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Abstract 

In this thesis we test whether sector quality effects drive the abnormal returns of the Quality 

Minus Junk (QMJ) strategy. We find that the strategy makes involuntarily sector bets, as it 

invests in outperforming sectors rather than individual quality stocks. This implies that sector 

quality effects partially drive the QMJ abnormal returns. A consequence of the sector quality 

effects is lack of diversification in the QMJ strategy.  

Having established that sector quality effects partially drive QMJ abnormal returns, we create 

a sector neutral QMJ that is restricted to how aggressively it can invest in sectors. This strategy 

is more diversified than the unrestricted QMJ but does not match its performance in terms of 

abnormal returns and Sharpe ratio. We volatility-manage the sector neutral strategy and find 

that it yields significant abnormal returns and Sharpe ratio of the same magnitude as the 

unrestricted QMJ strategy. In other words, the volatility-managed strategy does not bet on 

outperforming sectors, and still performs well in return tests. Therefore, the QMJ abnormal 

returns cannot be explained by sector quality effects, and the quality puzzle deepens. 
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1. Introduction 

In recent years, the asset pricing anomaly of quality investing has been researched extensively. 

Investors earn high abnormal returns by buying profitable, safe and growing stocks, and selling 

stocks that are unprofitable, unsafe and not growing. However, researchers fail to agree upon 

a risk-based explanation for these abnormal returns. How can safe, profitable and growing 

firms be riskier than firms that are unsafe, unprofitable and not growing? Asness, Frazzini and 

Pedersen (2017) define three main components of stock quality that investors should be willing 

to pay higher prices for; profitability, safety and growth. In a risk-reward universe, higher 

prices should mechanically result in lower expected returns. Therefore, the abnormal return of 

quality stocks is an asset pricing puzzle. 

Asness et al. find quality measures within profitability, safety and growth in the extensive 

literature on the quality anomaly and combine them into one composite quality measure. They 

proceed to create Quality Minus Junk (QMJ), a strategy that is long high-quality stocks and 

short low-quality stocks. In return tests, QMJ delivers positive significant abnormal returns, 

even when controlling for a 6-factor model. It has negative market, value and size loadings, 

which suggests the strategy is not exposed to the traditional risk factors. Furthermore, the QMJ 

strategy benefits from flight to quality, meaning investors flock to quality stocks during market 

turmoil. This adds to the puzzle of quality stocks returning positive excess returns and alphas. 

In this thesis we seek to further understand the quality puzzle. We hypothesize that the 

abnormal returns of the QMJ strategy are driven by sector outperformance rather than 

individual stock quality. We refer to this as sector quality effects. Firms within sectors tend to 

be more correlated than firms across the entire investment space, meaning such a strategy 

might suffer from lack of diversification. If the QMJ strategy invests aggressively in particular 

sectors, this makes the quality puzzle less of a puzzle.  

To begin, we replicate the U.S. QMJ strategy returns of Asness et al. (2017). We find a 

monthly 6-factor alpha for QMJ of 0.22% compared to 0.30% in the original paper. The 

replicated QMJ strategy bets on low beta, big, low book-to-market, profitable and aggressive 

stocks, which follows the same pattern as the original QMJ. These results suggest we 

successfully replicate the QMJ strategy.  
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In the second part of the thesis, we follow the methodology of Moskowitz and Grinblatt (1999) 

to test whether sector quality effects drive the QMJ abnormal returns. First, we compute the 

QMJ strategy returns within each sector. We find that the QMJ strategy within each sector 

fails to produce significant abnormal returns in eight out of ten sectors in the 6-factor model. 

This suggests the QMJ bets on sector outperformance, as it is not consistently long the quality 

stocks and short the junk stocks in each sector throughout the sample.  

Next, we assess the performance of the QMJ strategy after demeaning the quality score of each 

individual stock with the average monthly sector quality score. This allows us to asses 

individual stock quality as a driver of returns to a greater extent. Our findings suggest that 

demeaning does not affect the abnormal returns, excess returns or volatility of the QMJ 

strategy. This is an indication of sector quality effects not being present in the QMJ.  

We proceed to create random sector portfolios, where we replace stocks in a sector with stocks 

that have approximately the same quality score, regardless of sector. This means we reshuffle 

the sector composition without changing the quality composition of the sectors. If sector 

quality effects are the only driver of QMJ abnormal returns, we expect the random sectors to 

not exhibit significant alphas. We document significant abnormal returns for four out of ten 

sectors in the 6-factor model, which indicates sector quality effects are not the only driver of 

QMJ abnormal returns. 

Furthermore, we create portfolios that are long the low-quality stocks from the sectors scoring 

highest on quality and short the high-quality stocks from the sectors scoring lowest on quality. 

On average, low-quality stocks in the high-quality sectors scores lower on quality than high-

quality stocks in the low-quality sectors. We find that these portfolios deliver positive alphas, 

even though we buy stocks of lower quality than the ones we sell. As we expect junk stocks 

to perform worse than quality stocks if individual stock quality is the driver of QMJ abnormal 

returns, this strongly indicates sector quality effects driving QMJ abnormal returns.  

As a final test, we create a QMJ strategy with restrictions to how aggressively it invests in 

sectors – a sector neutral QMJ. If the restricted QMJ performs worse than the unrestricted 

QMJ in return tests, it suggests that outperforming sectors drive the abnormal returns of the 

QMJ strategy. We find that a sector neutral QMJ strategy delivers an insignificant monthly 6-

factor alpha of 0.09%, substantially lower than the abnormal returns of the unrestricted QMJ. 
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A majority of the tests point towards there being sector quality effects within the QMJ factor. 

The within-sector, long junk – short quality, and sector-neutral QMJ tests indicate sector 

quality effects drive QMJ abnormal returns. The random sector test suggests sector quality 

effects are not the only driver of abnormal returns, while the sector demeaning test indicate 

sector quality effects are not present. Due to the contradicting result from the sector demeaning 

test and the random sector test, we cannot conclude that only sector quality effects drive the 

QMJ abnormal returns. Therefore, our research suggests sector quality effects partially drive 

QMJ abnormal returns, which might serve as a potential explanation of the quality puzzle.  

To challenge the potential explanation of the quality puzzle, we use the sector neutral QMJ as 

a starting point. The strategy is more diversified than the unrestricted QMJ but does not yield 

significant abnormal returns. However, research from Moskowitz and Daniel (2016) and 

Barroso and Santa-Clara (2015) show that strategy returns can be enhanced and improved by 

volatility-management. If a volatility-managed sector neutral QMJ strategy delivers high alpha 

and Sharpe ratio, lack of diversification in the unrestricted QMJ cannot explain the abnormal 

returns of QMJ and the quality puzzle remains a puzzle.   

Following the methodology of Barroso and Santa-Clara (2015), we create a variance forecast 

based on the volatility of daily sector neutral QMJ returns. We set a volatility target and scale 

our exposure to the sector neutral QMJ strategy accordingly. The volatility-managed sector 

neutral QMJ exhibits significant 6-factor alpha of 0.40% per month with an annual volatility 

target of 12%. Excess returns and Sharpe ratio drastically increase compared to the sector 

neutral QMJ. Since the volatility-managed sector neutral QMJ strategy does not suffer from 

lack of diversification but still performs well in returns tests, the quality puzzle cannot be 

explained by sector quality effects. 

In this thesis, we contribute to the existing literature on the quality anomaly. We extend the 

research of Asness et al. (2017) on QMJ, attempting to find a possible explanation of the 

abnormal returns of the strategy. This is related to literature on how industry effects and sector 

effects can explain the cross-section of expected returns. Moskowitz and Grinblatt (1999) 

show that industry momentum drives the abnormal returns of an individual momentum 

strategy. On the other hand, Asness, Porter and Stevens (2000) show that by utilizing other 

momentum holding periods and a narrow industry definition, individual stock momentum has 

predictive power for the firm’s stock return beyond that of industry momentum. This thesis 

utilizes the research of Moskowitz and Grinblatt, as we apply their methodology to the QMJ 
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strategy. We find that sector bets partially drive the abnormal returns of the QMJ strategy. 

Aware of Asness et al.’s critique, we also conduct an analysis for a 48-industry sort. The results 

of the industry sort show that our result to a narrow industry definition.  

This thesis is also related to the literature on volatility-management of factor strategies. 

Moskowitz and Daniel (2016) show that a dynamic momentum strategy which utilizes mean 

and variance forecasts of momentum nearly doubles alpha and Sharpe ratio compared to a 

plain momentum strategy. They study the systematic risk of momentum. On the other hand, 

Barroso and Santa-Clara (2015) study momentum specific risk and find it to be time-varying 

and predictable. Scaling a momentum strategy accordingly greatly reduces crash risk and 

nearly doubles Sharpe ratio. The authors claim this removes forward-looking bias. Following 

Barroso and Santa-Clara (2015), we show how a sector neutral QMJ strategy can be volatility-

managed. We use volatility-management to prove how lack of diversification in the QMJ 

cannot explain the quality puzzle.  

In summary, we complement the existing literature by documenting that sector quality effects 

partially drive QMJ abnormal returns. However, we also find that this cannot explain quality 

puzzle, as a volatility-managed QMJ that is not allowed to bet on sectors delivers positive 

abnormal returns. Thus, our thesis further deepens the quality puzzle. 

The rest of the thesis is organized as follows. In Chapter 2, we present literature that is relevant 

to this thesis. Chapter 3 outlines our replication of the Quality Minus Junk factor. Chapter 4 

contains a presentation of our methodology and results from the tests for sector quality effects 

within QMJ. In Chapter 5, we present the volatility-managed sector neutral QMJ portfolios. 

Chapter 6 analyses the robustness of our results using 48 industries instead of ten sectors. 

Finally, in Chapter 7 we provide the conclusion of this thesis. 
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2. Literature Review 

Quality Minus Junk builds on a large literature of asset pricing anomalies within the quality 

investing universe. Asness et al. (2017) unifies these anomalies into QMJ, capturing all 

elements of quality in one measure. From the Gordon Growth model, Asness et al. specify 

three quality characteristics that should command higher prices for a stock; profitability, 

growth and safety. Investors should be willing to pay more for stocks exhibiting these 

characteristics. 

Novy-Marx (2013) documents that profitable firms generate significantly higher returns than 

unprofitable firms and introduces gross profits-to-assets as the most powerful quality measure 

to explain the variation in the cross-section of expected returns. Furthermore, stocks with low 

beta has proven to produce high alphas (Frazzini and Pedersen, 2014), and Mohanram (2005) 

reports growing stocks outperform those who experience little or no growth. These are just 

examples of the literature available on the three quality characteristics within the QMJ. Asness 

et al. show that the composite QMJ strategy earns a 6-factor alpha of 0.30% on average per 

month. This thesis confirms these results, as we find that the QMJ strategy yields a 6-factor 

alpha of 0.22% on average per month. 

Many have tried to explain the abnormal returns of quality stocks. Frazzini and Pedersen 

(2014) show how leverage-constrained investors systematically buy high-beta stocks in order 

to reach performance benchmarks. Consequently, high beta stocks are overbought while lack 

of demand for low beta stocks lowers prices and increases future expected returns. 

Furthermore, investors prefer stocks that exhibit lottery-like behaviour, a trait which is 

enhanced in economic downcycles (Kumar, 2009). Such investor behaviour can explain the 

lack of attention given to quality stocks.  

Another approach is to explain the quality anomaly from a statistical perspective. Harvey, Liu 

and Zu (2015) argue that extensive data mining is conducted in asset pricing research, as 

“hundreds of papers and factors attempt to explain the cross-section of expected returns”. A 

normal t-stat criterion of 2 is therefore not suitable, and they propose a higher hurdle of at least 

3. However, the hurdle is not high enough to deem the QMJ abnormal returns insignificant, 

neither in the original paper or in the replication part of this thesis. 



 11 

Others attempt to provide risk-based explanations for the quality anomaly. This has proved to 

be a challenge, as profitable, safe and growing companies are associated with low risk. 

Additionally, Asness et al. (2017) find that quality stocks are attractive to investors in market 

downturns, a phenomenon they dub “flight to quality”. Fama and French (2006) contribute to 

the risk-based explanation of the quality puzzle and show how the profitability aspect of 

quality is related to the cross-section of expected returns via the dividend discount model. 

They document that high expected profitability mechanically predicts high expected returns. 

Moreover, Khan (2008) presents a risk-based explanation for the accrual anomaly, as firms 

with high accruals often are experiencing financial distress. The accruals anomaly is utilized 

within profitability in the QMJ framework. In this thesis, we contribute to the literature on the 

quality puzzle by attempting to understand the QMJ abnormal returns from a risk perspective.  

To understand the quality puzzle, we test whether the QMJ strategy invests in sector 

outperformance rather than individual quality stocks. This relates to literature on sector and 

industry effects within factor strategies. Moskowitz and Grinblatt (1999) find that industry 

momentum is the driver of abnormal returns of the momentum strategy. Asness, Porter and 

Stevens (2000) criticize the methodology of Moskowitz and Grinblatt and claim their industry 

definition will result in widely different businesses within the same industries. This might hide 

the importance of differences from industry means. They suggest sorting stocks into 48 instead 

of 20 industries, and show that individual stock momentum has predictive power for a firm's 

stock return beyond industry momentum. This thesis applies the research of Moskowitz and 

Grinblatt, and we use their methodology to test for sector quality effects within QMJ. 

However, we run robustness test for our analysis of sector effects within the QMJ and perform 

the same analysis for a 48-industry sort. The results of the 48-industry sort prove that our 

sector results are robust to a narrow industry definition. 

This thesis contributes to the understanding of the role of sectors and industries within asset 

pricing and the financial markets. There is extensive literature showing the relatively small 

effect industries has on asset prices. Griffin and Karolyi (1998) find that only a small amount 

of the variation in country index returns can be explained by their industrial composition. 

Heston and Rouwenhorst (1994) document that industrial structure explains very little of the 

cross-sectional difference in country return volatility. On the other hand, Roll (1992) finds that 

each country’s industrial structure is important in explaining stock price movements. While 

these papers research the unconditional effect of industries on the cross-section of expected 

returns, we examine the conditional effect of sectors within the quality anomaly. We find 
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evidence of the original QMJ strategy being aggressively invested in sectors, which resembles 

the results of Roll, as sectors are in this case important in explaining stock price movements 

within the quality anomaly.  

This thesis is also related to the literature on volatility-management of factor strategies. 

Moskowitz and Daniel (2016) show how forecasting mean and variance of a plain momentum 

strategy to scale strategy exposure nearly doubles alpha and Sharpe ratio. They use the 

systematic risk of momentum as a tool to scale strategy exposure. On the other hand, Barroso 

and Santa-Clara (2015) use momentum specific risk as a tool to scale strategy exposure. They 

find momentum specific risk to be time-varying and predictable, which allows them to scale 

the momentum strategy without forward-looking bias. The volatility-managed strategy of 

Barroso and Santa-Clara exhibits greatly reduced crash risk, and doubles Sharpe ratio. 

Volatility-managed momentum is therefore a much greater puzzle than regular momentum. 

Furthermore, Moreira and Muir (2017) document how changes in volatility are not followed 

by proportional changes in expected returns for a selection of factor strategies, such as 

profitability and value. They volatility-manage the factors and document improved Sharpe 

ratios.    

As a contribution to the existing literature on volatility-management of factor strategies, we 

investigate the effect of volatility-management within the quality investing space. We show 

that the work of Barroso and Santa-Clara (2015) is applicable to the QMJ anomaly. Similarly 

to the momentum puzzle, volatility-management deepens the quality puzzle. We document 

that sector quality effects partially drive QMJ abnormal returns, but a volatility-managed 

sector neutral QMJ strategy yields abnormal returns in the same magnitude of the original 

QMJ. This thesis therefore contributes to the understanding of the quality anomaly by 

deepening the puzzle. 
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3. Replication of Quality Minus Junk 

In the following chapter we present our replication of the Quality Minus Junk strategy by 

Asness et al. (2017). 

3.1 Data  

In this section we describe our data sources, data cleaning process, and computation of the 

quality measures described in the original paper. Using these quality measures, we construct 

quality-sorted portfolios and QMJ factor returns similar to those in the original paper. We 

follow the original paper as closely as possible and highlight potential deviations. 

3.1.1 Data Sources and Quality Measures 

The sample runs from July 1963 through December 2016 and contains US stocks only. 

Monthly stock returns are downloaded from the Center for Research on Security Prices 

(CRSP). Accounting data is downloaded from the merged CRSP/Compustat North America 

Fundamental Annual and the Fundamental Quarterly Database (Wharton Research Data 

Services, 2018). 

We use all available common stocks on the merged CRSP/Compustat North America data, 

and include all stocks that are listed on either NYSE, AMEX or NASDAQ. After introducing 

these requirements, the dataset contains 199 127 observations. We do not remove financial 

firms, as there are no indications of Asness et al. doing so in the original paper.  

For the CRSP monthly dataset we introduce the same requirements as for the merged 

CRSP/Compustat dataset. We use all available common stocks that are listed on either NYSE, 

AMEX or NASDAQ. Also, if a stock lacks ordinary return data while delisting return is 

available, we use the delisting return. Asness et al. set delisting returns at minus 30% if the 

delisting is performance related and delisting return is missing. Each delisting in the CRSP 

dataset has a code that classifies whether the delisting is performance related or not (Shumway, 

1997). However, we do not find any performance related delistings where delisting return data 

is missing. Stocks that lack return data are deleted, resulting in a dataset of 3 162 085 

observations. We align accounting variables at the end of the firm’s fiscal year ending 
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anywhere in calendar year t-1 to June of calendar year t following the standard convention of 

Fama and French (1992).  

Factor returns for the market, value, size, momentum, profitability and investments factors are 

downloaded from Kenneth French’s data library (French, 2018). The first observation in the 

dataset that contains return data for all six factors is from July 1963, which makes July 1963 

a natural starting point for the sample.   

Further, QMJ is a composite quality measure, and consist of 16 individual quality measures. 

These 16 measures again consist of six profitability measures, five growth measures and five 

safety measures. Profitability is measured as gross profits over asset (GPOA), return on equity 

(ROE), return on assets (ROA), cash flow over assets (CFOA), gross margin (GMAR) and 

accruals (ACC). Growth is measured as 5-year growth in the profitability measures, excluding 

accruals. Safety is measured by beta (BAB), leverage (LEV), bankruptcy risk in terms of 

Altman’s Z-score (Z-score) and Ohlson’s O-score (O-score), and earnings volatility (EVOL). 

After computing these measures and merging the annual accounting data with the CRSP 

monthly return data, we have 1 346 395 observations in the merged monthly dataset. See the 

appendix for the full list of all the variables downloaded and formulas for the quality measures. 

It is a challenge to calculate the quality measures in the exact same manner as in the original 

paper. We are forced to make assumptions on how to compute the measures in terms of which 

variables we allow to be missing and which observations we remove from the sample due to 

missing observations. We do not know if we make the same assumptions as Asness et al., 

which can potentially affect our replication results. This is discussed in the next section. 

3.1.2 Data Cleaning  

Having described our data sources, we proceed with a thorough explanation of our data 

cleaning process. In this section we only comment the quality measures that requires us to 

make assumptions as to how Asness et al. have conducted their computations. If a quality 

measure is not mentioned in this section, we use the same methodology as in the original paper. 

Formulas for every quality measure and input variables can be found in the appendix.  

We begin the data cleaning process with working capital, which is an input variable in CFOA, 

ACC, growth in CFOA and Altman Z-score. We allow income taxes payable to be missing 

within working capital to avoid losing too many observations. This is not problematic, as 
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income taxes payable often is a very small number in the merged CRSP/Compustat dataset. 

Moreover, in our GPOA and GMAR calculation we allow cost of goods sold to be missing, 

and missing revenues are imputed with sales. We also allow depreciation to be missing in 

CFOA and ACC, as depreciation is systematically missing in the merged CRSP/Compustat 

dataset the first years after a company is registered.  

The growth ratios are the 5-year growth in profitability ratios excluding ACC, and therefore 

the assumptions made for the profitability ratios apply to the growth ratios. Moreover, as we 

use 5-year growth, companies who have yet to reach their fifth year in the merged 

CRSP/Compustat dataset will not have growth measures. Consequently, to be included in 

return tests we require companies to have at least five years of Compustat data.  

To compute LEV, we allow minority interest and preferred stock to be missing. We do not 

consider this problematic, considering both variables tend to be zero for the companies where 

minority interest and preferred stock are reported. For the O-score, we use the market equity 

from the end of the previous month, and do not allow any variables to be missing. O-score 

also require CPI as input. To avoid forward-looking bias, we use the previous year’s annual 

CPI, downloaded from the US Bureau of Labour Statistics (2018). For Altman’s Z-score, we 

allow working capital and retained earnings to be missing. 

To estimate EVOL, we use standard deviation of quarterly ROE and require 12 non-missing 

quarters. If only annual data is available, we use standard deviation of annual ROE and require 

five non-missing fiscal years. To merge quarterly ROE data with the monthly stock data, we 

align the quarterly data to fiscal quarters in the monthly dataset using fiscal year end. For 

example, if the fiscal year end for a firm is January then fiscal quarter one will be February, 

March and April. Then, we proceed to merge the monthly stock data and the quarterly ROE 

data on fiscal year and fiscal quarter. Quarterly standard deviations are annualized to be 

compatible with the annual standard deviations. 

For our BAB estimates, the following equation describes the monthly estimate for the beta of 

stock i:  

𝛽𝑖 =
𝜎𝑖

𝜎𝑚
𝜌                                                                            (1) 

𝜎𝑖 and 𝜎𝑚 are the estimates for standard deviation for stock i and the market, and 𝜌 is their 

correlation. We use daily returns to estimate volatilities of the individual stocks, volatility of 
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the market, and the correlation between each individual stock and the market. Also, we use a 

one-year rolling standard deviation for individual stock and market volatility and a rolling 

five-year correlation of stock i and the market. For the volatilities we require at least six 

months (120 trading days) of non-missing data, and for the correlations we require at least 

three years (750 trading days) of non-missing data. See Frazzini and Pedersen (2014) for more 

details. 

3.1.3 Quality Score 

To obtain a composite quality score for each stock, we proceed to rank each stock cross-

sectionally on each individual quality measure x every month. All quality measures are ranked 

in ascending order, except BAB and EVOL, which are ranked in descending order:   

𝑟𝑥 = 𝑟𝑎𝑛𝑘(𝑥)                                                                    (2) 

Next, we calculate z-scores by rescaling the ranks, such that the cross-sectional mean is zero 

and the cross-sectional standard deviation is one for every quality measure x each month: 

𝑧(𝑥) = 𝑧𝑥 =
[𝑟𝑥 − �̅�𝑥]

𝜎(𝑟𝑥)
                                                            (3) 

We compute the profitability z-score by averaging z-scores of gross profits over assets 

(GPOA), return on equity (ROE), return on assets (ROA), cash flow over assets (CFOA), gross 

margin (GMAR) and accruals (ACC). 

𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑧(𝑧𝑔𝑝𝑜𝑎 + 𝑧𝑟𝑜𝑒 + 𝑧𝑟𝑜𝑎 +  𝑧𝑐𝑓𝑜𝑎 +  𝑧𝑔𝑚𝑎𝑟 +  𝑧𝑎𝑐𝑐)                 (4) 

We compute the growth z-score by averaging the z-scores of 5-year growth in gross profits 

over assets (ΔGPOA), return on equity (ΔROE), return on assets (ΔROA), cash flow over 

assets (ΔCFOA) and gross margin (ΔGMAR). Δ denotes 5-year growth.  

𝐺𝑟𝑜𝑤𝑡ℎ = 𝑧(𝑧∆𝑔𝑝𝑜𝑎 + 𝑧∆𝑟𝑜𝑒 + 𝑧∆𝑟𝑜𝑎 + 𝑧∆𝑐𝑓𝑜𝑎 + 𝑧∆𝑔𝑚𝑎𝑟)                            (5) 

We compute the safety z-score by averaging the z-score of beta (BAB), leverage (LEV), 

Ohlson’s O-score (O-score), Altman’s Z-score (Z-score) and earnings volatility (EVOL) and 

for each stock in each month. 

𝑆𝑎𝑓𝑒𝑡𝑦 = 𝑧(𝑧𝑏𝑎𝑏 + 𝑧𝑙𝑒𝑣 + 𝑧𝑜−𝑠𝑐𝑜𝑟𝑒 + 𝑧𝑧−𝑠𝑐𝑜𝑟𝑒 + 𝑧𝑒𝑣𝑜𝑙)                              (6) 
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To calculate the total quality score, we take the average of the profitability, growth and safety 

z-score.  

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑧(𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑆𝑎𝑓𝑒𝑡𝑦 + 𝐺𝑟𝑜𝑤𝑡ℎ)                                (7) 

If measures within profitability, safety or growth scores are missing, we simply average the 

remaining measures to obtain the profitability, safety or growth score. For example, if the 

GPOA z-score is missing, we take the average of the z-score of the other profitability measures 

to obtain the profitability z-score. This means, if a stock only has available data for one out of 

16 quality measures, it will have a profitability, growth or safety score. On the other hand, we 

require a stock to have a profitability score, a growth score and a safety score to be assigned 

a quality score. It is unclear whether this particular approach differs from the original paper. 

3.2 Portfolio Formation 

In this section we present the results of our replication of the QMJ strategy. First, we replicate 

quality-sorted portfolios. Next, we replicate the QMJ factor and test for abnormal returns using 

a selection of asset pricing models. This is done to prove that we are capable of implementing 

the methodology of Asness et al., as we create QMJ strategies with modifications later in this 

thesis. 

3.2.1 Quality-Sorted Portfolios 

To construct quality-sorted portfolios, we sort all stocks on their respective quality score each 

month. Then, we use NYSE quality breakpoints to sort stocks into ten quality portfolios. 

Portfolios are value-weighted using market equity from the last trading day of the previous 

month.  

In Table 1, we present ten quality-sorted portfolios and a long-short strategy that is long the 

highest quality portfolio and short the lowest quality portfolio. Panel A shows our replication, 

while panel B shows the results of Asness et al. The original results can also be found in Table 

4 in the original paper. We provide excess returns and alphas with respect to the CAPM, 3-

factor and 4-factor model.  
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For the CAPM we use the first right-hand side variable, for the 3-factor model we use the three 

first right-hand side variables, and for the 4-factor model we use all right-hand side variables 

of Equation 8: 

𝑟𝑡
𝑒 = 𝛼 +  𝛽𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝑠𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + ℎ𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝑢𝑈𝑀𝐷𝑈𝑀𝐷𝑡 +  𝜀𝑡               (8) 

In the original paper, the authors claim excess returns rise monotonically with quality. As 

Panel B shows, this is not obvious. Still, there are extreme values in the bottom and top decile, 

which is valuable for the long-short strategy. In Panel A we see similar results for quality 

sorted excess returns as reported in Panel B. In Panel A, excess return varies between 0.51% 

to 0.59% from decile two till decile nine, and decile ten has by far the highest excess return 

with 0.69%. This is almost identical to the original paper. However, we are not able to assign 

the worst performing stocks to decile one as effectively as in the original paper. We find excess 

return of 0.46% per month for decile one, while Asness et al. find 0.29%. Given the degrees 

of freedom related to the calculation of the 16 quality measures, we find our results to be 

satisfying. 

Moreover, the alphas presented in Panel A are similar to the original paper for all factor models 

reported. This indicates that the replication of the ten quality-sorted portfolios is successful. 

3.2.2 The Quality Minus Junk Factor 

After replicating the quality-sorted portfolios, we proceed with the replication of the QMJ 

factor. To construct QMJ, we sort stocks conditionally on size and then on quality. Each 

month, stocks are sorted into two size portfolios, with the median NYSE market equity as the 

size breakpoint. Next, both small and big stocks are sorted into three quality portfolios based 

on their total quality score by a 30/40/30 split. The lowest quality portfolios are characterized 

as junk and the highest quality portfolios are characterized as quality. These six portfolios are 

refreshed and rebalanced every calendar month to maintain value weights. The QMJ factor 

returns are the monthly average return of the small high-quality and big high-quality 

portfolios, minus the small junk and big junk portfolios (Equation 9). We follow the same 

procedure to construct factor portfolios for profitability, growth and safety. 

𝑄𝑀𝐽 = 0.5 (𝑆𝑚𝑎𝑙𝑙 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 − 𝑆𝑚𝑎𝑙𝑙 𝐽𝑢𝑛𝑘) + 0.5 (𝐵𝑖𝑔 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 − 𝐵𝑖𝑔 𝐽𝑢𝑛𝑘)                        (9) 
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Table 1 

Quality-Sorted Portfolios 

This table shows the calendar-time portfolio returns of the ten quality sorted portfolios for the sample period from July 1963 

to December 2016. Panel A shows our replication, while Panel B shows the results of Asness et al. (2017). Each month, stocks 

are ranked on the composite quality score consisting of 16 individual quality measures, and they are sorted into ten portfolios 

based on breakpoints from NYSE stocks. Portfolios are value-weighted and rebalanced every month based on the market 

capitalization from the previous month to maintain the value weight. The alphas reported for every decile is the intercept in 

the time-series regression for monthly excess returns. The excess returns are over the U.S. monthly T-bill rate. The 

explanatory variables in the time-series are the returns of the market, size (SMB), book-to-market (HML) and momentum 

(UMD). The alphas and the excess returns are reported in monthly percent, and the t-statistics are presented under the 

coefficient estimates in parentheses. Beta is the beta estimate from CAPM. Sharpe ratios are annualized. Significant excess 

returns and alphas at the 5% level are reported in bold.  

 

 

Return tests for the QMJ, profitability, safety and growth factors are presented in Table 2. We 

run regressions on the factor returns utilizing 3-factor, 4-factor, 5-factor and 6-factor asset 

pricing models. The 5-factor model contains the first five right-hand side variables, while the 

6-factor model contains all right-hand side variables of Equation 10.  

𝑟𝑄𝑀𝐽,𝑡
𝑒 = 𝛼 + 𝛽𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝑠𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + ℎ𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝑤𝑅𝑀𝑊𝑅𝑀𝑊𝑡 + 𝑐𝐶𝑀𝐴𝐶𝑀𝐴𝑡 + 𝑢𝑈𝑀𝐷𝑈𝑀𝐷𝑡 + 𝜀𝑡    (10) 

In Table 2, we see indications of a successful replication of QMJ. Panel A shows the results 

of our factor regressions, while Panel B shows the results of Asness et al. The original results 

can also be found in Table 6 and Table 7 of the original paper. All the sub-components of QMJ 

and the QMJ factor deliver a statistically significant alpha in all the asset pricing models. The 

alphas are of approximately the same magnitude as in the original paper, with similar t-

statistics. The monthly 6-factor alpha for QMJ is 0.22% compared to 0.30% in the original 

paper.  

Panel A: Replication results P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 H-L

(Low) (High)

Excess Return 0.46 0.51 0.55 0.59 0.54 0.53 0.57 0.55 0.59 0.69 0.22

[1.92] [2.48] [3.10] [3.38] [3.18] [3.17] [3.44] [3.37] [3.67] [3.99] [1.30]

CAPM alpha -0.22 -0.08 0.03 0.08 0.03 0.04 0.08 0.06 0.11 0.18 0.40

[-1.88] [-0.84] [0.37] [1.04] [0.51] [0.53] [1.17] [0.96] [1.77] [2.50] [2.43]

3-factor alpha -0.51 -0.35 -0.14 -0.07 -0.07 -0.05 0.03 0.03 0.14 0.38 0.88

[-5.24] [-5.35] [-2.19] [-1.13] [-1.07] [-0.75] [0.49] [0.59] [2.59] [6.33] [7.00]

4-factor alpha -0.34 -0.21 -0.09 0.01 -0.06 -0.05 0.07 -0.01 0.13 0.35 0.69

[-3.55] [-2.69] [-0.40] [0.08] [-1.03] [-0.79] [1.13] [-0.18] [2.11] [5.75] [5.49]

Beta 1.29 1.13 0.99 0.97 0.96 0.94 0.93 0.94 0.91 0.96 -0.33

Sharpe Ratio 0.26 0.33 0.41 0.45 0.43 0.42 0.46 0.45 0.49 0.54 0.17

Panel  B: Original results P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 H-L

(Low) (High)

Excess Return 0.29 0.47 0.50 0.47 0.56 0.49 0.56 0.57 0.49 0.69 0.40

[1.16] [2.31] [2.65] [2.70] [3.35] [2.87] [3.36] [3.42] [2.97] [4.01] [2.43]

CAPM alpha -0.41 -0.12 -0.05 -0.05 0.07 -0.02 0.06 0.07 0.00 0.19 0.60

[-3.48] [-1.65] [-0.80] [-0.80] [1.17] [-0.31] [1.20] [1.41] [-0.08] [2.86] [3.98]

3-factor alpha -0.53 -0.23 -0.14 -0.12 0.00 -0.07 0.03 0.06 0.03 0.30 0.84

[5.82] [-3.69] [-2.36] [2.27] [-0.08] [-1.32] [0.64] [1.24] [0.60] [5.62] [7.44]

4-factor alpha -0.57 -0.35 -0.25 -0.22 -0.12 -0.11 -0.02 0.06 0.04 0.47 1.04

[-5.81] [-5.41] [-3.94] [-4.13] [-2.06] [-1.94] [-0.36] [1.07] [0.93] [8.66] [8.83]

Beta 1.27 1.15 1.09 1.04 1.01 1.02 1.00 0.98 0.95 0.93 -0.34

Sharpe Ratio 0.15 0.30 0.34 0.35 0.43 0.37 0.44 0.44 0.38 0.52 0.31
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Moreover, we document similar factor loadings as in the original paper for all quality factor 

strategies. The replicated QMJ strategy is betting on low beta, big, low book-to-market, 

profitable, aggressive and outperforming stocks. However, we find some systematic 

deviations in factor loadings, which might help explain the lower QMJ alpha and excess 

returns. We systematically pick stocks that loads significantly positive on momentum for all 

quality factors, which differs from the results of Asness et al. They also find significant 

loadings on momentum for QMJ and safety, but they find insignificant loadings on momentum 

for profitability and growth. Quality strategies loading on momentum is not surprising, since 

high quality stocks tend to have offered high returns in the past. 

The safety factor exhibits the largest deviations from the original paper in terms of excess 

returns and alphas. We document monthly excess returns of 0.02% and an average monthly 6-

factor alpha of 0.17% compared to 0.22% and 0.30% respectively in the original paper. 

Furthermore, the factor loadings in the 6-factor model suggest that the replicated safety factor 

invests more in low book-to-market and less profitable stocks. The deviations in QMJ excess 

returns and alphas from the original paper can be attributed to the safety factor not yielding 

excess return and alphas of satisfactory magnitude in our replication.  

There are several potential explanations for the deviations of the safety factor, as there are 

many degrees of freedom related the construction of the safety portfolios. For example, 

deviations can occur due to different assumptions in the data cleaning process or for the 

individual safety measures. 

First, the authors of the original paper are vague and at times wrong in their explanations of 

the safety measures. They write that a stock with low Altman’s Z-score is safe, while in fact a 

low Altman’s Z-score is an indication of high bankruptcy risk (Altman, 1968). Since “Quality 

Minus Junk” is a working paper, we cannot exclude the possibility of imprecise 

documentation.  

Second, deviations in the merge of accounting and return data can have an important impact 

on the results. Asness et al. does not provide any explanation on how they merge quarterly 

EVOL data with monthly returns data, or how they align beta estimates every month. We use 

a conservative merge to avoid forward-looking bias. If there are systematic differences in 

merging procedures, this could explain the deviations we observe for the safety factor.  

Moreover, we find that the replicated factor strategies in Table 2 loads less on profitability, 

and more negatively on HML compared to the original paper. The negative value exposures 



 21 

are expected since the value factor HML is long cheap stocks. On the other hand, high-quality 

stocks are more expensive. The low profitability loadings might also be explained by the 

negative value exposure, as growth stocks tend to be less profitable than value stocks.  

At last, we observe a Sharpe ratio of 0.18 for QMJ, which is quite low. We are not able to 

replicate the excess returns of the safety factor, and this translates into lower excess returns 

for the composite QMJ factor. Therefore, we find lower Sharpe ratios for the QMJ as volatility 

is not reduced proportionally. This results in low Sharpe ratios for all strategies that are based 

on the replicated QMJ strategy later in this thesis.  

Nevertheless, the QMJ, profitability, safety and growth factors still deliver significant positive 

alphas controlling for 5- and 6-factor models. In addition, we infer based on the factor loadings 

that the replicated strategies invest in the same type of stocks as the original strategies. Thus, 

we deem the replication successful. 
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Table 2 

Quality Minus Junk – Returns 

This table shows the calendar-time portfolio returns and factor loadings of the QMJ, profitability, safety and growth portfolios. 

Panel A shows our replication, while Panel B shows the results of Asness et al. (2017). The QMJ factor is constructed at the 

intersection of six-value weighted portfolios formed on size and quality. At the end of each calendar month all stocks in our 

U.S. sample from July 1963 to December are sorted on size based on their market capitalization. The size breakpoint is 

constructed using the median NYSE market equity. After sorting on size, the portfolios are sorted on quality, sorting both 

small cap stocks and large cap stocks on quality.  Portfolios are value-weighted and rebalanced every month based on the 

market capitalization from the previous month to maintain the value weights. The QMJ factor return is the average return on 

the two high quality portfolios minus the average return on the low quality (junk) portfolios. The portfolio returns of 

profitability, growth and safety are constructed in a similar manner. The explanatory variables in the time-series are the returns 

of the market (MKT), size (SMB), book-to-market (HML), investment (CMA), profitability (RMW), and momentum (UMD) 

portfolios from Ken French’s data library. Alpha is the intercept in the time-series regression. The excess returns are over the 

U.S. monthly T-bill rate. Alphas and the excess returns are reported in monthly percent, and the t-statistics are presented 

under the coefficient estimates in parentheses. Sharpe ratios are annualized. Significant excess returns and alphas at the 5% 

level are reported in bold.  

 

 

QMJ Profitability Safety Growth QMJ Profitability Safety Growth

Excess returns 0.12 0.23 0.02 0.08 0.26 0.29 0.22 0.07

[1.33] [2.91] [0.17] [0.86] [3.01] [3.92] [2.26] [0.88]

3-factor alpha 0.46 0.50 0.38 0.28 0.46 0.40 0.53 0.16

[6.97] [7.96] [5.29] [4.37] [7.81] [6.93] [9.18] [2.78]

4-factor alpha 0.34 0.42 0.25 0.23 0.57 0.50 0.53 0.37

[5.28] [6.67] [3.58] [3.55] [9.22] [8.32] [8.69] [6.32]

5-factor alpha 0.37 0.43 0.25 0.31 0.34 0.29 0.41 0.19

[5.44] [6.73] [3.54] [5.11] [7.21] [6.76] [6.26] [4.36]

6-factor alpha 0.22 0.28 0.17 0.19 0.30 0.28 0.31 0.17

[3.71] [5.17] [2.50] [3.53] [6.39] [6.46] [5.02] [3.98]

MKT -0.15 -0.10 -0.32 0.01 -0.15 -0.08 -0.28 0.00

[-10.25] [-7.57] [-18.70] [0.66] [-13.38] [-7.28] [-18.21] [0.05]

SMB -0.08 -0.07 -0.19 0.04 -0.09 -0.07 -0.18 0.05

[-3.85] [-3.70] [-8.05] [1.95] [-5.72] [-4.52] [-8.51] [3.42]

HML -0.40 -0.42 -0.32 -0.35 -0.26 -0.29 -0.20 -0.24

[-14.05] [-15.96] [-9.58] [-13.27] [-11.29] [-13.98] [-6.64] [11.32]

CMA -0.11 0.09 0.07 -0.38 -0.07 0.10 0.03 -0.44

[-2.69] [2.26] [1.56] [-9.79] [-2.28] [3.18] [0.61] [-14.54]

RMW 0.42 0.40 0.22 0.32 0.59 0.58 0.32 0.39

[14.99] [15.54] [6.58] [12.25] [26.84] [28.46] [10.83] [19.11]

UMD 0.11 0.07 0.14 0.05 0.05 0.01 0.13 0.02

[8.33] [5.80] [8.57] [4.25] [4.91] [1.18] [8.95] [1.95]

Sharpe Ratio 0.18 0.40 0.02 0.12 0.41 0.54 0.31 0.12

                                     Panel A: Replication results                             Panel B: Original results
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4. Sector Quality Effects within the QMJ 

In this chapter, we present our first contribution to the work on QMJ by Asness et al. As 

established, a strategy that is long quality stocks and short junk stocks yields positive 

significant abnormal returns. For the rest of this thesis, we pursue a risk-based explanation for 

these abnormal returns. We investigate whether sector quality effects are the driver of QMJ 

abnormal returns. If the strategy is aggressively invested in certain sectors, it is exposed for 

risk not captured by asset pricing models. Within a sector, stocks tend to be exposed to the 

same types of risk. Thus, by investing heavily in a few sectors, the diversification of the 

strategy is reduced.  

For the analysis of sector quality effects within QMJ, we impose new data requirements for 

the sample in addition to those described in Section 3.1. We use the Global Industrial 

Classification Standard (GIC) to classify stocks into eleven sectors, and therefore we use all 

available common stocks that have a GIC code in the merged CRSP/Compustat North America 

dataset. We require sectors to have at least ten observations every month. Real estate (GIC 

code 60) is excluded due to few observations, which results in a total of ten sectors in the 

sample. After introducing the new requirements, the dataset contains 1 226 284 observations.  

Asness et al. (2000) claim a wide industry definition might hide the importance of differences 

from industry means and suggest assigning stocks to 48 industries instead. In Chapter 6, we 

conduct an analysis for a 48-industry sort as a robustness test for the sector sort. 

4.1 Within Sector Test: Portfolios within the Individual 
Sectors 

As a first test for sector quality effects in the QMJ strategy, we follow the methodology of 

Moskowitz and Grinblatt (1999) to compute QMJ factor returns within each sector. We 

proceed to sort stocks conditionally, first on size and then on quality within each sector. The 

size breakpoint is the median NYSE market equity of each sector. After sorting on size, the 

portfolios are sorted on quality within each sector. Each size portfolio is split into three quality 

portfolios, by assigning stocks to the bottom 30% (junk), middle 40% and top 30% (quality). 

Portfolios are value-weighted and rebalanced every month based on the market capitalization 

of each sector from the last trading day of the previous month to maintain the value weights. 
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The QMJ factor return is the average return on the two high quality portfolios minus the 

average return on the low quality (junk) portfolios in each sector s: 

𝑄𝑀𝐽𝑠 = 0.5 (𝑆𝑚𝑎𝑙𝑙 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑠 − 𝑆𝑚𝑎𝑙𝑙 𝐽𝑢𝑛𝑘𝑠) + 0.5 (𝐵𝑖𝑔 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑠 − 𝐵𝑖𝑔 𝐽𝑢𝑛𝑘𝑠)                     (11) 

The test is simple; if sector quality effects drive the abnormal returns of QMJ, the QMJ factor 

returns within each sector should not yield positive significant alphas. If so, the test indicates 

that the QMJ bets on sector outperformance, as it is not consistently long the quality stocks 

and short the junk stocks in each sector throughout the sample. In other words, the QMJ invests 

sporadically in sectors, which implies lack of diversification within the QMJ.  

Table 3 presents alphas of the QMJ strategy within each sector. QMJ earns positive significant 

alphas in five out of ten sectors in the 5-factor model, and in two out of ten sectors in the 6-

factor model. Note that QMJ for the entire sample earns a monthly 6-factor alpha of 0.22%, 

with a t-stat above 3. For such a strong strategy to only deliver significant 6-factor alphas in 

two out of ten sectors is a sign of sector quality effects within the QMJ strategy. None of the 

within-sector alphas are above the t-statistic hurdle of 3 proposed by Harvey et al. (2015).  

Since QMJ is a composite quality measure where stocks are ranked on 16 individual quality 

measures, the sector differences found in Table 3 are hard to intuitively explain. Over time, 

we expect to see systematic differences between sectors, for example in terms of capital 

structure or cost structure. For individual quality measures, we expect these differences to be 

easier to measure. However, interpretations are rather unclear when averaging 16 individual 

quality measures. We cannot explain with certainty why a sector exhibits a quality trend within 

the QMJ framework. 

Furthermore, as QMJ is based on 16 individual quality measures, the sector dependency within 

the strategy should be reduced. The composite measure captures several quality aspects of a 

stock, and it is reasonable to believe sector differences will be reduced compared to an 

individual measure. As seen in Table 3, the lack of significant alphas suggests the averaging 

of quality measures is not enough to reduce sector dependency entirely within the QMJ 

strategy. 
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Table 3 

Quality Minus Junk Within Sectors 

This table shows average monthly alphas for the QMJ strategy within each sector from July 1963 through December 2016. 

The QMJ factor is constructed at the intersection of six-value weighted portfolios formed on size and quality within each GIC 

sector. The size breakpoint is constructed using the median NYSE market equity of each sector. After sorting on size, the 

portfolios are sorted on quality, sorting both small cap stocks and large cap stocks on quality.  Portfolios are value-weighted 

and rebalanced every month based on the lagged market capitalization within each GIC sector to maintain the value weights. 

The QMJ factor return is the average return on the two high quality portfolios minus the average return on the two low quality 

(junk) portfolios within each sector. Alpha is the intercept in the time-series regression and is reported in monthly percent. T-

statistics are presented under the estimates in parentheses. The data for the explanatory variables is downloaded from the Ken 

French’s data library. Significant alphas at the 5% level are reported in bold.  

 

4.2 Demean Test: QMJ Demeaned by Average Sector 
Quality 

We proceed to test the performance of the QMJ strategy after demeaning by average sector 

quality. Every month, we demean the quality score of each stock by subtracting the monthly 

average total quality score in each sector. Then, we employ the same portfolio sorts as in 

Section 3.2.2 to create a demeaned QMJ factor. If sector quality effects drive QMJ abnormal 

returns, the sector demeaning procedure should reduce the abnormal and excess returns of the 

strategy.  

The demeaned QMJ abnormal returns and factor loadings are reported in Table 4. Demeaning 

each stock by the monthly sector quality average has a negligible effect on alphas and excess 

returns in the selection of factor models. Contrary to the within-sector test, this indicates sector 

quality effects do not have an impact on the alphas, excess returns or volatility of the QMJ 

strategy.  

  

Energy Materials Industrials Consm.disc Consum.stpl Health Financials IT Telecom Utilities

3-factor alpha 0.59 0.35 0.25 0.48 0.37 0.33 0.38 0.23 0.28 0.14

[3.55] [2.58] [2.45] [3.60] [3.05] [2.05] [2.53] [1.43] [0.88] [1.66]

4-factor alpha 0.48 0.17 0.23 0.31 0.28 0.31 0.26 0.13 0.13 0.07

[2.87] [1.25] [2.15] [2.32] [2.30] [1.88] [1.70] [0.79] [0.42] [0.88]

5-factor alpha 0.48 0.29 0.10 0.36 0.32 0.05 0.32 0.17 -0.19 0.09

[2.86] [2.07] [1.00] [2.66] [2.59] [0.36] [2.11] [1.04] [-0.62] [1.13]

6-factor alpha 0.40 0.14 0.10 0.23 0.25 0.07 0.23 0.09 -0.25 0.05

[2.37] [1.02] [0.94] [1.71] [2.01] [0.44] [1.47] [0.54] [-0.81] [0.56]
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Table 4 

QMJ Demeaned by Average Monthly Sector Quality Score 

This table reports the calendar-time portfolio returns and factor loadings of the QMJ and demeaned QMJ portfolios from July 

1963 through December 2016. The QMJ factor is constructed at the intersection of six-value weighted portfolios formed on 

size and quality. At the end of each calendar month all stocks in our U.S. sample are sorted on size based on their market 

capitalization. The size breakpoint is constructed using the median NYSE market equity. After the portfolios are sorted on 

size the portfolios are sorted on quality. Portfolios are value-weighted and rebalanced every month based on the market 

capitalization to maintain the value weights. The QMJ factor return is the average return on the two high quality portfolios 

minus the average return on the low quality (junk) portfolios. The demeaned QMJ is constructed in a similar manner. We 

demean by subtracting the monthly average total quality score in each sector from each stock, before sorting stocks into 

portfolios on size and demeaned quality. The alphas are reported with respect to the CAPM and 3/4/5/6-factor models, and t-

statistics are presented under the estimates in parentheses. The explanatory variables in the time-series are the returns of the 

market (MKT), size (SMB), book-to-market (HML), investment (CMA), profitability (RMW), and momentum (UMD) 

portfolios from Ken French’s data library. The excess returns are over the U.S. monthly T-bill rate. Alphas and the excess 

returns are reported in monthly percent. Significant alphas and excess returns at the 5% level are reported in bold. Sharpe 

ratios are annualized. 

 

4.3 Random Sector Test 

To further assess potential sector quality effects in the QMJ factor, we construct random sector 

portfolios. We follow the methodology of Moskowitz and Grinblatt (1999) and replace every 

stock in sector s by another stock that has approximately the same quality score. We sort all 

stocks ascending on quality score each month, where every stock i is replaced by the stock 

QMJ Demeaned QMJ

Excess return 0.12 0.11

[1.33] [1.23]

3-factor alpha 0.46 0.42

[6.97] [6.60]

4-factor alpha 0.34 0.33

[5.28] [5.20]

5-factor alpha 0.37 0.28

[5.44] [4.94]

6-factor alpha 0.22 0.22

[3.71] [3.87]

MKT -0.15 -0.19

[-10.25] [-13.83]

SMB -0.08 -0.16

[-3.85] [-8.29]

HML -0.40 -0.34

[-14.05] [-12.60]

CMA -0.11 0.02

[-2.69] [0.47]

RMW 0.42 0.37

[14.99] [14.00]

MOM 0.11 0.09

[8.33] [6.79]

Sharpe ratio 0.18 0.17
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with the second highest quality score compared to stock i, regardless of sector. This ensures 

that the quality characteristics of the random sector portfolios are the same as the original 

sector portfolios. If only sector quality effects are driving QMJ abnormal returns, we expect 

the new random sector portfolios to not exhibit alpha. The individual stock quality 

composition within the portfolios is the same, but the sector composition is reshuffled. By 

only changing sector composition, we can analyse whether sector quality effects are the only 

driver of QMJ abnormal returns. After assigning stocks to random sector portfolios, we follow 

the methodology described in Section 4.2 to create the QMJ returns within each random sector. 

For momentum, Moskowitz and Grinblatt (1999) explain that the cross-sectional variation in 

the individual momentum component is much larger than the cross-sectional variation in the 

industry momentum component. Therefore, when a stock from one industry is replaced with 

another stock, the replacement stock is more likely to just have a very similar return to the 

original stock, than to be from the same industry. This also applies to the individual quality 

component and the sector quality component within QMJ.  

Table 5 reports the random sector portfolio alphas. These portfolios earn significant abnormal 

returns in four out of ten random sectors in both the 5-factor and the 6-factor model. The 

number of sectors returning positive significant alphas is lower compared to the 5-factor test 

for the within-sector test from section 4.1. For the 6-factor model we observe the opposite; 

there are more significant alphas in the random sector portfolios compared to the within-sector 

test.  

The result of the random sector test is inconclusive. First, there is a majority of sectors that 

does not exhibit significant alphas. The random sector portfolios will not exhibit alphas if only 

sector quality effects drive the abnormal returns. Therefore, this test is supportive evidence of 

sector quality effects not being the only driver of abnormal returns. Second, it is not given this 

test is suited for a sector sort. Moskowitz and Grinblatt find that the cross-sectional variation 

in individual momentum is much larger than the cross-sectional variation of industry 

momentum. Sectors will most likely exhibit larger cross-sectional variation than industries. In 

addition, after assigning stocks to random sector portfolios, 16.3% of the stocks are on average 

still within the same sector portfolio. Hence, the random sector portfolios may not be as 

random as perceived. 
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Table 5 

Random Sector Portfolios 

This table reports alphas for the QMJ random sector portfolios from July 1963 through December 2016. All stocks are sorted 

in ascending order on quality score each month. Every stock i is replaced by the stock with next highest quality score compared 

to stock i, regardless of sector. The QMJ factor is then constructed within each sector, at the intersection of six-value weighted 

portfolios formed on size and quality. The size breakpoint is constructed using the sector median NYSE market equity. After 

the portfolios are sorted on size the portfolios are sorted on quality within each GIC sector. Portfolios are value-weighted and 

rebalanced every month based on the lagged market capitalization of each sector to maintain the value weights. The QMJ 

factor return is the average return on the two high quality portfolios minus the average return on the two low quality (junk) 

portfolios. Alpha is the intercept in the time-series regression and is reported in monthly percent. T-statistics are presented 

under the estimates in parentheses. The data for the explanatory variables is downloaded from the Ken French’s data library. 

Significant alphas at the 5% level are reported in bold. 

 

4.4 Long Junk – Short Quality Test 

To continue, we create portfolios that are long junk stocks from the highest quality sectors, 

and short quality stocks from the lowest quality sectors. This allows us to directly assess 

individual stock quality. We perform this test using two different methods. First, we create 

QMJ strategies that are long big junk and small junk stocks in the quality sectors and short big 

quality and small quality stocks in the junk sectors. Second, we create strategies that are long 

the junk stocks of the quality sector and short the quality stocks of the junk sector, without 

conditionally sorting on size. 

For the long junk – short quality QMJ method, we create two alternative strategies. Moskowitz 

and Grinblatt sort their sample into 20 industries and perform this test by buying the worst 

performing stocks of the three best performing industries and selling the best performing 

stocks of the three worst performing industries. As we sort stocks into ten sectors, we conduct 

the test for both the two highest and lowest quality sectors, and for the single highest and 

lowest quality sector. The portfolios are then value-weighted and rebalanced within each 

sector each month. These strategies are presented in column 2 and 3 in Table 6. 

Interestingly, we find that junk stocks in the highest quality sector on average scores lower on 

quality than quality stocks in the lowest quality sector. In other words, on average this strategy 

buys stocks with lower quality score than the stocks it sells. Therefore, if individual stock 

Energy Materials Industrials Consm.disc Consum.stpl Health Financials IT Telecom Utilities

3-factor alpha 0.47 0.65 0.57 0.61 0.24 0.47 0.33 0.64 -0.17 0.10

[2.65] [4.28] [5.31] [5.38] [1.55] [2.70] [2.07] [4.55] [-0.51] [0.62]

4-factor alpha 0.34 0.50 0.44 0.45 0.16 0.28 0.16 0.49 -0.36 0.01

[1.89] [3.28] [4.17] [4.03] [1.06] [1.60] [0.98] [3.48] [-1.04] [0.09]

5-factor alpha 0.23 0.52 0.45 0.44 0.06 0.20 0.19 0.51 -0.39 -0.03

[1.34] [3.45] [4.36] [4.06] [0.41] [1.19] [1.20] [3.69] [-1.12] [-0.21]

6-factor alpha 0.15 0.41 0.36 0.32 0.02 0.07 0.06 0.40 -0.52 -0.09

[0.85] [2.70] [3.49] [3.04] [0.13] [0.40] [0.39] [2.88] [-1.48] [-0.58]
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quality drives QMJ returns, this strategy should produce significant negative alphas. We 

expect junk stocks to perform worse than quality stocks regardless of sector if there are no 

sector quality effects in play.  

As presented in Table 6, alphas in column 2 and 3 are positive for both strategies in all factor 

models. We test whether the alphas are negative, and therefore use a one-tailed t-test with a t-

stat threshold of 1.65. The QMJ strategy that is long junk in the two high-quality sectors, and 

short quality in the two low-quality sectors earns an alpha of 0.38% in the 6-factor model with 

a t-stat of 1.56. The QMJ strategy that is long junk in the sector scoring highest on quality, and 

short quality in the sector scoring lowest on quality earns a 5-factor alpha of 0.42% with a t-

stat of 1.93. We expect junk stocks to be outperformed by quality stocks if individual stock 

quality drives QMJ abnormal returns. As we observe the opposite, this strongly suggests sector 

quality effects drive abnormal returns of the QMJ strategy.  

We also examine the effect of going long junk stocks in the sectors with the highest quality 

score and short quality stocks from the sectors with the lowest quality score, without 

conditionally sorting on size. Based on this approach, we create two strategies. First, sectors 

are ranked each month on average quality score and stocks are sorted into ten quality deciles 

based on NYSE sector breakpoints. We proceed to create portfolios that are long the junk 

decile of the two sectors scoring highest on quality, and short the highest quality decile of the 

two sectors scoring lowest on quality each month. Second, we create a strategy where stocks 

are sorted into five quality quintiles instead of deciles. These strategies are presented in column 

4 and 5 of Table 6. The long and short portfolio returns are value-weighted separately, and the 

portfolios are rebalanced every month. 

Again, we find the average quality score of junk stocks in the high-quality sectors to be lower 

than the average quality score of the quality stocks in the low-quality sectors. The 

interpretation of this test is the same as for the long junk – short quality QMJ test above: If 

individual stock quality drives abnormal returns, we expect this portfolio to produce 

significantly negative abnormal returns. If only sector quality effects drive QMJ abnormal 

returns, we expect the opposite.  

As column 4 and 5 in Table 6 demonstrate, we find positive alphas that are large in magnitude, 

with significant 5-factor alphas for both strategies. For this test to support individual quality 
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being a driver of abnormal returns, we expect a negative and significant alpha. The positive 

alphas strongly suggest sector quality effects drive QMJ abnormal return.  

Table 6 
Long Junk - Short Quality 

This table reports the 3-, 4-, 5- and 6-factor alphas of four strategies that are long junk stocks from high-quality sectors, and 

short quality stocks from low-quality sectors. The sample runs from July 1963 through December 2016. The strategies 

presented in column 2 and 3 follow the methodology of QMJ portfolio creation: At the end of each month, all stocks are 

sorted on size based on market capitalization within each sector. The size breakpoint is constructed using the median NYSE 

market equity for the sector. Then, stocks within the size portfolios are sorted on quality score. Strategy 1 (QMJ top 2/bottom 

2), presented in the second column of this table, goes long big junk and small junk of the two highest quality industries, and 

short big quality and small quality of the two lowest quality industries. Strategy 2 (QMJ top/bottom), presented in the third 

column of this table, goes long small and big junk of the highest quality sector, and short small and big quality of the lowest 

quality sector. Portfolios are value-weighted and rebalanced every month based on the market capitalization from the previous 

month to maintain the value weights. The strategies presented in column 4 and 5 are sorted only on quality: At the end of 

each month, stocks are sorted into ten quality sorted portfolios within each sector, using NYSE breakpoints. Strategy 3 

(Quality decile) is long the junk decile of the two highest quality sectors, and short the quality decile of the two lowest quality 

sectors. Strategy 4 (Quality quintile) is long the junk quintile of the two highest quality sectors, and short the quality quintile 

of the two lowest quality sectors. Portfolios are value-weighted and rebalanced every month based on the market capitalization 

from the previous month to maintain the value weights. The alphas reported for every strategy is the intercept in the time-

series regression for monthly excess returns. The excess returns are over the U.S. monthly T-bill rate. The explanatory 

variables in the time-series are the returns of the market, size (SMB), book-to-market (HML), momentum (UMD), 

investments (CMA) and profitability (RMW). The alphas are reported in monthly percent. T-tests are one-tailed, and the t-

statistics are presented under the coefficient estimates in parentheses. Significant alphas at the 5% level are reported in bold.  

 

4.5 Sector Neutral QMJ 

As a final test, we create QMJ strategies that are not allowed to invest aggressively in sectors 

– a sector neutral QMJ. We use two methods to restrict the QMJ strategy, a market value-

weighted target sector weight and an equal-weighted 10% target sector weight. If these 

strategies deliver large and significant abnormal returns, we can disregard our hypothesis of 

sector quality effects within QMJ. On the other hand, if the constrained strategies fail to deliver 

abnormal returns, we have found further evidence of sector quality effects. 

To begin, we calculate total market equity and market equity of each sector every month from 

the CRSP dataset. This allows us to compute value-weighted target sector weights. After we 

QMJ top 2/bottom 2 QMJ top/bottom Quality decile Quality quintile

3-factor alpha 0.17 0.24 0.06 0.16

[0.60] [1.11] [0.26] [0.87]

4-factor alpha 0.10 0.13 0.09 0.14

[0.35] [0.60] [0.37] [0.71]

5-factor alpha 0.25 0.42 0.40 0.36

[0.87] [1.93] [1.65] [1.86]

6-factor alpha 0.38 0.31 0.38 0.31

[1.56] [1.40] [1.56] [1.59]
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compute the value-weighted return of the six portfolios sorted conditionally on size and quality 

as presented in Section 3.2.2, we calculate the actual sector weight in the unrestricted QMJ 

strategy at the start of each month. We rescale the investment in each stock to the CRSP target 

weight, by creating a scaling factor for the value-weighted returns, as shown in Equation 12: 

 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑠𝑒𝑐𝑡𝑜𝑟 𝑤𝑒𝑖𝑔ℎ𝑡

𝐴𝑐𝑡𝑢𝑎𝑙 𝑠𝑒𝑐𝑡𝑜𝑟 𝑤𝑒𝑖𝑔ℎ𝑡
∗ 𝑉𝑎𝑙𝑢𝑒‑𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛                       (12) 

The value-weighted returns are multiplied by the scaling factor, which ensures the sector 

weights of the sector neutral portfolios match the target sector weights. This means, if the QMJ 

sector weight is less than the target sector weight, the strategy increases its exposure to this 

sector. If the QMJ sector weight is greater than the target sector weight, the strategy reduces 

its exposure to this sector. To explore a more conservative sector restriction of the QMJ, we 

also create a QMJ strategy that is equally invested in each sector. This means we set the target 

sector weight to 10% for each sector in equation 12.  

The results from the return tests on the sector neutral QMJ strategies are presented in Table 7. 

Panel A presents the strategy with value-weighted CRSP target sector weights, while Panel B 

presents the strategy with equal-weighted target sector weights of 10%. The factor loadings 

presented in Table 7 indicate that the sector neutral QMJ strategies invest in the same type of 

stocks as the unrestricted QMJ strategy. However, the 6-factor alphas are greatly reduced. In 

Panel A we report an insignificant 6-factor alpha of 0.09%, while in Panel B we report a barely 

significant 6-factor alpha of 0.13%. As documented, the unrestricted QMJ strategy yields a 6-

factor alpha of 0.22%. These results are supportive of sector quality effects within QMJ, as 

the sector neutral strategies perform worse than the unrestricted QMJ in return tests. 

To summarize this chapter, we find that the within-sector and long junk – short quality tests 

point towards sector quality effects in the QMJ. The random sector test is supportive of there 

not being only sector quality effects that drive abnormal returns, while the demeaning test 

suggests no sector quality effects in the QMJ. At last, the sector neutral QMJ strategies do not 

match the performance of the unrestricted QMJ. This adds to the evidence of sector quality 

effects being present in the QMJ. Therefore, we conclude that sector quality effects partially 

drive the abnormal returns of the QMJ strategy. 
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Table 7 
Sector Neutral QMJ Portfolio Alphas 

 
This table shows the calendar-time portfolio returns and factor loadings of the sector neutral QMJ portfolios from July 1963 

through December 2016. Panel A shows a sector neutral strategy using CRSP value-weighted target sector weights, while 

Panel B shows the strategy using equal-weighted 10% target sector weights. The sector neutral portfolios are constructed at 

the intersection of six-value weighted portfolios formed on size and quality. At the end of each calendar month all stocks are 

sorted on size based on their market capitalization. The size breakpoint is constructed using the median NYSE market equity. 

After the portfolios are sorted on size the portfolios are sorted on quality, sorting both small cap stocks and large cap stocks 

on quality. Portfolios are value-weighted and rebalanced every month based on the market capitalization to maintain the value 

weights. Based on the target sector weights, value-weighted returns are rescaled such that the QMJ strategy sector weights 

matches the target weights. The sector neutral QMJ factor return is the average return on the two high quality portfolios minus 

the average return on the two low quality (junk) portfolios. The excess return (over the U.S. monthly T-bill rate) and alphas 

are reported with respect to the CAPM and 3/4/5/6-factor model, and t-statistics are presented under the estimates in 

parentheses. The explanatory variables in the time-series are the returns of the market (MKT), size (SMB), book-to-market 

(HML), investment (CMA), profitability (RMW), and momentum (UMD) portfolios from Ken French’s data library. Alphas 

and the excess returns are reported in monthly percent. Sharpe ratios are annualized. Significant alphas and excess returns at 

the 5% level are reported in bold. 

 

 

6-factor 5-factor 4-factor 3-factor 6-factor 5-factor 4-factor 3-factor

Excess return 0.04 0.04 0.04 0.04 0.01 0.01 0.01 0.01

[0.51] [0.51] [0.51] [0.51] [0.11] [0.11] [0.11] [0.11]

Alpha 0.09 0.16 0.19 0.30 0.13 0.21 0.22 0.33

[1.53] [2.48] [2.96] [4.52] [1.96] [3.12] [3.16] [4.65]

MKT -0.16 -0.17 -0.18 -0.20 -0.25 -0.26 -0.27 -0.29

[-11.34] [-11.86] [-11.80] [-12.91] [-15.46] [-15.86] [-16.12] [-17.10]

SMB -0.16 -0.15 -0.25 -0.24 -0.14 -0.14 -0.22 -0.22

[-8.33] [-7.63] [-11.66] [-11.04] [-6.53] [-5.98] [-9.58] [-9.11]

HML -0.19 -0.25 -0.20 -0.24 -0.27 -0.33 -0.27 -0.31

[-7.03] [-9.00] [-8.46] [-10.10] [-8.56] [-10.47] [-10.68] [-12.23]

CMA -0.03 0.01 -0.02 0.02

[-0.73] [0.29] [-0.46] [0.46]

RMW 0.37 0.39 0.33 0.35

[13.64] [14.05] [10.61] [11.13]

MOM 0.11 0.12 0.11 0.12

[7.84] [8.04] [7.16] [7.57]

Sharpe ratios 0.07 0.07 0.07 0.07 0.01 0.01 0.01 0.01

                    Panel A: Value-weighted target sector weights     Panel B: Equal-weighted target sector weights
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5. Volatility-Managed Sector Neutral QMJ 

In Chapter 4 we establish a potential risk-based explanation for QMJ abnormal returns, as the 

strategy seems to invest aggressively in sectors that outperform rather than individual quality 

stocks. Consequently, the QMJ lacks diversification. We also show that a sector neutral QMJ 

strategy performs worse in return tests than the unrestricted QMJ. 

However, we do not believe the quality puzzle is explained yet. Extensive research show that 

volatility-managed factor strategies exhibit increased excess returns and alphas, with reduced 

volatility. Barroso and Santa-Clara (2015) create a dynamic momentum strategy that is scaled 

by forecasted and preferred volatility, which doubles Sharpe ratio and greatly reduces crash 

risk. Moreira and Muir (2017) document large alphas and increase in Sharpe ratios for a 

selection of volatility-managed factors, such as value and profitability. If a volatility-managed 

version of the sector neutral QMJ strategy delivers significant positive abnormal returns, sector 

bets cannot explain the abnormal returns of the QMJ strategy. In this chapter we proceed with 

the sector neutral QMJ that use CRSP value-weighted target sector weights, as presented in 

Section 4.5. Results for the volatility-managed sector neutral QMJ which invests 10% in each 

sector are available upon request.  

5.1 Portfolio Formation  

To implement a volatility-managed sector neutral QMJ, we follow the methodology of Barroso 

and Santa-Clara (2015). They use daily strategy returns to forecast volatility, in order to 

volatility-manage the monthly strategy. To construct daily sector neutral QMJ portfolios, we 

follow the methodology provided in Section 4.5, but with daily stock returns. Each day, we 

sort stocks on size based on their market capitalization from the start of the month. The size 

breakpoint is constructed using the median NYSE market equity. Then, we sort the size 

portfolios on quality. The bottom 30% of observations are classified as junk stocks, while the 

top 30% of observations are classified as quality stocks. Daily returns are then value-weighted 

by the market equity from the last trading day of the previous month. 

Next, the daily value-weighted returns are multiplied by the scaling factor presented in Section 

4.5 (Equation 12), which ensures the daily sector weights of the portfolios match the target 

sector weights from the beginning of the month. The daily sector neutral QMJ return is the 
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average return on the high-quality portfolios minus the average return on the low-quality 

(junk) portfolios. 

To forecast sector neutral QMJ variance, we compute six-month realized variance of the daily 

returns at the end of each month. The realized variance is the sum of squared daily returns 

from the previous 126 days, which is averaged to daily variance. The daily realized variance 

is then multiplied with 21 to obtain a monthly variance forecast. See Equation 13 for the 

variance forecast, where day 126 is the last day of month t-1: 

�̂�𝑄𝑀𝐽,𝑡
2 =

21

126
∑ 𝑟𝑄𝑀𝐽,𝑗 

2                                                           (13)

126

𝑗=1

 

Barroso and Santa-Clara (2015) use a volatility target of 12% annualized standard deviation. 

We calculate volatility-managed strategy returns for volatility targets of 5%, 12% and 15% to 

show how the strategy is affected by different volatility targets.  

To compute time-varying strategy weights, the annual standard deviation target is converted 

to monthly standard deviation. Then, the returns of the monthly sector neutral QMJ strategy is 

multiplied by the ratio of target volatility over forecasted volatility (equation 14). This scaling 

can be conducted without constraints, as the monthly sector neutral QMJ strategy is a self-

financing, zero-investment strategy. For example, if the strategy weight is 2, it means we go 

two times into the strategy.   

𝑟𝑄𝑀𝐽∗,𝑡 =
𝜎𝑡𝑎𝑟𝑔𝑒𝑡

�̂�𝑄𝑀𝐽,𝑡
 𝑟𝑄𝑀𝐽,𝑡                                                          (14) 

To assess the performance of the volatility-managed sector neutral QMJ, we present dynamic  

strategy weights, a number of return tests, descriptive statistics, and cumulative abnormal 

returns.  

5.2 Results and Implications 

In Figure 1 we present time-varying strategy weights (
𝜎𝑡𝑎𝑟𝑔𝑒𝑡

�̂�𝑄𝑀𝐽,𝑡
) for the volatility-managed sector 

neutral QMJ strategies. Evidently, a higher volatility target translates to a higher exposure to 

the sector neutral QMJ. The average weights for the volatility-managed strategies are 0.98, 

2.35 and 2.94 with volatility targets of 5%, 12% and 15% respectively. Barroso and Santa-
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Clara (2015) document that the 12% volatility target of the momentum strategy results in an 

average strategy weight of 0.90. For QMJ, a 12% target results in average strategy weights of 

2.35, indicating QMJ is a low volatility strategy compared to momentum. The 5% target might 

be a more sensible annual volatility target for QMJ, as the average weight is 0.98.  

Figure 1 
Strategy Weights 

Figure 1 displays the time-varying strategy weights for the volatility-managed QMJ strategies with 5%, 12% and 15% 

volatility targets. The sample runs from July 1963 through December 2016. Weights are calculated as the ratio of monthly 

target standard deviation over the one-month standard deviation forecast, as shown in equation 14. 

 

As presented in Table 8, the results from regressing the volatility-managed strategy returns on 

a 6-factor model are striking. The sector neutral QMJ fails to deliver significant positive alpha, 

while the volatility-managed versions deliver significant alphas above the t-statistic threshold 

of 3 proposed by Harvey et al. (2015). The most conservative strategy, with a volatility target 

of 5%, earns abnormal returns of 0.17% in the 6-factor model, with a t-statistic of 3.13. Thus, 

we are able to double the sector neutral QMJ strategy alpha. Both the 12%-version and the 

15%-version yield higher alphas, but as we can infer from the identical t-statistics, this is 

followed by a proportional increase in volatility. Moreover, the factor loadings of the sector 

neutral QMJ strategy and the volatility-managed versions are similar to the factor loadings of 

the unrestricted QMJ. This means the strategies are picking the same type of stocks as the 

unrestricted QMJ strategy, without suffering from lack of diversification. The factor loadings 
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of the volatility-managed versions seem to be scaled according to volatility target, a 

mechanical implication of the methodology of Barroso and Santa-Clara (2015).  

From Table 8 we infer that the potential risk-based explanation for QMJ abnormal returns we 

present in Chapter 4 cannot explain the quality puzzle. As we can easily volatility-manage a 

sector neutral QMJ strategy, QMJ abnormal returns cannot be compensation for lack of 

diversification due to sector quality effects. Such a strategy is not difficult to implement and 

adds a new dimension to the quality puzzle.  

In Table 9 we present descriptive statistics for the unrestricted QMJ, the sector neutral QMJ 

and the volatility-managed sector neutral QMJ strategies with volatility targets of 5% and 12% 

for the entire sample period. The table provides supporting arguments to how QMJ is improved 

by volatility-management while under sector restraints. First, Sharpe ratio is the same for 

volatility-managed QMJ and the unrestricted QMJ strategy regardless of volatility target. 

Second, maximum drawdown for the volatility-managed strategy with 5% volatility target is 

substantially lower than for the unrestricted QMJ strategy. By downscaling exposure to the 

sector neutral QMJ in times of volatility, crash risk appears to be reduced compared to the 

unrestricted QMJ strategy. Furthermore, the excess kurtosis drops from 4.14 for the sector 

neutral QMJ to 1.07 for the volatility-managed sector neutral QMJ, regardless of volatility 

target. The left skewness of the sector neutral QMJ improves to a right skewness. These results 

strongly indicate reduced crash risk for the volatility-managed strategies.  

Table 9 also shows that the Sharpe ratios are equal for both volatility targets. The standard 

deviation of a high volatility target strategy is naturally higher than the standard deviation of 

a lower volatility target strategy, but is followed by proportionally higher excess returns. 

Therefore, the choice of volatility target is a question of investor preference. Investors with 

different risk-reward preferences might choose different volatility targets. This follows basic 

portfolio theory, where Sharpe ratio is maximized, before utility and risk aversion is 

introduced for portfolio optimization.  
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Table 8 
Volatility-Managed Sector Neutral Quality Minus Junk 

This table shows the calendar-time portfolio returns and factor loadings of the sector neutral QMJ portfolios and volatility-

managed sector neutral QMJ portfolios. The sample runs from July 1963 through December 2016. The sector neutral 

portfolios are constructed at the intersection of six-value weighted portfolios formed on size and quality. At the end of each 

calendar month all stocks are sorted on size based on their market capitalization. The size breakpoint is constructed using the 

median NYSE market equity. After the portfolios are sorted on size the portfolios are sorted on quality, sorting both small 

cap stocks and large cap stocks on quality. Portfolios are value-weighted and rebalanced every month based on the market 

capitalization to maintain the value weights. The sector neutral strategy uses CRSP value-weighted target sector weights. 

Based on these target weights, value-weighted returns are rescaled such that the QMJ strategy sector weights matches the 

target weights. The sector neutral QMJ factor return is the average return on the two high quality portfolios minus the average 

return on the two low quality (junk) portfolios. In column 3, 4 and 5 we present three volatility-managed sector neutral 

strategies with annual volatility targets of 5%, 12% and 15% respectively. To volatility-manage the sector neutral strategy, 

the daily returns of the sector neutral QMJ are used to create a variance forecast to scale the strategy exposure depending on 

a volatility target and the volatility forecast for each month. Alphas are reported with respect to the CAPM and 3/4/5/6-factor 

models, and t-statistics are presented under the estimates in parentheses. The explanatory variables in the time-series are the 

returns of the market (MKT), size (SMB), book-to-market (HML), investment (CMA), profitability (RMW), and momentum 

(UMD) portfolios from Ken French’s data library. The excess returns are over the U.S. monthly T-bill rate. Alphas and the 

excess returns are reported in monthly percent. Sharpe ratios are annualized. Significant alphas and excess returns at the 5% 

level are reported in bold.  

 

  

Sector neutral QMJ Vol.managed 5% Vol.managed 12% Vol.managed 15%

Excess return 0.04 0.09 0.21 0.27

[0.51] [1.32] [1.32] [1.32]

3-factor alpha 0.30 0.28 0.67 0.83

[4.52] [4.89] [4.89] [4.89]

4-factor alpha 0.19 0.23 0.55 0.69

[2.96] [4.02] [4.02] [4.02]

5-factor alpha 0.16 0.20 0.47 0.59

[2.48] [3.74] [3.74] [3.74]

6-factor alpha 0.09 0.17 0.40 0.50

[1.53] [3.13] [3.13] [3.13]

MKT -0.16 -0.13 -0.31 -0.39

[-11.34] [-9.92] [-9.92] [-9.92]

SMB -0.16 -0.12 -0.30 -0.37

[-8.33] [-6.89] [-6.89] [-6.89]

HML -0.19 -0.12 -0.29 -0.36

[-7.03] [-4.77] [-4.77] [-4.77]

CMA -0.03 -0.09 -0.21 -0.26

[-0.73] [-2.39] [-2.39] [-2.39]

RMW 0.37 0.27 0.65 0.81

[13.64] [10.87] [10.87] [10.87]

MOM 0.11 0.04 0.10 0.13

[7.84] [3.48] [3.48] [3.48]

Sharpe ratios 0.07 0.18 0.18 0.18
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Table 9 
Descriptive Statistics 

This table shows descriptive statistics for the unrestricted QMJ, sector neutral QMJ and volatility-managed sector neutral 

QMJ strategies with 5% and 12% volatility target. The sample runs from July 1963 through December 2016. Excess returns 

and standard deviations are in monthly percent. Sharpe ratios are annualized. Max drawdown is calculated as maximum loss 

from a peak during the sample. 

 

 

In figure 2 we plot the cumulative abnormal returns (CAR), which is the alpha plus the 

regression residuals, for the unrestricted QMJ, sector neutral QMJ and volatility-managed 

sector neutral QMJ strategies. The plot shows consistent risk-adjusted returns over time for 

the volatility-managed sector neutral strategies, indicating no particular subsample drives the 

abnormal returns. There are also improvements in sheer magnitude of risk-adjusted returns for 

the volatility-managed sector neutral QMJ compared to the sector neutral QMJ, regardless of 

volatility target.  

In summary, we volatility-manage the sector neutral QMJ, and document significant 

improvements in strategy performance. With a 5% volatility target, the 6-factor alpha of the 

sector neutral QMJ doubles. Sharpe ratios are restored to the same level as for the unrestricted 

QMJ strategy, and crash risk is reduced. This result deepens the quality puzzle, as the sector 

quality effects within QMJ cannot explain QMJ abnormal returns. 

  

Strategy Period Excess Return Standard deviation Sharpe ratio Max drawdown % Losing months Worst monthly return Kurtosis Skewness

Unrestricted 1963-2016 0.12 2.32 0.18 -0.35 0.47 -0.14 3.44 -0.46

Neutral 1963-2016 0.04 2.11 0.07 -0.36 0.48 -0.13 4.14 -0.59

5% Scaled 1963-2016 0.09 1.71 0.18 -0.26 0.48 -0.06 1.07 0.11

12% Scaled 1963-2016 0.21 4.11 0.18 -0.53 0.48 -0.14 1.07 0.11
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Figure 2 
Cumulative 6-factor Alpha 

This figure shows a plot of the cumulative abnormal returns (alpha plus regression residual) for the unrestricted QMJ, sector 

neutral QMJ and volatility-managed sector neutral QMJ strategies (5%- and 12% target). The sample runs from July 1963 

through December 2016. The QMJ factor is constructed at the intersection of six-value weighted portfolios formed on size 

and quality. At the end of each calendar month all stocks are sorted on size based on their lagged market capitalization. The 

size breakpoint is constructed using the median NYSE market equity. After the portfolios are sorted on size the portfolios are 

sorted on quality, sorting both small cap stocks and large cap stocks on quality. Portfolios are value-weighted and rebalanced 

every month to maintain the value weights. The QMJ factor return is the average return on the two high quality portfolios 

minus the average return on the low quality (junk) portfolios. The sector neutral strategy uses CRSP value-weighted target 

sector weights. Based on these target weights, value-weighted returns are rescaled such that the QMJ strategy sector weights 

matches the target weights. The sector neutral QMJ factor return is the average return on the two high quality portfolios minus 

the average return on the two low quality (junk) portfolios. To volatility-manage the sector neutral strategies, the daily returns 

of the sector neutral QMJ are used to create a variance forecast. Then strategy exposure is scaled depending on a volatility 

target and the volatility forecast for each month. 
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6. Robustness Tests 

In this chapter we present robustness tests for the results from Chapter 4 and 5. We conduct 

an analysis of industry quality effects within QMJ, by sorting stocks into 48 industries instead 

of ten sectors. We perform the same tests as in Chapter 4 and 5. This is to ensure that our 

results are robust to a narrow industry definition. In Table 10, we present a summary of the 

results. We only present the 6-factor alphas and factor loadings, as we consider them as the 

most relevant for a comparison to the sector results. More detailed results are available upon 

request. We follow the same methodology as in Chapter 4 and 5, but we require six 

observations for an industry to be included in the return tests each month. 

For the within-industry test, we find that the QMJ only yields significant 6-factor alpha in one 

out of 48 industries. Similarly, the within-sector test yield significant alpha for only two out 

of ten sectors. Furthermore, the results of the random industry test are similar to the results of 

the random sector test. We find that six out of 48 random industry portfolios yield significant 

6-factor alpha, an increase from the within-industry test. Six out of 48 industries is a low 

fraction, which might indicate sector quality effects are present. However, the number of 

industries delivering positive abnormal returns increases compared to the within-industry test, 

making interpretations unclear and the results inconclusive. Still, the results suggest industry 

quality effects are not the only driver of QMJ abnormal returns. Moreover, when we assign 

stocks to random industry portfolios, 6.2% of the stocks are on average still within the same 

industry portfolio. When we assign stocks to random sector portfolios, 16.3% of the stocks are 

on average still within the same sector portfolio. This might indicate that an industry sort is 

better suited for this test. 

Table 10 provides further confirmation that our results are robust to a narrow industry 

definition. For the industry demeaned QMJ, we demean individual stock quality with average 

industry quality and observe some deviations from the sector demeaning test. The abnormal 

returns are unchanged, but the Sharpe ratio drops by 40%. As the performance of the strategy 

is reduced, the industry demeaning test might suggest industry quality effects drive QMJ 

abnormal returns. This is in contrast to the results of the sector demeaning test, which indicates 

sector quality effects are not present within QMJ. 

For the long junk – short quality test, we follow the methodology of Asness et al. (2000). We 

examine a strategy that is long the junk quintile of the seven industries that score highest on 



 41 

quality and short the quality quintile of the seven industries that score lowest on quality. The 

strategy delivers a positive insignificant 6-factor alpha. Hence, this result is not as strongly in 

favour of industry quality effects driving abnormal returns as the equivalent sector test. 

However, for this test to suggest that individual stock quality drives QMJ abnormal returns, 

we should see negative and significant alphas. 

We also create an industry neutral QMJ, using CRSP value-weighted target industry weights. 

This strategy yields a 6-factor alpha of 0.14% compared to 0.22% for the unrestricted QMJ. 

By removing the possibility to bet on industries, strategy performance is reduced. Therefore, 

this test indicates that industry quality effects drive QMJ abnormal returns.  

At last, we volatility-manage the industry neutral QMJ and confirm that it produces large 

significant abnormal returns. As presented in column 6 of Table 10, the 6-factor alpha is 

restored, and Sharpe ratio nearly doubles by managing the volatility of the industry neutral 

QMJ. This confirms the results we document in Chapter 4 and 5 holds for a narrow industry 

definition. 
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Table 10 
Summary of Robustness Tests 

This table presents the results of the 6-factor regressions on the QMJ, industry demeaned QMJ, Long junk – Short quality for 

industries, industry neutral QMJ and volatility-managed industry neutral QMJ (5% volatility target). The sample runs from 

July 1963 through December 2016. The construction of portfolio returns follows the same methodology utilized in Chapter 4 

and 5. Alphas are reported with respect to the 6-factor model, and t-statistics are presented under the estimates in parentheses. 

The explanatory variables in the time-series are the returns of the market (MKT), size (SMB), book-to-market (HML), 

investment (CMA), profitability (RMW), and momentum (UMD) portfolios from Ken French’s data library. The excess 

returns are over the U.S. monthly T-bill rate. Alphas and the excess returns are reported in monthly percent. Sharpe ratios are 

annualized. Significant alphas and excess returns at the 5% level are reported in bold.  

 

 

QMJ
Demeaned 

QMJ

Long junk 

Short quality

Industry neutral 

QMJ

Vol.managed 

5%

Excess return 0.12 0.07 -0.05 0.10 0.15

[1.33] [0.81] [-0.24] [1.27] [2.16]

6-factor alpha 0.22 0.20 0.07 0.14 0.20

[3.71] [3.63] [0.33] [2.29] [3.53]

MKT -0.15 -0.19 0.21 -0.11 -0.07

[-10.25] [-14.16] [4.13] [-7.24] [-5.09]

SMB -0.08 -0.15 0.24 -0.17 -0.14

[-3.85] [-7.92] [3.42] [-8.58] [-7.67]

HML -0.40 -0.37 -0.05 -0.23 -0.16

[-14.05] [-13.70] [-0.47] [-7.93] [-6.16]

CMA -0.11 -0.01 -0.36 -0.03 -0.06

[-2.69] [-0.26] [-2.51] [-0.79] [-1.69]

RMW 0.42 0.34 -0.37 0.32 0.25

[14.99] [13.31] [-3.83] [11.37] [9.68]

MOM 0.11 0.09 -0.02 0.13 0.07

[8.33] [7.06] [-0.46] [9.07] [5.13]

Sharpe ratio 0.18 0.11 -0.03 0.18 0.30
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7. Conclusion 

In this thesis we test whether sector quality effects drive QMJ abnormal returns. We follow 

the methodology of Moskowitz and Grinblatt (1999), and perform a battery of tests on QMJ 

to determine whether the strategy invests in sectors that outperform rather than individual 

quality stocks.  

First, we test whether the QMJ strategy yields a significant alpha within sectors. We find that 

only two out of ten sectors yield a significant 6-factor alpha, which indicates sector quality 

effects drive the QMJ abnormal returns. Moreover, we test whether demeaning the QMJ 

strategy by average sector quality score affects the performance of the QMJ. Our results show 

that demeaning has a negligible effect on abnormal returns and Sharpe ratios, which indicates 

that sector quality effects is not the driver of the abnormal returns of the QMJ strategy.  

Next, we create random sector portfolios to isolate the sector quality effects within QMJ. We 

document that a majority of the random sectors do not yield significant alphas. This indicates 

that sector quality effects are not the only driver of QMJ abnormal returns. We proceed to 

create strategies that are long junk stocks from the highest quality sectors, and short quality 

stocks from the lowest quality sectors. The strategies yield positive and significant 5-factor 

alphas, which suggests that sector quality effects drive QMJ abnormal returns. As a final test, 

we create sector neutral QMJ portfolios. We find that the sector neutral QMJ strategies 

perform worse than the unrestricted QMJ in return tests, yielding substantially lower abnormal 

returns. By removing the possibility to bet on sectors, strategy performance is reduced. 

Therefore, this test indicates that sector quality effects drive QMJ abnormal returns. 

A majority of the tests point towards there being sector quality effects within the QMJ factor. 

Due to contradicting result from the sector demeaning test and the random sector test, it is 

unlikely that only sector quality effects drive the QMJ abnormal returns. Therefore, we 

conclude sector quality effects partially drive the abnormal returns of the QMJ strategy. This 

implies the QMJ strategy lacks diversification and could serve as a potential explanation of 

the quality puzzle.   

In an attempt to refute this potential explanation of the quality puzzle, we manage the volatility 

of the sector neutral QMJ following the methodology of Barroso and Santa-Clara (2015). By 

dynamically scaling strategy exposure, we are able to create QMJ strategy which is not 
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allowed to bet on sectors, that delivers abnormal and excess returns in the same magnitude as 

the unrestricted QMJ strategy. The volatility-managed sector neutral QMJ strategy with a 12% 

volatility target delivers 6-factor alpha of 0.40%, compared to 0.09% and 0.22% for the sector 

neutral and unrestricted QMJ respectively. Hence, we provide a QMJ strategy that is more 

diversified than the unrestricted QMJ that still delivers high abnormal returns.  

In summary, we find that sector quality effects partially drive QMJ abnormal returns. This is 

a potential risk-based explanation for the QMJ abnormal returns, as it indicates lack of 

diversification in the strategy. However, we document that a volatility-managed sector neutral 

QMJ strategy, which does not suffer from lack of diversification, yields significant abnormal 

returns in the 6-factor model. These results are robust to a narrow industry definition. This 

makes the QMJ abnormal returns harder to explain and deepens the quality puzzle. 
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9. Appendix 

Profitability Measures: 

GPOA = (Total revenue – Cost of goods sold) / Total assets 

ROE = Net income / Book equity 

ROA = Net income / Total assets 

CFOA = (Net income + Depreciation – Changes in working capital – Capital expenditures) / 

Total assets 

GMAR = (Total revenue – Cost of goods sold) / Total sales 

ACC = (Depreciation – Changes in working capital) / Total assets 

Working capital = Current assets – Current liabilities – Cash and short-term instruments + 

Short term debt + Income taxes payable 

Book equity = Shareholders’ equity – Preferred stock (PSTKRV, PSTKL or PSTK depending 

on availability) 

If shareholders’ equity is not available, the following is used: 

Shareholders’ equity = Common equity + Preferred Stock 

We proxy shareholders’ equity by Total assets – (Total liability + Minority Interest) if 

both Common equity and Preferred stock is missing.  

 

Growth Measures: 

ΔGPOA = (Gross Profitst – Gross Profitst-5) / Total assetst-5 

ΔROE = (Net incomet – Net incomet-5) / Book equityt-5 

ΔROA = (Net incomet – Net incomet-5) / Total assetst-5 

ΔCFOA = (Cash Flowt – Cash Flowt-5) / Total assetst-5 , 
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where Cash Flow = Net income + Depreciation – Changes in working capital – Capital 

expenditures. 

ΔGMAR = (Gross Profitst – Gross Profitst-5) / Total salest-5 

 

Safety Measures: 

Beta estimate (BAB) = 𝛽𝑖 =
𝜎𝑖

𝜎𝑚
𝜌  , 

where 𝜎𝑖 and 𝜎𝑚 are the estimates for standard deviation for the stock and the market, 

and  𝜌   is their correlation 

LEV = - 1 * (Long term debt + Short term debt + Minority interest + Preferred stock) / Total 

assets 

Ohlson’s O-score = - (-1.32 – 0.407 * log (ADJASSET/CPI) + TLTA – 1.43 * WCTA + 0.076 

* CLCA – 1.72 * OENEG – 2.37 * NITA – 1.83 * FUTL + 0.285 *INTWO – 0.521 * CHIN) 

 Adjusted assets = Assets total + 0.1 * (Market equity – Book equity)  

 CPI = Consumer price index 

 TLTA = Book value of debt (DLC + DLTT) / Adjusted assets 

 WCTA = (Current assets – Current liabilities) / Adjusted assets 

 CLCA = Current liabilities / Current assets 

 OENEG is dummy equal to 1 if total liabilities exceed total assets 

 NITA = Net income / Total assets 

 FUTL = Pre-tax income / Total liabilities  

INTWO is a dummy equal to one if net income is negative for the current and prior 

fiscal year.  
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CHIN = Changes in net income = (Net incomet – Net incomet-1) / (|Net incomet| + |Net 

incomet-1|) 

Altman’s Z-score = (1.2 * Working capital + 1.4 * Retained earnings + 3.3 * Earnings before 

interest and taxes + 0.6 * Market equity + Total sales) / Assets total 

EVOL = Standard deviation of quarterly ROE over the past 60 quarters. We require 12 non-

missing quarters. If we are missing quarterly data, we use annual ROE over the past five years, 

where we require at least five non-missing fiscal years.  
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List of variables 

The variables names presented as abbreviations corresponding to the variable abbreviation in 

the CRSP and Compustat datasets. 

Merged CRSP/Compustat  

Data type: Annual/Quarterly 

Data range: July 1957 through December 2016 

 

CRSP 

Data type: Monthly/Daily 

Data range: July 1957 through December 2016 

 
  

SIC TXP NI DLTT FYEAR FYR

First effective date of link REVT DVP MIBT GIND RE

Last effective date of link COGS GP PI GSECTORS DVP

Historical CRSP Permno link SEQ DP REVT STKO EXCHG

Fiscal year-end PSTK CAPX EBIT LINKDT DLV

FYEAR – Date Year – Fiscal LT WCAP CH LINKENDDT ACT

AT MIB WCAPCH LCT LPERMCO PSTKL

CEQ PSTKRV SALE CHE LPERMNO IB

PERMNO RET

DATE SHROUT

SHRCD DLSTCD

EXCHCD DLRET

SICCD VWRETD

PRC
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List of sectors 

We use GIC codes to assign firms to 11 sectors. The following list contains the GIC codes 

that defines each sector. 

Energy    10 

Materials   15 

Industrials   20 

Consumer Discretionary 25 

Consumer Staples   30 

Health Care   35 

Financials   40 

Information Technology  45 

Communication Services 50 

Utilities   55 

Real Estate   60 
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List of industries 

We use digit SIC codes to assign firms to 48 industries. The following list contains the range 

of SIC codes that defines each industry (Asness et al., 2000).  

 

Agriculture     0100-0799, 2048-2048 

Food Products     2000-2046, 2050-2063, 2070-2079, 2090-2095 2098-2099  

Candy and Soda    2064-2068, 2086-2087, 2096-2097  

Alcoholic Beverages    2080-2085  

Tobacco Products    2100-2199  

Recreational Products    0900-0999, 3650-3652, 3732-3732, 3930-3949  

Entertainment     7800-7842, 7870-7870, 7900-7999  

Printing and Publishing   2700-2749, 2770-2799  

Consumer Goods  2047-2047, 2391-2392, 2510-2519, 2590-2599, 2840-2844, 

3160-3199, 3229-3231, 3260-3260, 3269-3269, 3630-3639, 

3750-3751, 3800-3800, 3860-3879, 3910-3919, 3960-3964, 

3970-3970, 3991-3991, 3995-3995  

Apparel    2300-2390, 3020-3021, 3100-3111, 3130-3159, 3965-3965  

Healthcare    8000-8099  

Medical Equipment    3693-3693, 3840-3851  

Pharmaceutical Products   2830-2836  

Chemicals     2800-2829, 2850-2899  

Rubber and Plastic Products   3000-3000, 3050-3099  

Textiles     2200-2295, 2297-2299, 2393-2395, 2397-2399 30  

Construction Materials  0800-0899, 2400-2439, 2450-2459, 2490-2499, 2950-2952 

3200-3219, 3240-3259, 3261-3261, 3264-3264, 3270-3299 

3420-3442, 3446-3452, 3490-3499, 3996-3996  

Construction     1500-1549, 1600-1699, 1700-1799  

Steel Works     3300-3370, 3390-3399  

Fabricated Products    3400-3400, 3443-3444, 3460-3479  

Machinery     3510-3536, 3540-3569, 3580-3599  

Electrical Equipment  3600-3621, 3623-3629, 3640-3646, 3648-3649, 3660-3660, 

3690-3692, 3699-3699  

Miscellaneous     3900-3900, 3990-3990, 3999-3999, 9900-9999  

Automobiles and Trucks  2296-2296, 2396-2396, 3010-3011, 3537-3537, 3647-3647, 

3694-3694, 3700-3716, 3790-3792, 3799-3799 



 53 

Aircraft     3720-3729  

Shipbuilding, Railroad    3730-3731, 3740-3743  

Defence     3480-3489, 3760-3769, 3795-3795  

Precious Metals    1040-1049, 1101-1101  

Non-Metallic Mining  1000-1039, 1060-1099, 1400-1499  

Coal  1111-1111, 1200-1299  

Petroleum and Natural Gas   1110-1110, 1310-1390, 2900-2911, 2990-2999  

Utilities     4900-4999  

Telecommunications    4800-4899  

Personal Services  7020-7021, 7030-7039, 7200-7212, 7214-7299, 7395-7395 

7500-7500, 7520-7549, 7600-7699, 8100-8199, 8200-8299 

8300-8399, 8400-8499, 8600-8699, 8800-8899  

Business Services  2750-2759, 3993-3993, 7300-7372, 7374-7394, 7396-7397 

7399-7399, 7510-7519, 8700-8799, 8900-8999 

Computers     3570-3579, 3680-3689, 3695-3695, 7373-7373  

Electronic Equipment    3622-3622, 3661-3679, 3810-3810, 3812-3812  

Measuring and Control Equip.   3811-3811, 3820-3832  

Business Supplies    2520-2549, 2600-2639, 2670-2699, 2760-2761, 2950-2955  

Shipping Containers    2440-2449, 2640-2659, 3210-3221, 3410-3412  

Transportation  4000-4099, 4100-4199, 4200-4299, 4400-4499, 4500-4599 

4600-4699, 4700-4799  

Wholesale     5000-5099, 5100-5199  

Retail  5200-5299, 5300-5399, 5400-5499, 5500-5599, 5600-5699 

5700-5736, 5900-5999  

Restaurants, Hotel and Motel   5800-5813, 5890-5890, 7000-7019, 7040-7049, 7213-7213  

Banking     6000-6099, 6100-6199  

Insurance     6300-6399, 6400-6411  

Real Estate     6500-6553, 6590-6590  

Trading     6200-6299, 6700-6799 

 


