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understanding and encouragement. Your warm hugs, Kisses and sweet words cheered us on

during this program.

In this thesis, we review the literature pertaining to the inventory routing models. We present
a formal problem description. Furthermore, we provide a detailed description of two IRP
models with profit maximization along with their linearization technique (adopted from
Zaitseva 2017).

The proposed models correspond to two market types: monopoly and perfect competition.
Computational experiments were conducted on a set of benchmark instances and concluding

remarks and interpretations were provided in a later stage.



Summary

With the increasing need for competitive advantage in supply chains today, more and more
businesses are addressing inventory routing decisions, in an integrated manner particularly
through the Vendor Managed Inventory (VMI) approach. This combined approach of making
decisions about routing, inventory and delivery strategies, is opposed to traditional strategies
where these problems are solved separately. Clearly, this strategy offers significant advantage
of lowered logistical costs but at the cost of producing a complex combinatorial optimization

problem termed inventory routing problem (IRP).

Typical IRP aims at minimizing the total costs incurred when these decisions are concurrently
made while ensuring that customers do not experience stock-out in the process.
Notwithstanding, most supply chains measure their success through the maximization of the
overall profit in the chain. Therefore, we focus this thesis on developing IRP models with profit

maximization objective.

More precisely, we investigate the dynamic and deterministic versions of the IRP, both of
which are derived through the extension of a static deterministic variant of the IRP by applying
the rolling horizon technique on 18 scenarios composed from 3 customer sets and 6 planning
horizon lengths. We generated 72 instances by testing the scenarios on 4 model types — cost
minimization, profit maximization, monopoly and perfect competitive models. The last two
models are market structures (monopoly and perfect competition) suppliers can assume and the

thesis focuses on them.

The characteristics of these market types and the way they maximize profits made a huge
impact on our results. This is because where the monopolist maximizes profit by setting prices
at values where it forfeits satisfying customer demand because of increased price, the perfectly
competitive market acts differently. It maximizes profit by deriving an optimal production
quantity as it is not designed to alter prices but take the price derived from the equilibrium of

demand and supply.

From our computation experiment, we found trends, trade-offs and behaviors of the dynamic
models in the instances which we tested them, one of which is we were unable to avoid stock-

outs at the customers, as we recorded costs and penalties related to shortages and lost sales.
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One general trend was that profits increased with larger customer sets and longer planning
horizon lengths, and so did the computational time. We also discovered that when static
variants of the IRP was used with an objective to maximize profits, values were

underestimated, while some outputs were overestimated.
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1. INTRODUCTION

Due to the competitive nature of businesses in the logistics and transport industry, firms are
now forced to change their goals from optimizing their own business units to focusing on
optimizing the whole supply chain, which is why it has been stated that competition is now
between supply chains instead of between each product line or organization (Andersson et al.
2010). The overall goal of supply chain management is to integrate organizational units and
coordinate flows of material, information, and money so that the competitiveness of the supply
chain is improved (Stadtler 2008). To achieve this integration requires the coordination of
logistics activities such as procurement, material management and transportation to achieve
optimum, or near optimum performance regarding cost, efficiency and service level.

As logistics cost forms a significant part of a nation’s GDP (In Norway, for example, this
Logistics cost comprises 14% of the GDP) (Hansen 2010). There is a major opportunity for
improvement, mainly through coordination. The need for coordination has resulted in the trend
towards the centralization of the decision-making process responsible for the management of

distribution and replenishment.

Historically, inventory management and routing have been managed separately in industries.
But an interrelation exists between these logistical decisions because in order to determine
which customers to serve and the quantity to deliver to the selected customers the routing cost
information is needed so that the marginal profit, which is calculated as the difference between
revenue and delivery cost for each customer can be computed with accuracy. This
interrelationship between inventory allocation and vehicle routing has motivated the modelling
of these two logistical activities simultaneously as the integrated Inventory Routing Problem
(IRP). The IRP can be seen as an extension of the Vehicle Routing Problem (VRP), but unlike
the VRP were the customers specify the order they want to receive and the supplier aims to
satisfy this specified demand and simultaneously minimize its total distribution cost, the
supplier determines the order quantity (through some input from the customer) and the delivery

time.

More and more companies are becoming aware of their supply chain performance and the
benefits of coordination and integration of the various components in the management of their
supply chain. They are aware of competitive advantage that can be gained through elimination

of redundancies and increase in capacity utilization, through elimination of inefficiencies that
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arise from high distribution costs in their supply chain/distribution networks. Technology, and
advancement in communication systems have made available abundant data and reliable
information systems, which have eased coordination within the supply chain, encouraging
businesses to further embrace the practice of IRP. Many industries are therefore increasingly
applying the concept of IRP to their routing and inventory problems. Early applications deal
with products like gases, chemicals and automobile. Later applications include routing and
inventory management for ammonia, groceries, industrial gases, bitumen, calcium carbonate
slurry, frozen products, frozen products, auto parts, blood and petrochemical products
(Andersson et al. 2010). IRP has also been applied in the maritime industry, different from
other IRP applications because of much longer transit times, (days instead of hours), with

destinations often international (Moin and Salhi 2007).

The main objective of every supply chains should be to maximize the overall profitability of
the chain, with profitability defined as the difference between revenue generated from
satisfying customers and the overall cost across the supply chain (Chopra and Meindl 2016).
So, for an IRP, which typically has an objective to minimize costs, this does not translate to the
profit maximization objective of a supply chain, as reducing the total cost does not guarantee
maximum profit, even though cost minimization is a necessary condition for profit
maximization.  (Zaitseva 2017) worked on inventory routing problems with profit
maximization, where she examined the market structures the supplier can take, the mechanisms
controlling the prices and demand and how they affect the IRP. She examined a monopolistic
and perfectively competitive market structure for the supplier in a Vendor Managed Inventory
setting, constructed from static IRP models, from which she derived interesting trends, trade-
offs and behaviours of the different market types in the IRP model.
This thesis plans on extending the static models of (Zaitseva 2017) to dynamic models, in order
to examine the results for the purpose of answering the following research questions:
e Can we observe the same trends, trade-offs and behaviours when the model becomes
dynamic?
e What are the differences in trends, trade-offs and behaviours of the model when it
becomes dynamic?
e Were some results gotten from the static model overestimated, with underestimated

variables?
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e Can we determine an optimal combination of planning horizon length, market type and
customer set from all our test instances that best maximises profit?
e Does the rolling horizon approach yield better results considering the consequence of

longer computational time?

The rest of this thesis is organized in the following way. Chapter 2 provides a literature review,
which highlights what has been done before related to the IRP. In Chapter 3, problem
description and models formulations for dynamic IRP models with explanations are provided.
Chapter 4 presents the methodology, chapter 5 discusses the computational results and analyses

them. The concluding remarks of the research are provided in Chapter 6.
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2. LITERATURE REVIEW

The IRP combines inventory management, vehicle routing and schedules for the delivery of
materials. Bell is considered the pioneer of IRP (Bell et al. 1983). IRP arises as a consequence
of vendor managed inventory (VMI), where inventory management, vehicle routing and
scheduling decisions are integrated and made by the supplier simultaneously, in order to
determine when to serve a given customer, how much to replenish when this customer is served
and how to combine customers into vehicle routes. The IRP creates an opportunity for the
reduction of total routing, inventory and delivery costs through combined, in place of separate
optimization. The IRP is a difficult combinatorial optimization problem characterized by the
integration of inventory management and vehicle routing decisions (Coelho, Cordeau, and
Laporte 2014). The value added from logistics is accomplished via product availability,

accuracy in inventory, demand management and ease of placing orders.

Traditionally, inventory management and routing have been managed as different entities in
the industry, however, an increasing number of supply chains players are becoming aware of
the possibility of synchronizing production and inventory related decisions at the supplier and
customer locations. This is evidenced by the adoption of the VMI, a policy under which the
vendor is responsible for inventory decisions at the customer location. This policy gives
vendors the freedom to choose the size and time of deliveries of products to customers, while
the customer is protected against stock-outs occurrences. An ideal scenario would be that under
VMI, there will be an integration of inventory management and transportation planning,
however, the currently available ERP systems and planning systems do not have such
capability as there exists no commercially available system that provides decision support for
combined inventory management and routing (Andersson et al. 2010). A typical IRP is
concerned with the distributing of a single product type to a geographically dispersed set of
customers, using a homogeneous vehicle fleet. The supplier has unlimited product quantity at
the factory and the customers have their own storage capacity and rate of consumption. The
objective is to minimize total transportation cost over a given planning horizon, with a
commitment to prevent stock-outs at all the customers (Song and Furman 2013). These
assumptions and simplifications in the definition of the IRP limits the application of its models
to real word problems. Therefore, there exists variations of the basic IRP which try to infuse
as many practical features of real world scenarios as possible into their models (Song and

Furman 2013).
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The rest of this literature review focuses on discussing the variety of extensions of the inventory
routing problems. In section 2.1, we review the various possible combinations of assumptions
that the IRP problems can take using combinations of classification criteria from (Andersson
et al. 2010). In Section 2.2, we review literature on dynamic inventory routing problems, then
in section 2.3, we discuss methods used to determine feasible solutions in inventory routing
problems and finally, in 2.4, we discuss literature on inventory routing problems with profit
maximization with emphasis on (Zaitseva 2017), whose IRP models, which capture profit
maximization in IRP and the effect of the nature of the type of market an organization is
situated in (monopolistic or perfectly competitive markets) has on the generated profits. We

will extend these models to enable us reach the goals of this thesis.

2.1 Extensions of the Inventory Routing Problem

Several assumptions can be made when combining inventory management and routing
decisions, and almost every possible variant of these assumptions have been made, so many
that every reviewed paper in literature treats a new version of the IRP (Andersson et al. 2010).
Assumptions and aspects in IRP can be grouped according to the following criteria, which are:
time horizon, structure, routing, inventory policy, inventory decisions, fleet composition and
fleet size. (Andersson et al. 2010).

Three different modes are used when classifying time horizons, which reflects planning periods
in IRP problems. These are instant, finite or infinite. Instant time horizon is used to describe a
planning horizon of a problem, which needs only one visit per customer because of the very
short length of time. When the planning period requires more than one visit at the customer,
the IRP problem has a time horizon which is finite. Finite planning periods are further
subdivided into fixed or rolling horizons, fixed when the planning period finite and ends
naturally at the end to the horizon, with no link between the time before and after the horizon,
therefore long term effects do not need to be handled. A fixed single-day approach simplified
IRP problems greatly, which made them popular initially. In single-day models, the IRP is
optimized in single-day slices. This approach to the IRP did not consider future deliveries and
was deemed myopic, as it postponed all deliveries for the future, resulting in infeasibilities and
does not utilize good opportunities in the present time (Campbell and Savelsbergh 2004).

Multi-day models have become more prevalent. Although more computationally demanding,
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they tend to proffer solutions with better quality as they model long-term effects of short term
decisions. The rolling horizon approach applied by Baird et al, 2002 as seen in (Campbell et
al. 1998) involved, scheduling customers to routes for a two-week period, but executing only
the schedules for the first week. The rolling horizon principle entails revising schedules
regularly thereby applying more up to date data as they become known (Jaillet et al. 2002).
This way, the events of the first week is influenced by the future, which in this instance, is the
second week. For infinite time horizons the decisions being made are centred on distribution
strategies rather than scheduling (Andersson et al. 2010). An example is the permanent routing
or periodic routing, which involved creating a p-day schedule and repeating it for an unlimited
time (Campbell and Savelsbergh 2004).

In recent times, literature on IRP with very short (instant) planning horizons have been scarce.
This is because they do not have industrial relevance, as from an industrial perspective,
combined inventory management and routing problems are determined on a tactical and
operational level and therefore finite time horizons, which give solutions that can be
implemented in day to day planning and also gives ideas about operational decisions are
naturally adopted (Andersson et al. 2010). (Federgruen and Zipkin 1984) modelled a single
period IRP problem. Their work aimed at obtaining optimal replenishment quantities and
vehicle routes for the customers that, minimized the inventory holding, transportation and
shortage costs in one period (Moin and Salhi 2007). Even though single period models do not
consider planning on a long term, these models are relevant because they sometimes provide
the foundation for studying multi-period models (Moin and Salhi 2007).

Some contributions to literature capture the long term effect of tactical decisions in IRP. These
include (Burns et al. 1985) and (Anily and Federgruen 1990) whose objective was to determine
a long-term integrated replenishment strategy, which combines inventory rules and routing
patterns that enable retailers to meet their demands, while minimizing long-run average system-
wide transportation and inventory costs. (Chan and Simchi-Levi 1998) showed that long-run
average cost can be minimized in a multi-echelon distribution system with an effective
inventory control policy and vehicle routing strategy. (Adelman 2004) also worked on a paper
to determine feasible replenishment strategies that minimize average transportation and
inventory cost in an infinite horizon. (Kleywegt, Nori, and Savelsbergh 2002, 2004) attempted
to coordinate inventory replenishment and transportation in a way that minimized costs over
an infinite horizon. (Hvattum and Lgkketangen 2009) modelled the IRP problem as a

discounted infinite horizon Markov Decision Problem aimed at an optimal policy with a
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replenishment strategy that maximized the long term discounted total profit. Papers that
modelled the IRP within a multi-period finite planning horizon include (Solyali, Cordeau, and
Laporte 2012), (Coelho, Laporte, and Cordeau 2012a), (Bertazzi et al. 2013).

Demand is another classification criteria for IRP problems. There exist several variants of the
IRP depending on the nature of the demand at the customers (stochastic or deterministic).
Combined inventory management and routing problems are seen as practical, rather than
theoretical constructs and are therefore stochastic in nature. Stochastic Inventory Routing
Problem (SIRP) acknowledges that the demand of customers can be probabilistic in nature and
that the best policy for replenishment will take into consideration the probability distribution
of future demands (Hvattum and Lgkketangen 2009). Literature that includes stochasticity in
their IRP models include (Kleywegt, Nori, and Savelsbergh 2002, 2004), (Hvattum and
Lokketangen 2009) (Adelman 2004), (Coelho, Laporte, and Cordeau 2012a), (Bertazzi et al.
2013).

Combining the length of the planning horizons (finite versus infinite) and nature of demand at
customers (stochastic versus deterministic) literature in IRP can be distinguished into those that
studied infinite horizon IRP with stochastic demands; (Kleywegt, Nori, and Savelsbergh 2002,
2004), (Adelman 2004), (Hvattum and Lekketangen 2009), IRP with constant deterministic
demands and infinite horizons (Anily and Federgruen 1990), (Burns et al. 1985), (Chan and
Simchi-Levi 1998), IRP with constant deterministic demand and finite horizons (Solyali,
Cordeau, and Laporte 2012), IRP with finite planning horizon and stochastic demand
(Federgruen and Zipkin 1984), (Coelho, Laporte, and Cordeau 2012a), (Bertazzi et al. 2013).
Topology is another classification criteria for IRP models. Three modes have been identified:
one-to-one, one-to-many and many-to-many (Andersson et al. 2010). The one-to-many
topology is the dominant mode for road based inventory routing problem, where a single
facility serves a set of customers using a fleet of vehicles. The central facility is a depot, where
the vehicles begin and end their routes and where the goods are stored before they are delivered
to the customers. This is not the case for maritime transportation, which is characterized by the
absence of centralized depot and the possibility of loading and unloading vessels at different
ports. Many-to-many is the prevalent mode in such a setting (Andersson et al. 2010). A review
of literature showing studies with a one-to-many topology includes (Hvattum and Lgkketangen
2009), (Anily and Federgruen 1990) (Burns et al. 1985), (Chan and Simchi-Levi 1998),
(Coelho, Laporte, and Cordeau 2012a). Some papers where the mode is many-to-many, and of

course maritime based with multiple products transported include IRP studies by (Al-Khayyal
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and Hwang 2007), (Christiansen et al. 2011),)(Hemmati et al. 2016), (Song and Furman 2013),
(Christiansen et al. 2013). Studies by (Anily and Federgruen 1990), (Burns et al. 1985), (Chan
and Simchi-Levi 1998)used a fixed partition policy to decide which customers to visit first in
their single warehouse multi-retailer inventory routing problem. This involves partitioning the
set of retailers into a number of sets, such that each retailer is uniquely assigned to a single set
and each set is served separately, i.e., whenever a retailer in a set is served, all other retailers
in the set are served as well.

Routing: Two types of routing characterize IRP. These are the vehicle routing problem (VRP)
and the pick-up delivery problem (PDP). In the VRP setting all routes originate from and end
from a central warehouse which serves also as a depot. This type of setting is prevalent for
road-based VRP. Meanwhile, two types of deliveries are known for the VRP mode. These are
direct deliveries where goods picked up by a vehicle from a central warehouse are delivered
only to a single facility before the vehicle returns to the warehouse. A multiple deliveries type
is one in which goods picked up from the warehouse are delivered to multiple facilities before
the vehicle returns to the warehouse. (Burns et al. 1985) analysed the trade-off between
inventory, transportation and setup costs both in the case of direct deliveries and peddling
(dispatching trucks that deliver items to more than one customer per load) and concluded that
for each delivery strategy, the trade-off depended on the shipment size. The optimal shipment
size in Peddling (multiple deliveries) is a full truckload, while the optimal shipment size for
direct deliveries is given by the economic order quantity (EOQ) (Burns et al. 1985). (Coelho,
Cordeau, and Laporte 2012b) allowed direct deliveries to take place from the supplier to any
customers in their IRP model with stochastic demand and finite planning horizon by
subcontracting direct deliveries to carriers. (Kleywegt, Nori, and Savelsbergh 2002) also
studied direct deliveries in their stochastic model with an infinite planning horizon and
concluded that they have higher effectiveness when the economic order quantities of all
customers are large compared to the vehicle capacity. (Gallego and Simchi-Levi 1990) as seen
in (Solyal1, Cordeau, and Laporte 2012) concluded that the long term effect of direct shipping
is at least 94% effective overall IRP strategies whenever minimal economic lot size is at least
71% of truck size and this effectiveness deteriorates as economic lot size gets smaller. Making
exclusive use of direct deliveries simplifies the problem because it removes the routing
dimension from it. Direct deliveries from the supplier and lateral transhipment between
customers have also been used in conjunction with multi-customer routes to increase the

flexibility of the system (Coelho, Cordeau, and Laporte 2014). (Coelho, Laporte, and Cordeau
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2012b) used lateral transhipment as a means of mitigating stock-outs when demand exceeded
the available inventory. Emergency transhipments proved to be a valuable option for
decreasing average stock-outs, while reducing distribution costs significantly. The type of
delivery that characterizes the PDP (Pick-up and Delivery Problem) is known as continuous,
since there is no start or end warehouse for pickup and delivery of goods. It is more common
in maritime applications (Andersson et al. 2010) and is studied in (Al-Khayyal and Hwang
2007), (Christiansen et al. 2011), (Hemmati et al. 2016), (Song and Furman 2013, Christiansen
et al. 2013).

In terms of inventory decisions, there are four cases: fixed, stock-out, lost sales and back-order.
In a fixed case, inventory is not allowed to be negative. In a stock-out case, inventory is allowed
to be negative, however, an emergency delivery to the customer takes place, while in a case of
a lost sale, the sale is lost when stock-out occurs. In the case of back-order, the demand is
postponed until later (Andersson et al. 2010). Stock-out situation can be observed in the
supermarket industry, when the consumption of a specific product is quite high so that the
regular resupplying policy is not able to satisfy all the customer requirements in the same period
during the time horizon, also possible when the demands are stochastic and the capacity of the
vehicle is limited relative to the volume of products required by the customer. (Bertazzi et al.
2013) focuses on an IRP with stochastic demand, where stock-outs may occur during the time
horizon. The paper assumes that when the inventory level is negative, the excess demand is not
backlogged and a penalty cost is incurred. The objective of the paper is to devise a shipping
strategy that minimizes total cost, which is given as the sum of the expected inventory costs,

routing cost, plus the penalty cost for stock-out at the customer.

The vehicle fleet can be characterized in terms of composition and size. In terms of
composition, a vehicle fleet can be considered as homogeneous or heterogeneous. A fleet is
said to be homogeneous if it has the same characteristics such as speed, fixed cost, variable
cost, equipment, and size. A fleet is considered as heterogeneous when one or all of the
characteristics are different. In terms of size, a vehicle fleet can be categorized as single,
multiple or unconstrained. A single fleet consists of one single vehicle. In a multiple fleet
variant, there are a number of vehicles, which might be a constraining factor. For an
unconstrained fleet, there are no restrictions on the number of vehicles that can be used
(Andersson et al. 2010).
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2.2 Dynamic Inventory Routing Problem

Dynamic inventory routing problem is a logistical problem characterised by the simultaneous
consideration of three decisions: Routing, which involves organising the physical movement
of goods between different geographic sites like depots, warehouses, production and retail
points; Inventory, which involves quantities and values of the goods being moved and
dynamism which involves taking repeated decisions at different times with some time horizon,
with earlier decision affecting later ones. (Baita et al. 1998) Dynamic inventory routing
problem is highly prevalent in everyday experiences, however, a huge amount of literature

available covers mostly two aspects of the problem considered in pairs — Inventory and routing.

Dynamic IRP is characterized by the gradual revelation of customers’ demand over time. It
involves continuous re-optimization of the problem based on the newly received information.
Meanwhile, the received information can be deterministic (known with certainty) or stochastic.
Real life inventory routing problems are obviously stochastic as no customer will use the
product the same way every single day (Campbell et al. 1998). Usage is pretty predictable and
customers generally use about the same amount each day if their total usage for several days
in a roll is observed. (Campbell and Savelsbergh 2004), in their research inspired by Praxair,
an international industrial gas company, their basic model assumed that usage by their
customers of the gas they delivered was deterministic. In a dynamic and stochastic inventory
routing problem, the customer demand that is revealed over time is characterized by a
probabilistic distribution pattern. In order to solve a dynamic problem, it is necessary to
propose a solution policy such as the optimization of a static instance in the event of the
availability of new information. Another policy is to make use of forecasts, or the probabilistic
knowledge of future information (Coelho, Cordeau, and Laporte 2014). Dynamic and
Stochastic IRP can be solved by means of a proactive or reactive policy. On one hand, reactive
policy involves the observation of the state of the system prior to making decisions regarding
routing and delivery. On the other hand, proactive policy entails combining both the
observation of the current state and the use of forecasting of future demand in the planning
process (Coelho, Cordeau, and Laporte 2014). With regards to reactive policy, the
replenishment decision takes place at the end of the period after demand has occurred. The
problem also involves the selection of customers to serve with supplier’s vehicles and through
direct deliveries, which is an NP-hard problem, which, however, may be solved exactly using
mixed-integer linear program based on the size of the instance and the fact that the problem is
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solved once for a given period (Coelho, Cordeau, and Laporte 2014). Regarding proactive
policy, the forecast of future demand is being used to make current decisions.

Three decisions that affect the performance of the algorithm are: the choice of the forecasting
method such as the use of exponential smoothening, which is capable of identifying changes
in the mean, trend or seasonality, the length of the forecasting and rolling horizon and the
method of incorporation of future demand forecasts in an IRP heuristic. The IRP being used is
the adaptive large neighbourhood search (ALSN) (Coelho, Cordeau, and Laporte 2014). There
IS a positive relationship between the inventory holding cost and the solution cost, however,
the proactive policy is shown to perform better than the reactive policy under situations of both
increase and decrease in the inventory holding cost (Coelho, Cordeau, and Laporte 2014). The
main features are the following: The use of demand forecast, the use of transhipment reduces
stock-outs and does not make the problem more difficult to solve since it can be incorporated
into the min-cost network flow problem that is used to solve the delivery subproblem. The first
alterative solves the problem as if all information was available from the beginning (in
hindsight). The myopic dynamic heuristic uses only information that is known with certainty

to solve problems for each stage (Hvattum and Lekketangen 2009).

2.3 Feasible solution methods to Inventory Routing Problems

IRP are among the most important and most challenging extension of optimizing vehicle
routing problems in which inventory control, routing decisions and delivery schedules have to
be made simultaneously. The IRP represents a non-deterministic, polynomial-time hard (NP-
hard) problem. The routing component, vehicle routing problem, makes the problem difficult.
Even when only one customer is considered, some variants of the IRP remain computationally
hard.

Several exact, metaheuristic and hybrid methods have been used to find feasible solutions for
inventory routing problems and its variants.

Exact algorithms relying on branch-and-cut was developed by (Archetti et al. 2007) capable of
solving instances for single — products and single vehicle versions of the IRP. (Coelho and
Laporte 2013b) increased the scope of an exact approach based on the branch-and-cut
algorithm put forward by Archetti et al to include multiples product and multiple vehicle

variants of the IRP.
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The difficulty of the problem increases as the number of nodes (customers) and/or vehicles
increase. It is a well-known fact that mixed integer problems of such sizes are relatively hard
to solve to optimality using branch-and-cut methods, which is why the Lagrangean-based
approach has been used to efficiently generate lower and upper bounds (Liu and Chen 2011).
The Lagrangean-based approach enables the removal of "complicated” constraints and their
incorporation into the objective function with the help of Lagrangean multipliers. This results
in obtaining relaxed problems that can be solved efficiently (Liu and Chen 2011). It has been
observed that most of the hard problems can be viewed as easy problems, complicated by a
relatively small set of side constraints. If the side constraints are dualized, a Lagrangean
problem is produced that is easy to solve and whose optimal value is a lower bound (for
minimization problems) on the optimal value of the original problem. Therefore, the linear
programming relaxation can be replaced by a Lagrangean problem for the provision of bounds
in a branch and bound algorithm (Fisher 1985). For all applications, the Lagrangean problem
has been solvable in polynomial and pseudo-polynomial time (Fisher 1985).

(Simi¢ and Simi¢ 2013) discussed biologically inspired computing called evolutionary
algorithm, which develops an algorithm inspired by nature to solve highly complex IRPs,
particularly IRPs that cannot be addressed in a satisfactory way by the traditional approach. It
models natural processes, such as selection, recombination, mutation, migration, locality and
neighbourhood. These metaheuristics are modern techniques for searching complex space for
an optimum. Evolutionary Algorithm has become the method of choice for optimization
problems that are too complex to be solved using deterministic techniques like linear
programming. Most real-world problems involve simultaneous optimization of several
mutually concurrent objectives. multi objective evolutionary algorithms are able to find
optimal trade-offs in order to get a solution that is overall optimal (Simi¢ and Simi¢ 2013).
Some of these algorithms include genetic algorithm, Tabu search, simulated annealing, all of
which can be successfully applied. Genetic Algorithm is a stochastic search technique that
maintains a population of individuals which represent a set of potential solutions in the search
space. It attempts to combine the good features found in each individual using a structured, yet
randomised information exchange to construct individuals who are better suited to their
environment than the individuals that they were created from. Genetic Algorithm believes that
through the evolution of better and better individuals, the desired solution would be found.
(Moin, Salhi, and Aziz 2011) applied Genetic Algorithm to their multi-period, multi-supplier,

single warehouse with capacitated vehicle inventory routing problem model. (Park, Yoo, and
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Park 2016) also applied genetic algorithm to their IRP with lost sales under a vendor managed
inventory strategy in a two-echelon supply chain comprised of a single manufacturer and
multiple retailers (one — to - many) model, with multiple objectives, one of which is to
maximize profit. (Christiansen et al. 2011) applied Genetic Algorithm to their multi product,
multi sourced, multi objective, heterogeneous fleet maritime IRP model, which depicts a real
life problem faced by a Norwegian Cement production company. (Javid and Azad 2010), Qin,
Miao and Zhang, 2014) as seen in (Roldan, Basagoiti, and Coelho 2016) applied local search
operators to the IRP models. (Sajjadi and Cheraghi, 2011), (Liu and Lin, 2005) and (Li et al,
2013), as seen in (Roldan, Basagoiti, and Coelho 2016) used simulation annealing to integrate
location decisions in the IRP model (Coelho, Cordeau, and Laporte 2012a).

The hybridization of techniques has become prevalent because of the growing awareness that
they outperform individual computational intelligence techniques. It is a synergic combination
of multiple techniques used to build an efficient solution. It combines various algorithmic ideas
and does not rely on a single search strategy. (Archetti et al. 2012) explored a heuristic for the
solution of its IRP that combines a Tabu search scheme with mixed integer programming
models.

2.4 Inventory Routing Problems with Profit Maximization

The aim of most of the papers reviewed so far is to determine for each delivery time instant,
the set of customers to visit, the quantity of each product to ship to each customer and the route
of each vehicle that minimizes the overall cost consisting of transportation, inventory holding
and storage costs (Moin and Salhi 2007). A few papers however, have an objective to maximize
total profit. (Chien, Balakrishnan, and Wong 1989) had a profit maximizing objective for their
IRP model; the inventory allocation and vehicle routing decisions seek to maximize the total
revenue less the transportation and penalty costs from the supplier. The interrelationship
between the inventory allocation and vehicle routing decision is such that, in order to determine
which customers must be served and the amount to supply each selected customer, information
about the routing costs needs to be known so that the marginal profit (revenue minus delivery
cost) for each customer can be accurately computed. (Chien, Balakrishnan, and Wong 1989)
worked on maximizing total profit for their model that was characterised by a one — to — many
topology, with deterministic demand and fixed capacities for the supplier and customers. The
entire demand of the customers need not be satisfied, but there is a penalty cost imposed per

unit of unsatisfied demand. The model was based on a single period approach that passed some
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information from one period to the next through the inter-period inventory flow and could be
seen to simulate a multi-period planning model. The problem required a joint consideration of
the demand selection decision (when the available inventory is less than the total demand and
/ or the revenues of serving some customers could not cover the routing costs incurred) and the
routing of vehicles to deliver the allocated inventory to the selected customers so that the total
profit is maximized. Demand selection decision was integrated into the model and was
determined by the profit margins, vehicle capacities and the amount of inventory available at
the supplier. The problem employed a Lagrangean relaxation approach to generate upper and
lower bounds, and a heuristic method to obtain feasible solutions that give lower bounds for
the integrated problem (Chien, Balakrishnan, and Wong 1989). Fisher et al, (1982) and Bell et
al (1983) studied the inventory routing problem at Air Products, a producer of industrial gases.
Their objective was also to maximize profit from product distribution over several days. Rather
than considering a totally random set of demands or deterministic demands, demand is given
by upper and lower bounds on the amount to be distributed to each customer for every period
of the planning horizon. They then formulated an integer program that captured delivery
volumes, assignment of customers to routes, assignment of vehicles to routes and assignment
of start time for routes. The integer program was then solved using Lagrangean dual ascent
approach.

(Zaitseva 2017) worked on a static, deterministic, one — to — many, multi-period Inventory
Routing Problem with an objective to maximize profit. The author developed two models based
on the assumption that the company was operating in a monopolistic and then a perfectly
competitive market. The model assuming a monopolistic condition was used to determine the
optimal trade-off between volume and margin, according to the adopted demand function. The
model assuming a perfectly competitive market was used to determine the appropriate quantity
with which profit can be maximised using the adopted cost function. With the monopolistic
market model,(Zaitseva 2017) determined an optimal combination of price and demand for
each discrete time period, which could increase profit, and also created a possibility to adjust
price and demand to increase profit. The objective function generates a non-linear
programming model which was linearized.

This thesis extends the work done by (Zaitseva 2017). We present a finite time period using a
rolling horizon approach, with which we explore schedules for 1, 2, 3, 4, 5 and 6 day planning
horizons respectively, but only implement the first day.
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The table 2.1 below shows literature reviewed for this work and the characteristics of the IRP

problems they worked on.
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Structure Inventory Policy
One-to|Many-to Routing Maximal Order-up Inventory Decisions Fleet Composition Fleet Size Demand
Reference FinitelInfinite one Many |Many Dimctluultiple Lewel (ML)Jto lewvel (OU)|Lost saleslBacklogginglFixed Homogeneous |Hetemgeneous Single|Mu1tiple|Unconstrained deteministiclstochastic

(Adelman 2004) v v v v v v v

(Al-Khayyal and Hwang

2007) v v v v v v

(Al-Ameri, Shah, and

Papageorgiou 2008) v v v v v
(Anily and Federgruen
1990) v
(Archetti et al. 2012)
(Archetti et al. 2007)
(Bell et al. 1983)
(Burns et al. 1985)
(Campbell et al. 1998) v

(Campbell and
Savelsbergh 2004)
(Chan and Simchi-Levi
1998) v
(Chien, Balakrishnan,
and Wong 1989)
(Christiansen et al.
2011)

Coelho, Cordeau,
Laporte, 2012a
Coelho, Cordeau,
Laporte, 2012h
(Coelho, Cordeau, and
Laporte 2013)
(Federgruen and Zipkin
1984)

(Gallego and Simchi-
Levi 1990) v
(Hvattum and v
Lekketangen 2009)
{Jaillet et al. 2002) v v
(Kleywegt, Mori, and
Savelsbergh 2002) v
(Kleywegt, Mori, and v
Savelzbergh 2004)
(Moin, Salhi, and Aziz.
2011) v

(Roldan, Basagoiti, and
Coelha 2016) v v v v v
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Structure Inventory Policy

Time Horizon  |One-to|One-to|Many-tol Routing Maximal |Order-up Inventory Decisions Fleet Composition Fleet Size Demand
Reference Finite|Infinite|one [Many [Many [Direct [ultiple[Level (u1)[to level(om)Lost sales[Backlogging [Fixed [Homogeneous |Reterogencous|Single|ultiple|Unconstrained|deterninisticlstochastic
(Solyall, Cordeau, and
Laporte 2012) v v v |V v 4 v 4 4
(Song and Furman /
2013) v v v v
(Trudeau and Dror
1902 v v v v v
(Zaitseva 2017) v v v v v

Table 2.1: IRP problems from literature and their characteristics. Adopted from (Andersson et al. 2010),(Baita et al. 1998), (Coelho, Cordeau, and

Laporte 2013)

26




3. PROBLEM DESCRIPTION

Inventory routing problems (IRPs) are complex combinatorial optimisation logistic problems
that involve managing inventory and vehicle routing decisions simultaneously. It involves
vendor managed inventory (VMI) where the resupplying policy of several retailers over a short
or long term planning period is organised by a single production plant, single warehouse or
simply a single supplier. The supplier plans the deliveries, deciding the time, quantity and route
of the delivery vehicles. This thesis focuses on the dynamic variation of the IRP, where the
quantities demanded by the customers are gradually revealed over time, but at the beginning
of each planning horizon, where the inventory related decisions are being made, we lack full
knowledge of the future demands. We have made basic assumptions about this inventory
routing problem, we assume that we are dealing with a single product type, from a single
supplier to a set of customers having varying demand over a finite planning horizon. The
objective of the planning is to determine an optimal assignment of vehicles to customers and
the sequence of the vehicle visits to the assigned customers.

The problem considers only one mode of transportation, which is a truck with a given capacity,
we assume that the trucks are a homogeneous fleet, and the route of the truck must begin and
end at the supplier’s facility. The problem considers that the vehicles are able to perform one
route per time period, from the supplier to a subset of customers and the total demand on each
route must be less than or equal to the vehicle’s capacity. A predefined visit scenario is
available for each customer and we disallow the use of lateral transhipments between customers
as a means of avoiding stock out in instances where actual demand is high, instead, we allow
the incurrence of a penalty due to lost sales and the excess demand is not backlogged. We
assume that the manufacturer has enough inventory to meet all the demand during the planning
horizon, but the inventory at the customers is limited. Each customer has a maximum inventory
level, hence the quantity sent to each of them raises their inventory level to its maximum, in an
order-up-to policy. No vehicle loading and unloading cost is considered. As this is a dynamic
problem, it is assumed that the set of routes is dynamic and change from one time period to the
other; the problem does not consider any bounds (upper or lower) to the length of the individual
routes. We assume the transportation cost is measured as a Euclidian distance and so the cost
matrix satisfies the triangle inequality. The nodes are considered as customers (and node O is
considered as the supplier/depot) and the edges are used to travel from one node to the other.

As distance is the cost measure, we will assume a symmetric cost matrix.
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We assume that for every new planning horizon, the routes change to ensure the cheapest
possible routes are selected. We also assume that our problem is a pure delivery type and no
time windows are requested by the customer for the delivery of the products. In addition, our
problem can be characterized by the following: finite planning horizon with a rolling horizon
approach; inventory holding costs are considered at both the supplier and customer locations;
a deterministic consumption rate is to be considered.

Our objective is to maximize profit. Although our problem is an inventory routing problem it
differs from the basic inventory routing because unlike the basic IRP which guarantees that the
inventory level is at the predetermined level, we aim to maximize profits. Since our problem is
that of profit maximization, we do not guarantee that any of the customers will always have
the required level of inventory and so may not satisfy all of the customer demand during each
planning horizon. Pricing decisions are made with the IRP problem simultaneously because
pricing decisions affect the demand decision and then both the inventory and routing decisions.
The relationship between pricing, inventory and routing decisions is that higher pricing causes
lower demand and then lower quantities are ordered, hence lower inventory. Inversely, lower
pricing results in higher demand and then higher order quantity and higher inventory in turn.
Since the pricing decision is related to the inventory routing decisions, the profit may decrease
when they are made separately.

We assume that the price cannot be zero and a demand function will define the relationship
between the price and demand quantity. Iso-elastic and linear demand function are the most
commonly used functions for representing a downward sloping price versus demand
relationship and for the thesis we assume that the demand function for the customers is linear
and the demand lies between a specific range. The assumption of linear demand function holds

very well within this range.

3.1 MODEL FORMULATION

Notations used by (Zaitseva 2017) are used as the basis for this work, except for minor
modifications that were made to suit our objectives. We also adopt all four mathematical
models developed by (Zaitseva 2017); IRP with cost minimization, IRP with profit
maximization and the profit maximization models which emphasise two market structure types
— monopoly and perfectly competitive market.

To formally describe the problem, we consider a graph G = (N, E) where N = {0, ..., n} is the

nodes set or customers and {E = (i,j) € N,i = j} is the set of edges. The depot node is s, it is
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the common supplier to the customers over a given time horizon T. The horizon over which
the problem is defined has a length T and at each time period, t € T = {1,..,T}. Each edge
(i,j) is associated with travel cost c;;, which is known, and we assume that c;; = ¢;;. Each
vehicle has a capacity of Q. During every time period, each customer i consumes an amount
of ;. The inventory holding cost at the customer and supplier are h; and h respectively. The
supplier has a maximum inventory level Us, inventory holding costs hg, an initial inventory
level B, and a production rate at each time period . Unit production costs are defined by a
unit costs function f(r#). Each customer defines a maximum inventory level U; and has an
initial inventory level I? such that I? < U; are defined for each customeri € N. If the
customer i is visited at time t, then the quantity shipped to i at time t is such that the inventory
level of the customer reaches its maximum value U; (an order-up-to level policy is applied). If
I;; denotes the inventory level of customer i at time t, the shipped quantity is U; — I;; if the
shipment is performed at time ¢, and 0 otherwise. An inventory level at the end of time period
t at the supplier and customers is denoted as variables B, and I} respectively. Parameter n
defines a number of available vehicles, which should perform a delivery using a set of routes
K = {1,2,...,k} with costs c,. A binary parameter a;, equals 1 if customer i is served on
route k, 0 otherwise. Each vehicle can perform no more than one route per day. Denoted by
Y., we introduce a binary variable equal to 1 if route k is used at time t and 0 otherwise. A
variable X;;, identifies a quantity of product shipped to customer i at time period t using route
k and deliveries take place before the consumption. Note that we are assuming that when the
level of inventory at the customer is negative, the excess demand is not backlogged. Therefore
in this case, the initial inventory level at the following period is set to be equal to zero for each
teT={12..,T + 1}. Apenalty cost d; is considered if the inventory level is negative. The
decisions to be made are the determination of the following, for each time period and planning
horizon:

e The customers to be visited

e The amount to be delivered to each customer and

e The route to be followed in order to maximize profit.
The decision variables for the problem will be «;;: the inventory level at the customer and
supplier at each period (after consumption), y;:: a binary variable equal to 1 if @;; > 0 and 0
otherwise,i € N,t € T.

S;tk, @ non-negative variable representing the quantity of product shipped to customer i at

period t using route k and oy, ,a binary variable equal to 1 if route k is used at period ¢t and 0
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otherwise. B;; is a non-negative variable representing the level of stock-out at the customer i at

time t, &;¢; a binary variable equal to 1 if 8;; > 0 and O otherwisei € N,t € T.

3.1.1 MODEL 1: INVENTORY ROUTING PROBLEM WITH COST
MINIMIZATION

The objective is to minimize the total cost, comprising of total inventory holding costs at the
customers and supplier and total transportation cost summed. The total cost of production is

fixed in this case , they therefore do not have an effect on the objective function.

Minz z e * Vip + z Z hy * Iy + z he * By * 75 + zf(rg) xS (1)

teT keK iEN teT teT teT

CONSTRAINTS

The constraints are as follows:

1. Inventory definition at the supplier

Bt = Bt—l + Tts - Z Z Xlkt t € T (1.2)

iEN k€K

Constraint (1.2) stipulates that the inventory level at the supplier in period t is defined at the
end of the period and is given by its previous inventory level period t, plus the quantity r?
made available in period t, minus the total quantity shipped to the customers using the

supplier’s vehicle in period t.
Bi_i=71f< U teT (1.3)
Constraint (1.3) limits the inventory level at the supplier to its maximum.

B, = B° teT (1.4)

Constraint (1.4) defines an initial inventory level at the supplier. The inventory level at a

customer i in period t is defined at the end of the period.
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2. Inventory definitions at the customers

Il't :Il',t—1+ ZXikt_ri [ EN,tET (15)
keK

(1.5) stipulates that the inventory level is given by its previous inventory level period t, plus
the quantity X;;, delivered to customer i in period t, minus the total quantity consumed by

customer i in period t. The inventory level at the end of period t at customer i is then:
lo = I iEN (1.6)
Constraint (1.6) defines the initial inventory level at each customer.
3. Maximal inventory level at the customers

These constraints ensure that the inventory level at the customers will not exceed its maximum

level.

Z Xiee < Uy = I 1 iEN,tET (1.7)
keEK

Constraint (1.7) guarantees that delivery at each time period takes place only if a customer is

visited with a route and this route is used at this time period.

4. Vehicle Capacity

ZXiktSQ*th tET,kEK (18)

iEN
Constraint (1.8) guarantees that the vehicle’s capacity is not exceeded
5. Routing constraints
Xiet L Q *aj * Yt teT,ieNkekK (1.9)

Constraint (1.9) guarantee that a delivery at each time period takes place only if a customer is

visited with a route and this route is used at this time period:
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Z Yir <1 teT (1.10)

Constraint (1.10) limits the number of routes per time period to the number of vehicles.

6. Integrality and non-negativity constraints
Iy =0 i EN,t €T (1.12)
B, >0 t eT (1.13)
Xie =20 i ENk E€EK,t €T (1.14)
Y €{0,1} k eK,t eT (1.15)

3.1.2 MODEL 2: DYNAMIC INVENTORY ROUTING PROBLEM WITH COST
MINIMIZATION

In model 1, the consumption rate for the whole planning horizon is known a priori and does
not change during the whole planning horizon. Based on the fixed consumption rate for all the
customers in all the time periods, routes are generated and delivery plans made for the planning
horizon. The decisions do not change from one period to the other. This can therefore be seen
as a deterministic inventory routing problem. On the hand, in a dynamic inventory routing
problem, the routing and delivery decisions may change from one period to the other during
the planning horizon, due to changes in consumption rate in a scenario where the consumption
rate for the rest of the planning horizon is to be forecasted based on historical data. Routing
and delivery decisions are made at the end of every period for the next period. The same

objective function and constraints as in Model 1 shall apply.

3.1.3 MODEL 3: DYNAMIC INVENTORY ROUTING PROBLEM WITH PROFIT
MAXIMIZATION

When the objective is to maximize profit, the supplier can earn revenue from sales, valued at
P; per unit of product shipped to customers, which is a unit price. The demands for all the

customers do not need to be satisfied, so some of the demand can be partially fulfilled. This
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unsatisfied demand results in an incurred penalty b; for each unit of demand not satisfied and
that penalty helps account for the customer’s unsatisfied needs. Since it is allowed for
consumption to be less than demand, we therefore introduce a variable C;;, which is the amount

of product consumed by the customer i at time period t. The mathematical formulation for this

model is:
Maxz z Z PiXiktz Z CrYie + Z Z hily + z hsBy — z 2 bi(r; * Cyt) — z fa)re
iIEN k€K teT teT keK iEN teT teT IEN teT teT

3.1)

The same constraints as in Model 1 shall apply except the inventory definition at the customers

that will be changed as per below:

Iit = Ii,t—l + Z Xikt - Cit i € N,t ET (32)
keK

IiO = IiO l € N (33)

3.1.4 MODEL 4: DYNAMIC INVENTORY ROUTING PROBLEM WITH PROFIT
MAXIMIZATION FOR MONOPOLY

When the supplier is a monopolist, prices can be adjusted to maximize profit. There is a limit
to how high a monopolist can set the price, because there is an inverse relationship between
price and demand. When the price is too high, demand is lowered and in this case, we treat the
generated revenue P; as a variable.. The relationship between demand and product unit price is
shown by the function r; < f( P;) ( Zaitseva 2017).

Maxz Z Zpi * Xiktz Z CrYiee + ZZ hil; + Z hsB; — ZZ bi(f (piCit) — Zf(rts)(rts)

iEN kEK teT teT keK iEN teT teT iEN teT tet
(4.0)
The same constraints as in Model 2 shall apply except the constraint below which stipulates
that the amount consumed by the customer is a function of price and so a function appears on
the right hand side of the constraints:
Ci < f(P) I EN,t €T (4.1)
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A linear demand curve will be assumed as in (Zaitseva 2017), Besango and Braeutigam 2010.
The non-linear and non-separable form of the objective function occurs because profit is
derived by multiplying the variables price and quantity, and this non-linearity will be treated
as described in (Zaitseva 2017) and Williams 2013 where the non-separable and non-linear
objective function is converted into separable functions and then linearized using the piecewise

linear method by the following:
1. Transformation to Separable Form:
This is achieved via the following steps

i) A new variable Z; = Y ex 2rer Xike 1S introduced in order to avoid indices for routes and
time periods for every customer, which results in a new term in the objective function
beingZiEN PiZi'

ii) Two new variables W;; and W,; are introduced into the model and related to P; and Z;
such that

1

Wi =5 (P Z;)
1
Wai =5 (Pi + Z;)

If [, < P, <uP and I” < Z; < uf,then the bounds on W,; and Wy; are
1 1
S+ 1) S Wy < 5P = uf)

1 1
E(lp —uf) < Wy < E(up —1%)

The objective function Y;cy P;Z; is now replaced by the term Y;cy (W5 * W), which is now

a separable non-linear function (as it contains non-linear functions of a single variable.

2. Transformation to linear form: The non-linear terms can be eliminated by piecewise linear

approximations by using the A — formulation method described below:
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a. Breakpoints denoted by W1;,are introduced for functions g (W;;) and g(W,;) by which
the curves are divided into pieces that are approximated by straight lines. Any point
between two breakpoints is a weighted sum of these two points.

b. Non-negative weights 1%V* and ¥ *for the functions g(W;;) and g(W5;) are introduced.

c. The piecewise approximation ensures the maximization of the product of the weight
A1 and its corresponding function g(W;;) less the product of the weight A}%2 and its

corresponding function g(W,;)

iv) Inclusion of a special ordered set of type 2 (SOS2) constraint whereby at most two adjacent
A1 can be greater than zero. This constraint guarantees that corresponding W;; and g (Wy;)
always lie on one of the straight line segments between breakpoints. A binary variable S ; that
represents the interval between two adjacent breakpoints and equal 1 if the interval is chosen
and 0 otherwise is included for the function g(W;;) or (W2i) where a convex function is

maximized.
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4. METHODOLOGY

In this chapter we discuss the strategies we plan to adopt towards achieving the profit
maximization objective of our problem, while considering the supplier’s market structure. Our
approach combines a mixed integer linear programming with the rolling horizon approach, by
using the rolling horizon approach to decompose the problem into small sub-problems, which
are then optimized using the exact method of mixed-integer linear programming. The proposed
approach based on a rolling horizon framework has previously been applied to inventory
routing problems with satellite facilities (IRPSF) by (Jaillet et al. 2002) and (Bard et al. 1998)
but with a cost minimization objective. (Zaitseva 2017) also worked on ascertaining profit
maximization in inventory routing problem with consideration for the type of market the
organization operates. We extend the work done by Zaitseva 2017 by introducing dynamic
settings implemented under a rolling horizon approach. To the best of our knowledge, no paper
exists where the rolling horizon approach has been incorporated into a dynamic inventory
routing problem with an objective to maximize profit, while considering the structure of the

market the supplier operates in.

4.1 Scenario Generation

Scenarios from our context are time blocks generated from the problem’s simulation length,
composed of fixed planning horizons and fixed customer sets, over which the performance of
the different possible market structures the supplier can take is tested, to determine their
maximum profit, revenue, and costs post demand satisfaction etc. For the purpose of this thesis,
we have generated 72 different scenarios with simulation length of 30. The scenarios are
generated based on 3 fixed customer sizes: 5, 10 and 15 customers and 6 fixed planning horizon
lengths of 1, 2, 3, 4, 5 and 6 days, which will be tested over 4 different models. The list of

scenarios are shown in table 4.1:
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Length of

Number of Planning
Scenario Customers Horizon, day
T1NS 3 1
T2N5 3 2
T3NS 3 3
T4NS 3 4
TSNS 3 3
TENS 5 &
T1N10 10 1
TZN10 10 2
T3N10 10 3
T4N10 10 4
TSN10 10 3
TEN10 10 G
TIN1S 13 1
TZN15 13 2
T3N13 13 3
T4N15 13 4
TESN13 13 3
TEN13S 13 &

Table 4.1: Generated Scenarios

T1N5: 1-day planning horizon with 5 customers
T1N10: 1-day planning horizon with 10 customers
T1N15: 1-day planning horizon with 15 customers
T2N5: 2-day planning horizon with 5 customers
T2N10: 2-day planning horizon with 10 customers
T2N15:2--day planning horizon with 15 customers
T3N5: 3-day planning horizon with 5 customers
T3N10: 3-day planning horizon with 10 customers
T3N15: 3-day planning horizon with 15 customers
T4NS: 4-day planning horizon with 5 customers
T4N10: 4-day planning horizon with 10 customers
T4N15: 4-day planning horizon with 15 customers
T5N5: 5-day planning horizon with 5 customers
T5N10: 5-day planning horizon with 10 customers
T5N15: 5-day planning horizon with 15 customers
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e T6N5: 6-day planning horizon with 5 customers
e T6N10: 6-day planning horizon with 10 customers
e T6N15: 6- day planning horizon with 15 customers

4.1.1 The Rolling Horizon Approach

Following the rolling horizon approach flowchart in Figure 4.1, the rolling horizon approach
operates by dividing a large problem with a long time horizon into smaller sub-problems with
shorter and more manageable time horizons. In each of these sub-problems, only part of the
scheduling problem is solved in detail, while the remaining part of the time horizon is
aggregated.

Divide Scenario length into
plamning horizon and remaining
period

T

Solve the MILP to
optimality

4,

- HO - - - | Some of the v:mables F - Make ajump on the scenario

: Has the munber of iterations ~ D £t ot ol D length by a value equal to k. ‘This .
covered the entire scenario length? ol the present p g decreases the remaining period
R horizon are fixed 1 |

by the same length

-1

STOP

Figure 4.1: Rolling Horizon approach flowchart.

The rolling horizon principle helps to reduce computing times of larger problem because
computing time increases as the number of variables or time horizon increases. The main idea
behind the rolling horizon is that solving the MILP in detail, to optimality, for a small part of

the time horizon is relatively simple compared to solving the MILP in detail for the entire
38



horizon, and this approach substantially reduces computational time (Al-Ameri, Shah, and
Papageorgiou 2008). As seen in figure 4.1, the next step is that the sub problems are solved to
optimality. The rolling horizon approach ties the model in a loop, and for each iteration, the
planning horizon jumps by a value k, which is 1 day in our problem, such that the remaining
period on the simulation length reduces by the value of k until the planning horizon covers the

entire simulation length and this is done for every scenario that is to be observed.
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Figure 4.2: Rolling Horizon diagram for five-day planning horizons, adopted from (Fagerholt
et al. 2010)

The figure above illustrates the rolling horizon principle where the planning horizon H has a
length of 5 days and the shifting of the planning horizon between three consecutive iterations,
with a length of the jump in time simulated between iteration of k = 1 (The methodology makes
a length of jump in time K < H). In our work, the length of the simulation covers a fixed 30
day period and (t) represents the present time in the simulation. The planning horizon is fixed
at the beginning of the iteration, as seen in figure 1. The present time (t) in the simulation is
updated after each jump in time of length k and what was planned up to the new present time

is executed. The solver then recalculates a new routing decision using available demand
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information and this procedure is continued until the total fixed length of the simulation is
covered. Therefore, a rolling scheduling horizon method has been adopted to enable the model
iteratively works its way through the simulation length of 30 days. A length of the planning
horizon should match values that are experienced by the planner and determined based on
contractual agreements if any exists. Only demands experienced within the scheduling horizon

are presented to the solver.

4.2 Analysis of results

Important output figures will be obtained for every scenario from the solving process of the
short-term routing and scheduling problem. The following figures are to be obtained: total
profit, total revenue, total cost, total produced amount, total shipped amount, total consumed
amount, total shortage amount and total penalty cost. Figures like total shortage amount and
total penalty cost are relevant in situations where customers are not served, which may force
the company to break the agreement with the customers, resulting in possible loss of goodwill
or excessively higher replenishment cost. In addition to producing near-optimal results, the

rolling horizon approach can reduce the computation time.
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5 COMPUTATIONAL EXPERIMENT

In this section,we provide some specifications with which the models were generated and run,
we describe the proceedure with which the instances were generated and we present results

which highlight the performance of our models.

5.1 Specification for Implementation

All formulations were computed with AMPL/CPLEX 12.7.00 through remote desktop access
run on a private computer with the following specifications: Intel (R). Core (Stadtler) i5-6400T
CPU at 2.2GHz, 2.21GHz with 12.0GB RAM, 64-bit operating system, x64-based processor.

The thesis makes use the AMPL API R interface to access the features of the AMPL interpreter
from within the R programming language. The interface was used to directly assign data to
AMPL parameters and sets. The benefit of this is that we are able to develop a separate decision

support application outside of AMPL and interact with the AMPL solver when required.

5.2 Instance Generation

We generated instances following the standards used for the instance generation in (Zaitseva
2017), except for the horizon, which was modified to fit the problem. Instances were generated

according to the following data:

Number of customers n = 5, 10 and 15.

e Horizon H; equals 1, 2, 3, 4, 5 or 6 periods

e The quantity of product r;consumed by the customers i at time t is generated as a
random integer following a discrete uniform distribution in the interval [10, 100].

e The maximum inventory level U; at the customer equals r;g

e The inventory holding cost h at the supplier is 0.3 and inventory holding cost h;at the

customers. Both costs are randomly generated in the interval [0.1, 0.5].

e The vehicle capacity Q is 1n—5 Y.icjTi- n represents the number of available vehicles.

e The coordinates (X; —Y;) are the coordinates of the customers i, and are obtained

randomly from a discrete uniform distribution in the interval [0, 500.] distance/cost c;;

is then calculated as /(X — X1)% + /(Yo — ¥1)2.

e The maximum number of customers on each route is 2 and 3.
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e The number of vehicles is 3
e The demand function is f(p;) = —2.5p; + 113, where p; is the unit price.
e The unit price limit for the monopoly is 41, with the corresponding demand 10.5.

e The penalty for unsatisfied demand is 0.2p;

e The average cost function :f(rt5)=0.0005(rt5)+2+(r3—5) where (1) is the
t

production rate.

5.3 Computational results

We now present the results of our computational experiments.

In table 5.1, we show the results for all 72 instances, the total revenue, total profit, total
transportation cost, total inventory holding cost, total production cost, total penalty cost,
consumed amount, shortage quantity and computation time for each of the 4 models in each
scenario. From this table, we will show trends in total revenues, profits and costs across models

and scenarios
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Table 5.1: summary of computational results for the dynamic inventory routing problem for the scenarios, across 4 models

Total Total Inv| Total Inv
Transport| Holding Heolding Total
Total Total ation Cost Cost Producti| Penalty | Consumed | Shortage Solve
Scenario Model Revenue Profit |Total Cost Cost Customers| Supplier | on Cost Cost Amount Qty Time
T1N3 mincost 147576 28013 49561 30045 452 6753 12228 0 3750 0 37
TIN5 profit max 147576 85876 6165959 42346 2533 4550 12228 0 3750 1
T1NS monopoly 0 ] 0 0 o 0 0 0 ] 0 ]
T1N3 competition 147376 51407 361659 42346 2533 132 11155 0 3750 0 1
T2ZMN3 mincost 147576 102156 45420 26024 1085 6076 12228 0 3730 0 101
TZN3 profit max 147573 s6682 | 50891 31500 1737 5426 12228 0 3750 0 323
TZM3 monopoly 1810253 115308 61721 35630 2513 7344 12228 0 2473 0 130
T2MN5 competition 147576 102232 45344 31503 1721 957 11151 0 3750 0 895
T3N3 mincost 147576 99588 475987 28673 1676 5408 12228 0 3750 0 95
T3N3 profit max 147576 103330 42246 228159 1564 3633 12228 0 3730 0 138
T3N3 monopoly 180225 125268 34561 33100 2225 7388 12228 20 3457 3 347
T3N3 competition 147376 111880 356596 22030 1453 1071 11058 0 3750 0 107
T4MN3 mincost 147576 104088 43488 24032 1210 3956 12228 0 3750 0 215
T4M3 profit max 147576 104630 42886 23468 1132 6056 12228 0 23730 0 178
T4MN3 monopoly 185063 133432 31633 30634 1777 65974 12228 0 3553 0 B26&
T4N3 competition 136951 101058 35893 22134 1165 1468 11126 0 3730 0 223
TSNS mincost 147576 103869 43707 24310 1548 3621 12228 0 3730 0 332
TSNS profit max 147573 106733 40822 21334 1443 3816 12228 0 3750 0 264
TSMN3 monopoly 185650 134268 51422 31010 1511 6621 12228 52 3627 8 1241
TSMN5 competition 147360 112058 35302 21466 1505 1178 11111 42 5784 6 250
TEMN3 mincost 147576 106526 410350 21610 1286 3926 12228 0 23730 0 362
TENS profit max 147576 106887 406859 21255 1258 3906 12228 0 3750 0 367
TENS monopoly 191456 140541 30955 32764 1531 4421 12228 11 60359 2 3512
TEN3 competition 146472 110255 36177 22236 1353 1321 11047 220 3763 27 336
TIN10 mincost o 0 o o o 0 0 0 0 0 0
TIN10 profit max 317472 191864 125606 37236 6925 16956 44238 211 19050 101 44
T1N10 monopoly 0 0 0 0 0 0 0 0 0 0 0
TIN10 competition 316416 208095 108321 611259 6789 331 39659 211 18948 101 39
T2ZN10 mincost 317472 191246 126226 55074 3876 13036 44238 0 15050 0 225
T2N10 profit max 317471 196134 121337 54036 4745 18318 44238 0 19050 0 381
T2ZN10 monopoly 345055 2065965 138054 60657 8635 22457 44238 2023 18161 255 1837
T2N10 competition 317462 216260 101202 25288 4542 1762 35605 2 190453 1 251
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Table 5.1 continues: summary of computational results for the dynamic inventory routing problem for the scenarios, across 4 models

Total Total Inv| Total Inwv
Transport| Heolding Helding Total
Total Total ation Cost Cost Producti| Penalty | Consumed | Shortage Solve
Scenario Model Revenue Profit |Total Cost Cost Customers| Supplier | on Cost Cost Amount Qty Time
T3IN10 mincost 317472 187600 1239872 621453 6430 17057 44238 o 13050 o 209
T3IN10 profit max 317472 130424 127048 39812 4574 18422 44238 o 13050 o 407
T3IN10 monopoly 368682 234076 134606 60173 7089 22662 44238 444 12050 61 26171
T3N10 competition 315517 217804 37713 31352 3458 3106 39367 350 18872 178 441
T4N10 mincost 317472 1937662 119810 32463 2577 20532 44238 o] 12050 o] 377
T4N10 profit max 317466 202738 114728 47412 4335 18741 44238 & 13050 3 735
T4N10 monopoly 411837 280018 131819 37799 6845 22467 44238 470 18355 63 34034
T4N10 competition 317082 2235956 53086 46731 4715 1580 3595759 77 15014 35 670
TSN10 mincost 317472 201656 115816 485590 4182 18804 44238 o 13050 o 830
TSN10 profit max 317432 200553 116455 49184 4251 181357 42763 20 18415 3,3 1072
TSN10 monopoly 405576 284502 121074 22462 6065 20500 41186 45% 17023 63 41921
TSN10 competition 3167354 224443 92312 46283 4335 2032 359515 143 189597 53 736
TEN10 mincost 317472 204257 113213 45854 4671 18450 44238 o 13050 o 1072
TEN10 profit max 317447 202771 114676 47384 4364 18688 44238 25 13050 11 2247
TEN10 monopoly 436511 313457 123414 30163 5997 21635 44238 1377 17085 18% 141550
TEN10 competition 317056 224518 22578 46528 4263 2147 39566 74 15020 30 1563
T1N1S3 mincost 0 o] 0 0 0 o] o] o] o] o] 0
T1N13 profit max 0 0 0 0 0 0 0 0 0 0 0
TIN15 monopoly ] 0 ] ] ] 0 0 0 0 0 0
T1N15 competition 422895 311652 111203 47759 5500 821 46680 10441 22187 25593 87
T2ZN15 mincost 0 o 0 0 0 o o o o o o
T2ZN15 profit max 475102 333287 [ 141815 49436 5072 25116 55884 2307 24780 280 1357
T2N15 monopoly 0 0] 0 0 0 0] 0] 0] 0] 0] 0
T2N15 competition 461738 352284 109454 48725 4523 1113 52018 2673 23685 488 238
T3IN15 mincost 0 o 0 0 0 o o o o o 0
T3N15 profit max 475102 325371 145731 48503 4857 27362 55884 4725 24780 708 2764
T3N15 monopoly ] 0 ] ] 0 0 0 0 0 0 o
T3IN13 competition 436225 3267732 109453 48353 4148 1315 47818 7773 22773 2007 7978
T4N15 mincost 0 o 0 0 0 o o o o o 0
T4N15 profit max 473749 3327735 140574 49408 3625 25546 39884 2511 24780 364 504
T4N15 monopoly 0 0 0 0 0 0 0 0 0 0 0
T4N15 competition 461135 351846 109287 48457 4988 1027 52022 2793 24313 467 13967
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Total Total Inv| Total Inwv
Transport| Holding Holding Total
Total Total ation Cost Cost Producti| Penalty | Consumed | Shortage Solve
Scenario Model Revenue Profit |Total Cost Cost Customers| Supplier | on Cost Cost Amount Qty Time
T4N15 monopoly 0 0 0 0 0 0 0 0 0 0 0
T4N15 competition 461135 351846 109287 48457 4388 1027 52022 27593 24313 467 13567
TSN15 mincost 0 o 0 0 o 0 0 o o 0 0
TSN15 profit max 462024 323285 138725 48349 5069 25116 57888 2307 24780 280 888
TSN15 monopoly
T3SN13 competition 461562 352350 1050085 48345 4318 1106 31528 2708 24272 308 7482
TEN13 mincost 0 o 0 0 o 0 0 o o 0 0
TEN1S profit max 475102 332530 142572 49803 3003 25445 59884 2433 24780 352 2770
TEN1S monopoly 0 o] 0 0 o] 0 0 o] o] 0 0
TEN1S competition 457635 348199 105437 45252 4744 1143 30764 3492 23808 972 13830

Table 5.1 continues: summary of computational results for the dynamic inventory routing problem for the scenarios, across 4 models
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5.3.1 Computation Time

The simulation terminated for each scenario when the iteration reached the fixed 30 days it was
simulated to cover. The table below gives us the computation time for each of our 72 instances,

which is a combination of planning horizon and number of customers.

Flanning Horizon

Number of

Customers Model Tl T2 T3 T4 TS5 T6
5 mincost 57 101 95 215 332 362
5 profit max 1 323 138 178 264 367
5 monopoly 0 130 347 826 1241 3512
5 competition 1 8BS 107 223 280 336
10 mincost 0 225 209 377 830 1072
10 profit max 44 581 407 739 1072 2247
10 monopoly 0 1837 26171 34034 41921 1419950
10 competition 39 251 441 670 736 1565
15 mincost 0 0 0 0 0 0
15 profit max 0 157 2764 904 Bea 2770
15 monopoly 0 0 0 0 0 0
15 competition 87 238 7978 13967 7482 13830

Table 5.2: Computational time in seconds

The table shows that the computational requirement increased progressively with an increase
in the number of customers and length of planning horizon.The cost minimization models took
the least time to run for all customer sets and all planning horizon lengths. The monopolistic
models took the most time to run, for all customer sets and all poanning horizons where feasible
results were gotten. Comparing the cost minimization model with 5 customers, it can be seen
that as the planning horizon length increases from T1 to T6, the computational requirement
increases from 57 secs in the 1 day planning horizon length to 362 seconds in the 6 day planning
horizon length for the same customer number of 5. The increase in computation time is
reasonable, in accordance with (Al-Ameri, Shah, and Papageorgiou 2008) where it shows that
with a rolling horizon approach, as the variables or the time horizon increases, computing times
increase greatly. This trend of dramatic increase in computing time can also be seen for the 4
different models, with the model for the monopolistic market condition showing the longest
computational time mostly for all scenarios. The scenarios with 15 customers do not follow
this trend because the computation time shown in Table 5.2 does not include computational
times from the model with the monopolistic market structure, whose computing time was

extremely longer than computing times from all other scenarios combined. Adding data from
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those computing time would have tallied with a dramatically longer computing time as the

variables increased.

5.3.2 Revenue

The table below shows the total revenue for all 72 instances. The revenue represents the total

demand satisfied at all customer locations multiplied by the price of each product.

Planning Horizon

Number of

Customers Model Tl T2 T3 T4 T5 T6
3 mincost 147576 147576 | 147576 | 147576 | 147576 | 147576
5 profit max | 147576 147573 | 147576 | 147576 | 147576 | 147576
5 monopoly a 1581029 | 180222 | 185065 | 185690 | 1914%¢
5 competition| 147576 147576 | 147576 | 136951 | 147360 | 146472
10 mincost a 317472 | 317472 | 317472 | 317472 | 317472
10 profit max | 317472 317472 | 317472 | 317466 | 317452 | 317447
10 monopoly 0 345059 | 368682 | 411837 | 405576 | 436911
10 competition| 316416 317462 | 315517 | 317082 | 316754 | 3170%¢
15 mincost 0 0 0 0 0
15 profit max 475102 | 475102 | 473749 | 462024 | 475102
15 monopoly 0 0 0 0 0
15 competition| 422895 461738 | 436229 | 461135 | 461562 | 457639

The revenue in

Table 5.3: Total Revenue across all instances

Table 5.3 above is generated for all 4 models across 3 customer sets and

6 planning horizons. It can be seen that the value for the revenue is fairly equal across the

instances for each set of customers, this is because the consumed demand is fairly constant

across all 4 models, although highest with the monopolistic market across all scenarios.

47




Total Revenue for 5 Customers
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Figure 5.1: Total revenue for customer set of 5 across all 4 models and 6 planning horizons

Total Revenue for 10 Customers
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Figure 5.2: Total revenue for customer set of 10 across all 4 models and 6 planning horizons
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5.3.3 Profit

Profit is calculated by subtracting the total incurred cost from the total revenue.

Planning Horizon

Number of

Customers Model T1 T2 T3 T4 TS5 TH
3 mincost 98015 102156 S9588 104088 103869 106526
3 profit max 85876 96682 105330 1046390 106753 106887
3 monopoly o 115308 125268 133432 134268 140541
3 competition| 951407 102232 111880 101058 112058 110255
10 mincost o 151246 | 187600 157662 201656 204257
10 profit max | 191864 1596134 150424 202738 200953 202771
10 monopoly 0 206965 | 234076 280018 284502 313497
10 competition| 2080835 | 216260 | 217804 223996 224442 224518
15 minco=st 0 0 0 0 0 0
15 profit max 0 333287 | 325371 332775 323295 332530
15 monopoly o o o 0 0 0
15 competition| 311652 352284 | 326773 351846 352550 348159

Table 5.4: Total Profit across all instances

Table 5.4 shows the total profit across all instances. The mincost models generated the least

profits for all customer sets and all planning horizon lengths. The monopolist’s model is seen

to have generated the highest profit for every scenario where a feasible result was gotten. This

is because the model combines the profit maximizing price-quantity combination on the market

demand curve. The monopolistic model could in some instances have increased the price at

which products were supplied to the consumer, which will trigger a decrease in demand

consumed by the consumer, reducing costs and increasing profits. The perfect competitive

market on the other hand, being the price taker, takes prices as given by the market equilibrium

of demand and supply, generating profits lower than the monopolist. Had the price of the

perfectly competitive model been raised above the given market price, no consumed demand

or profit would have been recorded.
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Total Profit for 3 Customers
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Figure 5.3: Total profit for customer set of 5 across all 4 models and 6 planning horizons

Figure 5.3 shows the monopoly with the highest profits when the profits generated with the

scenarios with 5 customers were plotted against the planning horizons.
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Figure 5.4: Total profit for customer set of 10 across all 4 models and 6 planning horizons
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Figure 5.4 shows the monopoly with the highest profits when the profits generated with the
scenarios with 10 customers were plotted against the planning horizons. From Table 5.4, it can
be seen that as the number of customers and length of the planning horizon increases, the total
profit increases across all 4 models.

5.3.3 Cost

Total cost encompasses the cost of production, transportation, inventory holding costs and

penalties.

Planning Horizon

Number of

Customers Model T1 T2 T3 T4 T5 T6
5 mincost 49561 45420 47987 43488 43707 41050
5 profit max 61699 50891 42246 42886 40822 40689
5 monopoly 0 61721 54961 51633 51422 50955
5 competition 56169 45344 35696 35893 35302 36177
10 mincost 0 126226 129872 119810 115816 113215
10 profit max 125606 121337 127048 114728 116459 114676
10 monopoly 0 138094 134606 131819 121074 123414
10 competition 108321 101202 97713 93086 92312 92578
15 mincost 0 0 0 0 0 0
15 profit max 0 141815 145731 140974 138729 142572
15 monopoly 0 0 0 0 0 0
15 competition 111203 109454 109455 109287 109009 109437

Table 5.5: Total Cost across all instances

The monopolist is seen to have incurred the most cost of all the models, although for all feasible
results obtained for the monopolist, it can be seen that their cost reduces as the length of the
planning horizon increases for all customer sets. The cost however doubles as the number of
customers increase. This trend is also observed for all models. The high costs of the monopolist
can be linked to penalty costs from unsatisfied demands when the model increases the price,
causing demand to go unsatisfied. Unsatisfied demand due to increased prices and not lack of
product at the supplier means the supplier deals with an added inventory holding and
transportation cost, all adding up to high costs for the monopolist. The perfectly competitive
market model has the least cost in table 5.5. This means it incurred the least combination of
penalty, transportation and inventory holding and production costs. The perfectly competitive
model cannot increase its price to maximize profit, but maximizes profit through keeping its
costs low, especially its production costs and amount produced, which translates to reduced

inventory holding costs.
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5.3.4 Production Cost at the Supplier

Table 5.6 shows the cost the supplier incurs from production. The general trend from the table
IS an increase in production cost as the number of customers increase. The perfectly competitive
model generates the lowest production cost across the planning horizon lengths, for all the

customer sets.

Planning Horizon

Number of

Customers Model T1 T2 T3 T4 T5 T6
5 mincost 6793 6076 5408 5096 5621 5926
5 profit max 4590 5426 5633 6056 5816 5906
5 monopoly 0 7344 7388 6974 6621 4421
5 competition 132 957 1071 1468 1178 1321
10 mincost 0 19036 17057 20532 18804 18450
10 profit max 16996 18318 18422 18741 18157 18688
10 monopoly 0 22497 22662 22467 20900 21639
10 competition 531 1762 3106 1980 2032 2147
15 mincost 0 0 0 0 0 0
15 profit max 0 25116 27362 25546 25116 25445
15 monopoly 0 0 0 0 0 0
15 competition 821 1113 1319 1027 1106 1145

Table 5.6: Production cost

As stated previously, the perfectly competitive model capitalizes on lowering its production
costs to maximize its profits, as it cannot maximize profits through increasing it prices like the
monopoly can. For the monopolist, production costs mostly reduces as the length of the

planning horizon increases for its feasible results.
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Figure 5.5: Total production cost for customer set of 5 across all 4 models and 6 planning horizons
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Total Production Cost for 10 Customers
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Figure 5.6: Total production cost for customer set of 10 across all 4 models and 6 planning

Figures 5.5 and 5.6 show the trends in total production for 5 and 10 customer sets respectively,

across the planning horizon lengths. The reduction in the production cost across planning

horizon length is more pronounced in Figure 5.5 with the 5 customer sets. The cost generally

increases with increase in customers.

5.35

Penalty Cost

The penalty cost is incurred by the supplier for not meeting demand requirement of the

customer. Table 5.7 shows the penalty costs across all 4 models, 3 customer sets and 6 planning

horizons.
Planning Horizon

Number of

Customers Model Tl T2 T3 T4 T5 T6
5 mincost 0 0 0 0 0 0
5 profit max 0 0 0 0 0 0
5 monopoly 0 0 20 0 52 11
5 competition 0 0 0 0 42 220
10 mincost 0 0 0 0 0 0
10 profit max 211 0 0 6 20 25
10 monopoly 0 2023 444 470 459 1377
10 competition 211 2 390 77 143 74
15 mincost 0 0 0 0 0 0
15 profit max 0 2307 4725 2511 2307 2433
15 monopoly 0 0 0 0 0 0
15 competition| 10441 2673 77175 2793 2708 3492

Table 5.7: Penalty costs

The perfectly competitive model incurs the most penalty cost of the instances with 5 customers.

The model maintains 0 penalty costs between planning horizon lengths of 1 to 3, but begins to
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accrue penalty costs at the 5th and 6th day planning horizon lengths. This is perhaps due to a
trade-off between a combination of production amount and fulfilled demand with which it
maximizes the most profit. The penalty costs at the monopoly are also probably due to the price
and satisfied demand combination that maximizes the most profits for the model.

5.3.6 Transportation cost
Planning Horizon

Number of

Customers Model T1 T2 T3 T4 T5 T6
5 mincost 30045 | 26024 | 28673 24052 24310 21610
5 profit max 42346 | 31500 | 22819 23468 21334 21255
5 monopoly 0 39630 | 33100 30654 31010 32764
5 competition | 42346 | 31503 | 22030 22134 21466 22236
10 mincost 0 59074 62145 52463 48590 45854
10 profit max 57236 | 54036 | 58812 47412 49184 47384
10 monopoly 0 60697 60173 57799 52462 50163
10 competition | 61129 | 55288 | 51352 46731 46283 46528
15 mincost 0 0 0 0 0 0
15 profit max 0 49436 | 48903 49408 48349 49805
15 monopoly 0 0 0 0 0 0
15 competition | 47759 | 48725 | 48395 48457 48349 49292

Table 5.8: Transportation costs

Table 5.8 shows the transportation and production cost generated for all 4 models, across
horizon lengths and customer sets. A general trend observed is that transportation cost increases
as the number of customers increase. The monopolistic model generates the most transportation
cost of all 4 mode across all customer sets and planning horizon lengths.
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Figure 5.7: Total transportation cost for customer set of 5 across all 4 models and 6 planning horizons
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Total Transportation Cost for 10 Customers
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Figure 5.8: Total transportation cost for customer set of 10 across all 4 models
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Figures 5.7 and 5.8 show the trends in total transportation costs for 5 and 10 customer sets

respectively. Both charts show a generally downward trend in the transportation cost as the

planning horizon length increases

5.3.7

Lost sales/Shortages

The total shortages computed in Table 5.9 no particular trend. They show the number of

demands the supplier was unable to satisfy and provide the values for which the penalty cost

is computed.
Planning Horizon

Number of

Customers Model Tl T2 T3 T4 T5 Té6
5 mincost 0 0 0 0 0 0
5 profit max 0 0 0 0 0 0
5 monopoly 0 0 3 0 8 2
5 competition 0 0 0 0 © 27
10 mincost 0 0 0 0 0] 0
10 profit max 101 0 0 3 3,5 11
10 monopoly 0 255 6l 63 63 189
10 competition 101 1 178 35 33 30
15 mincost 0 0 0 0 0 0
15 profit max 0 280 708 364 280 352
15 monopoly 0 0 0 0 0 0
15 competition 2593 488 2007 467 508 972

Table 5.9: Shortage Cost/Lost sales
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5.3.8 Inventory Holding Cost at the suppliers

Table 5.10 shows the inventory holding cost at the supplier for all instances. The costs reduce

across all instances as the number of customers increase, however, no trend is notices for most

of the instances as the length of the planning horizon increases.

Planning Horizon

Number of

Customers Model T1 T2 T3 T4 T5 Té6
5 mincost 6793 6076 5408 5996 5621 5926
5 profit max 4590 5426 5633 6056 5816 5906
5 monopoly 0 7344 7388 6974 6621 4421
5 competition 132 957 1071 1468 1178 1321
10 mincost 0 19036 17057 20532 18804 18450
10 profit max 16996 18318 18422 18741 18157 18688
10 monopoly 0 22497 22662 22467 20900 21639
10 competition 531 1762 3106 1980 2032 2147
15 mincost 0 0 0 0 0 0
15 profit max 0 25116 27362 25546 25116 25445
15 monopoly 0 0 0 0 0 0
15 competition 821 1113 1319 1027 1106 1145

Table 5.10: Inventory holding cost at the supplier

Inventory Holding Cost for 5 Customers
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Figure 5.9: Total Inventory holding cost at the supplier cost for customer set of 5 across
all 4 models and 6 planning horizons
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The monopoly shows a decrease in cost as the length of the planning horizon increases, as seen

in figure 5.9. The decrease in cost as the length of the planning increases for the monopoly is

not as marked in figure 5.10 below for the 10 customer set.

Inventory Holding Cost Supplier
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Figure 5.10: Total Inventory holding cost at the supplier cost for customer set of 10 across all 4

models and 6 planning horizons

5

4 Comparison of static and dynamic results

In this section, we compare our results with those from (Zaitseva 2017) in order to highlight

overestimated values and underestimated performance results. Table 5.10 gives an overview

of all the performance values, which are then compared in the bar charts below. Table 5.11

further states which values are underestimated and which are overestimated.

maonopoly static/monopoly dynam

Transportation and Production Cost for T3N10 Monopoly Model

IC

dynamic_production

dynamic_transport

static_production

static_transport

0

T T T T T
20000 30000 40000 50000 BOO00
Transportation and Production Cost

Figure 5.11: Transportation and production costs for monopoly model compared between static
and dynamic models

57



Transportation and Production Cost for T3N10 Competition Model
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Figure 5.12: Transportation and production cost for Perfect Competitive market type compared
between static and dynamic models

In Figure 5.11 and 5.12, Transportation cost for the dynamic model is higher for all the market
types than it is for the static model. The production cost is fairly even across all models except
for the competition of the static model. The extremely low value of production cost for the
static competition model can be attributed the intention of the model to minimize production
for the given planning horizon without consideration of the impact that decision would have
on the rest of the scenario length.
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Figure 5.13: Revenue/Profit for Perfect Competitive market type compared between static and
dynamic models
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Revenue/Profit for Model T310 Monopoly Model
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Figure 5.14: Revenue/Profit for Monopoly market type compared between static and dynamic

models
In Figure 5.13 and 5.14, for the mincost model, the revenue and profit for the dynamic model
are higher than the corresponding values for the static models. However, the profit max and
monopoly models show higher profit for the static models than for the dynamic. This can be
explained as being due to over-estimation of these values. The static model optimizes for the
given planning horizon without consideration of the impact of such decisions on the next
planning horizon and the rest of the scenario length. Such decisions may lead to minimization
of inventory at the supplier and increased deliveries to the customers. In the next planning
horizon, an increase in production would have been required resulting in increase in cost that
is not being considered by the static model. In the perfect competition model we observe that
the revenue is higher with the dynamic model than the static, while profit for the static model

is higher.
Inventory Holding Cost Customers and Supplier for T3N10 Monopoly Model
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Figure 5.15: Supplier and customer’s inventory holding costs for monopoly model compared
between static and dynamic models 59



In Figure 5.15, and 5.16, the mincost model for the customer inventory holding cost is lower
in the static model, which is understandable as the static model tries to minimize cost by
reducing routing costs. This results in higher inventory remaining at the supplier location. The
cumulative effect of this is higher supplier inventory cost for the static model than the dynamic
model. In the case of the monopoly model there is less variation in the value of the inventory
holding cost for both the static and the dynamic models. The reason may be that in both models
the monopoly model requires the inventory holding cost to be high while it strives to maximize
profit, and consequently, revenue (which is profit + cost).

Inventory Holding Cost Customers and Supplier for T3N10 Competition Model
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Figure 5.16: Inventory holding cost for consumer and supplier for Perfect Competitive
market type compared between static and dynamic models

So in general, we can see that the static model, in its attempt to optimize the given objective
over-estimates or under-estimates performance results based on the type of the market model.
The static mincost model under-estimates the revenue, profit, transportation and inventory
holding cost for the customers. The static profit_max model underestimates the transportation
cost and inventory holding cost for the supplier, while the static monopoly model overestimates
the revenue and profit and underestimates the transportation cost.

Finally, the static competition model underestimates the production cost, while over-estimating

the supplier inventory holding cost. Table 5.11 below shows the impact on performance results

when static models are used instead of dynamic models:
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Inventory | Inventory
Transport| Holding Helding
Total ation Cost Cost Production | Produced | Shipped| Consumed Time
Model Profit |Revenue| Cost Cost Customers | Supplier Cost Amount | Amount | Amount | (seconds)
mincost static 88530 150300 | 101340 34320 2880 15500 44230 15050 11160 15030 2,5
mincost dynamic 187600 | 317467 | 125867 62145 6430 17054 44238 15030 18766 150350 208
profit max static 173710 | 282500 | 108780 41330 4880 8130 44230 15030 16410 15030 5,5
profit max dynamic | 150424 3155855 | 125571 55812 4574 18422 42763 18413 17539 18415 356
monopoly static 301400 405450 | 108040 35420 7250 21080 44230 15030 11%20 10380 110
monopoly dynamic 234076 | 368238 | 134162 60173 7089 22662 44238 15030 18102 18289 26171
competition static | 227510 | 282500 | 54580 41330 4880 7050 1250 580 16410 15030 62,8
competition dynamic| 217804 315127 97323 51352 3438 3106 35367 17004 18387 18872 441
Table 5.11: static and dynamic model values for scenario T3N10 with 2 customers per route
Inventory Inventory
Transporta| Production | Holding Cost| Holding Cost
Model Revenue | Profit | tion Cost Cost Customers Supplier
mincost under under under equal under equal
profit max equal equal under equal equal under
monopoly over over under equal equal equal
competition equal equal equal under equal over

Table 5.12:Over and underestimation of performance results for the static model



5.4.1 Comparing the effect of number of break points

In this section, we compare the values of break points from our results, with those from the
static model. Table 5.13 shows an overview of the total break point values, which are discussed
below.

Revenue and Profit

As seen in Figure 5.17, revenue and profit in the dynamic model are higher for the
corresponding values of the static model. Note that while the values of revenue and profit
decrease with increase in the number of breakpoints for the static model, the opposite was
observed for the dynamic model where both revenue and profit are observed to increase in
values as the number of break points is increased from 5 to 15.
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Figure 5.17: Break points of revenue and profit for Monopoly market type compared between
static and dynamic models

Transportation and Production cost

Figure 5.18 shows that production cost is the same for both static and dynamic models while
transportation cost reduces with increase in number of break points for dynamic model.
Transportation cost does not show any distinct trend for the static model with increase in

number of break points.
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Transportation and Production Cost for Monopoly Scenario T3NS
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Figure 5.18: Break points of transportation and production costs for Monopoly market type
compared between static and dynamic models

Inventory Holding Cost

As seen in Figure 5.19, the dynamic model shows a significantly higher inventory holding cost
for the supplier than the static model. The values of the inventory holding cost for the supplier
for both static and dynamic models are observed to reduce with increase in the number of break
points. Meanwhile the inventory holding cost for the customers is slightly lower for the static
model than the dynamic.

Inventory Holding Cost for Monopoly Scenario T3NS
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Figure 5.19: Break points of Inventory holding cost for consumer and supplier for Monopoly
market type compared between static and dynamic models
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Inventory| Inventory
Transpor| Helding Holding Product
Approx. | Approx.| Total tation Cost Cost Penalty ien Produced | Shipped| Consumed Time
Model Profit |Revenue| Cost Cost |Customers| Supplier Cost Cost Amcunt | Amount | Amount | (seconds)

monopoly static 12476 17038 4561 2505 206 608 20 1222 579 473 421 0,39
monopoly static 124760 | 170380 | 453610 23050 2060 6080 20 12220 57390 4730 4210 3,9
monopoly dynamic 125268 180225 | 54561 33100 2225 7388 20 12228 5790 5473 5497 337
monopoly static 11737 17073 5334 3423 183 506 0 1222 579 €03 617 0,8
monopoly static 117370 | 170730 | 53340 34230 1830 5060 0 12220 57390 6030 6170 8
monopoly dynamic 131227 185035 | 53812 32482 1572 7130 0 12228 5790 5473 5522 547
monopoly static 11567 16459 4536 2504 155 526 89 1222 379 574 576 1,58
monopoly static 115670 | 1649%0 | 45360 25040 1550 5260 89 12220 5790 5740 5760 15,8
monopoly dynamic 134792 186370 | 51578 30081 1575 7205 85 12228 5790 5473 5519 1332

Table 5.13: Break point comparison for static and dynamic model values for scenario T3N5 with 2 customers per route
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6. CONCLUDING REMARKS AND FUTURE WORK

The previous work done on profit maximization of an inventory routing problem has been
extended in this work by the following:

e Inclusion of dynamic aspects thereby changing the problem from a static one to a
dynamic IRP.

e The use of a rolling horizon methodology which was necessary for addressing the
problem of overestimation and underestimation of various results for static model such
as under-estimation of revenue and profit for mincost model, over-estimation of these
same values for monopoly and underestimation of production cost for competition and
the study of the impact of variation of the length of the planning horizon on the

profitability of an inventory routing problem.

Overall, an increase in profit is observed when a dynamic model is used in place of the static
model. In addition, it shows that the increase in profit does not change significantly as shown
in the static model due to reduction in variation when problems are solved using a rolling
horizon approach.

Similar to the static model, an increase in profitability was observed as the length of planning
horizon is increased for the four different market condition-based models, however, this
increase was accompanied by a significant increase in computational time especially for the
monopoly market situation of the dynamic model. The effect of the number of breakpoints for
the 5-customer monopoly scenario was studied and the results showed an increase in revenue
and profit with increase in the number of breakpoints for the dynamic model. This is the

contrary to the result for the static model as demonstrated in (Zaitseva 2017)

Regarding future work it is important to address the main problem observed with the model,
which was the increase in computational time associated with increase in number of customers
and length of the planning horizon and infeasibilities that were observed while testing some of
the scenarios. This is a common problem with the use of MIP solvers when solving
combinatorial problems. As a result, a heuristic approach is recommended for solving such

dynamic inventory routing problems.
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Another area for future work would be the use of available optimization packages in
combination with a programming language for the solving of non-linear problems. This is
because of the cumbersome nature of the current method being used for solving nonlinear
problems that involves separation of non-linear equation and linearization, which is an
approximate method that is dependent on the number of break points which negatively impacts

on the computation time as demonstrated in this work and in Zaitseva 2017.
For this work, we arbitrarily chose a linear demand curve to represent the market situation for
the suppliers. In the future, it would be interesting to see how the profitability of the firm

behaves with an iso-elastic demand curve representing the market situation.

Stochasticity in the demand can be introduced in the future to observe how the different models

will perform when demand is uncertain and generated from forecasting.

66



7. REFERENCES

Adelman, Daniel. 2004. "A price-directed approach to stochastic inventory/routing.”
Operations Research 52 (4):499-514.

Al-Ameri, Tareq A, Nilay Shah, and Lazaros G Papageorgiou. 2008. "Optimization of vendor-
managed inventory systems in a rolling horizon framework." Computers & Industrial
Engineering 54 (4):1019-1047.

Al-Khayyal, Faiz, and Seung-June Hwang. 2007. "Inventory constrained maritime routing and
scheduling for multi-commodity liquid bulk, Part I: Applications and model."
European Journal of Operational Research 176 (1):106-130.

Andersson, Henrik, Arild Hoff, Marielle Christiansen, Geir Hasle, and Arne Lgkketangen.
2010. "Industrial aspects and literature survey: Combined inventory management and
routing." Computers & Operations Research 37 (9):1515-1536.

Anily, Shoshana, and Awi Federgruen. 1990. "One warehouse multiple retailer systems with
vehicle routing costs." Management Science 36 (1):92-114.

Archetti, Claudia, Luca Bertazzi, Alain Hertz, and M Grazia Speranza. 2012. "A hybrid
heuristic for an inventory routing problem.” INFORMS Journal on Computing 24
(1):101-116.

Archetti, Claudia, Luca Bertazzi, Gilbert Laporte, and Maria Grazia Speranza. 2007. "A
branch-and-cut algorithm for a vendor-managed inventory-routing problem.”
Transportation Science 41 (3):382-391.

Baita, Flavio, Walter Ukovich, Raffaele Pesenti, and Daniela Favaretto. 1998. "Dynamic
routing-and-inventory problems: a review.” Transportation Research Part A: Policy
and Practice 32 (8):585-598.

Bard, Jonathan F, Liu Huang, Patrick Jaillet, and Moshe Dror. 1998. "A decomposition
approach to the inventory routing problem with satellite facilities.” Transportation
Science 32 (2):189-203.

Bell, Walter J, Louis M Dalberto, Marshall L Fisher, Arnold J Greenfield, Ramchandran
Jaikumar, Pradeep Kedia, Robert G Mack, and Paul J Prutzman. 1983. "Improving the
distribution of industrial gases with an on-line computerized routing and scheduling
optimizer.” Interfaces 13 (6):4-23.

Bertazzi, Luca, Adamo Bosco, Francesca Guerriero, and Demetrio Lagana. 2013. "A stochastic
inventory routing problem with stock-out." Transportation Research Part C: Emerging

Technologies 27:89-107.
67



Burns, Lawrence D, Randolph W Hall, Dennis E Blumenfeld, and Carlos F Daganzo. 1985.
"Distribution strategies that minimize transportation and inventory costs.” Operations
Research 33 (3):469-490.

Campbell, Ann, Lloyd Clarke, Anton Kleywegt, and Martin Savelsbergh. 1998. "The inventory
routing problem.” In Fleet Management and Logistics, 95-113. Springer.

Campbell, Ann Melissa, and Martin WP Savelsbergh. 2004. "A decomposition approach for
the inventory-routing problem.” Transportation Science 38 (4):488-502.

Chan, Lap Mui Ann, and David Simchi-Levi. 1998. "Probabilistic analyses and algorithms for
three-level distribution systems.” Management Science 44 (11-part-1):1562-1576.

Chien, T William, Anantaram Balakrishnan, and Richard T Wong. 1989. "An integrated
inventory allocation and vehicle routing problem.” Transportation Science 23 (2):67-
76.

Chopra, Sunil, and Peter Meindl. 2016. "Supply chain management: Strategy, planning, and
operation."

Christiansen, Marielle, Kjetil Fagerholt, Truls Flatberg, @yvind Haugen, Oddvar Kloster, and
Erik H Lund. 2011. "Maritime inventory routing with multiple products: A case study
from the cement industry.” European Journal of Operational Research 208 (1):86-94.

Christiansen, Marielle, Kjetil Fagerholt, Bjgrn Nygreen, and David Ronen. 2013. "Ship routing
and scheduling in the new millennium.” European Journal of Operational Research
228 (3):467-483.

Coelho, Leandro C, Jean-Francois Cordeau, and Gilbert Laporte. 2014. "Heuristics for dynamic
and stochastic inventory-routing." Computers & Operations Research 52:55-67.

Coelho, Leandro C, Jean-Francois Cordeau, and Gilbert Laporte. 2012a. "The inventory-
routing problem with transshipment.” Computers & Operations Research 39
(11):2537-2548.

Coelho, Leandro C, Jean-Francois Cordeau, and Gilbert Laporte. 2013a. "Thirty years of
inventory routing." Transportation Science 48 (1):1-19.

Coelho, Leandro C, and Gilbert Laporte. 2013b. "A branch-and-cut algorithm for the multi-
product multi-vehicle inventory-routing problem." International Journal of Production
Research 51 (23-24):7156-7169.

Coelho, Leandro Callegari, Gilbert Laporte, and Jean-Frangois Cordeau. 2012b. Dynamic and
stochastic inventory-routing: CIRRELT Montreal.

68



Fagerholt, Kjetil, Marielle Christiansen, Lars Magnus Hvattum, Trond AV Johnsen, and Thor
J Vabg. 2010. "A decision support methodology for strategic planning in maritime
transportation.” Omega 38 (6):465-474.

Federgruen, Awi, and Paul Zipkin. 1984. "A combined vehicle routing and inventory allocation
problem.” Operations Research 32 (5):1019-1037.

Fisher, Marshall L. 1985. "An applications oriented guide to Lagrangian relaxation.”
Interfaces 15 (2):10-21.

Gallego, Guillermo, and David Simchi-Levi. 1990. "On the effectiveness of direct shipping
strategy for the one-warehouse multi-retailer R-systems.” Management Science 36
(2):240-243.

Hansen, Hovi Inger Beate; Wiljar. 2010. Logistics Cost in Norway. Key Figures and
international comparisons. edited by Norwegian Centre for Transport Research.
Hemmati, Ahmad, Lars Magnus Hvattum, Marielle Christiansen, and Gilbert Laporte. 2016.
"An iterative two-phase hybrid matheuristic for a multi-product short sea inventory-

routing problem.” European Journal of Operational Research 252 (3):775-788.

Hvattum, Lars Magnus, and Arne Lakketangen. 2009. "Using scenario trees and progressive
hedging for stochastic inventory routing problems.” Journal of Heuristics 15 (6):527.

Jaillet, Patrick, Jonathan F Bard, Liu Huang, and Moshe Dror. 2002. "Delivery cost
approximations for inventory routing problems in a rolling horizon framework."
Transportation Science 36 (3):292-300.

Kleywegt, Anton J, Vijay S Nori, and Martin WP Savelsbergh. 2002. "The stochastic inventory
routing problem with direct deliveries." Transportation Science 36 (1):94-118.
Kleywegt, Anton J, Vijay S Nori, and Martin WP Savelsbergh. 2004. "Dynamic programming
approximations for a stochastic inventory routing problem.” Transportation Science

38 (1):42-70.

Liu, Shu-Chu, and Jyun-Ruei Chen. 2011. "A heuristic method for the inventory routing and
pricing problem in a supply chain.” Expert Systems with Applications 38 (3):1447-
1456.

Moin, Noor Hasnah, and Said Salhi. 2007. "Inventory routing problems: a logistical overview."
Journal of the Operational Research Society 58 (9):1185-1194.

Moin, Noor Hasnah, Said Salhi, and NAB Aziz. 2011. "An efficient hybrid genetic algorithm
for the multi-product multi-period inventory routing problem.™ International Journal
of Production Economics 133 (1):334-343.

69



Park, Yang-Byung, Jun-Su Yoo, and Hae-Soo Park. 2016. "A genetic algorithm for the vendor-
managed inventory routing problem with lost sales.” Expert Systems with Applications
53:149-159.

Roldan, Raul F, Rosa Basagoiti, and Leandro C Coelho. 2016. "Robustness of inventory
replenishment and customer selection policies for the dynamic and stochastic
inventory-routing problem.” Computers & Operations Research 74:14-20.

Simi¢, Dragan, and Svetlana Simi¢. 2013. "Evolutionary approach in inventory routing
problem."” International Work-Conference on Avrtificial Neural Networks.

Solyali, Oguz, Jean-Francgois Cordeau, and Gilbert Laporte. 2012. "Robust inventory routing
under demand uncertainty.” Transportation Science 46 (3):327-340.

Song, Jin-Hwa, and Kevin C Furman. 2013. "A maritime inventory routing problem: Practical
approach.” Computers & Operations Research 40 (3):657-665.

Stadtler, Hartmut. 2008. "Supply chain management—an overview." In Supply chain
management and advanced planning, 9-36. Springer.

Zaitseva, Anna. 2017. "Introducing profit maximization in inventory routing problems."

Hagskolen i Molde-Vitenskapelig hagskole i logistikk.

70



71



