelihood estimate is (asymptotically) a linear function of the
simulated score at the exact maximum likelihood estimate.


