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In this thesis, we review the literature pertaining to the inventory routing models. We present 

a formal problem description. Furthermore, we provide a detailed description of two IRP 

models with profit maximization along with their linearization technique (adopted from 

Zaitseva 2017).  

 

The proposed models correspond to two market types: monopoly and perfect competition. 

Computational experiments were conducted on a set of benchmark instances and concluding 

remarks and interpretations were provided in a later stage. 
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Summary 

With the increasing need for competitive advantage in supply chains today, more and more 

businesses are addressing inventory routing decisions, in an integrated manner particularly 

through the Vendor Managed Inventory (VMI) approach. This combined approach of making 

decisions about routing, inventory and delivery strategies, is opposed to traditional strategies 

where these problems are solved separately. Clearly, this strategy offers significant advantage 

of lowered logistical costs  but at the cost of producing a complex combinatorial optimization 

problem termed inventory routing problem (IRP). 

 

Typical IRP aims at minimizing the total costs incurred when these decisions are concurrently 

made while ensuring that customers do not experience stock-out in the process. 

Notwithstanding, most supply chains measure their success through the maximization of the 

overall profit in the chain. Therefore, we focus this thesis on developing IRP models with profit 

maximization objective.  

 

More precisely, we investigate the dynamic and deterministic versions of the IRP, both of 

which are derived through the extension of a static deterministic variant of the IRP by applying 

the rolling horizon technique on 18 scenarios composed from 3 customer sets and 6 planning 

horizon lengths. We generated 72 instances by testing the scenarios on 4 model types – cost 

minimization, profit maximization, monopoly and perfect competitive models. The last two 

models are market structures (monopoly and perfect competition) suppliers can assume and the 

thesis focuses on them.  

 

The characteristics of these market types and the way they maximize profits made a huge 

impact on our results. This is because where the monopolist maximizes profit by setting prices 

at values where it forfeits satisfying customer demand because of increased price, the perfectly 

competitive market acts differently. It maximizes profit by deriving an optimal production 

quantity as it is not designed to alter prices but take the price derived from the equilibrium of 

demand and supply.   

 

From our computation experiment, we found trends, trade-offs and behaviors of the dynamic 

models in the instances which we tested them, one of which is we were unable to avoid stock-

outs at the customers, as we recorded costs and penalties related to shortages and lost sales. 
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One general trend was that profits increased with larger customer sets and longer planning 

horizon lengths, and so did the computational time. We also discovered that when static 

variants of the IRP was used with an objective to maximize profits, values were 

underestimated, while some outputs were overestimated. 
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1. INTRODUCTION 

Due to the competitive nature of businesses in the logistics and transport industry,  firms are 

now forced to change their goals from optimizing their own business units to focusing on 

optimizing the whole supply chain, which is why it has been stated that competition is now 

between supply chains instead of between each product line or organization (Andersson et al. 

2010). The overall goal of supply chain management is to integrate organizational units and 

coordinate flows of material, information, and money so that the competitiveness of the supply 

chain is improved (Stadtler 2008). To achieve this integration requires the coordination of 

logistics activities such as procurement, material management and transportation to achieve 

optimum, or near optimum performance regarding cost, efficiency and service level. 

As logistics cost forms a significant part of a nation’s GDP (In Norway, for example, this 

Logistics cost comprises 14% of the GDP) (Hansen 2010). There is a major opportunity for 

improvement, mainly through coordination. The need for coordination has resulted in the trend 

towards the centralization of the decision-making process responsible for the management of 

distribution and replenishment.  

 

Historically, inventory management and routing have been managed separately in industries. 

But an interrelation exists between these logistical decisions because in order to determine 

which customers to serve and the quantity to deliver to the selected customers the routing cost 

information is needed so that the marginal profit, which is calculated as the difference between 

revenue and delivery cost for each customer can be computed with accuracy. This 

interrelationship between inventory allocation and vehicle routing has motivated the modelling 

of these two logistical activities simultaneously as the integrated Inventory Routing Problem 

(IRP).  The IRP can be seen as an extension of the Vehicle Routing Problem (VRP), but unlike 

the VRP were the customers specify the order they want to receive and the supplier aims to 

satisfy this specified demand and simultaneously minimize its total distribution cost,  the 

supplier determines the order quantity (through some input from the customer) and the delivery 

time. 

 

More and more companies are becoming aware of their supply chain performance and the 

benefits of coordination and integration of the various components in the management of their 

supply chain.  They are aware of competitive advantage that can be gained through elimination 

of redundancies and increase in capacity utilization, through elimination of inefficiencies that 
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arise from high distribution costs in their supply chain/distribution networks. Technology, and 

advancement in communication systems have made available abundant data and reliable 

information systems, which have eased coordination within the supply chain, encouraging 

businesses to further embrace the practice of IRP. Many industries are therefore increasingly 

applying the concept of IRP to their routing and inventory problems. Early applications deal 

with products like gases, chemicals and automobile. Later applications include routing and 

inventory management for ammonia, groceries, industrial gases, bitumen, calcium carbonate 

slurry, frozen products, frozen products, auto parts, blood and petrochemical products 

(Andersson et al. 2010). IRP has also been applied in the maritime industry, different from 

other IRP applications because of much longer transit times, (days instead of hours), with 

destinations often international (Moin and Salhi 2007).  

 

The main objective of every supply chains should be to maximize the overall profitability of 

the chain, with profitability defined as the difference between revenue generated from 

satisfying customers and the overall cost across the supply chain (Chopra and Meindl 2016). 

So, for an IRP, which typically has an objective to minimize costs, this does not translate to the 

profit maximization objective of a supply chain, as reducing the total cost does not guarantee 

maximum profit, even though cost minimization is a necessary condition for profit 

maximization.  (Zaitseva 2017) worked on inventory routing problems with profit 

maximization, where she examined the market structures the supplier can take, the mechanisms 

controlling the prices and demand and how they affect the IRP. She examined a monopolistic 

and perfectively competitive market structure for the supplier in a Vendor Managed Inventory 

setting, constructed from static IRP models, from which she derived interesting trends, trade-

offs and behaviours of the different market types in the IRP model.  

This thesis plans on extending the static models of (Zaitseva 2017) to dynamic models, in order 

to examine the results for the purpose of answering the following research questions: 

 Can we observe the same trends, trade-offs and behaviours when the model becomes 

dynamic? 

 What are the differences in trends, trade-offs and behaviours of the model when it 

becomes dynamic? 

 Were some results gotten from the static model overestimated, with underestimated 

variables? 
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 Can we determine an optimal combination of planning horizon length, market type and 

customer set from all our test instances that best maximises profit? 

 Does the rolling horizon approach yield better results considering the consequence of 

longer computational time? 

The rest of this thesis is organized in the following way. Chapter 2 provides a literature review, 

which highlights what has been done before related to the IRP. In Chapter 3, problem 

description and models formulations for dynamic IRP models with explanations are provided. 

Chapter 4 presents the methodology, chapter 5 discusses the computational results and analyses 

them. The concluding remarks of the research are provided in Chapter 6.  
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2. LITERATURE REVIEW 

The IRP combines inventory management, vehicle routing and schedules for the delivery of 

materials. Bell is considered the pioneer of IRP (Bell et al. 1983). IRP arises as a consequence 

of vendor managed inventory (VMI), where inventory management, vehicle routing and 

scheduling decisions are integrated and made by the supplier simultaneously, in order to 

determine when to serve a given customer, how much to replenish when this customer is served 

and how to combine customers into vehicle routes. The IRP creates an opportunity for the 

reduction of total routing, inventory and delivery costs through combined, in place of separate 

optimization. The IRP is a difficult combinatorial optimization problem characterized by the 

integration of inventory management and vehicle routing decisions (Coelho, Cordeau, and 

Laporte 2014). The value added from logistics is accomplished via product availability, 

accuracy in inventory, demand management and ease of placing orders.  

 

Traditionally, inventory management and routing have been managed as different entities in 

the industry, however, an increasing number of supply chains players are becoming aware of 

the possibility of synchronizing production and inventory related decisions at the supplier and 

customer locations. This is evidenced by the adoption of the VMI, a policy under which the 

vendor is responsible for inventory decisions at the customer location. This policy gives 

vendors the freedom to choose the size and time of deliveries of products to customers, while 

the customer is protected against stock-outs occurrences. An ideal scenario would be that under 

VMI, there will be an integration of inventory management and transportation planning, 

however, the currently available ERP systems and planning systems do not have such 

capability as there exists no commercially available system that provides decision support for 

combined inventory management and routing (Andersson et al. 2010). A typical IRP is 

concerned with the distributing of a single product type to a geographically dispersed set of 

customers, using a homogeneous vehicle fleet. The supplier has unlimited product quantity at 

the factory and the customers have their own storage capacity and rate of consumption. The 

objective is to minimize total transportation cost over a given planning horizon, with a 

commitment to prevent stock-outs at all the customers (Song and Furman 2013). These 

assumptions and simplifications in the definition of the IRP limits the application of its models 

to real word problems. Therefore, there exists variations of the basic IRP which try to infuse 

as many practical features of real world scenarios as possible into their models (Song and 

Furman 2013). 
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The rest of this literature review focuses on discussing the variety of extensions of the inventory 

routing problems. In section 2.1, we review the various possible combinations of assumptions 

that the IRP problems can take using combinations of classification criteria from (Andersson 

et al. 2010).  In Section 2.2, we review literature on dynamic inventory routing problems, then 

in section 2.3, we discuss methods used to determine feasible solutions in inventory routing 

problems and finally, in 2.4, we discuss literature on inventory routing problems with profit 

maximization with emphasis on (Zaitseva 2017), whose IRP models, which capture profit 

maximization in IRP and the effect of the nature of the type of market an organization is 

situated in (monopolistic or perfectly competitive markets) has on the generated profits. We 

will extend these models to enable us reach the goals of this thesis.  

 

2.1 Extensions of the Inventory Routing Problem  

Several assumptions can be made when combining inventory management and routing 

decisions, and almost every possible variant of these assumptions have been made, so many 

that every reviewed paper in literature treats a new version of the IRP (Andersson et al. 2010). 

Assumptions and aspects in IRP can be grouped according to the following criteria, which are: 

time horizon, structure, routing, inventory policy, inventory decisions, fleet composition and 

fleet size. (Andersson et al. 2010).  

Three different modes are used when classifying time horizons, which reflects planning periods 

in IRP problems. These are instant, finite or infinite. Instant time horizon is used to describe a 

planning horizon of a problem, which needs only one visit per customer because of the very 

short length of time. When the planning period requires more than one visit at the customer, 

the IRP problem has a time horizon which is finite. Finite planning periods are further 

subdivided into fixed or rolling horizons, fixed when the planning period finite and ends 

naturally at the end to the horizon, with no link between the time before and after the horizon, 

therefore long term effects do not need to be handled. A fixed single-day approach simplified 

IRP problems greatly, which made them popular initially. In single-day models, the IRP is 

optimized in single-day slices. This approach to the IRP did not consider future deliveries and 

was deemed myopic, as it postponed all deliveries for the future, resulting in infeasibilities and 

does not utilize good opportunities in the present time (Campbell and Savelsbergh 2004). 

Multi-day models have become more prevalent. Although more computationally demanding, 
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they tend to proffer solutions with better quality as they model long-term effects of short term 

decisions.  The rolling horizon approach applied by Baird et al, 2002 as seen in (Campbell et 

al. 1998) involved, scheduling customers to routes for a two-week period, but executing only 

the schedules for the first week. The rolling horizon principle entails revising schedules 

regularly thereby applying more up to date data as they become known (Jaillet et al. 2002). 

This way, the events of the first week is influenced by the future, which in this instance, is the 

second week. For infinite time horizons the decisions being made are centred on distribution 

strategies rather than scheduling (Andersson et al. 2010). An example is the permanent routing 

or periodic routing, which involved creating a p-day schedule and repeating it for an unlimited 

time (Campbell and Savelsbergh 2004).  

In recent times, literature on IRP with very short (instant) planning horizons have been scarce. 

This is because they do not have industrial relevance, as from an industrial perspective, 

combined inventory management and routing problems are determined on a tactical and 

operational level and therefore finite time horizons, which give solutions that can be 

implemented in day to day planning and also gives ideas about operational decisions are 

naturally adopted (Andersson et al. 2010). (Federgruen and Zipkin 1984) modelled a single 

period IRP problem. Their work aimed at obtaining optimal replenishment quantities and 

vehicle routes for the customers that, minimized the inventory holding, transportation and 

shortage costs in one period (Moin and Salhi 2007). Even though single period models do not 

consider planning on a long term, these models are relevant because they sometimes provide 

the foundation for studying multi-period models (Moin and Salhi 2007).  

Some contributions to literature capture the long term effect of tactical decisions in IRP. These 

include (Burns et al. 1985) and (Anily and Federgruen 1990) whose objective was to determine 

a long-term integrated replenishment strategy, which combines inventory rules and routing 

patterns that enable retailers to meet their demands, while minimizing long-run average system-

wide transportation and inventory costs. (Chan and Simchi-Levi 1998) showed that long-run 

average cost can be minimized in a multi-echelon distribution system with an effective 

inventory control policy and vehicle routing strategy. (Adelman 2004) also worked on a paper 

to determine feasible replenishment strategies that minimize average transportation and 

inventory cost in an infinite horizon. (Kleywegt, Nori, and Savelsbergh 2002, 2004) attempted 

to coordinate inventory replenishment and transportation in a way that minimized costs over 

an infinite horizon. (Hvattum and Løkketangen 2009) modelled the IRP problem as a 

discounted infinite horizon Markov Decision Problem aimed at an optimal policy with a 
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replenishment strategy that maximized the long term discounted total profit. Papers that 

modelled the IRP within a multi-period finite planning horizon include (Solyalı, Cordeau, and 

Laporte 2012), (Coelho, Laporte, and Cordeau 2012a), (Bertazzi et al. 2013).  

Demand is another classification criteria for IRP problems. There exist several variants of the 

IRP depending on the nature of the demand at the customers (stochastic or deterministic).  

Combined inventory management and routing problems are seen as practical, rather than 

theoretical constructs and are therefore stochastic in nature. Stochastic Inventory Routing 

Problem (SIRP) acknowledges that the demand of customers can be probabilistic in nature and 

that the best policy for replenishment will take into consideration the probability distribution 

of future demands (Hvattum and Løkketangen 2009). Literature that includes stochasticity in 

their IRP models include (Kleywegt, Nori, and Savelsbergh 2002, 2004), (Hvattum and 

Løkketangen 2009) (Adelman 2004), (Coelho, Laporte, and Cordeau 2012a), (Bertazzi et al. 

2013). 

Combining the length of the planning horizons (finite versus infinite) and nature of demand at 

customers (stochastic versus deterministic) literature in IRP can be distinguished into those that 

studied infinite horizon IRP with stochastic demands; (Kleywegt, Nori, and Savelsbergh 2002, 

2004), (Adelman 2004), (Hvattum and Løkketangen 2009), IRP with constant deterministic 

demands and infinite horizons (Anily and Federgruen 1990), (Burns et al. 1985), (Chan and 

Simchi-Levi 1998), IRP with constant deterministic demand and finite horizons (Solyalı, 

Cordeau, and Laporte 2012), IRP with finite planning horizon and stochastic demand 

(Federgruen and Zipkin 1984), (Coelho, Laporte, and Cordeau 2012a), (Bertazzi et al. 2013). 

Topology is another classification criteria for IRP models. Three modes have been identified: 

one-to-one, one-to-many and many-to-many (Andersson et al. 2010). The one-to-many 

topology is the dominant mode for road based inventory routing problem, where a single 

facility serves a set of customers using a fleet of vehicles. The central facility is a depot, where 

the vehicles begin and end their routes and where the goods are stored before they are delivered 

to the customers. This is not the case for maritime transportation, which is characterized by the 

absence of centralized depot and the possibility of loading and unloading vessels at different 

ports. Many-to-many is the prevalent mode in such a setting (Andersson et al. 2010). A review 

of literature showing studies with a one-to-many topology includes (Hvattum and Løkketangen 

2009), (Anily and Federgruen 1990) (Burns et al. 1985), (Chan and Simchi-Levi 1998), 

(Coelho, Laporte, and Cordeau 2012a). Some papers where the mode is many-to-many, and of 

course maritime based with multiple products transported include IRP studies by (Al-Khayyal 
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and Hwang 2007), (Christiansen et al. 2011),)(Hemmati et al. 2016), (Song and Furman 2013), 

(Christiansen et al. 2013).    Studies by (Anily and Federgruen 1990), (Burns et al. 1985), (Chan 

and Simchi-Levi 1998)used a fixed partition policy to decide which customers to visit first in 

their single warehouse multi-retailer inventory routing problem. This involves partitioning the 

set of retailers into a number of sets, such that each retailer is uniquely assigned to a single set 

and each set is served separately, i.e., whenever a retailer in a set is served, all other retailers 

in the set are served as well.  

Routing: Two types of routing characterize IRP. These are the vehicle routing problem (VRP) 

and the pick-up delivery problem (PDP). In the VRP setting all routes originate from and end 

from a central warehouse which serves also as a depot. This type of setting is prevalent for 

road-based VRP. Meanwhile, two types of deliveries are known for the VRP mode. These are 

direct deliveries where goods picked up by a vehicle from a central warehouse are delivered 

only to a single facility before the vehicle returns to the warehouse. A multiple deliveries type 

is one in which goods picked up from the warehouse are delivered to multiple facilities before 

the vehicle returns to the warehouse. (Burns et al. 1985) analysed the trade-off between 

inventory, transportation and setup costs both in the case of direct deliveries and peddling 

(dispatching trucks that deliver items to more than one customer per load) and concluded that 

for each delivery strategy, the trade-off depended on the shipment size. The optimal shipment 

size in Peddling (multiple deliveries)  is a full truckload, while the optimal shipment size for 

direct deliveries is given by the economic order quantity (EOQ) (Burns et al. 1985). (Coelho, 

Cordeau, and Laporte 2012b) allowed direct deliveries to take place from the supplier to any 

customers in their IRP model with stochastic demand and finite planning horizon by 

subcontracting direct deliveries to carriers. (Kleywegt, Nori, and Savelsbergh 2002) also 

studied direct deliveries in their stochastic model with an infinite planning horizon and 

concluded that they have higher effectiveness when the economic order quantities of all 

customers are large compared to the vehicle capacity. (Gallego and Simchi-Levi 1990) as seen 

in (Solyalı, Cordeau, and Laporte 2012) concluded that the long term effect of direct shipping 

is at least 94% effective overall IRP strategies whenever minimal economic lot size is at least 

71% of truck size and this effectiveness deteriorates as economic lot size gets smaller.  Making 

exclusive use of direct deliveries simplifies the problem because it removes the routing 

dimension from it. Direct deliveries from the supplier and lateral transhipment between 

customers have also been used in conjunction with multi-customer routes to increase the 

flexibility of the system (Coelho, Cordeau, and Laporte 2014). (Coelho, Laporte, and Cordeau 
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2012b) used lateral transhipment as a means of mitigating stock-outs when demand exceeded 

the available inventory. Emergency transhipments proved to be a valuable option for 

decreasing average stock-outs, while reducing distribution costs significantly. The type of 

delivery that characterizes the PDP (Pick-up and Delivery Problem) is known as continuous, 

since there is no start or end warehouse for pickup and delivery of goods. It is more common 

in maritime applications (Andersson et al. 2010) and is studied in (Al-Khayyal and Hwang 

2007), (Christiansen et al. 2011), (Hemmati et al. 2016), (Song and Furman 2013, Christiansen 

et al. 2013).  

 

In terms of inventory decisions, there are four cases: fixed, stock-out, lost sales and back-order. 

In a fixed case, inventory is not allowed to be negative. In a stock-out case, inventory is allowed 

to be negative, however, an emergency delivery to the customer takes place, while in a case of 

a lost sale, the sale is lost when stock-out occurs. In the case of back-order, the demand is 

postponed until later (Andersson et al. 2010). Stock-out situation can be observed in the 

supermarket industry, when the consumption of a specific product is quite high so that the 

regular resupplying policy is not able to satisfy all the customer requirements in the same period 

during the time horizon, also possible when the demands are stochastic and the capacity of the 

vehicle is limited relative to the volume of products required by the customer. (Bertazzi et al. 

2013) focuses on an IRP with stochastic demand, where stock-outs may occur during the time 

horizon. The paper assumes that when the inventory level is negative, the excess demand is not 

backlogged and a penalty cost is incurred. The objective of the paper is to devise a shipping 

strategy that minimizes total cost, which is given as the sum of the expected inventory costs, 

routing cost, plus the penalty cost for stock-out at the customer.  

 

The vehicle fleet can be characterized in terms of composition and size. In terms of 

composition, a vehicle fleet can be considered as homogeneous or heterogeneous. A fleet is 

said to be homogeneous if it has the same characteristics such as speed, fixed cost, variable 

cost, equipment, and size. A fleet is considered as heterogeneous when one or all of the 

characteristics are different. In terms of size, a vehicle fleet can be categorized as single, 

multiple or unconstrained. A single fleet consists of one single vehicle. In a multiple fleet 

variant,  there are a number of vehicles, which might be a constraining factor. For an 

unconstrained fleet, there are no restrictions on the number of vehicles that can be used 

(Andersson et al. 2010). 
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2.2 Dynamic Inventory Routing Problem 

Dynamic inventory routing problem is a logistical problem characterised by the simultaneous 

consideration of three decisions: Routing, which involves organising the physical movement 

of goods between different geographic sites like depots, warehouses, production and retail 

points; Inventory, which involves quantities and values of the goods being moved and 

dynamism which involves taking repeated decisions at different times with some time horizon, 

with earlier decision affecting later ones. (Baita et al. 1998) Dynamic inventory routing 

problem is highly prevalent in everyday experiences, however, a huge amount of literature 

available covers mostly two aspects of the problem considered in pairs – Inventory and routing.  

 

Dynamic IRP is characterized by the gradual revelation of customers’ demand over time. It 

involves continuous re-optimization of the problem based on the newly received information. 

Meanwhile, the received information can be deterministic (known with certainty) or stochastic. 

Real life inventory routing problems are obviously stochastic as no customer will use the 

product the same way every single day (Campbell et al. 1998). Usage is pretty predictable and 

customers generally use about the same amount each day if their total usage for several days 

in a roll is observed. (Campbell and Savelsbergh 2004), in their research inspired by Praxair, 

an international industrial gas company, their basic model assumed that usage by their 

customers of the gas they delivered was deterministic. In a dynamic and stochastic inventory 

routing problem, the customer demand that is revealed over time is characterized by a 

probabilistic distribution pattern. In order to solve a dynamic problem, it is necessary to 

propose a solution policy such as the optimization of a static instance in the event of the 

availability of new information. Another policy is to make use of forecasts, or the probabilistic 

knowledge of future information (Coelho, Cordeau, and Laporte 2014). Dynamic and 

Stochastic IRP can be solved by means of a proactive or reactive policy. On one hand, reactive 

policy involves the observation of the state of the system prior to making decisions regarding 

routing and delivery. On the other hand, proactive policy entails combining both the 

observation of the current state and the use of forecasting of future demand in the planning 

process (Coelho, Cordeau, and Laporte 2014). With regards to reactive policy, the 

replenishment decision takes place at the end of the period after demand has occurred. The 

problem also involves the selection of customers to serve with supplier’s vehicles and through 

direct deliveries, which is an NP-hard problem, which, however, may be solved exactly using 

mixed-integer linear program based on the size of the instance and the fact that the problem is 
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solved once for a given period (Coelho, Cordeau, and Laporte 2014). Regarding proactive 

policy, the forecast of future demand is being used to make current decisions.  

Three decisions that affect the performance of the algorithm are: the choice of the forecasting 

method such as the use of exponential smoothening, which is capable of identifying changes 

in the mean, trend or seasonality, the length of the forecasting and rolling horizon and the 

method of incorporation of future demand forecasts in an IRP heuristic. The IRP being used is 

the adaptive large neighbourhood search (ALSN) (Coelho, Cordeau, and Laporte 2014). There 

is a positive relationship between the inventory holding cost and the solution cost, however, 

the proactive policy is shown to perform better than the reactive policy under situations of both 

increase and decrease in the inventory holding cost (Coelho, Cordeau, and Laporte 2014). The 

main features are the following: The use of demand forecast, the use of transhipment reduces 

stock-outs and does not make the problem more difficult to solve since it can be incorporated 

into the min-cost network flow problem that is used to solve the delivery subproblem. The first 

alterative solves the problem as if all information was available from the beginning (in 

hindsight). The myopic dynamic heuristic uses only information that is known with certainty 

to solve problems for each stage (Hvattum and Løkketangen 2009). 

 

2.3 Feasible solution methods to Inventory Routing Problems 

IRP are among the most important and most challenging extension of optimizing vehicle 

routing problems in which inventory control, routing decisions and delivery schedules have to 

be made simultaneously. The IRP represents a non-deterministic, polynomial-time hard (NP-

hard) problem. The routing component, vehicle routing problem, makes the problem difficult.  

Even when only one customer is considered, some variants of the IRP remain computationally 

hard. 

Several exact, metaheuristic and hybrid methods have been used to find feasible solutions for 

inventory routing problems and its variants.  

Exact algorithms relying on branch-and-cut was developed by (Archetti et al. 2007) capable of 

solving instances for single – products and single vehicle versions of the IRP. (Coelho and 

Laporte 2013b) increased the scope of an exact approach based on the branch-and-cut 

algorithm put forward by Archetti et al to include multiples product and multiple vehicle 

variants of the IRP.  
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The difficulty of the problem increases as the number of nodes (customers) and/or vehicles 

increase. It is a well-known fact that mixed integer problems of such sizes are relatively hard 

to solve to optimality using branch-and-cut methods, which is why the Lagrangean-based 

approach has been used to efficiently generate lower and upper bounds (Liu and Chen 2011). 

The Lagrangean-based approach enables the removal of "complicated" constraints and their 

incorporation into the objective function with the help of Lagrangean multipliers. This results 

in obtaining relaxed problems that can be solved efficiently (Liu and Chen 2011). It has been 

observed that most of the hard problems can be viewed as easy problems, complicated by a 

relatively small set of side constraints. If the side constraints are dualized, a Lagrangean 

problem is produced that is easy to solve and whose optimal value is a lower bound (for 

minimization problems) on the optimal value of the original problem. Therefore, the linear 

programming relaxation can be replaced by a Lagrangean problem for the provision of bounds 

in a branch and bound algorithm (Fisher 1985). For all applications, the Lagrangean problem 

has been solvable in polynomial and pseudo-polynomial time (Fisher 1985). 

(Simić and Simić 2013) discussed biologically inspired computing called evolutionary 

algorithm, which develops an algorithm inspired by nature to solve highly complex IRPs, 

particularly IRPs that cannot be addressed in a satisfactory way by the traditional approach. It 

models natural processes, such as selection, recombination, mutation, migration, locality and 

neighbourhood. These metaheuristics are modern techniques for searching complex space for 

an optimum. Evolutionary Algorithm has become the method of choice for optimization 

problems that are too complex to be solved using deterministic techniques like linear 

programming. Most real-world problems involve simultaneous optimization of several 

mutually concurrent objectives. multi objective evolutionary algorithms are able to find 

optimal trade-offs in order to get a solution that is overall optimal (Simić and Simić 2013). 

Some of these algorithms include genetic algorithm, Tabu search, simulated annealing, all of 

which can be successfully applied. Genetic Algorithm is a stochastic search technique that 

maintains a population of individuals which represent a set of potential solutions in the search 

space. It attempts to combine the good features found in each individual using a structured, yet 

randomised information exchange to construct individuals who are better suited to their 

environment than the individuals that they were created from. Genetic Algorithm believes that 

through the evolution of better and better individuals, the desired solution would be found. 

(Moin, Salhi, and Aziz 2011) applied Genetic Algorithm to their multi-period, multi-supplier, 

single warehouse with capacitated vehicle inventory routing problem model. (Park, Yoo, and 
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Park 2016) also applied genetic algorithm to their IRP with lost sales under a vendor managed 

inventory strategy in a two-echelon supply chain comprised of a single manufacturer and 

multiple retailers (one – to - many) model, with multiple objectives, one of which is to 

maximize profit. (Christiansen et al. 2011) applied Genetic Algorithm to their multi product, 

multi sourced, multi objective, heterogeneous fleet maritime IRP model, which depicts a real 

life problem faced by a Norwegian Cement production company. (Javid and Azad 2010), Qin, 

Miao and Zhang, 2014) as seen in (Roldán, Basagoiti, and Coelho 2016) applied local search 

operators to the IRP models. (Sajjadi and Cheraghi, 2011), (Liu and Lin, 2005) and (Li et al, 

2013), as seen in (Roldán, Basagoiti, and Coelho 2016) used simulation annealing to integrate 

location decisions in the IRP model (Coelho, Cordeau, and Laporte 2012a). 

The hybridization of techniques has become prevalent because of the growing awareness that 

they outperform individual computational intelligence techniques. It is a synergic combination 

of multiple techniques used to build an efficient solution. It combines various algorithmic ideas 

and does not rely on a single search strategy. (Archetti et al. 2012) explored a heuristic for the 

solution of its IRP that combines a Tabu search scheme with mixed integer programming 

models. 

2.4 Inventory Routing Problems with Profit Maximization 

The aim of most of the papers reviewed so far is to determine for each delivery time instant, 

the set of customers to visit, the quantity of each product to ship to each customer and the route 

of each vehicle that minimizes the overall cost consisting of transportation, inventory holding 

and storage costs (Moin and Salhi 2007). A few papers however, have an objective to maximize 

total profit. (Chien, Balakrishnan, and Wong 1989) had a profit maximizing objective for their 

IRP model; the inventory allocation and vehicle routing decisions seek to maximize the total 

revenue less the transportation and penalty costs from the supplier. The interrelationship 

between the inventory allocation and vehicle routing decision is such that, in order to determine 

which customers must be served and the amount to supply each selected customer, information 

about the routing costs needs to be known so that the marginal profit (revenue minus delivery 

cost) for each customer can be accurately computed. (Chien, Balakrishnan, and Wong 1989) 

worked on maximizing total profit for their model that was characterised by a one – to – many 

topology, with deterministic demand and fixed capacities for the supplier and customers. The 

entire demand of the customers need not be satisfied, but there is a penalty cost imposed per 

unit of unsatisfied demand. The model was based on a single period approach that passed some 
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information from one period to the next through the inter-period inventory flow and could be 

seen to simulate a multi-period planning model. The problem required a joint consideration of 

the demand selection decision (when the available inventory is less than the total demand and 

/ or the revenues of serving some customers could not cover the routing costs incurred) and the 

routing of vehicles to deliver the allocated inventory to the selected customers so that the total 

profit is maximized. Demand selection decision was integrated into the model and was 

determined by the profit margins, vehicle capacities and the amount of inventory available at 

the supplier. The problem employed a Lagrangean relaxation approach to generate upper and 

lower bounds, and a heuristic method to obtain feasible solutions that give lower bounds for 

the integrated problem (Chien, Balakrishnan, and Wong 1989). Fisher et al, (1982) and Bell et 

al (1983) studied the inventory routing problem at Air Products, a producer of industrial gases. 

Their objective was also to maximize profit from product distribution over several days. Rather 

than considering a totally random set of demands or deterministic demands, demand is given 

by upper and lower bounds on the amount to be distributed to each customer for every period 

of the planning horizon. They then formulated an integer program that captured delivery 

volumes, assignment of customers to routes, assignment of vehicles to routes and assignment 

of start time for routes. The integer program was then solved using Lagrangean dual ascent 

approach. 

(Zaitseva 2017) worked on a static, deterministic, one – to – many, multi-period Inventory 

Routing Problem with an objective to maximize profit. The author developed two models based 

on the assumption that the company was operating in a monopolistic and then a perfectly 

competitive market. The model assuming a monopolistic condition was used to determine the 

optimal trade-off between volume and margin, according to the adopted demand function. The 

model assuming a perfectly competitive market was used to determine the appropriate quantity 

with which profit can be maximised using the adopted cost function. With the monopolistic 

market model,(Zaitseva 2017) determined an optimal combination of price and demand for 

each discrete time period, which could increase profit, and also created a possibility to adjust 

price and demand to increase profit. The objective function generates a non-linear 

programming model which was linearized.  

This thesis extends the work done by (Zaitseva 2017). We present a finite time period using a 

rolling horizon approach, with which we explore schedules for 1, 2, 3, 4, 5 and 6 day planning 

horizons respectively, but only implement the first day. 
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The table 2.1 below shows literature reviewed for this work and the characteristics of the IRP 

problems they worked on. 
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Table 2.1: IRP problems from literature and their characteristics adopted from (Andersson et al. 2010),(Baita et al. 1998), (Coelho, 

Cordeau, and Laporte 2013)  
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Table 2.1: IRP problems  from literature and their characteristics. Adopted from (Andersson et al. 2010),(Baita et al. 1998), (Coelho, Cordeau, and 

Laporte 2013)  
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3. PROBLEM DESCRIPTION 

Inventory routing problems (IRPs) are complex combinatorial optimisation logistic problems 

that involve managing inventory and vehicle routing decisions simultaneously. It involves 

vendor managed inventory (VMI) where the resupplying policy of several retailers over a short 

or long term planning period is organised by a single production plant, single warehouse or 

simply a single supplier. The supplier plans the deliveries, deciding the time, quantity and route 

of the delivery vehicles. This thesis focuses on the dynamic variation of the IRP, where the 

quantities demanded by the customers are gradually revealed over time, but at the beginning 

of each planning horizon, where the inventory related decisions are being made, we lack full 

knowledge of the future demands. We have made basic assumptions about this inventory 

routing problem, we assume that we are dealing with a single product type, from a single 

supplier to a set of customers having varying demand over a finite planning horizon. The 

objective of the planning is to determine an optimal assignment of vehicles to customers and 

the sequence of the vehicle visits to the assigned customers.  

The problem considers only one mode of transportation, which is a truck with a given capacity, 

we assume that the trucks are a homogeneous fleet, and the route of the truck must begin and 

end at the supplier’s facility. The problem considers that the vehicles are able to perform one 

route per time period, from the supplier to a subset of customers and the total demand on each 

route must be less than or equal to the vehicle’s capacity. A predefined visit scenario is 

available for each customer and we disallow the use of lateral transhipments between customers 

as a means of avoiding stock out in instances where actual demand is high, instead, we allow 

the incurrence of a penalty due to lost sales and the excess demand is not backlogged. We 

assume that the manufacturer has enough inventory to meet all the demand during the planning 

horizon, but the inventory at the customers is limited. Each customer has a maximum inventory 

level, hence the quantity sent to each of them raises their inventory level to its maximum, in an 

order-up-to policy. No vehicle loading and unloading cost is considered. As this is a dynamic 

problem, it is assumed that the set of routes is dynamic and change from one time period to the 

other; the problem does not consider any bounds (upper or lower) to the length of the individual 

routes. We assume the transportation cost is measured as a Euclidian distance and so the cost 

matrix satisfies the triangle inequality. The nodes are considered as customers (and node 0 is 

considered as the supplier/depot) and the edges are used to travel from one node to the other. 

As distance is the cost measure, we will assume a symmetric cost matrix. 
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We assume that for every new planning horizon, the routes change to ensure the cheapest 

possible routes are selected. We also assume that our problem is a pure delivery type and no 

time windows are requested by the customer for the delivery of the products. In addition, our 

problem can be characterized by the following: finite planning horizon with a rolling horizon 

approach; inventory holding costs are considered at both the supplier and customer locations; 

a deterministic consumption rate is to be considered. 

Our objective is to maximize profit. Although our problem is an inventory routing problem it 

differs from the basic inventory routing because unlike the basic IRP which guarantees that the 

inventory level is at the predetermined level, we aim to maximize profits. Since our problem is 

that of profit maximization, we do not guarantee that any of the customers will always have 

the required level of inventory and so may not satisfy all of the customer demand during each 

planning horizon. Pricing decisions are made with the IRP problem simultaneously because 

pricing decisions affect the demand decision and then both the inventory and routing decisions. 

The relationship between pricing, inventory and routing decisions is that higher pricing causes 

lower demand and then lower quantities are ordered, hence lower inventory. Inversely, lower 

pricing results in higher demand and then higher order quantity and higher inventory in turn. 

Since the pricing decision is related to the inventory routing decisions, the profit may decrease 

when they are made separately.   

We assume that the price cannot be zero and a demand function will define the relationship 

between the price and demand quantity. Iso-elastic and linear demand function are the most 

commonly used functions for representing a downward sloping price versus demand 

relationship and for the thesis we assume that the demand function for the customers is linear 

and the demand lies between a specific range. The assumption of linear demand function holds 

very well within this range.  

3.1 MODEL FORMULATION 

Notations used by (Zaitseva 2017) are used as the basis for this work, except for minor 

modifications that were made to suit our objectives. We also adopt all four mathematical 

models developed by (Zaitseva 2017); IRP with cost minimization, IRP with profit 

maximization and the profit maximization models which emphasise two market structure types 

– monopoly and perfectly competitive market. 

To formally describe the problem, we consider a graph 𝐺 = (𝑁, 𝐸) where 𝑁 = {0, … , 𝑛} is the 

nodes set or customers and {𝐸 = (𝑖, 𝑗) ∈ 𝑁, 𝑖 = 𝑗} is the set of edges. The depot node is 𝑠, it is 
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the common supplier to the customers over a given time horizon 𝑇. The horizon over which 

the problem is defined has a length 𝑇 and at each time period, 𝑡 ∈ 𝑇 = {1, . . , 𝑇}. Each edge 

(𝑖, 𝑗) is associated with travel cost 𝑐𝑖𝑗, which is known, and we assume that 𝑐𝑖𝑗 =  𝑐𝑗𝑖. Each 

vehicle has a capacity of 𝑄. During every time period, each customer 𝑖 consumes an amount 

of 𝑟𝑖. The inventory holding cost at the customer and supplier are ℎ𝑖  and ℎ𝑠 respectively. The 

supplier has a maximum inventory level 𝑈𝑠, inventory holding costs ℎ𝑠, an initial inventory 

level 𝐵𝑠 and a production rate at each time period 𝑟𝑡
𝑠. Unit production costs are defined by a 

unit costs function 𝑓(𝑟𝑡
𝑠). Each customer defines a maximum inventory level 𝑈𝑖 and has an 

initial inventory level 𝐼𝑖
0 such that  𝐼𝑖

0 ≤ 𝑈𝑖 are defined for each customer 𝑖 ∈ 𝑁. If the 

customer 𝑖 is visited at time 𝑡, then the quantity shipped to 𝑖 at time t is such that the inventory 

level of the customer reaches its maximum value 𝑈𝑖 (an order-up-to level policy is applied). If 

𝐼𝑖𝑡 denotes the inventory level of customer 𝑖 at time 𝑡, the shipped quantity is 𝑈𝑖 − 𝐼𝑖𝑡 if the 

shipment is performed at time 𝑡, and 0 otherwise. An inventory level at the end of time period 

𝑡 at the supplier and customers is denoted as variables 𝐵𝑡 and 𝐼𝑡
𝑖 respectively. Parameter 𝑛 

defines a number of available vehicles, which should perform a delivery using a set of routes 

𝐾 =  {1,2, . . . , 𝑘} with costs 𝑐𝑘. A binary parameter 𝑎𝑖𝑘 equals 1 if customer 𝑖 is served on 

route 𝑘, 0 otherwise. Each vehicle can perform no more than one route per day. Denoted by 

𝑌𝑘𝑡, we introduce a binary variable equal to 1 if route 𝑘 is used at time 𝑡 and 0 otherwise. A 

variable 𝑋𝑖𝑘𝑡 identifies a quantity of product shipped to customer 𝑖 at time period 𝑡 using route 

𝑘 and deliveries take place before the consumption. Note that we are assuming that when the 

level of inventory at the customer is negative, the excess demand is not backlogged. Therefore 

in this case, the initial inventory level at the following period is set to be equal to zero for each 

𝑡 ∈ 𝑇 = {1,2 . . , 𝑇 + 1}. A penalty cost 𝑑𝑖 is considered if the inventory level is negative.   The 

decisions to be made are the determination of the following, for each time period and planning 

horizon: 

 The customers to be visited 

 The amount to be delivered to each customer and 

 The route to be followed in order to maximize profit. 

The decision variables for the problem will be 𝛼𝑖𝑡: the inventory level at the customer and 

supplier at each period (after consumption), 𝛾𝑖𝑡: a binary variable equal to 1 if 𝛼𝑖𝑡 > 0 and 0 

otherwise, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇.  

  𝑠𝑖𝑡𝑘; a non-negative variable representing the quantity of product shipped to customer 𝑖 at 

period 𝑡 using route 𝑘 and 𝜎𝑘𝑡 ,a binary variable equal to 1 if route 𝑘 is used at period 𝑡 and 0 
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otherwise. 𝛽𝑖𝑡 is a non-negative variable representing the level of stock-out at the customer 𝑖 at 

time 𝑡, 𝛿𝑖𝑡; a binary variable equal to 1 if 𝛽𝑖𝑡 > 0 and 0 otherwise 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. 

 

3.1.1 MODEL 1: INVENTORY ROUTING PROBLEM WITH COST 

MINIMIZATION 

The objective is to minimize the total cost, comprising of total inventory holding costs at the 

customers and supplier and total transportation cost summed. The total cost of production is 

fixed in this case , they therefore do not have an effect on the objective function. 

𝑀𝑖𝑛 ∑ ∑ 𝑐𝑘 ∗ 𝑌𝑘𝑡 + ∑ ∑ ℎ𝑖 ∗ 𝐼𝑖𝑡 + ∑ ℎ𝑠 ∗ 𝐵𝑡 ∗ 𝑟𝑡
𝑠

𝑡∈𝑇𝑡∈𝑇𝑖∈𝑁𝑘∈𝐾𝑡∈𝑇

+ ∑ 𝑓(𝑟𝑡
𝑠)

𝑡∈𝑇

(𝑟𝑡
𝑠)         (1.1) 

 

CONSTRAINTS 

The constraints are as follows: 

1. Inventory definition at the supplier 

𝐵𝑡 = 𝐵𝑡−1 + 𝑟𝑡
𝑠 − ∑ ∑ 𝑋𝑖𝑘𝑡                         𝑡 ∈ 𝑇                                                            (1.2)

𝑘∈𝐾𝑖∈𝑁

 

Constraint (1.2) stipulates that the inventory level at the supplier in period 𝑡 is defined at the 

end of the period and is given by its previous inventory level period 𝑡, plus the quantity 𝑟𝑡
𝑠 

made available in period 𝑡, minus the total quantity shipped to the customers using the 

supplier’s vehicle in period 𝑡. 

𝐵𝑡−1 = 𝑟𝑡
𝑠 ≤  𝑈𝑠                                                      𝑡 ∈ 𝑇                                                         (1.3) 

Constraint (1.3) limits the inventory level at the supplier to its maximum.  

𝐵0 =  𝐵0                                                             𝑡 ∈ 𝑇                                                          (1.4)  

Constraint (1.4) defines an initial inventory level at the supplier. The inventory level at a 

customer 𝑖 in period 𝑡 is defined at the end of the period.  
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2. Inventory definitions at the customers 

𝐼𝑖𝑡 = 𝐼𝑖,𝑡−1 +  ∑ 𝑋𝑖𝑘𝑡 − 𝑟𝑖                                   𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                     (1.5)

𝑘∈𝐾

 

(1.5) stipulates that the inventory level is given by its previous inventory level period 𝑡, plus 

the quantity 𝑋𝑖𝑘𝑡 delivered to customer 𝑖 in period 𝑡, minus the total quantity consumed by 

customer 𝑖 in period 𝑡. The inventory level at the end of period 𝑡 at customer 𝑖 is then: 

𝐼𝑖0 =  𝐼0
𝑖                                                                                         𝑖 ∈ 𝑁                                           (1.6) 

Constraint (1.6) defines the initial inventory level at each customer. 

3. Maximal inventory level at the customers 

These constraints ensure that the inventory level at the customers will not exceed its maximum 

level. 

∑ 𝑋𝑖𝑘𝑡 ≤  𝑈𝑖 − 𝐼𝑖,𝑡−1

𝑘∈𝐾

                                                           𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                    (1.7) 

Constraint (1.7) guarantees that delivery at each time period takes place only if a customer is 

visited with a route and this route is used at this time period. 

4. Vehicle Capacity 

∑ 𝑋𝑖𝑘𝑡 ≤ 𝑄 ∗ 𝑌𝑘𝑡                                                                    𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾                                  (1.8)

𝑖∈𝑁

 

Constraint (1.8) guarantees that the vehicle’s capacity is not exceeded 

5. Routing constraints 

𝑋𝑖𝑘𝑡 ≤ 𝑄 ∗ 𝑎𝑖𝑘 ∗ 𝑌𝑘𝑡                                                             𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾                            (1.9) 

Constraint (1.9) guarantee that a delivery at each time period takes place only if a customer is 

visited with a route and this route is used at this time period: 
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∑ 𝑌𝑘𝑡 ≤ 𝑛                                                                                          𝑡 ∈ 𝑇                                    (1.10)

𝑘∈𝐾

 

Constraint (1.10) limits the number of routes per time period to the number of vehicles. 

6. Integrality and non-negativity constraints 

𝐼𝑖𝑡  ≥ 0                   𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                      (1.12) 

 𝐵𝑡 ≥ 0                     𝑡 ∈ 𝑇                                                                   (1.13)  

𝑋𝑖𝑘𝑡  ≥ 0        𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 , 𝑡 ∈ 𝑇                                               (1.14) 

𝑌𝑘𝑡  ∈ {0,1}           𝑘 ∈ 𝐾 , 𝑡 ∈ 𝑇                                                 (1.15) 

 

3.1.2 MODEL 2: DYNAMIC INVENTORY ROUTING PROBLEM WITH COST 

MINIMIZATION 

In model 1, the consumption rate for the whole planning horizon is known a priori and does 

not change during the whole planning horizon. Based on the fixed consumption rate for all the 

customers in all the time periods, routes are generated and delivery plans made for the planning 

horizon. The decisions do not change from one period to the other. This can therefore be seen 

as a deterministic inventory routing problem. On the hand, in a dynamic inventory routing 

problem, the routing and delivery decisions may change from one period to the other during 

the planning horizon, due to changes in consumption rate in a scenario where the consumption 

rate for the rest of the planning horizon is to be forecasted based on historical data. Routing 

and delivery decisions are made at the end of every period for the next period. The same 

objective function and constraints as in Model 1 shall apply. 

3.1.3 MODEL 3: DYNAMIC INVENTORY ROUTING PROBLEM WITH PROFIT 

MAXIMIZATION 

When the objective is to maximize profit, the supplier can earn revenue from sales, valued at 

𝑃𝑖 per unit of product shipped to customers, which is a unit price. The demands for all the 

customers do not need to be satisfied, so some of the demand can be partially fulfilled. This 
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unsatisfied demand results in an incurred penalty 𝑏𝑖 for each unit of demand not satisfied and 

that penalty helps account for the customer’s unsatisfied needs. Since it is allowed for 

consumption to be less than demand, we therefore introduce a variable 𝐶𝑖𝑡, which is the amount 

of product consumed by the customer 𝑖 at time period 𝑡. The mathematical formulation for this 

model is: 

𝑀𝑎𝑥 ∑ ∑ ∑ 𝑃𝑖𝑋𝑖𝑘𝑡 ∑ ∑ 𝑐𝑘𝑌𝑘𝑡 + ∑ ∑ ℎ𝑖𝐼𝑖𝑡 + ∑ ℎ𝑠𝐵𝑡  − ∑ ∑ 𝑏𝑖(𝑟𝑖 ∗ 𝐶𝑖𝑡) − ∑ 𝑓(𝑟𝑡
𝑠

𝑡∈𝑇

)

𝑡∈𝑇

𝑟𝑡
𝑠

𝑖∈𝑁𝑡∈𝑇𝑡∈𝑇𝑖∈𝑁𝑘∈𝐾𝑡∈𝑇𝑡∈𝑇𝑘∈𝐾𝑖∈𝑁

     

 (3.1) 

The same constraints as in Model 1 shall apply except the inventory definition at the customers 

that will be changed as per below:  

𝐼𝑖𝑡 = 𝐼𝑖,𝑡−1 + ∑ 𝑋𝑖𝑘𝑡 − 𝐶𝑖𝑡                                         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                               (3.2)

𝑘∈𝐾

 

𝐼𝑖0 =  𝐼𝑖0                                                                              𝑖 ∈ 𝑁                                                    (3.3) 

 

3.1.4 MODEL 4: DYNAMIC INVENTORY ROUTING PROBLEM WITH PROFIT 

MAXIMIZATION FOR MONOPOLY 

 When the supplier is a monopolist, prices can be adjusted to maximize profit.  There is a limit 

to how high a monopolist can set the price, because there is an inverse relationship between 

price and demand. When the price is too high, demand is lowered and  in this case, we treat the 

generated revenue 𝑃𝑖 as a variable.. The relationship between demand and product unit price is 

shown by the function  𝑟𝑖 ≤  𝑓( 𝑃𝑖) ( Zaitseva 2017). 

 

𝑀𝑎𝑥 ∑ ∑ ∑ 𝑝𝑖

𝑡∈𝑇𝑘∈𝐾𝑖∈𝑁

∗ 𝑋𝑖𝑘𝑡 ∑ ∑ 𝑐𝑘𝑌𝑘𝑡 + ∑ ∑ ℎ𝑖𝐼𝑖𝑡 + ∑ ℎ𝑠𝐵𝑡 − ∑ ∑ 𝑏𝑖(𝑓(𝑝𝑖𝐶𝑖𝑡) − ∑ 𝑓(𝑟𝑡
𝑠)(𝑟𝑡

𝑠)

𝑡∈𝑡𝑡∈𝑇𝑖∈𝑁𝑡∈𝑇𝑡∈𝑇𝑖∈𝑁𝑘∈𝐾

    

𝑡∈𝑇

 

                                                                                                                                                                                (4.0) 

The same constraints as in Model 2 shall apply except the constraint below which stipulates 

that the amount consumed by the customer is a function of price and so a function appears on 

the right hand side of the constraints:  

𝐶𝑖𝑡 ≤  𝑓( 𝑃𝑖)                                                                                 𝑖 ∈ 𝑁 , 𝑡 ∈ 𝑇                                (4.1) 
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A linear demand curve will be assumed as in (Zaitseva 2017), Besango and Braeutigam 2010. 

The non-linear and non-separable form of the objective function occurs because profit is 

derived by multiplying the variables price and quantity, and this non-linearity will be treated 

as described in (Zaitseva 2017) and Williams 2013 where the non-separable and non-linear 

objective function is converted into separable functions and then linearized using the piecewise 

linear method by the following: 

1. Transformation to Separable Form:  

This is achieved via the following steps 

i) A new variable 𝑍𝑖 = ∑ ∑ 𝑋𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾  is introduced in order to avoid indices for routes and 

time periods for every customer, which results in a new term in the objective function 

being∑ 𝑃𝑖𝑍𝑖𝑖∈𝑁 . 

ii) Two new variables 𝑊1𝑖 and 𝑊2𝑖 are introduced into the model and related to 𝑃𝑖 and  𝑍𝑖 

such that   

𝑊1𝑖 =
1

2
(𝑃𝑖 ∗ 𝑍𝑖) 

𝑊2𝑖 =
1

2
(𝑃𝑖 ∗ 𝑍𝑖) 

If 𝑙𝑝 ≤ 𝑃𝑖 ≤ 𝑢𝑝 𝑎𝑛𝑑 𝑙𝑧 ≤ 𝑍𝑖 ≤ 𝑢𝑖
𝑧 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑠 𝑜𝑛 𝑊1𝑖 𝑎𝑛𝑑 𝑊2𝑖 𝑎𝑟𝑒 

1

2
(𝑙𝑝 + 𝑙𝑧) ≤ 𝑊1𝑖 ≤

1

2
(𝑢𝑝 − 𝑢𝑙

𝑧) 

1

2
(𝑙𝑝 − 𝑢𝑖

𝑧) ≤ 𝑊2𝑖 ≤
1

2
(𝑢𝑝 − 𝑙𝑧) 

The objective function ∑ 𝑃𝑖𝑍𝑖𝑖∈𝑁  is now replaced by the term ∑ (𝑊1𝑖
2 ∗ 𝑊2𝑖

2 )𝑖∈𝑁 , which is now 

a separable non-linear function (as it contains non-linear functions of a single variable. 

2. Transformation to linear form: The non-linear terms can be eliminated by piecewise linear 

approximations by using the 𝜆 – formulation method described below: 
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a. Breakpoints denoted by 𝑊1𝑖𝑠are introduced for functions 𝑔(𝑊1𝑖) and 𝑔(𝑊2𝑖) by which 

the curves are divided into pieces that are approximated by straight lines. Any point 

between two breakpoints is a weighted sum of these two points. 

b. Non-negative weights 𝜆𝑖𝑠
𝑊1 and 𝜆𝑖𝑠

𝑊2for the functions 𝑔(𝑊1𝑖) and 𝑔(𝑊2𝑖) are introduced. 

c. The piecewise approximation ensures the maximization of the product of the weight 

𝜆𝑖𝑠
𝑊1 and its corresponding function 𝑔(𝑊1𝑖)  less the product of the weight 𝜆𝑖𝑠

𝑊2 and its 

corresponding function 𝑔(𝑊2𝑖) 

iv) Inclusion of a special ordered set of type 2 (SOS2) constraint whereby at most two adjacent 

𝜆𝑖𝑠
𝑊1  can be greater than zero. This constraint guarantees that corresponding 𝑊1𝑖 and 𝑔(𝑊1𝑖)  

always lie on one of the straight line segments between breakpoints. A binary variable 𝑆 𝑖𝑠that 

represents the interval between two adjacent breakpoints and equal 1 if the interval is chosen 

and 0 otherwise is included for the function 𝑔(𝑊1𝑖)  or (𝑊2𝑖) where a convex function is 

maximized. 
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4. METHODOLOGY 

In this chapter we discuss the strategies we plan to adopt towards achieving the profit 

maximization objective of our problem, while considering the supplier’s market structure. Our 

approach combines a mixed integer linear programming with the rolling horizon approach, by 

using the rolling horizon approach to decompose the problem into small sub-problems, which 

are then optimized using the exact method of mixed-integer linear programming. The proposed 

approach based on a rolling horizon framework has previously been applied to inventory 

routing problems with  satellite facilities (IRPSF) by (Jaillet et al. 2002) and (Bard et al. 1998) 

but with a cost minimization objective. (Zaitseva 2017) also worked on ascertaining profit 

maximization in inventory routing problem with consideration for the type of market the 

organization operates. We extend the  work done by Zaitseva 2017 by introducing dynamic 

settings implemented under a rolling horizon approach. To the best of our knowledge, no paper 

exists where the rolling horizon approach has been incorporated into a dynamic inventory 

routing problem with an objective to maximize profit, while considering the structure of the 

market the supplier operates in. 

 

4.1 Scenario Generation 

Scenarios from our context are time blocks generated from the problem’s simulation length, 

composed of fixed planning horizons and fixed customer sets, over which the performance of 

the different possible market structures the supplier can take is tested, to determine their 

maximum profit, revenue, and costs post demand satisfaction etc. For the purpose of this thesis, 

we have generated 72 different scenarios with simulation length of 30. The scenarios are 

generated based on 3 fixed customer sizes: 5, 10 and 15 customers and 6 fixed planning horizon 

lengths of 1, 2, 3, 4, 5 and 6 days, which will be tested over 4 different models. The list of 

scenarios are shown in table 4.1:  
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 T1N5: 1-day planning horizon with 5 customers 

 T1N10: 1-day planning horizon with 10 customers 

 T1N15: 1-day planning horizon with 15 customers 

 T2N5: 2-day planning horizon with 5 customers 

 T2N10: 2-day planning horizon with 10 customers 

 T2N15:2--day planning horizon with 15 customers 

 T3N5: 3-day planning horizon with 5 customers 

 T3N10: 3-day planning horizon with 10 customers 

 T3N15: 3-day planning horizon with 15 customers 

 T4N5: 4-day planning horizon with 5 customers 

 T4N10: 4-day planning horizon with 10 customers 

 T4N15: 4-day planning horizon with 15 customers 

 T5N5: 5-day planning horizon with 5 customers 

 T5N10: 5-day planning horizon with 10 customers 

 T5N15: 5-day planning horizon with 15 customers 

Table 4.1: Generated Scenarios   
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 T6N5: 6-day planning horizon with 5 customers 

 T6N10: 6-day planning horizon with 10 customers 

 T6N15: 6- day planning horizon with 15 customers 

 

4.1.1 The Rolling Horizon Approach 

Following the rolling horizon approach flowchart in Figure 4.1, the rolling horizon approach 

operates by dividing a large problem with a long time horizon into smaller sub-problems with 

shorter and more manageable time horizons. In each of these sub-problems, only part of the 

scheduling problem is solved in detail, while the remaining part of the time horizon is 

aggregated. 

 

 

 

 

The rolling horizon principle helps to reduce computing times of larger problem because 

computing time increases as the number of variables or time horizon increases. The main idea 

behind the rolling horizon is that solving the MILP in detail, to optimality, for a small part of 

the time horizon is relatively simple compared to solving the MILP in detail for the entire 

Figure 4.1: Rolling Horizon approach flowchart.   
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horizon, and this approach substantially reduces computational time (Al-Ameri, Shah, and 

Papageorgiou 2008). As seen in figure 4.1, the next step is that the sub problems are solved to 

optimality. The rolling horizon approach ties the model in a loop, and for each iteration, the 

planning horizon jumps by a value k, which is 1 day in our problem, such that the remaining 

period on the simulation length reduces by the value of k until the planning horizon covers the 

entire simulation length and this is done for every scenario that is to be observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure above illustrates the rolling horizon principle where the planning horizon H has a 

length of 5 days and the shifting of the planning horizon between three consecutive iterations, 

with a length of the jump in time simulated between iteration of k = 1 (The methodology makes 

a length of jump in time K ≤ H). In our work, the length of the simulation covers a fixed 30 

day period and (t) represents the present time in the simulation. The planning horizon is fixed 

at the beginning of the iteration, as seen in figure 1. The present time (t) in the simulation is 

updated after each jump in time of length k and what was planned up to the new present time 

is executed. The solver then recalculates a new routing decision using available demand 

Figure 4.2: Rolling Horizon diagram for five-day planning horizons, adopted from (Fagerholt 

et al. 2010)  

Planning Horizon H = 5 

Planning Horizon H = 5 

Planning Horizon H = 5 



40 

 

information and this procedure is continued until the total fixed length of the simulation is 

covered. Therefore, a rolling scheduling horizon method has been adopted to enable the model 

iteratively works its way through the simulation length of 30 days. A length of the planning 

horizon should match values that are experienced by the planner and determined based on 

contractual agreements if any exists. Only demands experienced within the scheduling horizon 

are presented to the solver.  

 

4.2  Analysis of results 

Important output figures will be obtained for every scenario from the solving process of the 

short-term routing and scheduling problem. The following figures are to be obtained: total 

profit, total revenue, total cost, total produced amount, total shipped amount, total consumed 

amount, total shortage amount and total penalty cost. Figures like total shortage amount and 

total penalty cost are relevant in situations where customers are not served, which may force 

the company to break the agreement with the customers, resulting in possible loss of goodwill 

or excessively higher replenishment cost. In addition to producing near-optimal results, the 

rolling horizon approach can reduce the computation time. 
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5  COMPUTATIONAL EXPERIMENT  

In this section,we provide some specifications with which the models were generated and run, 

we describe the proceedure with which the instances were generated and we present results 

which highlight the performance of our models. 

 

5.1 Specification for Implementation 

All formulations were computed with AMPL/CPLEX 12.7.00 through remote desktop access 

run on a private computer with the following specifications: Intel (R). Core (Stadtler) i5-6400T 

CPU at 2.2GHz, 2.21GHz with 12.0GB RAM, 64-bit operating system, x64-based processor. 

The thesis makes use the AMPL API R interface to access the features of the AMPL interpreter 

from within the R programming language. The interface was used to directly assign data to 

AMPL parameters and sets. The benefit of this is that we are able to develop a separate decision 

support application outside of AMPL and interact with the AMPL solver when required. 

 

5.2  Instance Generation 

We generated instances following the standards used for the instance generation in (Zaitseva 

2017), except for the horizon, which was modified to fit the problem. Instances were generated 

according to the following data: 

 Number of customers n = 5, 10 and 15. 

 Horizon H; equals 1, 2, 3, 4, 5 or 6 periods  

 The quantity of product 𝑟𝑖consumed by the customers 𝑖 at time 𝑡 is generated as a 

random integer following a discrete uniform distribution in the interval [10, 100]. 

 The maximum inventory level 𝑈𝑖 at the customer  equals 𝑟𝑖𝑔 

 The inventory holding cost ℎ𝑠 at the supplier is 0.3 and inventory holding cost ℎ𝑖at the 

customers. Both costs are randomly generated  in the interval [0.1, 0.5].  

 The vehicle capacity Q is 
1.5

𝑛
 ∑ 𝑟𝑖𝑖∈𝑗 . 𝑛 represents the number  of available vehicles. 

 The coordinates (𝑋𝑖 − 𝑌𝑖)  are the coordinates of the customers 𝑖, and are obtained 

randomly from a discrete uniform distribution in the interval [0, 500.] distance/cost 𝑐𝑖𝑗 

is then calculated as √(𝑋0 − 𝑋1)2 + √(𝑌0 − 𝑌1)2. 

 The maximum number of customers on each route is 2 and 3.  
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 The number of vehicles is 3 

 The demand function is 𝑓(𝑝𝑖) =  −2.5𝑝𝑖 + 113, where 𝑝𝑖 is the unit price. 

 The unit price limit for the monopoly is 41, with the corresponding demand 10.5. 

 The penalty for unsatisfied demand is 0.2𝑝𝑖 

 The average cost function :𝑓(𝑟𝑡
𝑠) = 0.0005(𝑟𝑡

𝑠) + 2 +
3

(𝑟𝑡
𝑠)

 where (𝑟𝑡
𝑠) is the 

production rate. 

5.3  Computational results  

We now present the results of our computational experiments. 

In table 5.1, we show the results for all 72 instances, the total revenue, total profit, total 

transportation cost, total inventory holding cost, total production cost, total penalty cost, 

consumed amount, shortage quantity and computation time for each of the 4 models in each 

scenario. From this table, we will show trends in total revenues, profits and costs across models 

and scenarios 
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Table 5.1: summary of computational results for the dynamic inventory routing problem for the scenarios, across 4 models 
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Table 5.1 continues: summary of computational results for the dynamic inventory routing problem for the scenarios, across 4 models 
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Table 5.1 continues: summary of computational results for the dynamic inventory routing problem for the scenarios, across 4 models 
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5.3.1  Computation Time 

The simulation terminated for each scenario when the iteration reached the fixed 30 days it was 

simulated to cover. The table below gives us the computation time for each of our 72 instances, 

which is a combination of planning horizon and number of customers.  

 

 

The table shows that the computational requirement increased progressively with an increase 

in the number of customers and length of planning horizon.The cost minimization models took 

the least time to run for all customer sets and all planning horizon lengths. The monopolistic 

models took the most time to run, for all customer sets and all poanning horizons where feasible 

results were gotten. Comparing the cost minimization model with 5 customers, it can be seen 

that as the planning horizon length increases from T1 to T6, the computational requirement 

increases from 57 secs in the 1 day planning horizon length to 362 seconds in the 6 day planning 

horizon length for the same customer number of 5.  The increase in computation time is 

reasonable, in accordance with (Al-Ameri, Shah, and Papageorgiou 2008)  where it shows that 

with a rolling horizon approach, as the variables or the time horizon increases, computing times 

increase greatly. This trend of dramatic increase in computing time can also be seen for the 4 

different models, with the model for the monopolistic market condition showing the longest 

computational time mostly for all scenarios. The scenarios with 15 customers do not follow 

this trend because the computation time shown in Table 5.2 does not include computational 

times from the model with the monopolistic market structure, whose computing time was 

extremely longer than computing times from all other scenarios combined. Adding data from 

Table 5.2: Computational time in seconds  



47 

 

those computing time would have tallied with a dramatically longer computing time as the 

variables increased. 

 

5.3.2  Revenue 

 

 

The revenue in  Table 5.3 above is generated for all 4 models across 3 customer sets and 

6 planning horizons. It can be seen that the value for the revenue is fairly equal across the 

instances for each set of customers, this is because the consumed demand is fairly constant 

across all 4 models, although highest with the monopolistic market across all scenarios.   

The table below shows the total revenue for all 72 instances. The revenue represents the total 

demand satisfied at all customer locations multiplied by the price of each product.  

  

 

Table 5.3: Total Revenue across all instances 
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Figure 5.1: Total revenue for customer set of 5 across all 4 models and 6 planning horizons  

Figure 5.2: Total revenue for customer set of 10 across all 4 models and 6 planning horizons  
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5.3.3 Profit 

Profit is calculated by subtracting the total incurred cost from the total revenue.  

 

 

Table 5.4 shows the total profit across all instances. The mincost models generated the least 

profits for all customer sets and all planning horizon lengths. The monopolist’s model is seen 

to have generated the highest profit for every scenario where a feasible result was gotten. This 

is because the model combines the profit maximizing price-quantity combination on the market 

demand curve. The monopolistic model could in some instances have increased the price at 

which products were supplied to the consumer, which will trigger a decrease in demand 

consumed by the consumer, reducing costs and increasing profits. The perfect competitive 

market on the other hand, being the price taker, takes prices as given by the market equilibrium 

of demand and supply, generating profits lower than the monopolist. Had the price of the 

perfectly competitive model been raised above the given market price, no consumed demand 

or profit would have been recorded.  

Table 5.4: Total Profit across all instances 
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Figure 5.3 shows the monopoly with the highest profits when the profits generated with the 

scenarios with 5 customers were plotted against the planning horizons. 

 

 

Figure 5.3: Total profit for customer set of 5 across all 4 models and 6 planning horizons  

Figure 5.4: Total profit for customer set of 10 across all 4 models and 6 planning horizons 
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Figure 5.4 shows the monopoly with the highest profits when the profits generated with the 

scenarios with 10 customers were plotted against the planning horizons. From Table 5.4, it can 

be seen that as the number of customers and length of the planning horizon increases, the total 

profit increases across all 4 models. 

5.3.3  Cost 

Total cost encompasses the cost of production, transportation, inventory holding costs and 

penalties. 

 

 

The monopolist is seen to have incurred the most cost of all the models, although for all feasible 

results obtained for the monopolist, it can be seen that their cost reduces as the length of the 

planning horizon increases for all customer sets. The cost however doubles as the number of 

customers increase. This trend is also observed for all models. The high costs of the monopolist 

can be linked to penalty costs from unsatisfied demands when the model increases the price, 

causing demand to go unsatisfied. Unsatisfied demand due to increased prices and not lack of 

product at the supplier means the supplier deals with an added inventory holding and 

transportation cost, all adding up to high costs for the monopolist. The perfectly competitive 

market model has the least cost in table 5.5. This means it incurred the least combination of 

penalty, transportation and inventory holding and production costs. The perfectly competitive 

model cannot increase its price to maximize profit, but maximizes profit through keeping its 

costs low, especially its production costs and amount produced, which translates to reduced 

inventory holding costs. 

 

Table 5.5: Total Cost across all instances  
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5.3.4 Production Cost at the Supplier  

Table 5.6 shows the cost the supplier incurs from production. The general trend from the table 

is an increase in production cost as the number of customers increase. The perfectly competitive 

model generates the lowest production cost across the planning horizon lengths, for all the 

customer sets. 

 

 

As stated previously, the perfectly competitive model capitalizes on lowering its production 

costs to maximize its profits, as it cannot maximize profits through increasing it prices like the 

monopoly can. For the monopolist, production costs mostly reduces as the length of the 

planning horizon increases for its feasible results. 

 

 

Table 5.6: Production cost 

Figure 5.5: Total production cost for customer set of 5 across all 4 models and 6 planning horizons 
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Figures 5.5 and 5.6 show the trends in total production for 5 and 10 customer sets respectively, 

across the planning horizon lengths. The reduction in the production cost across planning 

horizon length is more pronounced in Figure 5.5 with the 5 customer sets. The cost generally 

increases with increase in customers.  

5.3.5  Penalty Cost 

The penalty cost is incurred by the supplier for not meeting demand requirement of the 

customer. Table 5.7 shows the penalty costs across all 4 models, 3 customer sets and 6 planning 

horizons.  

 

 

The perfectly competitive model incurs the most penalty cost of the instances with 5 customers. 

The model maintains 0 penalty costs between planning horizon lengths of 1 to 3, but begins to 

Figure 5.6: Total production cost for customer set of 10 across all 4 models and 6 planning 

horizons 

Table 5.7: Penalty costs 
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accrue penalty costs at the 5th and 6th day planning horizon lengths. This is perhaps due to a 

trade-off between a combination of production amount and fulfilled demand with which it 

maximizes the most profit. The penalty costs at the monopoly are also probably due to the price 

and satisfied demand combination that maximizes the most profits for the model. 
 

5.3.6  Transportation cost 

 

 

Table 5.8 shows the transportation and production cost generated for all 4 models, across 

horizon lengths and customer sets. A general trend observed is that transportation cost increases 

as the number of customers increase. The monopolistic model generates the most transportation 

cost of all 4 mode across all customer sets and planning horizon lengths.  

 

Table 5.8: Transportation costs  

Figure 5.7: Total transportation cost for customer set of 5 across all 4 models and 6 planning horizons 
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Figures 5.7 and 5.8 show the trends in total transportation costs for 5 and 10 customer sets 

respectively. Both charts show a generally downward trend in the transportation cost as the 

planning horizon length increases 

 

5.3.7  Lost sales/Shortages  

The total shortages computed in Table 5.9 no particular trend. They show the number of 

demands the supplier was unable to satisfy and provide the values for which the penalty cost 

is computed. 

 

 

 

Figure 5.8: Total transportation cost for customer set of 10 across all 4 models  

and 6 planning horizons 

Table 5.9: Shortage Cost/Lost sales  
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5.3.8 Inventory Holding Cost at the suppliers 

Table 5.10 shows the inventory holding cost at the supplier for all instances. The costs reduce 

across all instances as the number of customers increase, however, no trend is notices for most 

of the instances as the length of the planning horizon increases. 

 

 

 

 

 

 

Table 5.10: Inventory holding cost at the supplier 

Figure 5.9: Total Inventory holding cost at the supplier cost for customer set of 5 across 

all 4 models and 6 planning horizons 
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The monopoly shows a decrease in cost as the length of the planning horizon increases, as seen 

in figure 5.9.  The decrease in cost as the length of the planning increases for the monopoly is 

not as marked in figure 5.10 below for the 10 customer set. 

 

 

 

5.4  Comparison of static and dynamic results  

In this section, we compare our results with those from (Zaitseva 2017) in order to highlight 

overestimated values and underestimated performance results. Table 5.10 gives an overview 

of all the performance values, which are then compared in the bar charts below. Table 5.11 

further states which values are underestimated and which are overestimated. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Total Inventory holding cost at the supplier cost for customer set of 10 across all 4 

models and 6 planning horizons 

Figure 5.11: Transportation and production costs for monopoly model compared between static 

and dynamic models 
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In Figure 5.11 and 5.12, Transportation cost for the dynamic model is higher for all the market 

types than it is for the static model. The production cost is fairly even across all models except 

for the competition of the static model. The extremely low value of production cost for the 

static competition model can be attributed the intention of the model to minimize production 

for the given planning horizon without consideration of the impact that decision would have 

on the rest of the scenario length. 

 

 

 

 

 

 

 

 

 

 

 Figure 5.13: Revenue/Profit for Perfect Competitive market type compared between static and 

dynamic models 

Figure 5.12: Transportation and production cost for Perfect Competitive market type compared 

between static and dynamic models 
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In Figure 5.13 and 5.14, for the mincost model, the revenue and profit for the dynamic model 

are higher than the corresponding values for the static models. However, the profit max and 

monopoly models show higher profit for the static models than for the dynamic. This can be 

explained as being due to over-estimation of these values. The static model optimizes for the 

given planning horizon without consideration of the impact of such decisions on the next 

planning horizon and the rest of the scenario length. Such decisions may lead to minimization 

of inventory at the supplier and increased deliveries to the customers. In the next planning 

horizon, an increase in production would have been required resulting in increase in cost that 

is not being considered by the static model. In the perfect competition model we observe that 

the revenue is higher with the dynamic model than the static, while profit for the static model 

is higher. 

 

 

 

 

 

 

 

 

 

 
Figure 5.15: Supplier and customer’s inventory holding costs for monopoly model compared 

between static and dynamic models 

Figure 5.14: Revenue/Profit for Monopoly market type compared between static and dynamic 

models 
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In Figure 5.15, and 5.16, the mincost model for the customer inventory holding cost is lower 

in the static model, which is understandable as the static model tries to minimize cost by 

reducing routing costs. This results in higher inventory remaining at the supplier location. The 

cumulative effect of this is higher supplier inventory cost for the static model than the dynamic 

model. In the case of the monopoly model there is less variation in the value of the inventory 

holding cost for both the static and the dynamic models. The reason may be that in both models 

the monopoly model requires the inventory holding cost to be high while it strives to maximize 

profit, and consequently, revenue (which is profit + cost). 

 

 

 

 

 

So in general, we can see that the static model, in its attempt to optimize the given objective 

over-estimates or under-estimates performance results based on the type of the market model. 

The static mincost model under-estimates the revenue, profit, transportation and inventory 

holding cost for the customers. The static profit_max model underestimates the transportation 

cost and inventory holding cost for the supplier, while the static monopoly model overestimates 

the revenue and profit and underestimates the transportation cost.  

 

Finally, the static competition model underestimates the production cost, while over-estimating 

the supplier inventory holding cost. Table 5.11  below shows the impact on performance results 

when static models are used instead of dynamic models: 

Figure 5.16: Inventory holding cost for consumer and supplier for Perfect Competitive 

market type compared between static and dynamic models 
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Table 5.11: static and dynamic model values for scenario T3N10 with 2 customers per route 

Table 5.12:Over and underestimation of performance results for the static model 
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5.4.1 Comparing the effect of number of break points 

In this section, we compare the values of break points from our results, with those from the 

static model. Table 5.13 shows an overview of the total break point values, which are discussed 

below. 
 

Revenue and Profit 

As seen in Figure 5.17, revenue and profit in the dynamic model are higher for the 

corresponding values of the static model. Note that while the values of revenue and profit 

decrease with increase in the number of breakpoints for the static model, the opposite was 

observed for the dynamic model where both revenue and profit are observed to increase in 

values as the number of break points is increased from 5 to 15. 

 

 

 

 

 

 

 

 

 

Transportation and Production cost 

Figure 5.18 shows that production cost is the same for both static and dynamic models while 

transportation cost reduces with increase in number of break points for dynamic model. 

Transportation cost does not show any distinct trend for the static model with increase in 

number of break points. 

 

 

 

 

Figure 5.17: Break points of revenue and profit for Monopoly market type compared between 

static and dynamic models 
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Inventory Holding Cost 

As seen in Figure 5.19, the dynamic model shows a significantly higher inventory holding cost 

for the supplier than the static model. The values of the inventory holding cost for the supplier 

for both static and dynamic models are observed to reduce with increase in the number of break 

points. Meanwhile the inventory holding cost for the customers is slightly lower for the static 

model than the dynamic. 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: Break points of transportation and production costs for Monopoly market type 

compared between static and dynamic models 

Figure 5.19: Break points of Inventory holding cost for consumer and supplier for Monopoly 

market type compared between static and dynamic models 
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Table 5.13: Break point comparison for static and dynamic model values for scenario T3N5 with 2 customers per route 
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6. CONCLUDING REMARKS AND FUTURE WORK 

The previous work done on profit maximization of an inventory routing problem has been 

extended in this work by the following:  

 Inclusion of dynamic aspects thereby changing the problem from a static one to a 

dynamic IRP.  

 The use of a rolling horizon methodology which was necessary for addressing the 

problem of overestimation and underestimation of various results for static model such 

as under-estimation of revenue and profit for mincost model, over-estimation of these 

same values for monopoly and underestimation of production cost for competition and 

the study of the impact of variation of the length of the planning horizon on the 

profitability of an inventory routing problem.  

 

Overall, an increase in profit is observed when a dynamic model is used in place of the static 

model. In addition, it shows that the increase in  profit does not change significantly as shown 

in the static model due to reduction in variation when problems are solved using a rolling 

horizon approach. 

Similar to the static model, an increase in profitability was observed as the length of planning 

horizon is increased for the four different market condition-based models, however, this 

increase was accompanied by a significant increase in computational time especially for the 

monopoly market situation of the dynamic model. The effect of the number of breakpoints for 

the 5-customer monopoly scenario was studied and the results showed an increase in revenue 

and profit with increase in the number of breakpoints for the dynamic model. This is the 

contrary to the result for the static model as demonstrated in (Zaitseva 2017) 

 

 

Regarding future work it is important to address the main problem observed with the model, 

which was the increase in computational time associated with increase in number of customers 

and length of the planning horizon and infeasibilities that were observed while testing some of 

the scenarios. This is a common problem with the use of MIP solvers when solving 

combinatorial problems. As a result, a heuristic approach is recommended for solving such 

dynamic inventory routing problems.  
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Another area for future work would be the use of available optimization packages in 

combination with a programming language for the solving of non-linear problems. This is 

because of the cumbersome nature of the current method being used for solving nonlinear 

problems that involves separation of non-linear equation and linearization, which is an 

approximate method that is dependent on the number of break points which negatively impacts 

on the computation time as demonstrated in this work and in Zaitseva 2017.  

 

For this work, we arbitrarily chose a linear demand curve to represent the market situation for 

the suppliers. In the future, it would be interesting to see how the profitability of the firm 

behaves with an iso-elastic demand curve representing the market situation.  

 

Stochasticity in the demand can be introduced in the future to observe how the different models 

will perform when demand is uncertain and generated from forecasting. 
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