
Environmental Pollution 134 (2005) 397–409

www.elsevier.com/locate/envpol
Bioaccumulation of PCBs in Arctic seabirds: influence of
dietary exposure and congener biotransformation
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Contaminant patterns is linked to phylogeny and species-specific differences in enzyme systems and activity.

Abstract

Four seabird species and their prey (zooplankton or fish) were collected in the Barents Sea to determine how dietary exposure,

cytochrome P450 (CYP) enzyme activities and sex influenced their hepatic PCB concentrations and accumulation patterns. Five males
and five females from each seabird species (little auk (Alle alle), Brünnich’s guillemot (Uria lomvia), black guillemot (Cepphus grylle)
and black-legged kittiwake (Rissa tridactyla)) were analysed. PCB concentrations could not be explained directly by carbon source
(d13C) or trophic position (d15N), but by a combination of dietary parameters (d13C, d15N, migratory pattern, age) and contaminant

metabolism. Contrary to previous studies, the PCB pattern differed among seabirds, with a higher proportion of persistent congeners
(% of PCB-153,RPCB-153) in black-legged kittiwake than in auks. The PCB pattern also differed among auks, with little auk as the most
efficient biotransformer (highest RPCB-153 values of persistent congeners). Based on high RPCB-153 values, Brünnich’s guillemot poorly

metabolised ortho–meta-unsubstituted congeners, whereas black guillemot poorly metabolised meta–para unsubstituted congeners.
Species-specific differences in PCB biotransformation were confirmed by metabolic indices, where PCB patterns in seabirds were
adjusted for PCB pattern in prey. The relative contribution of ortho–meta-unsubstituted congeners to

P
PCBs decreased with

increasing EROD activity. There were no differences in PCB concentrations, PCB patterns or cytochrome P450 enzyme activities
between males and females. CYP P450 activities (CYP1A- and CYP2B/3A-like: EROD and testosterone 6b-hydroxylation,
respectively) were low and did not correlate with concentrations of non- or mono-ortho Cl-substituted PCBs (NO- and MO-PCBs), or

with total toxic equivalent concentrations (TEQs) for dioxin-like effects of NO- and MO-PCBs.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The Barents Sea region sustains a highly productive
marine ecosystem in the Arctic, supporting a variety of
wildlife species of which seabirds are numerous.

* Corresponding author. Tel.: C47 777 505 35; fax: C47 777 505

01.

E-mail address: katrine.borga@npolar.no (K. Borgå).
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Compared to other Arctic regions, high levels of organic
contaminants have been found in Barents Sea mammals
and some seabirds, with particularly high abundance of
polychlorinated biphenyls (PCBs) (de March et al.,
1998; Muir et al., 2000; de Wit et al., 2004). PCBs, which
have been used for industrial purposes due to their
chemical inertness, reach this Arctic region mainly
through atmospheric transport and ocean currents,
and there are few or no local sources in the Barents
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Sea (de March et al., 1998). The hydrophobicity and
biological recalcitrance of PCBs results in bioaccumu-
lation in lipid-rich tissues of biota, often with increasing
concentrations with tropic position in food webs (e.g.
Borgå et al., 2001a; Fisk et al., 2001a). PCB accumu-
lation in food web components, including in the Barents
Sea, is highly dependent on exposure (generally related
to diet and thus trophic position) and physiology of the
target species (e.g. biotransformation capacity) (e.g.
Fisk et al., 2001a; Hop et al., 2002).

Although total PCB and its contribution to sum
organochlorines in birds have been related to diet and
phylogeny (e.g. Buckman et al., 2004), detailed avian
PCB patterns have been reported to be independent of
trophic position and food sources (Braune and Nor-
strom, 1989; Borlakoglu et al., 1990). In addition, when
comparing different seabird species, the PCB pattern was
found to be relatively similar across species (Borlakoglu
et al., 1990). However, in the Barents Sea, similar PCB
patterns were found among gulls that differ in trophic
positions and PCB concentrations, whereas gulls and
auks with comparable PCB concentrations differed in
PCB pattern (Borgå et al., 2001a). Gulls had a higher
proportion of persistent PCBs than auks, a difference
which might result from differences in biotransforma-
tion, with gulls being better biotransformers than auks.

The cytochrome P450 enzyme system (CYP) plays an
important role in regulating a variety of endogenous
substances such as hormones. CYP isoforms are also
involved in the first oxidative step of contaminant
biotransformation (Walker, 1998). The presence and
activity of CYP isoforms determine an organism’s ability
and capacity to biotransform contaminants and, thus, its
contaminant levels and patterns (Murk et al., 1994;
Walker, 1998). Based onPCBpatterns in tissues, birds are
suggested to eliminate congeners with chlorine (Cl)
unsubstituted meta–para positions (through CYP2B/
3A-like enzymes) to a higher extent than congeners with
Cl-unsubstituted ortho–meta positions (through CYP1A-
like enzymes) (Braune and Norstrom, 1989; Borlakoglu
et al., 1990). Non- and mono-ortho Cl-substituted PCBs
(NO-PCB and MO-PCBs) have high potency for
coplanar configuration, and thus induction of CYP1A
enzymes. Both NO- and MO-PCBs have been found in
Arctic air (Harner et al., 1998), ice-associated amphipods
(Borgå et al., 2001b), Canadian Arctic seabirds (Braune
and Simon, 2003) and European Arctic glaucous gulls
(Larus hyperboreus) (Daelemans et al., 1992). Although
positive correlations have been found between PCB
concentrations and various biochemical parameters (in-
cluding CYP1A enzymes) in Barents Sea glaucous gull
(Henriksen et al., 2000), no studies are available on PCB
toxicity in seabirds occupying lower trophic levels in the
Barents Sea. To evaluate aryl hydrocarbon (Ah) receptor
mediated toxicity of NO- and MO-PCBs, toxic equiva-
lency factors (TEF) were established for these congeners
by the World Health Organization (Van den Berg et al.,
1998). TEF is the order of magnitude toxicity of a com-
pound relative to that of 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD), which has a coplanar configuration
and is assumed to be the most toxic compound acting
through the Ah-receptor complex. The TEFs combined
with the organism’s concentrations are used to calculate
toxic equivalent concentrations (TEQs). Whereas several
studies have been carried out on CYP activity and its
relationship to PCB concentrations or pattern in the high
trophic level glaucous gull andmarine mammals from the
Barents Sea (Wolkers et al., 1999; Henriksen et al., 2000),
seabirds at the intermediate trophic levels have so far not
been studied.

The disparity between results on avian PCB pattern
motivates closer investigation of which factors influence
avian PCB accumulation. The present study investigates
the PCB bioaccumulation in one gull species (black-
legged kittiwake (Rissa tridactyla)) and three auks (little
auk (Alle alle), Brünnich’s guillemot (Uria lomvia), black
guillemot (Cepphus grylle)) from the Barents Sea. These
long-lived seabirds are particularly numerous in the
Barents Sea region, especially during the breeding
season, and represent the 3rd to 4th trophic levels in
the food web. Their main diet is calanoid copepods,
larger zooplankton and fish, and fish, respectively, for
little auk, Brünnich’s guillemot, and black guillemot and
black-legged kittiwake (Lønne and Gabrielsen, 1992;
Mehlum and Gabrielsen, 1993; Weslawski et al., 1999).
Whereas kittiwake migrates, the auks reside in the
Nordic waters throughout the year (Anker-Nilssen
et al., 2000). These species were selected as they are
very abundant and important in the flux of energy in the
Svalbard and the Barents Sea, and there are no data
available from the European Arctic on CYP activities
and TEQs in lower trophic level avian species.

The objective of the present study was to investigate
the relationship between avian hepatic

(i) PCB concentrations and dietary parameters such as
trophic position (d15N), carbon source (d13C),
feeding rate, migration pattern, and sex.

(ii) PCB pattern and biotransformation ability due to
phylogeny and selected CYP enzyme activities
(ethoxyresorufin O-deethylation (EROD) and tes-
tosterone hydroxylation).

(iii) PCB TEQ values and CYP induction.

2. Materials and methods

2.1. Species and sampling

The seabirds were collected in the marginal ice zone
of the north-central (76 �08#–76 �96#N, 32 �52#–33 �31#E)
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and north-western (76 �46#–77 �45#N, 27 �00#–28 �13#E)
Barents Sea from 9 to 20 May 1999, using a shotgun
with steel pellets. Five females and five males from each
species were randomly selected from a pool of hunted
birds (total sample sizeZ 40). Within 15 min after
death, the seabirds were dissected and liver samples
for analyses of CYP enzyme activities were stored frozen
in liquid nitrogen. Liver and muscle samples were frozen
at �20 �C in containers of polypropylene and alumin-
ium foil, respectively, and analysed for PCBs and stable
carbon and nitrogen isotopes, respectively. Body mass
(g), sex, age (juvenile/adult based on plumage) were
registered. The seabirds’ main prey were collected
simultaneously and analysed for PCBs as described in
detail elsewhere (Borgå et al., 2001a; Borgå et al., 2002).

A seabird’s daily feeding rate is determined by its
daily energy requirement (Gabrielsen et al., 1991; Ellis
and Gabrielsen, 2002). Based on the measured body
mass and its species-specific relationship with basal and
field metabolic rates (Gabrielsen et al., 1991; Ellis and
Gabrielsen, 2002), daily energy requirements were
calculated for each seabird species. Given the energy
density of the species’ prey items in the Barents Sea
(Gabrielsen et al., 1991; Gabrielsen and Ryg, 1992) and
the assimilation efficiencies of seabirds (Brekke and
Gabrielsen, 1994), the respective weight-specific feeding
rates were calculated assuming a diet of 100% copepods
in little auk, 20% euphausiids, 20% amphipods and
60% polar cod in Brünnich’s guillemot, and 100% polar
cod in black guillemot and kittiwake, based on previous
dietary analysis of these species in the Barents Sea
(Lønne and Gabrielsen, 1992; Mehlum and Gabrielsen,
1993; Weslawski et al., 1999).

2.2. Chemical analyses

The hepatic concentrations of ortho Cl-substituted
PCBs were determined by high-resolution gas chroma-
tography (HRGC) at the Environmental Toxicology
Laboratory (ETL) at the Norwegian School of Veter-
inary Science. Methods with modifications for extrac-
tion, clean up, separation and identification are
described in previous publications (Brevik, 1978; Borgå
et al., 2001a). In short, internal standards (PCB-29, -112
and -207: Promochem, GmbH, Germany) were added to
the individual livers before homogenisation (Cole
Parmer ultrasonic homogeniser, 4710 Series, Cole
Parmer Instrument Co., Chicago, IL, USA), and
extraction of lipids and PCBs was carried out with
cyclohexane and acetone (Rathburn Chemicals,
Walkerburn, Scotland). A portion of the lipid extract
was used to gravimetrically determine the content of
extractable organic matter (Sartorius analytic A200S,
Satorius AG, Göttingen, Germany), mainly neutral
lipids. To remove lipids, extracts were washed with
a surplus of concentrated sulphuric acid (Scanpure,
Chemscan A/S; Elverum, Norway) before separation of
PCBs by HRGC. The GC (Agilent 6890 Plus GC
system, Agilent Technologies) was equipped with two
fused silica capillary columns of different polarity (SPB-
5 and SPB-1701; 60 m, 0.25 mm ID, 0.25 mm film;
Supelco inc.) and 63Ni-micro electron capture detector
(Agilent Technologies).

The samples were analysed for PCB congeners -28, -31,
-47, -52, -66, -74, -99, -101, -105, -110, -118, -128, -137,
-138, -141, -149, -151, -153, -156, -157, -170, -180, -183,
-187, -189, -194, -196, -199, -206, -209 (Ballschmiter and
Zell, 1980). Most congeners were quantified on the SPB-5
column, except PCB-52, -101, -105 and -149 which had
a better resolution on the SPB-1701 column. Recoveries
of the analysed PCBs ranged from 78 to 122% (mean
93%). The congener dependent quantification limit
(Z3! detection limit) ranged from 0.04 to 0.19 ng g�1

wet weight (mean 0.09). The reproducibility, precision,
linearity and sensitivity of the analyses were within the
accredited requirements of NS-EN ISO/IEC 17025.

Hepatic lipid extracts (4–6 samples depending on
species, see Table 1 footnote) from the ETL were
shipped to Axys Analytical Services (Sidney, Canada),
where non-ortho Cl-substituted PCBs (NO-PCBs: PCB-
77, -81, -126, -169) were isolated and quantified using
the United States Environmental Protection Agency
method 1668A. This technique is an isotope-dilution,
congener-specific method using 13C-labelled PCB-77,
-81, -126, -169 standards added to the extract. Lipids
were removed by gel permeation chromatography, and
NO-PCBs were isolated using a carbon column. GC-HR
mass spectrometry was performed on a Micromass
Autospec Ultima magnetic sector mass spectrometer.

The liver microsome EROD rates were determined
fluorimetrically as described by Wolkers et al. (1998),
whereas testosterone hydroxylation activities were de-
termined using high pressure liquid chromatography
according to Wortelboer et al. (1992).

Stable isotope ratios were analysed in seabirds’
muscles at the Institute for Energy Technology, Kjeller,
Norway as described in details by Hop et al. (2002).
Stable isotope values of d15N and d13C (SI) were
expressed as SIZ ((Rsample/Rstandard)�1)1000, where R
is the corresponding ratio of 15N/14N or 13C/12C related
to standard values in atmospheric air (IAEA-N-1 and 2)
or Pee Dee Belemnite (PDB: USGS 24), respectively. To
convert d15N into trophic levels, the formula for seabirds
by Fisk et al. (2001a) was used (trophic level
Z 3C (d15N� 10.1)/3.8).

2.3. Data treatment and statistical analyses

The PCBs were divided into metabolic groups
depending on Cl-substitution in the ortho–meta and
meta–para position (Table 1), which influences the
persistency of congeners in homeotherms (Boon et al.,
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Table 1

Hepatic polychlorinated biphenyl (PCB) concentrations (ng g�1 lipid weight), carbon and nitrogen isotope ratios (d13C, d15N), cytochrome P450 enzyme

activities (CYP), body mass and hepatic lipid content (arithmetic meanG SE, (min–max)) in four seabird speciesa from the Barents Sea, May 1999

Vicinal H-atoms in # Cl in
ortho

Little auk,
Alle alle

Brünnich’s guillemot,
Uria lomvia

Black guillemot,
Cepphus grylle

Kittiwake,
Rissa tridactyla

only omb mpc

PCBsP
NO-PCBsd 0 1.4G 0.1 1.0G 0.1 1.1G 0.2 1.3G 0.4

(0.9–2.5) (0.5–1.3) (0.4–2.4) (0.4–4.0)
P

MO-PCBse 1 869.3G 161.7 572.4G 68.0 684.9G 52.8 1402.9G 185.4
(425.8–2023.8) (315.9–1032.2) (398.1–1027.2) (696.7–2351.2)

P
DI-PCBsf 2 2339.8G 412.5 891.6G 132.2 1562.1G 114.8 5990.2G 900.0

(1068.6–4724.8) (365.5–1615.8) (923.4–2357.5) (2178.3–9960.9)
P

PCB group Ig – – 0–4 1340.5G 234.2 500.9G 67.8 690.6G 40.5 3994.6G 639.7
(590–2745.7) (141.9–813.3) (469.9–933.5) (1373.0–7024.4)

P
PCB group IIh C – Z2 1083.2G 201.7 447.2G 71.0 706.6G 52.5 2483.218G 350.2

(482.2–2254.9) (208.6–875.1) (426.3–1066.5) (965.8–3905.4)
P

PCB group IIIi C – !2 868.5G 161.7 561.8G 67.3 667.28660G 52.4 1380.603G 181.4
(424.9–2023.2) (296.5–1016.0) (386.8–1010.6) (689.1–2298.3)

P
PCB group IVj C Z2 159.0G 25.7 40.0G 4.3 274.9G 31.8 108.2G 17.9

(73.5–300.6) (23.4–59.9) (98.9–491.3) (51.2–230.0)
P

PCB group Vk – C O2 33.4G 3.5 4.4G 1.1 61.6G 6.6 31.5G 4.3
(18.5–52.9) (2.2–12.8) (25.0–110.4) (19.3–65.4)

P
PCBsl 3483.0G 605.9 1545.2G 204.4 2383.3G 176.7 7981.0G 1161.2

(1631.7–6787.6) (712.7–2749.8) (1395.7–3595.2) (3110.6–12794.9)
P

TEQm 0.16G 0.04 0.08G 0.01 0.08G 0.01 0.17G 0.02
(0.10–0.27) (0.05–0.10) (0.06–0.11) (0.06–0.32)

P
TEQ wet weight 0.01G 0.00 0.00G 0.00 0.00G 0.00 0.01G 0.00

(0.003–0.01) (0.001–0.004) (0.001–0.005) (0.005–0.01)

Diet descriptors
d13C (&) �21.4G 0.1 �21.0G 0.1 �21.9G 0.1 �21.3G 0.1

�22.0 to �20.8 �21.3 to �20.6 �22.1 to �21.6 �21.9 to �20.8

d13N (&) 10.5G 0.1 13.1G 0.1 14.2G 0.1 13.5G 0.1
9.5–11.0 12.8–13.6 13.7–15.0 12.9–14.2

Trophic positionn 3.0G 0.04 3.7G 0.02 4.0G 0.03 3.8G 0.04
2.7–3.1 3.6–3.80 3.8–4.2 3.6–4.0

CYP activities (pmol min�1 mg protein�1)
ERODo 36.9G 3.2 8.2G 1.5 10.1G 0.7 12.0G 1.4

21.3–51.3 3.0–16.2 7.0–13.4 4.7–20.3

Testosterone 6b-hydroxylation 118.5G 7.8 139.7G 14.8 89.8G 9.7 129.1G 8.3
87.2–175.9 78.3–211.4 59.9–160.5 94.2–167.2

Body mass (g) 181.0G 3.6 1053.2G 17.7 465.0G 21.9 421.2G 13.0
165.0–195.0 965.0–1130.0 370.0–560.0 370.0–500.0

Hepatic lipid content (%) 4.1G 0.2 3.6G 0.4 5.3G 1.0 7.7G 1.3
3.2–4.9 2.5–6.0 2.5–13.8 3.0–14.5

a Five males (M) and 5 females (F) were analysed from each species, except for the analysis of non-ortho Cl-substituted PCBs where nZ 4, 5, 5, 6

for in little auk (1F/3M), Brünnich’s guillemot (2F/3M), black guillemot (4F/1M) and kittiwake (3F/3M), respectively.
b Ortho–meta position.
c Meta–para position.
d P

NO-PCBsZ PCB-77, -81, -126, -169. Non-ortho Cl-substituted PCBs.
e P

MO-PCBsZ PCB-28, -31, -66, -74, -105, -118, -156, -157, -189. Mono-ortho Cl-substituted PCBs.
f P

DI-PCBsZ PCB-47, -52, -99, -101, -110, -128, -137, -138, -141, -153, -170, -180, -194. Di-ortho Cl-substituted PCBs.
g P

PCB group IZ PCB-153, -169, -180, -183, -187, -189, -194, -196, -206, -209 (no vicinal H-atoms).
h P

PCB group IIZ PCB-47, -99, -128, -137, -138, -170 (vicinal H-atoms only in ortho–meta positions, R 2 Cl in ortho-position).
i PPCB group IIIZ PCB-28, -66, -74, -77, -81, -105, -126, -118, -156, -157 (vicinal H-atoms only in ortho–meta positions,!2 Cl in ortho-position).
j PPCB group IVZ PCB-31, -52, -101, -110, -141 (vicinal H-atoms in meta–para positions, %2 Cl in ortho-position). PCB-31 and -110 have

vicinal H-atoms also in ortho–meta positions.
k P

PCB group VZ PCB-149, -151, -199 (vicinal H-atoms in meta–para positions, O2 Cl in ortho-position).
l PPCBsZ sum of all analysed congeners.
m P

TEQ based on all NO-PCB and the MO-PCB congeners -105, -118, -156, -157, -189.
n Trophic positionZ 3C ((d15N� 10.1)/3.8), based on Fisk et al. (Fisk et al., 2001a).
o ERODZ ethoxyresorufin O-deethylation.
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1997). Group I is persistent due to lack of vicinal
hydrogen atoms (H), and groups II and III have vicinal
H-atoms only in ortho–meta positions. Metabolism of
group II is inhibited due to the steric hindrance by di-
ortho Cl-substitution, whereas group III may be
metabolised by CYP1A mediated enzymes due to non-
or mono-ortho Cl-substitution (om-congeners). Groups
IV and V may be metabolised due to vicinal H-atoms in
meta–para positions (mp-congeners), group IV with two
or less ortho Cl-substitutions and group V with more
than di-ortho Cl-substitutions. Furthermore, the con-
geners were categorised as non-, mono-, or di-ortho Cl-
substituted (NO-, MO-, or DI-PCBs, respectively), with
respectively decreasing coplanar configuration and
ability to induce CYP1A-like isoenzymes through
binding to the aryl hydrocarbon receptor. Based on
avian toxic equivalency factors (TEFs) for dioxin-like
PCBs (Van den Berg et al., 1998),

P
toxic equivalent

concentrations (TEQs) were calculated for NO- and
MO-PCBs based on wet weight concentrations. The
TEF approach assumes that the toxic response through
the Ah-receptor is dose or concentration additive, and
the TEFs were recommended based on various in vivo
and in vitro dose–response curves for different avian
species (Van den Berg et al., 1998).

The PCB pattern in seabirds and their prey was
calculated as a proportion of each congener to the
recalcitrant PCB-153 (RPCB-153). The metabolic index
(MI) was calculated to determine the accumulation of
a congener in seabirds relative to the accumulation of
PCB-153 (MIZRPCB-153_seabird/RPCB-153_prey) (Tanabe
et al., 1988). The seabirds’ diet composition was
assumed to be the same as described above for
calculation of feeding rate.

SAS 8.0 for Windows (SAS Institute Inc., 1989) was
used for univariate statistics (ANOVA Type III Sum of
Squares, Tukey–Kramer’s test, Spearman rank correla-
tions (rs)), such as interspecific comparison of lipid
content, stable isotope ratios and CYP activities. For
correlations such as between different PCB groups and
CYP enzyme activities, ANOVA Type III Sum of
Squares was used with species as covariant to account
for the effect of species. The comparison of PCB concen-
trations among species was done on lipid adjusted
concentrations, as the hepatic lipid content differed
among species (ANOVA, F3,36Z 4.71, pZ 0.0071).

Direct (constrained) multivariate ordination analysis
(redundancy analysis RDA) was carried out in CAN-
OCO 4.5 for Windows (Ter Braak and Šmilauer, 1998)
to analyse the structure in the seabirds’ PCB concen-
trations and patterns (RPCB-153 values), and to relate this
structure to the explanatory variables d15N, d13C,
EROD, testosterone hydroxylation, sex, feeding rate and
species identity. To reduce variance heterogeneity and
skewness, data were log-transformed prior to ordina-
tion, which was performed on the variance–covariance
matrix, adjusting for lipids in the ordination of
concentrations. Since NO-PCBs were analysed in 4–6
samples per species (see Table 1 footnote), they were
excluded from the ordination analyses. Initially, the
analyses only included congeners found in all species,
thus excluding PCB-31, -52, -110, -141, -149, -151, -189,
-199 and -206. Values below quantification limit (1% of
the data) were replaced by randomly generated normally
distributed data, assuming ½ the detection limit as the
mean, with 40% variation (StatPlus V2.5 in Excel 2002
for Windows). However, as this excluded most mp-
congeners, also congeners missing from only one species
were included. This resulted in a final inclusion of 24
congeners and exclusion of PCB-141, -151, -189, -199
and -206, and missing values were replaced as described
above (6.7% of the data). Congeners with low RPCB-153

(!5%) and high cumulative fits (O50%) (PCB-31 and
-196), were excluded from the final RDA to avoid that
congeners associated with higher uncertainty dominated
the ordination. Significant explanatory variables were
forward selected manually using Monte Carlo test with
unrestricted permutations (aZ 0.05) (Ter Braak and
Šmilauer, 1998). After selecting significant explanatory
variables, the significance of each extracted canonical
axis was analysed by Monte Carlo test with unrestricted
permutations under the reduced model (aZ 0.05). To
investigate the relationship between seabird species and
the highly species-specific explanatory variables, an
initial RDA was performed with seabird species as
explanatory variable, and diet (d15N and d13C), feeding
rate and CYP activity (EROD and testosterone 6b-
hydroxylation) as response variables.

The multivariate ordination assigns scores to the
samples (e.g. individual birds) and response variables
(e.g. PCB congeners). The scores are linear combina-
tions of the explanatory variables and are presented
relative to their ordination axes (Figs. 1, 2 and 5). PCBs
are presented as arrows pointing to the direction of
increasing value. Categorical and continuous explana-
tory variables are presented by centroids (e.g. seabird
species) and arrows (e.g. feeding rate), respectively.
Rules of interpretation of the diagram are described
elsewhere (Ter Braak, 1995; Van Wijngaarden et al.,
1995; Van den Brink and Ter Braak, 1999).

3. Results

3.1. Seabird characteristics

All seabirds were adults, except for black guillemot of
which 7 were yearlings. Little auk was by far the smallest
and lightest species (Table 1), whereas black guillemot
and kittiwake had intermediate weights followed by
Brünnich’s guillemot as the heaviest species (Tukey–
Kramer, p! 0.05 for all comparisons except between
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kittiwake and black guillemot). As body mass was used
to calculate weight- and species-specific feeding rates,
body mass was replaced by feeding rate in the RDA.
The feeding rates were 0.80, 0.35, 0.42, 0.43 g day�1 g�1

for little auk, Brünnich’s guillemot, black guillemot and
kittiwake, respectively.

Of the total variance in feeding rates, carbon source,
trophic position and CYP activities, 50.5% was
explained by the seabird’s phylogeny (Fig. 1). Higher
EROD activity and feeding rate, and lower trophic
position was found in little auk than in the other species,
and lower testosterone 6b-hydroxylation and d13C levels
were found in black guillemot than in the other seabirds
(Fig. 1). The ordination axes significantly related the
variance of the explanatory variables to seabird species
(Monte Carlo FZ 12.2, pZ 0.002, for all axes). More
specifically, the interspecific variance in d13C values was
minor, ranging from �22.1 to �20.6& (Table 1), with
lowest d13C values for black guillemot, intermediate for
little auk and kittiwake, and highest for Brünnich’s
guillemot (Tukey–Kramer, p! 0.05 for all comparisons
except between kittiwake and little auk or Brünnich’s
guillemot) (Fig. 1). Little auk had the lowest trophic
position (range: 2.7–3.1) assigned by d15N, Brünnich’s
guillemot and kittiwake had intermediate trophic
positions (range: 3.6–4.0), and black guillemot the highest
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and CYP activities (EROD and testosterone 6b-hydroxylation). Black
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(range: 3.8–4.2) (Tukey–Kramer, p! 0.05 for all com-
parisons except between kittiwake and Brünnich’s
guillemot) (Fig. 1).When species variationwas accounted
for, d13C and trophic position were not related (ANOVA
F1,34Z 0.61, pZ 0.4402).

The EROD activity ranged from 3 to
51 pmol min�1 mg protein�1 and was higher in little
auk than the other species (Table 1, Fig. 1, Tukey–
Kramer, p! 0.05). Testosterone hydroxylation activity
was only observed at the 6b-position, and ranged from
50 to 250 pmol min�1 mg protein�1 (Table 1). The
testosterone 6b-hydroxylation was lower in black
guillemot than in Brünnich’s guillemot and kittiwake,
whereas no difference was found between the other
species (Fig. 1, Tukey–Kramer, p! 0.05). When species
variation was accounted for, the CYP activities were not
correlated (ANOVA, F1,37Z 0.03, pZ 0.8528).

Neither carbon source, trophic position nor CYP
activities differed between males and females within each
species (ANOVA, F1,8! 2, pO 0.200). When species
variation was accounted for, the CYP activities were not
related to body mass (ANOVA F1,34! 2.8 pO 0.1035),
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however, the smallest species (little auk) had the highest
EROD activities (Table 1).

3.2. PCB concentrations and patterns, TEQ values
and metabolic indices

P
PCBs ranged from 700 to 13 000 ng g�1 lipid

weight, depending on species (Table 1). The individual
sums of persistent PCBs (groups I and II) were highest
in kittiwake followed by little auk and black guillemot,
and then by Brünnich’s guillemot (Table 1, Tukey,
p! 0.05). The om-metabolizable PCB group III was
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Fig. 4. Relative contribution (arithmetic mean C 1SE) of non- (NO)

and mono-ortho (MO) polychlorinated biphenyls (PCBs) to
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toxic

equivalent concentrations (TEQ). Only PCBs with toxic equivalent

factors in Van den Berg et al. (1998) are included.
higher in kittiwake than all other species (Table 1,
Tukey, p! 0.05). The mp-metabolizable PCB groups IV
and V were highest in black guillemot, followed by little
auk and kittiwake, and then by Brünnich’s guillemot
(Tukey, p! 0.05).

Direct ordination (RDA) of PCB concentrations
resulted in the four seabird species and feeding rate as
significant explanatory variables (Monte Carlo
FZ 15.9–23.8, pZ 0.002 for all variables) (Fig. 2).
Feeding rate correlated highly with species identity and
was automatically selected along with species, pointing
in direction of little auk, although it did not contribute
in explaining additional variance in PCB concentrations.
Even though three ordination axes significantly ex-
plained the variation in PCB concentrations (Monte
Carlo FZ 12.5–21.7, pZ 0.002 for all axes), only axes 1
and 2 are presented due to the higher degree of variance
explained (42.0, 22.3, 9% of total variance explained by
axes 1, 2 and 3, respectively). The seabirds species
differed significantly in PCB concentrations (ANOVA of
samples’ scores on ordination axes, p! 0.0001), how-
ever, little auk was not different from kittiwake and
black guillemot along axis 1, Brünnich’s guillemot was
not different from kittiwake along axis 2 and from
kittiwake and black guillemot along axis 3 (Tukey test of
samples’ scores on ordination axes, p! 0.05). When the
effect of species was accounted for, neither chemically-
derived trophic position nor carbon source, CYP
activities or sex explained the differences in PCB
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concentrations among species, due to their high degree
of species-dependency as illustrated in Fig. 1.

The NO-PCB concentrations were low relative to
other PCB congeners, with mean sum ranging from 1.0
to 1.4 ng g�1 lipid weight depending on species (Table
1). The concentrations of NO-PCBs were lower than
0.2% of PCB-153 for each congener, whereas the
concentrations of MO-PCBs were higher, more than
10% of the PCB-153 concentration for all congeners
(Fig. 3). Mean

P
TEQ ranged from 1 to 13 pg g�1 wet

weight, depending on species (Table 1). Highest TEQ
values were found in little auk and Brünnich’s guillemot.
Although the MO-PCB concentrations were higher than
the NO-PCB concentrations, NO-PCBs contributed 70–
80% to

P
TEQ, depending on species (Fig. 4). When

species variation was accounted for, neither concen-
trations of

P
PCB,

P
NO-,

P
MO-,

P
DI-PCBs norP

TEQ were related to chemically-derived trophic
position or carbon source or CYP activities (ANOVA
F4,35! 2.89, pO 0.0986 for all analyses).

The PCB pattern in all species was dominated by the
persistent PCB-153, -138, -118, -180 and -99 (Fig. 3).
The persistent PCBs (groups I and II) contributed 74–
90% to

P
PCBs in kittiwake, whereas the contribution

of groups IV and V to
P

PCBs was !3% (Table 1).
PCB groups VI and V contributed 2–17% to

P
PCBs in

auks. Compared to the other species, Brünnich’s
guillemot had high RPCB-153-values of most PCBs in
groups II and III, whereas black guillemot had high
RPCB-153-values of groups IV and V. Kittiwake had
low RPCB-153-values of group IV. RDA of the seabirds’
RPCB-153-values showed the same differences between
species as inferred from the individual RPCB-153-values
(Fig. 5), and all seabird species differed significantly in
PCB pattern (ANOVA of samples’ scores on ordination
axes, p! 0.0001). More specifically, both little auk and
black guillemot differed from Brünnich’s guillemot by
having high relative proportion of metabolizable mp-
congeners (groups IV and V), whereas Brünnich’s
guillemot had more metabolizable om-congeners (group
III) (Tukey test of samples’ scores on ordination axes,
p! 0.05). Common for the auks was a higher relative
contribution of metabolizable PCBs compared to
kittiwake (Fig. 5). The only significant explanatory
variable was seabird species and feeding rate (Monte
Carlo FZ 3.75–6.25, pZ 0.002–0.006), whereas the
other explanatory variables did not contribute to
explain additional variance. Sex did not explain any
variation in the seabirds’ PCB pattern (results not
shown). Of the total variance, 16.0, 10.7 and 6.9% were
explained by axes 1, 2 and 3, respectively, which
significantly explained the extracted variation in RPCB-

153-values (Monte Carlo FZ 5.88, pZ 0.002).
When species variation was accounted for, the

relative contribution of congener group III to
P

PCBs
slightly decreased with increasing EROD activity
(ANOVA, F4,35Z 3.91, pZ 0.0558). The other meta-
bolic groups did not show any relationship between
their relative contribution to

P
PCBs and CYP enzymes.

The seabirds’ metabolic indices (MI), which reflects
the seabirds’ congener pattern adjusted for the prey’s
PCB content (prey PCB concentration in Table 2),
differed among PCBs in species-specific manner (Fig. 6).
All seabirds had low bioaccumulation of mp-congeners
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Table 2

Lipid content (%) and polychlorinated biphenyl (PCB) concentrations

(ng g�1 lipid weight) in the seabirds’ main zooplankton and fish prey

from the Barents Sea in May 1999 (arithmetic mean G SE)

Species Group n Lipid
P

PCB9e

Calanus glacialis and

C. hyperboreusa
Copepod 15 2.6G 0.2 43.3G 4.6

Thysanoessa inermisb Euphausiid 9 1.8G 0.2 74.5G 8.8

Themisto libellulac Amphipod 3 1.9G 0.4 120.2G 27.1

Boreogadus saidad Fish 12 3.8G 0.4 120.6G 22.6

a Samples of 580–1135 pooled individuals.
b Samples of 100–115 pooled individuals.
c Samples of 7–16 pooled individuals.
d Samples of individually homogenized fish.
e P

PCB9Z PCB-28, -31, -52, -99, -105, -118, -138, -153, -180.
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relative to PCB-153 (groups VI and V, MIs! 0.2), and
intermediate bioaccumulation of om-congeners relative
to PCB-153 (group II and III, MI� 0.2–1). They had
highest bioaccumulation relative to PCB-153 of persis-
tent congeners without vicinal H-atoms (group I,
MIs� 1–2) (Fig. 6).

4. Discussion

The present study shows that PCB concentrations
and congener patterns in seabirds result from a com-
bined effect of dietary factors and biotransformation.
The independent effect of each of these factors is difficult
to assess due to their high species-specificity and, thus,
collinearity. Another factor confounding the relation-
ships may be the different time-scales regarding changes
in an organism’s PCB concentrations, CYP activities
and stable isotope ratios. Contaminant half-lives in
birds are months to years (Clark et al., 1987; Drouillard
and Norstrom, 2003), CYP activities may reflect
physiological changes over days (Schuetz et al., 1984),
and stable isotope ratios may reflect dietary and
conditional changes on the basis of weeks to months
(Hobson and Clark, 1992). Given the lack of year-
specific age-determination, age-related PCB accumula-
tion and CYP activity could not be accounted for in this
study.

4.1. PCB concentrations and TEQs in Arctic seabirds

Although comparison of PCB residues between
studies is difficult due to variation caused by confound-
ing factors such as the organism’s age, sex, reproductive
cycle and condition (e.g. Henriksen et al., 1996), the
hepatic PCB concentrations were compared with corre-
sponding levels in similar species from earlier studies on
a lipid weight basis. No studies are available on
NO-PCBs and TEQ values in these seabird species from
the European Arctic, or on hepatic PCB concentrations
in little auk from the European Arctic.

When compared to other Arctic seabirds, the presentP
PCB concentrations in black and Brünnich’s guille-

mot were comparable to, or in the higher range of, those
recently reported from east and west Greenland and
northern Baffin Bay in the Canadian Arctic, whereas the
present kittiwake and little auk levels were higher than
those reported from Greenland and Canada (de Wit
et al., 2004; Buckman et al., 2004). Higher PCB
concentrations in the Barents Sea biota have also been
reported in seabird eggs and marine mammals (ringed
seals Phoca hispida and polar bears Ursus maritimus) (de
March et al., 1998; Muir et al., 2000; de Wit et al., 2004).

For the European Arctic,
P

PCB concentrations in
black and Brünnich’s guillemots were generally within
the same range, or in the lower range, as those reported
from the Barents Sea marginal ice zone in June 1995
(Borgå et al., 2001a). The present mean levels in
kittiwake were generally lower than those reported from
the Svalbard area in 1991 (Savinova et al., 1995), the
north Norwegian coast in 1992 (Henriksen et al., 1996),
and Bjørnøya in the southern Barents Sea in June 1995
(Borgå et al., 2001a).

The present study’s PCB–TEQs were lower than in
similar species from the Canadian Arctic in 1993
(Braune and Simon, 2003). The present lower PCB
concentrations and TEQ values are in accordance with
a general temporal decrease in Arctic PCB levels, as
reported for seabirds’ eggs (Barrett et al., 1996; Braune
et al., 2001) and polar bears (Henriksen et al., 2001).

4.2. Influence of dietary exposure and sex
on PCB levels and patterns

The d13C varied between species, with lowest and
highest values in black and Brünnich’s guillemot,
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respectively. Because the d13C values reflect the source of
carbon to a system, species with enriched d13C values are
usually influenced by terrestrial carbon from benthic or
inshore feeding, whereas offshore pelagic feeders often
have lower d13C values (Hobson, 1993). However, the
present range of d13C values was much smaller than in
studies where true benthic (e.g. common eider Somateria
mollisima) and pelagic feeders (e.g. northern fulmar
Fulmarus glacialis) are compared (Dahl et al., 2003). The
seabirds’ trophic positions determined by stable nitro-
gen isotopes generally confirmed those inferred from
dietary data. Trophic position was lowest for little auk,
intermediate for Brünnich’s guillemot and kittiwake and
highest for black guillemot. Being predominantly fish-
feeders, black guillemot and kittiwake were expected to
occupy the same trophic position (Lønne and Gabri-
elsen, 1992; Mehlum and Gabrielsen, 1993), but black
guillemot had higher d15N values than kittiwake.
Relatively high d15N in black guillemot was also shown
in previous studies (Fisk et al., 2001a; Hop et al., 2002).
This indicates that black guillemot feeds higher in the
food web, presumably on demersal or larger fish during
pursuit diving, whereas kittiwake is a surface feeder on
smaller pelagic fish, and occasionally on amphipods and
euphausiids (Lønne and Gabrielsen, 1992; Mehlum and
Gabrielsen, 1993).

Increasing PCB levels with trophic position have been
shown previously for seabirds and seals in Arctic marine
food webs (Fisk et al., 2001a; Hop et al., 2002), and
among Arctic seabirds from the Canadian Arctic
(Buckman et al., 2004). In the present study, however,
PCB levels were high in little auk occupying the lowest
trophic position, and generally lower in black guillemot
occupying the highest trophic position. Likewise,
kittiwakes had lower d15N and higher PCB concen-
trations than black guillemot. In the Canadian Arctic
studies, seabird species spanning over a larger range of
trophic positions were included, from little auk (trophic
level 3) to glaucous gull (trophic level 5) (Buckman
et al., 2004). However, in glaucous gulls from Bjørnøya,
Barents Sea, only a weak relationship was reported
between organochlorine levels and trophic position
(Sagerup et al., 2002). The present study’s discrepancy
between d15N and PCB concentrations may be due to
different turnover rates of proteins versus contaminants,
suggesting a previous diet of more contaminated prey
for kittiwake in the over-wintering area or by occasion-
ally feeding on seal blubber from carcasses after polar
bear kills (Lønne and Gabrielsen, 1992). As the stable
isotopes have half-lives of less than 30 days in muscle
(Hobson and Clark, 1992), the d15N in kittiwake reflects
the diet in the marginal ice zone rather than in the over-
wintering area. Black guillemot, on the other hand, is an
Arctic resident throughout the year (Anker-Nilssen
et al., 2000) and is not observed feeding on seal
carcasses. In addition, a higher metabolic rate, and thus
feeding rate, in gulls compared to auks of similar size
(Ellis and Gabrielsen, 2002), may contribute to higher
PCB concentrations in kittiwake compared to black
guillemot. Finally, the low PCB levels in black
guillemots may be due to their young age (yearlings).
Generally juveniles have accumulated less contaminant
than adults (Donaldson et al., 1997; Bustnes et al.,
2003), and their PCB levels might not yet have reached
equilibrium with the dietary contaminant exposure.

Alternative prey and migration does not help explain
the high PCB levels in little auk, which is a northern
species and a strict feeder on herbivorous calanoid
copepods with low trophic position and contaminant
concentrations (Hop et al., 2002). However, like in
kittiwakes, the higher feeding rate in little auk (due to its
lower body mass) may contribute to the relatively high
PCB concentrations, despite its low trophic position.
Increased feeding rate was found to increase the PCB
uptake rate constant from food in experimental studies
of ringed doves (Streptopelia rissoria) (Drouillard and
Norstrom, 2003). In addition, the high lipid contents in
calanoid copepods (40% of dry weight, (Scott et al.,
1999)) might contribute to elevated PCB concentrations
in little auk if the higher assimilation efficiency of lipids
than proteins (Brekke and Gabrielsen, 1994) influences
the PCB uptake (Gobas et al., 1999). However, the
ringed dove study showed that PCB assimilation
efficiencies were similar between doves fed a high or
a low lipid content diet (Drouillard and Norstrom,
2003).

Like in Canadian Arctic seabirds (Buckman et al.,
2004), there were no sex differences in PCB concen-
trations. However, sample sizes in both studies were
small (!7 per sex and species), hence the results must be
treated with some caution.

4.3. CYP enzymes in relation to PCB concentrations
and TEQ values

The seabirds’ EROD and testosterone hydroxylation
activities differed among species, although auks were not
distinctly different from kittiwakes. Little auk had the
highest EROD activity compared to the other species,
and higher than that measured in glaucous gull from the
same area (Henriksen et al., 2000). The EROD activity
in the other seabirds was lower than in glaucous gulls.
Overall, the EROD activities were low compared to
seabirds from more industrialised areas (Bosveld and
Van den Berg, 1994). However, comparisons between
studies should be done with caution as species differ
widely in CYP response and as inter-laboratory differ-
ences in CYP-assays may cause additional variation
between studies (Bosveld and Van den Berg, 1994).

NO- and MO-PCBs are known inducers of CYP1A
enzymes (Safe, 1994), however, EROD activity was
neither related to

P
NO-,

P
MO-PCB concentrations,



407K. Borgå et al. / Environmental Pollution 134 (2005) 397–409
or
P

TEQs. The present study’s seabird TEQ values
were 100–200 times lower than the lowest observable
effect level (LOEL) for CYP1A induction (EROD) in
common terns (Sterna hirundo) (25 ng g�1 TEQ lipid
weight liver) (Bosveld et al., 2000). Even though the
effect threshold varies depending on species and sample
matrix, the presently investigated Arctic seabirds there-
fore seem well below the threshold levels for effects
mediated through the Ah-receptor. In the present study,
the TEQ values were calculated from NO- and MO-
PCBs. In Canadian Arctic kittiwake and Brünnich’s
guillemot, NO-PCB contributed 40–60% to

P
TEQ

when TEQs were calculated also for furans and dioxins
(Braune and Simon, 2003).

The high EROD activity in little auk compared to the
other auks and kittiwake may be caused by a higher
feeding rate (Braune and Norstrom, 1989; Ronis and
Walker, 1989), but also by a diet with different inducers,
including natural inducers such as carotenoids from the
calanoid copepods. Calanoid copepods are rich in
carotenoid pigments that may induce EROD activity
(Gradelet et al., 1996), which in combination with
a higher feeding rate results in higher exposure to
inducers of CYP1A. Similar to glaucous gulls from the
Barents Sea (Henriksen et al., 2000), testosterone
hydroxylation was only observed at the 6b-position at
comparably low levels in all seabirds. EROD and
testosterone 6b-hydroxylation activities were not corre-
lated, suggesting involvement of different CYP enzymes.

4.4. PCB pattern and biotransformation abilities

Contrary to previous avian studies (e.g. Borlakoglu
et al., 1990), the PCB patterns differed significantly
among the seabirds in the present study, especially
between kittiwake and auks, but also among the auks.
The higher relative contribution of persistent PCBs,
such as in kittiwake than in auks, suggests a higher
ability in the former to biotransform PCBs. Although
the present CYP activities in all seabirds were low, the
contribution of PCB group III (om-congeners) toP

PCBs decreased with increasing EROD activity,
suggesting that CYP1A-like activity influenced the
PCB pattern. Despite higher PCB biotransformation in
kittiwake, both EROD and testosterone 6b-hydroxyl-
ation activities were low and comparable to the
guillemots. The finding of high contribution of persis-
tent congeners and low CYP activities in kittiwake
might be due to its migration and overwintering in more
southern and industrialised areas. Feeding on more
contaminated prey might result in a temporary in-
duction of CYP-mediated enzymes, leading to increased
PCB biotransformation and elevated relative proportion
of persistent congeners in the PCB pattern. By the time
of collection the CYP activities may have decreased to
low levels due to the relatively low contamination levels
in Barents Sea prey. Another explanation for the high
concentrations of persistent PCBs in kittiwake may be
an occasional seal blubber diet (Lønne and Gabrielsen,
1992), which will increase the exposure to persistent
PCBs, as seals efficiently biotransform other PCBs
(Wolkers et al., 1998).

The little auk seems to be the most efficient PCB
biotransformer of the auks, due to its high relative
contribution of persistent PCBs, low relative contribu-
tion of om-congeners compared to Brünnich’s guillemot,
and low relative contribution of mp-congeners com-
pared to black guillemot. Higher metabolic capacity was
found in Brünnich’s guillemot than black guillemot for
mp-congeners, whereas Brünnich’s guillemot had higher
relative contribution of om-congeners than black guil-
lemot. The high relative contribution of om-congeners in
Brünnich’s guillemot concurs with its low EROD
activity, and suggests a lower ability to metabolise these
congeners compared to the other investigated species.
As previous Canadian studies suggested elevated bio-
transformation of chlorinated pesticides in Brünnich’s
guillemot compared to other auks (Fisk et al., 2001b),
biotransformation of PCBs and chlorinated pesticides in
seabirds seems mediated through different enzyme
systems. The higher contribution of mp-congeners in
black guillemot than in Brünnich’s guillemot coincided
with the lowest testosterone 6b-hydroxylation, suggest-
ing low CYP2B/3A activity and a consequently low
biotransformation ability in black guillemot.

Some pattern-differences between species may also be
due to dietary differences. However, the metabolic index
(MI) confirmed the biotransformation difference among
seabird species. Although the seabirds may have fed
upon prey not adjusted for, there is only small difference
in PCB patterns among prey (relative to that in seabirds)
due to their low biotransformation ability (Borgå et al.,
2001a). MIs for all congeners, except for PCB-180, were
higher in black and Brünnich’s guillemot than in
kittiwake, supporting lower biotransformation in auks
than in kittiwake. The relative high MIs for om-
congeners, although there are interspecific differences,
are in accordance with previous findings showing that
these om-PCBs are slowly cleared from birds (Braune
and Norstrom, 1989; Borlakoglu et al., 1990). Similarly,
the low metabolic indices of mp-congeners indicate that
these PCBs are readily cleared from birds, as shown
previously (Braune and Norstrom, 1989; Borlakoglu
et al., 1990).

In summary, the interspecific PCB pattern in seabirds
suggests that the contaminant pattern is strongly linked
to their phylogeny and species-specific differences in
their enzyme system and activity, resulting both from
long-term specialisation (potential) and on short-term
exposure (induction). However, potential influence of
age and sex on CYP induction and PCB concentrations
in these species remains to be investigated.
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