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a b s t r a c t

The variation in Level of Service (LOS) and the objective of the Public Service Obligation (PSO) system
raises the need for a method for determining the LOS based on social efficiency measures. Such a method
is developed for assessing PSO and LOS in Norway. This paper presents and discusses this method, which
may be relevant for other countries that employs similar supporting systems for air transport. A stepwise
procedure is suggested for assessing PSO routes: Firstly, a framework for deciding upon LOS for air
transport under PSO is presented. Secondly, we present a way of doing rough calculations of socio-
economic profitability of PSO routes compared with best alternative transport. Finally, a model is pre-
sented which refines these calculations. One finding from the model simulations is that loosening the
LOS restrictions on this type of regional aviation may lead to increased ticket prices and a reduced LOS.
PSO restrictions may lead to a situation close to social optimum if wisely chosen. The most important
step in future research is probably to test and refine the numerical model.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many countries within the European Economic Area (EEA) are
providing Public Service Obligation (PSO) air services, founded on
Articles 16, 17 and 18 of Regulation (EEC) No 1008/2008. PSO is
designed for scheduled services between any airport in the Com-
munity and an airport serving a peripheral region within its terri-
tory or on a thin route to any airport in its territory, including cross-
border routes. The route should be vital for the economic and social
development of the region served by the airport. If no airline is
willing to provide a service under the conditions imposed, the
government may restrict access to the route to a single carrier and
award financial compensation to the carrier in return for compli-
ance with the PSO. Over 90% of public service obligations are in
respect of domestic services (Williams, 2010).

The public transport authority imposing the PSO is responsible
for the judgement on the adequacy of air services for PSO. Ac-
cording to Williams (2010), in the Czech Republic, Finland, Greece,
Ireland, Portugal and Sweden, national government departments
administer air transport public service obligations, while in France,
(S. Bråthen), knut.
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Germany, Italy and Spain, administration is in the hands of regional
authorities. In the UK, the Scottish Government is responsible for
administering the routes operated fromGlasgowand the respective
regional authority for services provided in Orkney, Shetland and
Western Isles, while inWales it is theWelsh Assembly Government.
In addition, Norway, Iceland and Switzerland adapt to this program,
administered by national government departments.

This description indicates that it is largely up to the Member
States to decide upon which routes are “essential air services” and
to decide upon whether the Central Government or the Regional
Governments should have responsibility for the PSO tenders. This
has led to a certain degree of diversity in PSO practice.

Norway has the largest number of PSO routes (around 60), fol-
lowed by France with around 40. Spain, Portugal and Scotland have
10e12 routes each. The average legs vary between about 600 km
(France) and 200 km (Norway). The average seating capacity varies
between larger aircraft of 110e70 seats (Portugal and France),
50e35 seats (Spain, Sweden and Germany) while Scotland are us-
ing smaller aircraft down to 10e15 seats. Norway has 15 seats as
minimum, whereas most aircraft are 39 seats. The average subsidy
level in Germany is around EUR 120 per passenger, for Norway,
Sweden and Scotland it is around EUR 60 per passenger, while
France and Portugal had subsidies of slightly above EUR 20 per
passenger.
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Williams and Pagliari (2004) presented and discussed how
different European Economic Area member states have adopted
and made use of the PSO mechanism in air transport. This study
gives a comprehensive overview and provides a good support for
understanding the variation with respect to how the PSO regime is
applied. This study suggests that this variation may be larger than
optimal in the sense that the use spans from thin routes in remote
areas (like Scotland and Norway), via busy tourist routes to islands
and to routes where surface transport appears as a viable
alternative.

This variation in Level of Service (LOS) and the objective of the
PSO system raises the need for a method for determining the LOS
based on social efficiencymeasures. Such amethod is developed for
assessing PSO and LOS in Norway. This paper presents and dis-
cusses this method, which may be relevant for other countries that
employ similar supporting systems for air transport. USA has its
PSO-like Essential Air Services Program, which was firstly assessed
by Reynolds-Feighan (1995). Metrass-Mendes et al. (2011) discuss
the National Airport Policy program (NAP) in Canada. While the
PSO and EAS tender out contracts in a competitive bidding system,
Canada goes further in tailoring the support to specific needs, like
shipments of food, medication, mail, tools and equipment and
medical requirements. The support is also assigned to specific
travel purposes, like medical care. USA does also have a smaller
program (Small Community Air Service Development Grant
(SCASDG) program), which supports existing services with respect
to economic sustainability. Wittman (2014) gives a further
description and assessment of SCASDG.

The rest of the paper proceeds as follows: Section 2 presents the
PSO system, including the tendering procedure. Section 3 presents
the LOS criteria developed for the Norwegian PSO for air transport
and how they can be used. Section 4 discusses a model for quan-
tifying social efficiency for PSO routes. Section 5 concludes the
paper. The paper gives references to relevant literature throughout,
and hence no separate literature review is given.

2. The PSO-system

2.1. How does PSO work?

If commercial operation of the regional aviation network is not
feasible, some sort of financial support is necessary to maintain the
route pattern that the Norwegian Ministry of Transport and
Communication (NMTC) wants to support. Previously, air services
for the remote regions were sourced from available operators.
These were regulated by annual block grant contracts, where NMTC
would then cover the deficit of the local operator for running the
specified service.

The system of Public Service Obligation (PSO) was initiated by
the European Commission to secure efficient competition among
operators and an acceptable service supply to air travellers in the
regions to the cheapest possible cost. This is regulated in the
European Parliament Regulation number 1008/2008.

The standard of the route supply may be characterised among
other things by:

� Number of round trips per day.
� Seat capacity per day.
� Route pattern (including number of stops at different airports
and time schedules).

� Number of days per year with no service.
� Size of aircraft.
� Emissions to air of specified substances.
� Comfort factors.
� Airfares.
The winner of the bid is normally the bidder who claims the
lowest subsidy for operating a specific route area for a period of
4e5 years as a rule.

It is also possible to combinemore factors in thewinning criteria
as a package where a specific weight may be placed on each factor
e or all factor may be judged together, the amount of subsidy being
the most important factor. A minimum (maximum) limit may be
set for the most important factors.

The general principles for PSO are listed in the European
Parliament Regulation number 1008/2008, Article 16. PSO can be
offered on thin routes both within and between countries, and we
refer to this document for details. One element that can be
mentioned from Article 16.3, is that if alternative modes of trans-
port (rail transport is mentioned in particular) can be used on the
same origin-destination pair with a travel time of less than three
hours, then the necessity and the adequacy of the PSO service shall
be assessed. In practice, the Member states have a relatively large
degree of freedom with respect to when a PSO service should be
offered, also with respect to the definition of a ‘thin route’. Bråthen
(2011) summarizes some experiences with respect to air transport
PSO (and EAS).

The main objective of this paper is to provide guidance on a
generic way of assessing whether a PSO air service should be pro-
vided at all, and if yes, how it should be designed with respect to
Level of Service (LOS) including departure frequencies and airfares.

2.2. PSO and commercial aviation

Commercial operation is of course in many cases the most
desirable solution, but in the sparsely populated regions of Norway,
it is normally not feasible except for the trunk routes (served by
Boing 737/600e800 or similar) or denser single legs within the
short track network (served by Bombardier Dash 8/100e400 or
similar).

If commercial operation is possible, airfares will usually increase
and the number of daily flights (frequencies) will go down,
assuming thin markets with no competition. This has happened in
several cases where a route area is split into one commercial part e
usually a single lege and one part that still will need PSO subsidies.
Some of the thin commercial routes that have previously been a
part of the PSO network have been subjected to political discussion
because of the reduced LOS and higher airfares.

There is however another option. For NMTC (or any responsible
PSO authority) it is possible to design the tender so that one may
have a zero bid within the PSO framework. This means that the
airline is protected from competition during the PSO period, but no
subsidies are paid.

3. Level of service (LOS)

One main point of departure for defining an efficient PSO
network is to identify a level of air transport services (LOS) that
balances the social need for accessibility with the costs of providing
the PSO services. It is a matter of discussion whether a PSO service
on a certain route should be provided at all, and if so, what LOS will
serve the needs of the local community.

It is not straightforward to define a LOS based on a perception of
a minimum transport standard for remoter regions. The interna-
tional literature on this issue is scarce. Currently, it appears to be a
matter for ad hoc decision making by national policy makers.

Clearly, the concept “transport standard” has both political and
economic implications. One could define constraints related to e.g.
maximum travel time to bigger cities, minimum available time
spent at important destinations like a capital or a regional centre
during a day trip. Access to hospitals and to airports with



S. Bråthen, K.S. Eriksen / Journal of Air Transport Management 69 (2018) 248e256250
international connections could be other examples. Such criteria
will most certainly give constraints for the design of the transport
network, and it will be important to search for the most efficient
solutions to fulfil the given criteria. At the same time, fulfilment
may entail severe economic costs, e.g. to serve remoter small
communities with expensive infrastructure. It is therefore appro-
priate to assess the socio-economic consequences of defining such
criteria.

Thune-Larsen et al. (2014) and Bråthen et al. (2015) discuss
points of departure for defining such criteria for PSO air services in
Norway. The discussion is partly based on Trafikverket (2013),
which has derived some criteria for Swedish regional air transport.
The critera should be adapted to different needs among the regions,
and a certain amount of pragmatism is needed. For example,
criteria stating a possibility for day trips to the capital of Oslo for a
full day of work may be applicable for regions in southern Norway,
whereas the same criterion is likely to be impossible to fulfil for
remoter regions in Northern Norway. This is a generic challenge for
many countries. In the USA within the Essential Air Services pro-
gram (EAS), one criterion for providing a subsidised route, is e.g. a
certain distance (at least 70 miles) to the nearest larger city
(Metrass-Mendes et al., 2011), which will inevitably give varying
accessibility from the regions to Washington DC and other metro-
politan areas.

One purpose of defining such criteria is to avoid ad hoc decisions
that may cause a LOS that varies between regions, give little pre-
dictability and leave room for expensive transport services based
on local political pressure and subsidised by the State.1 The first
step will now be to define a set of criteria. The main criteria that
was set out for Norway and Sweden, were as follows:

� Accessibility to the Capital.
� Access to an airport with international services.
� Access to advanced health care (a larger hospital).
� Access to the County administration.

The accessibility is considered from the communities connected
to a local airport and to the destination. A weighted measure of
travel time for the citizens in the area is applied. The criteria is
defined with travel time duration, for some criteria the length of
stay at the destination, both according to a full (‘green’) standard
and a minimum satisfactory (‘yellow’) standard. A detailed
description is given in Table 1.

The criteria are not weighed, and all criteria may not be relevant
for all routes. An example may be a case where a local airport
connects with e.g. several larger airports with international ser-
vices. A LOS that does not fulfill these criteria is termed as a ‘red
standard’.

The next step will now be to assess the LOS level according to
these criteria, for relevant transport alternatives. Fig. 1 shows an
example of transport standard criteria fulfilment for an imaginary
remoter community. The criteria fulfilment is arbitrarily, for illus-
tration purposes only.

For this imaginary local community, surface transport will in
essence not meet the LOS criteria. There is also a potential for
improvement of today's transport, which could be a PSO air service.

The third step will now be to combine the LOS standard
assessment above with a socio-economic assessment in a concep-
tual model. As a point of departure, a rather straightforward
calculation of generalized transport costs with air transport (GA)
and the cheapest surface transport mode (GS) can be made for
1 It could be argued that the local air services should be provided by the regions,
to ensure a coordinated prioritization of regional public spending.
comparison. Generalized transport costs consist of payable costs
(fares, tolls), travel time costs and vehicle operating costs (for road
transport). The data needed is estimation of the value of travel time
savings, travel distance, travel time and payable costs per transport
mode for the different transport alternatives, together with origin-
destination matrices. If GA > GS then the LOS of PSO air service
should be reduced, or the PSO service should cease operations
altogether. If GA < GS then one should assess if the costs of having to
use surface transport justifies the PSO subsidy level (S). If (GSeGA)/
S > 1, then the cost savings/subsidy ratio indicates that the added
costs of using the surface transport exceeds the air transport sub-
sidy level, which give reasons to provide the subsidised service. On
the other hand, if (GSeGA)/S is clearly < 1, then there is a good
indication that the LOS of the PSO service cannot be justified for
economic reasons in terms of travel cost savings. The calculations
can be made iteratively to approach whether a PSO service should
be offered, and if so, at what LOS. A model like the one described in
Section 4 can also be applied. Fig. 2 summarizes this procedure in a
conceptual model.

The model offers an interplay between accessibility criteria and
assessments based on generalized travel costs. If it is clearly so that
GA < GS (which is the situation in most cases in practice) then one
could go straight to box 4 and iterate or model the best LOS for air
transport that satisfies both the (GSeGA)/S-criterion with the
accessibility criteria as constraints. One could also rank the PSO
routes based on the (GSeGA)/S-ratio. Wewould like tomention that
slot capacity constraints are not included in the model (this is
pointed out as an issue in PSO services in the UK by Merkert and
O'Fee, 2013), but this element can easily be added. This issue
could be of importance for future research because the slot con-
straints coincide with demand peaks and the constraints will
therefore affect accessibility both to larger cities and to interna-
tional flights, at a cost for the affected regions. Hence, it could be of
interest to model the PSO system with and without such con-
straints and to compare the socio-economic outcome. This could
inform a decision-making process in order to consider possibilities
for slot expansion. Such constraints are non-existent in many
countries with PSO, like in Norway, but it may be an issue at the
busiest airports in European metropolitan areas, like London
Heathrow.

The fifth step is to do the calculations in the conceptual model.
Such calculations are carried out for all the PSO routes in Norway,
and the work is reported in Thune-Larsen et al. (2014) and Bråthen
et al. (2015). We will now present the assessment procedure for a
selection of routes in southern Norway. These PSO routes are Førde-
Bergen, Sogndal-Bergen and Fagernes-Oslo, which can be seen on
the map in Fig. 4. Table 2 shows the calculations, summarised to
average numbers per passenger. The aircraft operating costs are
calculated, based on a model from Janic (2000).2

The cells with no numbers indicate that this cost element is not
relevant for the transport alternative in question. The PSO subsidies
are the difference between the calculated aircraft costs per pas-
senger (results from the Janic (2000) model, where costs per seat
with the actual aircraft load factor is used) and the actual average
airfare.

Table 2 shows that the route Sogndal-Bergen has the highest
(GSeGA)/S ratio, whereas Fagernes-Oslo has the lowest score. For
this route, the generalized cost saving with air transport is less than
EUR 5, whereas the subsidy per passenger is slightly under EUR
375. From these calculations, the return is EUR 0.01 per EUR in
2 The model: Cðn; dÞ ¼ 7:934$n0:603$d0:656where C(n,d) is average cost per flightn
aircraft seat capacityd length of flight in kmThe model fits well with Norwegian PSO
cost data, with an average deviation of 2%, measured on 20 PSO routes.



Table 1
Example of criteria for defining LOS of air services.

Fig. 1. Illustration of LOS criteria fulfilment.
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subsidies for Fagernes-Oslo, and correspondingly EUR 0.16 on
Førde-Bergen and EUR 1.95 on Sogndal-Bergen.

Fig. 3 shows how these three routes meet the LOS criteria.
Surface transport gives at least a minimum satisfactory LOS for

Fagernes-Oslo, but not for the other two. For Førde-Bergen, the
alternative route with surface transport to Florø and air from there
will give a minimum satisfactory LOS. Both these PSO routes to Oslo
and Bergen respectively, give a very low (GSeGA)/S ratio. The route
between Sogndal and Bergen gives a minimum LOS when going by
surface and air via Florø. However, the (GSeGA)/S ratio is more than
sufficient to justify a direct PSO service to Bergen.3 The County
Administrations have either good access by surface transport or
they are located in places without an airport.

When it comes to dimensioning of the LOS for the PSO service,
one should iterate towards a minimum ‘yellow’ standard and assess
(GSeGA)/S ratio. In these three cases, there is a clear conclusion that
3 Assessment of the potential for a non-PSO service gave a too high airfare to
become commercially viable.
Førde-Bergen and Fagernes-Oslo should be closed as PSO services.
The PSO service between Sogndal and Bergen should bemaintained
and perhaps even be considered for upgrading with a higher de-
parture frequency.
4. A model for determining social efficiency

4.1. PSO and social efficiency

How do PSO services affect social efficiency? To be more specific
how can the central and local governments secure the highest
possible social efficiency of the PSO arrangements?

It seems clear that profit maximisation may strongly reduce the
amount of subsidies. However, this may not be socially efficient.
How do technical limitations concerning e.g. aircraft, runways and
landing conditions affect the solutions? How is regional welfare
affected by the existence of PSO arrangements alongside com-
mercial aviation?



Fig. 2. Assessment of PSO services.

Table 2
Generalized costs, aircraft operating costs, air fare revenues and PSO subsidies, in EUR (2014, rounded). PSO routes Førde-Bergen, Sogndal-Bergen and Fagernes-Oslo.

Transport alternative Førde-Bergen Sogndal-Bergen Fagernes-Oslo

Air Surface Air Surface Air Surface

Travel time centre-centre (hours), including airport shuttle and ferries 1.45 3.33 1.55 4.28 1.33 3.10
Value of travel time: 57 128 60 164 51 119
Payable costs excl. airport shuttle:
� Airfare 60 e 74 e 56 e

� Road tolls, ferries e 14 e 18 e 4
� Vehicle driving costs e 30 e 41 e 32

Costs to/from the airports 44 e 44 e 44 e

SUM GA and GS 161 172 178 223 151 155
Aircraft costs and PSO subsidies, per passenger, one way:
Aircraft costs 127 97 467
PSO subsidies (S) 67 23 411
Generalized cost saving/subsidy ratio:
(GAeGS)/S, per passenger 0.16 1.95 0.01

Fig. 3. LOS criteria for 3 routes (*) Access to the Capital is served by direct routes to Oslo).
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Fig. 4. The North West route area.
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4.2. The model

In attempting to give some answers to these questions, we will
apply a model for optimising route operations developed by
Eriksen and Minken (2005). It may be seen as a way of addressing
the issues in Box 4 in Fig. 2 above. The model was developed to be a
tool for NMTC in designing PSO tenders and deciding among the
bidders.

Themodel is a semi linear model based on the concept of a route
operation. This describes the production of air services in a route
area for a specific period of time in which the aircraft return to the
starting point each day (or similar period).

The cost function of the model is based on an analytical
approach, which is a combination of a statistical and an engineering
approach.

The average airfares (ticket prices) are calculated from opera-
tors' travel statistics and from air travel surveys that contains in-
formation about the distribution between full-fare and discounted
fares.

The overall model consists of four sub-models:

� The cost model
� Describes the production of an air service and the related cost
structure. Passenger demand for travel is described in a simple
way.

� The profit model
� Profit is maximised under economic and technical
restrictions.

� The social surplus model
� Operator's profit in addition to the consumers' benefit minus
costs and plus public tax revenue.

� The route optimisation model
� The alternatives and combinations must be specified for each
case. Thus this part of the model is not yet developed.

The model is presented in more detail in the Appendix and
explained in Eriksen and Minken (2007).

There are two main cases:

1. The size of aircraft is given. The air fares (ticket prices) and
frequencies are optimised and thus the number of aircraft, pri-
vate profit and social surplus may be maximised in turn. The
number of aircraft may be indivisible in the main case. But it
may be possible to share aircraft between (neighbouring) route
areas to obtain a better utilisation of the fleet.

2. Alternatively the ticket prices are given. The size of the applied
aircraft may then be optimised to maximise profit or social
surplus. The number of aircraft will normally be indivisible here
as well, but may also be shared between route areas.

To summarise, the objectives of the model are to:

� calculate the expected lowest bid - given aircraft size, fre-
quencies etc.

� calculate the most profitable bid for the operator and for society.
� calculate highest pay-back to society per V or NOK.
� calculate the best bid for a given amount of subsidies.
� optimise a given amount of subsidies between route areas.

The two last points demand repeated calculations with the
model.

4.3. Numeric examples

There are 15 PSO route areas in Norway. The North Western
coast of Norway is used as an example here, and the structure is
illustrated in Fig. 4. This is a route area consisting of four local
airports and two central ones: Ørsta/Volda, Sandane, Førde, and
Sogndal in addition to Oslo and Bergen as end destinations (the two
latter ones are used as examples in Section 3). The route plan
consists of 8 different legs and 14 roundtrips.

The reason for selecting this specific route area was that even if
it consists of a quite complicated pattern of legs and roundtrips it is
not among the most complicated route areas in the country, and
therefore it is a transparent case for testing the model. Further-
more, it consists of routes that have a potential to be commercially
profitable as well as routes with very lowoccupancy rates of around
30%.

We aim to compare the “present” (2014) situation of the route
area with parallel situations where profit of the operator or social
benefit is maximised, asking the following questions:

⁃ What happens if private operators are allowed to maximise
profits?

⁃ How can social benefits be maximised?
⁃ Can restrictions contribute to increased social efficiency?
⁃ What happens to regional equity?
⁃ Can reorganising of route areas contribute to social efficiency?

In the main case the size of aircraft remains constant, while
profits and social benefits are maximised respectively. Ticket prices
and number of aircraft may vary.

Table 3 shows that with profit maximisation, the number of
round trips is reduced, and the number of aircraft is reduced from
three to two. The ticket price increases by 40%. Private profit turns
out to be positive, and the negative social benefit is slightly
improved when comparing with base case.

Table 4 shows that the number of aircraft is reduced even more
in the case of shareable aircraft.

Table 5 shows that with profit maximisation and fixed airfares,
private profit has become positive with a good margin. However,
social benefit max may lead to better social benefit, but still it
comes out as negative as compared with base case. The profits are
also negative if social surplus is maximised.

Fixed airfares as shown in Table 5, will lead to reduced size of
both in the profit maximisation case and in the social benefit
maximisation case. The number of roundtrips increase and the
deficit of the operators and the social benefit have decreased, while
still negative.

However, Table 6 shows that with fixed airfares and divisible



Table 3
Profit maximisation and social benefit maximisation with indivisible aircraft number and fixed aircraft size. EUR (2014).

Discrete aircraft Roundtrips Size of aircraft Aircraft Ticket price Profit Social benefit

Seats No Euro Euro Euro

Base case Abs 14,0 38 3,00 112 �26101 �33252
Pct 100% 100% 142% 100% 304% 211%

Profit max Abs 11,9 38 2 158 4939 �29157
Pct 85% 100% 67% 141% ¡19% 88%

Soc benefit max Abs 13,1 38 2 106 �3279 �5850
Pct 94% 100% 67% 95% 13% 18%

Table 4
Profit maximisation and social benefit maximisation with divisible aircraft number and fixed aircraft size. EUR (2014).

Shared aircraft Roundtrips Size of aircraft Aircraft Ticket price Profit Social benefit

Seats No Euro Euro Euro

Base case Abs 14,0 38 2,11 112 �8572 �15723
Pct 100% 100% 100% 100% 100% 100%

Profit max Abs 6,6 38 1,00 169 24368 �14673
Pct 47% 100% 33% 151% ¡93% 44%

Soc benefit max Abs 11,9 38 1,81 103 �3953 �1480
Pct 85% 100% 86% 92% 46% 9%

Table 5
Profit maximisation and social benefit maximisation with indivisible aircraft number and fixed airfares. EUR (2014).

Discrete aircraft Roundtrips Size of aircraft Aircraft Ticket price Profit Social benefit

Seats No Euro Euro Euro

Base case Abs 14,0 38 3 112 �26101 �33252
Pct 100% 100% 100% 100% 100% 100%

Profit max Abs 20,3 26 3 112 �9259 �18153
Pct 145% 68% 100% 100% 35% 55%

Soc benefit max Abs 20,3 25 3 112 �6909 �15925
Pct 145% 66% 100% 100% 26% 48%

Table 6
Profit maximisation and social benefit maximisation with divisible aircraft number and fixed airfares.

Shared aircraft Roundtrips Size of aircraft Aircraft Ticket price Profit Social benefit

Seats No Euro Euro Euro

Base case Abs 14,0 38 2,11 112 �8572 �15723
Pct 100% 100% 100% 100% 100% 100%

Profit max Abs 62
Pct 164%

Soc benefit max Abs 75
Pct 197%
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aircraft numbers we get infeasible results, as the optimal size of
aircraft is out of range i.e. too large for the STOL airports.

Lastly, Table 7 shows that if there are no restrictions profit
maximisation leads to the doubling of airfares and reduced aircraft
size and reduced number of roundtrips. Max of social benefit here
gives a solution that is out of range.

It should be noted that firm conclusions might not be drawn
based on this numeric example for just one single route area.
However, from Tables 3e7 it can be argued that the best solution for
the routes in this example could be shared aircraft, 12 round trips/
day and a modest level of PSO subsidy.
5. Findings, conclusions and directions for future research

Merkert and O'Fee (2013) stated that from the national
government and EC, systems for more transparency and better
incentives to the operators should be provided. They also rec-
ommended to augmenting the EC's role as a watchdog to ensure
that PSO are fulfilling the intentions in the EC 1008/2008 reg-
ulations. This paper does not aim to discuss the operator's in-
centives, but it provides a framework and a model for defining
and assessing the minimum LOS requirement for a transport
standard for remoter regions. The paper also advises on a simple
assessment method of the economic viability for a PSO service.
Both these elements may be refined, but they should contribute
to more transparency along the lines that Merkert and O'Fee
(2013) suggest.

Some conclusions from the modelled examples could be:

⁃ Constant aircraft size:
⁃ Profit max leads to positive profits and 40e50 pct. increase in
ticket prices. Social benefit will increase slightly.

⁃ Social benefit max leads to a small drop in ticket prices and
increases in profits and social benefits.

⁃ Continuous aircraft numbers lead to larger effects than with
integer aircraft numbers.



Table 7
Profit maximisation and social benefit maximisation with divisible aircraft number and no restrictions.

Shared aircraft Roundtrips Size of aircraft Aircraft Ticket price Profit Social benefit

Seats No Euro Euro Euro

Base case Abs 14,0 38 2,11 112 �8572 �15723
Pct 100% 100% 100% 100% 100% 100%

Profit max Abs 6,7 27 1,00 198 26084 �26192
Pct 48% 72% 47% 176% ¡304% 167%

Soc benefit max Abs 88
Pct 231%
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⁃ Constant ticket prices:
⁃ Profit max leads to increased profits and social benefits, but
still negative. Optimal aircraft size is reduced.

⁃ Social benefit max leads to increased profits and social bene-
fits. Optimal aircraft size is reduced.

⁃ Continuous aircraft numbers lead to increased aircraft size.

Overall, it seems that loosening the LOS restrictions on this type
of regional aviation may lead to increased ticket prices and a
reduced LOS. PSO restrictions may lead to a situation close to social
optimum if wisely chosen.

However, PSO and commercial aviation in two neighbouring
route areas may lead to equity problems and protests as difference
in service may be substantial. Route areas going from PSO to
commercial operation may cause a worse situation for travellers. If
possible, it may be better to keep such a route as a “0-bid” PSO.

PSO route areas may sometimes be split into subsidised PSO-
routes and “0-bid” PSO routes, or even commercial, to increase
total social benefits (i.e. Ørsta/Volda e Oslo from the North West
Coast).

However, no firm conclusions might be drawn based on this
numeric example for just one single route area. However, a satis-
factory solution is clearly indicated for the routes in this example.

This paper offers a stepwise procedure for assessing PSO routes:
Firstly, a framework for deciding upon LOS for air transport under
PSO is presented. Secondly, we present a way of doing rough cal-
culations of socio-economic profitability of PSO routes compared
with best alternative transport. Finally, a model is presented which
refines these calculations.

One limitation is that the traveller's value of the PSO service is
measured in a rather crude way, with a simplification of the trav-
ellers' origin-destination pattern to comprise airport-airport travels
only. This could be amended by using more detailed travel survey
data. Another limitation is that the model is not suitable for opti-
mising very complex PSO route structures. This might be a limited
problem because there are not many dense PSO route networks. A
third limitation is that the model in its current version does not
take alternative transport modes (like road, rail or sea transport)
into account. A general limitation is the choice of cost and demand
functions, where other types of functions could be tested.

The numerical model is in a rather early stage. For future
research, important steps are probably to test and refine the nu-
merical model, and perhaps consider development possibilities in
connection with general transport network models and heuristic
models for vehicle routing problems. Another step could be to
expand the tests of the LOS criteria to studymore in detail how they
could be applied in practice.
4 By H. Minken and K.S. Eriksen. See Eriksen and Minken (2007) for more details.
5 As an approximation, other distance-dependent inputs like oil, tyres and

distance-dependent parts of maintenance and insurance are assumed to be pro-
portional to fuel consumption, and the price of fuel is adjusted upwards to take that
into account. Alternatively, gmight have been considered a vector of inputs, but this
would not really have provided much more scope for substitution.
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Appendix

Theoretical model4

Variables and parameters

Endogenous variables
c vehicle capacity (items/vehicle)
c1 capacity of an aircraft
f frequency (departures/time unit)
g fuel consumption per vehicle kilometre5

gs fuel consumption per stop (due to acceleration from stop)
k number of vehicles employed
l crew per vehicle
n number of cars per vehicle (train case)
t round-trip time
th loading plus unloading time per item
u unproductive time per roundtrip (turn-around time and

waiting to depart)
y the operation's service capacity (items/time unit)

Endogenous variables (input space)
v0 number of vehicles allocated to the operation (size of

fleet)
v1 fleet capacity (items)
v2 the operation's fuel consumption per time unit
v3 handling capacity (items/time unit)

Exogenous variables
d round-trip distance (sum of the distances of the links)

f highest allowable frequency under security regulations
s number of stops used
ts time per stop (excluding loading and unloading time)
u lowest possible or allowable turn-around time
v cruising speed (kilometres/time unit)

Parameters
The exogenous variables stem from route design (d and s),

regulations (f ,u), and vehicle design and/or regulations (v,
ts).

Parameters
f load factor
r, w, w0, w1, w2, w3 prices

Denoting the average transport distance for each item by d
0
and
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the commonly used load factor by f0, f0 ¼ ðd0=dÞf.

Empirical content e linear relationships
The empirical content of the model consists of the description of

the operation and the assumptions given above, the exogenous
variables and parameters, and the following linear relationships:

l ¼ l0 þ l1c (1)

c ¼ c0 þ nc1 (2)

g ¼ g0 þ g1c (3)

r ¼ r0 þ r1c (4)

gs ¼ gs0 þ gs1c (5)

Identities

t ¼ d
v
þ tssþ thfcþ u (6)

k ¼ tf (7)

y ¼ cf (8)

The production technology
Let X be the natural numbers N or the non-negative real

numbers Rþ, as the case may be. We can then define k in a general
way by

k ¼ min
�
x2X

����x �
�
d
v
þ tssþ thfcþ u

�
f
�

(9)

We also define the unproductive time ~u that satisfies the
inequality in (9) with equality by

k ¼
�
d
v
þ tssþ thfcþ u�

�
f (10)

If k can be any non-negative real number, efficiency requires

k ¼
�
d
v
þ tssþ thfcþ u

�
f (11)

The difference between k in (11) and in (10) is

k8 ¼ ð~u� uÞf (12)

k8 is the “excess inventory of vehicles” caused by the indivisibility
of vehicles.

cmin � c � cmax; f � f (13)
It might be noted that the existence of a minimum aircraft size
or a maximum allowable frequency will generally invalidate the
assumption of free disposability of inputs.
The cost functions

Abbreviations.

A ¼ d
v
þ tssþ u ; B ¼ dg0 þ sgs0 ; D ¼ dg1 þ sgs1 ; E ¼ thf

C ¼ w0v0 þw1v1 þw2v2 ¼ w0kþw1ckþw2ðBf þ DyÞ
where w0 ¼ r0 þwl0; w1 ¼ r1 þwl1

(14)

C is to be minimised, given the production technology. Thus the
problem is:

Minf w0kþw1kyf
�1 þw2ðBf þ DyÞ

s:t k ¼ minfx2Xjx � Af þ Eyg (15)

In practical applications, a term Tf could be added to B to account
for taxes or other payments per departure, and a term Ty could be
added to D to account for taxes on seats or passengers or the like.

The solutions of these minimising problems are technically
complicated and are not reproduced here.
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