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Abstract

This thesis contributes to the field of portfolio selection by constructing and analyzing the

impact of incorporating higher-moments by Polynomial goal programming. We construct

the mean-variance-skewness and the mean-variance-skewness-kurtosis portfolio over a 20-year

horizon using 29 stocks from the S&P Global 1200-index. We examine the performance of

higher-moment portfolios in terms of return, risk and allocation, compared to two benchmark

portfolios; the traditional Markowitz portfolio and the global minimum variance portfolio.

Our findings suggest that an investor obtains a higher return and risk-adjusted return by

incorporating skewness into the mean-variance allocation framework. The mean-variance-

skewness portfolio can further be improved by a diversification constraint as a result of the

portfolio’s occasional concentrated allocations, while limiting turnover turns out to be relatively

detrimental for its performance. The results are less clear when both skewness and kurtosis

are incorporated into the asset allocation framework, as the mean-variance-skewness-kurtosis

portfolio is outperformed by the benchmark portfolios unless a turnover or a strong diversification

constraint is imposed. In general we find that higher-moment portfolios obtain more optimal

out-of-sample higher-moments at the cost of higher out-of-sample variance. The differences

between the out-of-sample moments are augmented by rebalancing the portfolios or by imposing

the strong diversification constraint.
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1 Introduction

The mean-variance framework outlined by Markowitz (1952) is regarded as the cornerstone of

Modern Portfolio Theory and captures two essential concepts in finance. The investor may

reduce the idiosyncratic risk of his portfolio by diversification, and faces a trade-off between

expected return and risk, illustrated by the mean-variance efficient frontier. The mean-variance

framework is built upon the assumption that the investor focuses solely on mean and variance,

and by that implies quadratic utility and/or that asset returns are normally distributed. Both

of these assumptions are inadequate and have been rejected both theoretically and empirically.

Samuelson (1970) shows that higher-moments are relevant to portfolio selection in a finite-time

interval, while the presence of skewness and excess kurtosis in asset returns has been extensively

documented, for instance by Mandelbrot (1963), Cootner (1966), Fama (1965) and Officer

(1972). Utility functions allowing for higher-moments are further motivated and supported by

Brooks et al. (2011). Accompanied by investors’ general preference for positive skewness (Arditti

(1971), Arditti and Levy (1975)) and aversion towards kurtosis (Jurczenko and Maillet, 2006),

this implies that higher-moments should be incorporated in the asset allocation framework in

order to avoid suboptimal allocations.

Several approaches for incorporating higher-moments into the traditional Markowitz portfolio

have been proposed, and the major conceptual difference is whether the allocation is based

on solving an approximated utility function or a multi-objective function. In this paper we

construct portfolios based on the latter approach by using the Polynomial goal programming

(PGP) framework for portfolio selection, introduced by Lai (1991) for mean-variance-skewness

efficient portfolios, and by Lai et al. (2006) for mean-variance-skewness-kurtosis efficient

portfolios. As of today, most papers regarding higher-moment efficient portfolios based on PGP

have been evaluated in terms of in-sample performance over one holding period (Škrinjarić,

2013; Lai et al., 2006; Harvey et al., 2010). Our goal is to provide a hybrid version of the

higher-moment portfolios that is of more practical relevance to the investor according to desired

frequency, horizon and constraints.

In this thesis we construct the mean-variance-skewness- (MVS) and mean-variance-skewness-

kurtosis (MVSK) portfolio, with the long-only, diversification- and turnover constraint, from

a buy-hold and a rebalancing perspective. Along with the higher-moment portfolios we also

construct two benchmark portfolios; a mean-variance efficient portfolio and the global minimum

variance portfolio (GMVP). In order to compare the higher-moment portfolios to the benchmark

portfolios, we evaluate their performance over a 20-year horizon with an investment universe
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consisting of 29 stocks on the S&P Global 1200-index. Each portfolio is revised quarterly

with a quarterly holding period. To cope with the large estimation errors related to statistical

moments, especially higher-moments, we use Bayesian shrinkage estimates over a one year

rolling window, as input to the allocation framework.

We examine the following two objectives in this thesis:

• Given different sets of constraints and either a buy-hold or a rebalancing strategy, is

the performance of the higher-moment portfolios better than the traditional Markowitz

portfolio and the global minimum variance portfolio, in terms of return, risk and allocation?

• Do the higher-moment portfolios obtain more optimal out-of-sample higher-moments,

and less optimal out-of-sample mean and/or variance, compared to the mean-variance

portfolio and the global minimum variance portfolio, given different sets of constraints?

The first objective is evaluated by comparing the terminal portfolio wealth and the risk-adjusted

return by the Sharpe-ratio and the adjusted Sharpe-ratio, of the higher-moment portfolios and

the benchmark portfolios. In order to capture the risk profile of the portfolios we analyze the

standard deviation and the expected shortfall of each portfolio. We also address the allocation

of each portfolio by comparing the turnover and diversification ratio.

The second objective is evaluated using a difference test adjusted for heteroscedastic and

autocorrelated standard errors, where the adjustment of standard errors is due to time-varying

moments. The motivation behind this objective is the fact that numerous papers, e.g. Lai et al.

(2006) and Davies et al. (2009), find that the higher-moment portfolios obtain worse in-sample

mean and/or variance compared to the traditional Markowitz portfolio and the global minimum

variance portfolio, but that the higher-moment portfolios are compensated by a higher in-

sample skewness and/or a lower in-sample kurtosis. Yet, whether the higher-moment portfolios

constructed by PGP obtain more optimal out-of-sample moments have not been addressed,

to our knowledge, and can be relevant to the investor in practice. If the better in-sample

higher-moments do not persist out-of-sample, an investor incorporating higher-moments may be

mislead and construct portfolios on false premises. Since we construct portfolios with different

sets of constraint, this enables us to observe the implication of imposing more practically

oriented constraints on the portfolios’ out-of-sample moments as well.

First, we present relevant literature regarding portfolio selection and provide a discussion of

higher-moments and their relevance to the investor. Further on we outline the methodology for

moment-based asset allocation by PGP, followed by an evaluation of the in-sample moments,
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allocations and out-of-sample performance of the empirical portfolios constructed. Finally,

we present the results of the statistical difference test of the portfolios’ out-of-sample mean,

variance, skewness and kurtosis.
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2 Literature Review

2.1 Modern Portfolio Theory

Modern Portfolio Theory (MPT) emerged by Markowitz (1952) work on the risk-return

framework for investment decision making. Traditionally, portfolio theory has been centered

around maximizing discounted returns, but Markowitz argued mathematically that investors

should also focus on minimizing the risk. In order to quantify portfolio risk Markowitz used

the variances and covariances of each asset in the portfolio, and derived how portfolio risk

can be reduced by combining assets that are not perfectly correlated; a concept known as

diversification. The implication of diversification is a focus on investing in several assets in

order to reduce the impact of the risk of each asset, and choose assets from dissimilar industries

to offset the losses of some by the gains of others.

The mean-variance framework is a normative theory based on the assumption that investors are

risk-averse and only concerned about the expected return of a portfolio, measured by the mean,

and its risk, measured by variance. This implies that an investor prefers the portfolio with the

lowest variance for a given expected return, alternatively the portfolio with the highest expected

return given the same level of variance. Any portfolio with such characteristics is mean-variance

efficient and an analytical formulation of the optimization problem was given by Merton (1972)

for the N -asset case;

minimize
x

1

2

√√
√
√

N∑

i=1

N∑

j=1

xixjσij

subject to
N∑

i=1

xiE[ri] = E∗

N∑

i=1

xi = 1

(1)

where xi is the percentage wealth allocated to asset i, σij denotes the covariance between asset

i and j, E[ri] is the expected return of asset i and E∗ is the desired expected portfolio return.

sigma is the portfolio variance, w is the weight of asset i and σij is the covariance between asset

i and j. Markowitz (1952) illustrated all the mean-variance portfolios by an efficient frontier,

illustrated in Figure 1. In fact, the efficient frontier illustrates the fundamental risk-reward

trade-off in finance: the investor must be willing to take on higher risk in order to improve the
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expected return.

Figure 1: Mean-variance efficient frontier

The origin of the efficient frontier is the portfolio with the lowest risk, also known as the

global minimum variance portfolio (GMVP) Merton (1972). GMVP is obtained by solving

the quadratic optimization problem in (1) without the constraint regarding a fixed expected

return, and it is regarded as one of the most popular risk-optimization techniques (Clarke

et al. (2006), Scherer (2010), Clarke et al. (2011). In practice, the inputs of the mean-variance

efficient portfolios suffer from estimation error of the expected return and risk, where Chopra

and Ziemba (1993) show that the former contributes to the largest errors. Since the GMVP-

portfolio only relies on the forecast of the variances and covariances of the assets, it is more

robust than the other mean-variance efficient portfolios. Nevertheless, Stoyan Stoyanov (2011)

argues that GMVP tends to be heavily concentrated in the assets with the lowest volatility and

is only valuable for investors who seek to lower their portfolio’s volatility. His theoretical model

shows that correlations are exploited only to increase concentration in further low volatility

stocks and this leads to poorly diversified portfolios.

2.2 Shortcomings of the mean-variance framework

The mean-variance framework assumes a quadratic utility function and/or normally-distributed

returns. While the latter might be correct according to Ito’s rule in a continuous-time model

when asset prices follow a diffusion process, Samuelson (1970) shows that higher moments are

relevant for portfolio selection over a finite time interval (Lai, 1991). Several empirical studies

also confirm that stock return distributions deviate from normality and are characterized by

skewness and kurtosis. For instance, Melnick and Everitt (2008) and Malmsten and Teräsvirta

(2004) find that stocks on the S&P500-index exhibit a skewness and leptokurtosis, and Hwang

and Satchell, E. (2001) find the same characteristics for the emerging markets. By neglecting
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the empirical findings, an investor constructing a mean-variance efficient portfolio may neglect

other moments of importance such as the skewness and kurtosis.

The standard assumption of the mean-variance framework is deterministic inputs, i.e. the

expected return and variance are assumed to be true values. Yet, in practice the moments have

to be estimated and as a result of not adjusting for the stochastic of the inputs, the framework

is said to be an estimation error maximizer (Michaud, 1989). This is a result of the tendency

of overweighing securities with large estimated returns, negative correlations and low risk, and

vice versa. Due to the large estimation errors related to mean, are the unconstrained mean-

variance portfolios found to be unreliable in practice (Chopra and Ziemba, 1993; Jobson and

Korkie, 1980).

2.3 The role of higher moments in portfolio selection

Including higher moments into the traditional mean-variance framework is supported by several

authors. For instance, Beardsley et al. (2012) find that even though the Markowitz solutions

sometimes are close to the portfolio choice including higher moments, the compositions are

never equal. In fact, an inefficient portfolio in the mean-variance framework may be efficient

in the mean-variance-skewness or the mean-variance-skewness-kurtosis framework Lai (1991);

Lai et al. (2006). Figure 2 demonstrates the implication of this: the efficient frontier including

estimates of higher moments is never above the estimated mean-variance efficient frontier in

the mean-variance space. In addition, the higher moments of a portfolio are not necessarily

improved by diversification (Walther, 2014). In fact, Walter observes that diversification might

reduce portfolio skewness and increase kurtosis. Thus the investor cannot rely on the higher-

moments being appropriate with only a focus on the two first moments of the return distribution.

Figure 2: Mean-variance efficient frontier with higher moments
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The no-free lunch concept of expected return and variance also applies to higher moments. The

investor must be willing to forgo expected return or increase variance, if he wants to increase the

skewness or lower the kurtosis of the portfolio, and vice versa. The willingness to do so depends

on the investor’s utility function, yet in general risk averse investors often have a preference

for odd moments as they are related to increasing gains, while even moments are disliked as

they represent the risk of (large) losses (Athayde and Flores, 2004). Such preferences lead

to a complex portfolio selection process, as maximizing expected return, minimizing variance,

maximizing skewness and minimizing kurtosis, simultaneously, are competing and conflicting

objectives (Lai et al., 2006).

2.4 The implication of skewness

Harvey and Siddique (2000) argue that investors should be compensated for bearing assets with

systematic skewness. A risk-averse investor with non-increasing risk aversion prefers a positively

skewed distribution to a negatively skewed distribution, because the former distribution, even

though it is more likely to yield relatively lower returns, is less likely to yield extreme losses

(Arditti, 1967). Kane (1982) derives how the mean-variance framework can be improved by

including skewness, and Lai (1991) and Prakash et al. (2003) show how it affects the portfolio

composition compared to the traditional Markowitz portfolios.

Figure 3: Skewness

Coskewness is the third standardized moment of a probability distribution and measures the

joint degree of asymmetry around the mean. In this paper we use Pearson’s formula for

coskewness, given by (2) for the return of asset x, y and z (Miller, 2014).

s(rx, ry, rz) =
E[(rx − μx)]E[(ry − μy)]E[(rz − μz)]

σxσyσz

(2)

where μi and σi is the expected value and standard deviation of asset i = x, y, z, respectively.
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When rx = ry = rz, we obtain the special case of coskewness known as skewness. Figure 3

contains three univariate distributions with different presence of skewness; one symmetrical

distribution, i.e. no presence of skewness, together with a left- and right skewed distribution.

2.5 The implication of kurtosis

Signer and Favre (2002) suggest that negative excess kurtosis is preferred over positive excess

kurtosis for an investor with decreasing absolute prudence, since the investor is more concerned

about potential extreme losses than he favors potential extreme gains. A platykurtic distribution

is preferred by a risk-averse investor, ceteris paribus, due to lower tail risk. The purpose of

minimizing kurtosis is to protect the investors from extreme losses, yet at the same time one

also reduces extreme gains (Saranya and Prasanna, 2014). Thus, incorporating kurtosis values

in the portfolio optimization should contribute to better risk-adjusted returns, as one would

underestimate risk by undermining kurtosis. Cokurtosis is the fourth standardized moment and

Figure 4: Kurtosis

measures the extent to which the distributions tend to have jointly relatively large frequencies

in the tails. In this paper we apply Pearson’s formula for cokurtosis given by (3) for the return

of asset x, y, z and v (Miller, 2014).

k(rx, ry, rz, rv) =
E[(rx − μz)]E[(ry − μy)]E[(rz − μz)]E[(rv − μv)]

σxσyσzσv

(3)

where μi and σi is the expected return and standard deviation of asset i = x, y, z, v, respectively.

In case of rx = ry = rz = rv, the cokurtosis of the returns is reduced to the kurtosis. In order to

normalize kurtosis one subtracts (3) by 3, since the normal distribution is mesokurtic and has

a kurtosis of 3. Kurtosis is a measure of the peakness or flatness of a distribution relative to

the normal distribution, and can be characterised by three formats. Figure 4 shows the shape

of a mesokurtic distribution together with a platy- and leptokurtic distribution. A platykurtic
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distribution has thinner tails than a normal distribution and lower kurtosis compared to a lepto-

or a mesokurtic distribution, and with that follows a lower likelihood for extreme events, ceteris

paribus.

2.6 Estimation of higher-moments

Martellini and Ziemann (2010) find that in order for higher-moment portfolios to outperform the

global minimum variance portfolio, out-of-sample, appropriate forecasts of the higher moments

are needed. Sample estimates are often used due to simplicity and the appealing property

of being the maximum likelihood estimators under the normality assumption (Britten-Jones,

1999). Yet there are two major drawbacks of using sample estimates as it fails to capture

the fact that moments are time-varying and are severely affected by increasing dimensionality

(French et al., 1987; Brooks et al., 2005). The latter becomes a large problem when skewness

and kurtosis are incorporated into the asset allocation framework.

To cope with the large estimation errors related to the higher-moments,Martellini and Ziemann

(2010) suggest using a Bayesian shrinkage approach to construct a robust estimator based on

a weighted average of the sample estimate and a shrinkage target. The weight, also called the

shrinkage intensity, is based on the optimal trade-off between estimation error and specification

error. While sample estimates are asymptotically unbiased, it suffers from estimation error

(Disatnik and Benninga, 2007); especially when higher-moments are incorporated. Martellini

and Ziemann (2010) compare the performance of higher-moment portfolios using both the

constant correlation estimator by Elton and Gruber (1973) and the single-index model by

Sharpe (1963), as shrinkage targets. They find that the investor’s welfare is significantly

improved by using Bayesian shrinkage over the sample method. In addition, portfolios based on

shrinkage towards the single-index estimate generally outperforms portfolios based on shrinkage

towards the constant correlation model. To illustrate the difference of structure between the

sample estimates and the single-index estimates for the higher-moments, the authors show that

while the sample estimates of the coskewness- and cokurtosis matrix require 2,925 and 23,725

parameters to not be rank deficient, respectively, the single-index estimates only require 51 and

77 parameters, respectively, for a portfolio with 25 assets. The trade-off of using the single-index

estimates is the introduction of specification error due to the model’s underlying assumptions,

presented in section 3.2.2, and the fact that the common market factor only to some extent

explains asset returns.
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2.7 Asset allocation framework incorporating higher-moments

2.7.1 Primal versus dual approach

There is considered two conceptually different ways of incorporating higher moments into

portfolio selection; the primal and dual approach (Jurczenko et al., 2015). The latter method

is based on approximated utility functions derived from a Taylor series expansion of expected

utility (Jondeau and Rockinger, 2006). The problem with this approach is that the inclusion

of skewness and kurtosis does not guarantee an improved approximation of the utility function

(Brockett and Garven, 1998), nor does it guarantee a solution at all. In addition, the investor’s

subjective utility function is generally unknown or very complicated, hence the reliability of the

optimal portfolios derived by the dual approach is questionable Lai (1991).

The primal approach is based on the multi-objective approach known as Polynomial goal

programming (PGP) (Lai, 1991). PGP was introduced by Tay and Leonard to explicitly

incorporate bank balance-sheet managers’ conflicting objectives such as maximization of returns

and minimization of risks (Kumar et al., 1988). Lai (1991) was the first to apply this framework

regarding portfolio selection by constructing the mean-variance-skewness portfolio, while Lai

et al. (2006) modified the framework to incorporate kurtosis as well. The framework has

been empirically tested on stock-, index- and hedge fund portfolios (Sun and Yan, 2003;

Chunhachinda et al., 1997; Davies et al., 2009). Compared to the dual approach, PGP is

not related precisely to the expected utility function but requires the investor to specify a

preference parameter for each moment. Thus PGP constructs portfolios based on arbitrarily

chosen preference parameters rather than on a utility function. While this may be considered a

shortcoming from an academic perspective it may also be argued that it has a higher practical

value due to parsimony. A shortcoming of PGP is the fact that the framework in theory leads

to a Pareto-optimal solution, but in practice does not guarantee an efficient portfolio due to

the non-convex optimization problem (Jurczenko et al., 2015).

2.7.2 Polynomial goal programming

This paper is based on PGP-constructed portfolios due to the intuitive concept of the framework

together with the simplicity of handling moment preferences. Another feature of applying the

PGP-framework for portfolio selection is that there is always an existing optimal solution (Lai,

1991). PGP deals with the conflicting and competing nature of the optimization problem of

each moment by stepwise optimization (Lai et al., 2006). In the first step, the optimal values
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of the portfolio moments are found by maximizing the expected return (M∗), minimizing the

variance (V ∗), maximizing the skewness (S∗) and minimizing the kurtosis (K∗), separately.

The deviation of the portfolio moment i and the related optimal moment, found in step one,

is denoted di. In the second step the four moments are then consolidated into the objective

function Z as the normalized Minkowski distance:

Z(λ) =
m∑

i=1

d∗
i
λi =

m∑

i=1

∣
∣
∣
∣
di

Yi

∣
∣
∣
∣

λi

(4)

where λi is a preference parameter for moment i and Yi is its optimal value derived from the

first step. The investor’s subjective preference of each moment is specified by λi, and the higher

the preference for moment i, the higher value on λi (Lai et al., 2006). Solving PGP for λ1 = 1,

λ2 = 1, λ3 = 0 and λ4 = 0, gives a mean-variance efficient portfolio (Lai, 1991). To derive

mean-variance-skewness efficient portfolios the preference parameters are set to λ1 ≥ 0, λ2 > 0,

λ3 > 0, and λ4 = 0; while the mean-variance-skewness-kurtosis efficient portfolios are based on

λ1 ≥ 0, λ2 > 0, λ3 > 0, and λ4 > 0. There have been conducted empirical studies to identify

reasonable preference parameters for different types of investors. Proelss and Schweizer (2014)

identifies the preference parameters of a US pension fund and a US insurance fund, and find

that the US pension fund has a relatively higher preference for skewness, i.e. higher value of

λ3, while the latter having a relatively higher preference for kurtosis, i.e. higher value of λ4.

Note that the authors do not specify the preference parameter of variance since they construct

portfolios with unit variance.

In PGP’s second step, the following optimization problem is solved in order to find the optimal

weights of the portfolio based on the moment preferences:

min Z(λ) = |
d1

M∗
|λ1 + |

d2

V ∗
|λ2+|

d3

S∗
|λ3+|

d4

K∗
|λ4 (5)

The investor’s preferences can be approximated through polynomial expressions (Kumar et al.,

1988) and be expressed as the marginal rate of substitution (MRS) between two moments:

MRSij =

δZ
δ(d∗i )

δZ
δ(d∗j )

= [
λi

λj

] ∗ [
d∗

i
λi−1

d∗
j
λj−1

] (6)

The relationship between λi and λj forms a negative convex indifference curve, and the relative

desirability of moment i can be approximated by varying λi in the objective function (5).

Thus, a larger value of λi, ceteris paribus, indicates a greater importance of moment i for the
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investor. The different combinations of λ enable the investor to specify the investors preferences

simultaneously for higher moments in the objective function.

2.8 Additional considerations for portfolio construction

The portfolio selection process requires the investor, in accordance with his leeway, to decide

on his preferences, investment universe, investment horizon and frequency of revisions. An

institutional investor, such as a pension fund or an insurance fund, often has a restriction for

short-selling stocks, and often also requires a diversification and/or a turnover constraint to be

followed (Haslem, 2003). Several studies also show that the inclusion of constraints can improve

portfolio performance in practice by reducing the estimation error of the mean and variance

(Frost and Savarino, 1988). Yet, a too severe constraint might come at the cost of not taking

advantage of valuable information, and as a result lead to underperformance (Fabozzi et al.,

2010).

2.8.1 Buy-hold versus rebalancing

The asset allocation decision is the most important determinant for a portfolio’s return and

risk characteristics (Brinson et al., 1995; Davies et al., 2009). Yet, as asset prices change over

time the allocation often drifts away from the target allocation, and the portfolio might end

up with unwanted characteristics, for instance a too high concentration in one asset class or

too high portfolio volatility. To maintain the initial allocation the investor can rebalance the

portfolio at a given frequency, i.e. buy assets that have experienced a decline in price and

vice versa, to ensure that the portfolio weights are according to the target allocation. The

higher the frequency of rebalancing, the less the allocations between the rebalancing periods

are allowed to deviate from the target allocation. The opposite of the rebalancing strategy is

the buy-hold strategy where the investor passively holds the initial allocation till the end of

the investment horizon. There are benefits and disadvantages with both strategies; rebalanced

Markowitz portfolios have been found to outperform the buy-hold counterpart empirically, yet

after adjusting for the higher costs of using the former the difference is close to negligible

(Dayanandan and Lam, 2015).
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2.8.2 Short-sale constraint

Practitioners often impose a long-only constraint that precludes short position in assets, because

the constructed portfolios using sample moments often involve extreme long or short positions.

(Ma and Jagannathan, 2001). Especially institutional investors such as pension funds and

insurance funds, and nowadays most mutual funds, limit or restrict short positions (Chen et al.,

2013). Ma and Jagannathan (2001) show that imposing the short-sale constraint on a portfolio

is equivalent to using the sample covariance matrix after reducing its high sample co-estimates

by e.g. shrinkage. The high row sums between assets, associated with high covariance, tend to

be caused by estimation error and as a result the unconstrained portfolio often receive negative

portfolio weights from the high covariance.

2.8.3 Diversification constraint

The investor can control the concentration of the portfolio by imposing a diversification constraint.

Practitioners also include a diversification constraint because minimize variance does not

guarantee appropriately diversified portfolios. The investor can specify the diversification target

(Dtarget) using the Herfindahl index (7) (Heinze, 2016). A high value of H(x) indicates a more

diversified portfolio, i.e., an equally-weighted portfolio gives the highest H(x), and a portfolio

that is concentrated in one asset gives the value of H(x) = 0. The diversification constraint is

given by (Richard and Roncalli, 2015):

H(x) = 1−
N∑

i=1

(x2
i ) (7)

2.8.4 Turnover constraint

The turnover constraint allows the investor to specify a maximum turnover as churning the

portfolio increases costs through brokerage commissions, illiquidity risks, and taxes. Lummer

and Reipe (1994) point out that small input changes in the mean-variance framework can result

in large changes in the optimized allocated weights. To cope with this, and to limit the costs of

drastically changing allocation, we impose a turnover constraint, given by the turnover function

of Schreiner (1980):

T (x) =
1

N

N∑

i=1

|xi,t − xi,t−1| (8)
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The turnover calculation in this paper abandons the cost approach proposed by DeMiguel et al.

(2009), because of the difficulties assessing commission costs. For example, as the transaction

size increases, commissions costs might decrease as it is cheaper to make larger orders of liquid

stocks, while commission costs can increase if the stocks are illiquid. Furthermore, different

tax regulations related to profit and loss of the equities might vary for international investors.

From a practical standpoint, a turnover constraint benefits the investors by making selective

changes from the existing portfolio that reduce the costs related to turnover for all investors,

such as tax, commissions, and other costs related to turnover.

3 Methodology

In this section we outline the methodology for the moment-based asset allocation, illustrated

in Figure 5. We use the PGP-framework to construct the MV-, MVS- and MVSK portfolio,

in addition to GMVP. The portfolios’ allocations are initially determined at time t1 and then

revised at t2, t3, ..., tK , with a constant holding period of length H following each revision n.

The inputs of the allocation framework for each portfolio revision n are the forecasted stock

moments over the holding period, using Bayesian shrinkage estimates from a rolling window of

length L.

t 1 t 2 t 3 t4

H: The length of the holding period
L: The length of the estimation period

0 

L 

L 
L 

L 

H   1 H   2 H   3 H   4

L 

H   K

tK T

Figure 5: Portfolio selection process

Conceptually each portfolio revision is similar and we simplify the notation by presenting

a revision at time t with the corresponding estimation window starting at t − L and the

corresponding holding period ending at t + H. The portfolio selection process follows the

following four steps for the revision at time t:

1. Forecast moments of each stock in the investment universe for the end of the holding
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period t + H by Bayesian shrinkage estimation over the time interval [t− L, t〉 .

2. Determine the allocation of each portfolio for the holding period [t, t + H] by solving

the optimization problem of PGP at time t, using the corresponding portfolio moments

derived from step 1.

3. Under the rebalancing strategy each portfolio is rebalanced during the holding period

〈t, t + H〉, at a given frequency, to the allocation determined in step 2, and static during

the holding period under the buy-hold strategy.

4. The portfolio wealth (Wt) is computed for each portfolio based on the value of the

investments at time t. The wealth at time t + H is then reinvested for the following

revision, for the respective portfolio.

3.1 Assumptions and notation

We follow the standard assumptions made in portfolio theory according to Lai (1991). We

assume that the market is perfect with no taxes and transaction costs, and with perfectly

divisible assets. The latter implies that the investor can buy and sell any amount of any asset.

Furthermore, we assume that all assets have limited liability so that the maximum loss is limited

to the total investment. We also assume that short-sale is not allowed, motivated in section

2.8.3. Throughout the methodology section we consider an investment universe with N risky

assets and the corresponding time t return vector Rt = (r1,t, r2,t, ..., rN,t)
T . Since our empirical

dataset consists of stocks, we compute the holding period return of asset i at time t by the

dividend-adjusted logarithmic return:

ri,t = ln

(
pi,t + di,t

pi,t−1

)

∀i (9)

where pi,t is the price and di,t is the dividend, of asset i at time t.
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3.2 Estimation of mean, covariance, coskewness and cokurtosis

The input to the PGP-framework at time t are based on the true statistical moments at time

t− 1, since we do not have information about the future, given by:

μi,t = Et−1[ri,t] ∀i

σij,t = Et−1[(ri,t − Et−1[ri,t])(rj,t − Et−1[rj,t])] ∀i, j

sijk,t = Et−1[(ri,t − Et−1[ri,t])(rj,t − Et−1[rj,t])(rk,t − Et−1[rk,t])] ∀i, j, k

kijkl,t = Et−1[(ri,t − Et−1[ri,t])(rj,t − Et−1[rj,t])(rl,t − Et−1[rl,t])(rk,t − Et−1[rk,t])] ∀i, j, k, l

(10)

The estimates of (10) are based on the information we have up till time t − 1, and hence our

rolling-window approach used for the revision at time t are based on [t − L, t〉. Each moment

is forecasted by a rolling Bayesian shrinkage estimator based on the linear convex combination

of the sample estimate and a shrinkage target. The mean is shrinked towards the mean of

the global minimum variance portfolio, and the covariance, coskewness- and cokurtosis matrix

are shrinked towards the respective single-index estimates. We apply shrinkage over a rolling

window to capture, to some extent, the fact that moments are time-varying.

3.2.1 Sample estimates of moments over a rolling window

The sample estimate is the base case of the Bayesian shrinkage estimator for each moment, i.e.

when the shrinkage intensity is zero the full weight is on this estimate. Following the method

outlined by Ledoit and Wolf (2003) and Martellini and Ziemann (2010) we use the sample

estimates of covariance, coskewness and cokurtosis without Bessel’s correction. The rolling

sample estimates of the mean, covariance, coskewness and cokurtosis at time t are given by:

μ̂i,t = r̄i,t =
1

L

t−1∑

x=t−L

ri,x ∀i

σ̂ij,t =
1

L

t−1∑

x=t−L

(ri,x − r̄i,t)(rj,x − r̄j,t) ∀i, j

ŝijk,t =
1

L

t−1∑

x=t−L

(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t) ∀i, j, k

k̂ijkl,t =
1

L

t−1∑

x=t−L

(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)(rl,x − r̄l,t) ∀i, j, k, l

(11)
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where ri,x is the return of asset i at time x and L denotes the length of the estimation window.

3.2.2 Single-index estimates of moments over a rolling window

The single-index model by Sharpe (1963) models returns of an asset by regressing the returns

as a dependent variable onto the returns of a broad market index:

ri,t = αi + βirM,t + εi,t ∀i (12)

where ri,t is the return of asset i, αi and βi are constants, rM,t is the return of the market and

εi,t is a normally distributed error term with a mean of zero and variance of σ2
εi
, of time t.

The single-index model assumes that returns are determined by a systematic part, related to

the market, and an unsystematic part related to the specific industry or asset. Each asset’s

sensitivity towards the market is reflected by β and by our rolling-window approach it is given

for asset i at time t:

βi,t =
σiM,t

σ2
M,t

∀i (13)

where σiM,t is the rolling sample covariance between the returns of asset i and the market

index, and σ2
M,t is the rolling sample variance of the market returns. The explanatory variable

rM is by construction assumed to be independent of the error term, i.e. Cov(RM , εi) = 0.

In addition, the key assumption of the single-index model is that the error terms between the

assets are independent, i.e. E[εiεj ] = 0 for i 6= j, E[εiεjεk] = 0 for i 6= j 6= k and E[εiεjεkεl] = 0

for i 6= j 6= k 6= l. This assumption implies that assets vary together only through co-movement

with the market, and that other industry or firm specific factors only affect the assets individually.

As a result of the aforementioned assumptions, we only need the β of each stock and the

second, third and fourth moment of the market in order to forecast the systematic covariance-,

coskewness- and cokurtosis matrix. To compute the covariance-, coskewness- and cokurtosis

matrix, i.e. the sum of the systematic and the corresponding unsystematic matrices, one also

needs the unsystematic risk, skewness and kurtosis. We use the single-index estimates computed

by Martellini and Ziemann (2010), and adjust them according to the rolling window we apply.

The estimates of the moments at time t are given as:

σ̂ij,t =






β2
i,tσ

2
M,t + e2

i,t ∀i = j

βi,tβj,tσ
2
M,t ∀i 6= j

(14)
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ŝijk,t =






β3
i,ts

3
M,t + e3

i,t ∀i = j = k

β2
i,tβk,ts

3
M,t ∀i = j 6= k

βi,tβj,tβk,ts
3
M,t ∀i 6= j 6= k

(15)

k̂ijkl,t =






β4
i,tk

4
M,t + e4

i,t ∀i = j = k = l

β3
i,tβl,tk

4
M,t + 3βi,tβl,tσ

2
M,te

2
i,t ∀i = j = k 6= l

β2
i,tβ

2
l,tk

4
M,t + β2

i,tσ
2
M,te

2
l,t + β2

l,tσ
2
M,te

2
i,t + e2

i,te
2
l,t ∀i = j 6= k = l

β2
i,tβk,tβl,tk

4
M,t + βk,tβl,tσ

2
M,te

2
i,t ∀i = j 6= k 6= l

βi,tβj,tβk,tβl,tk
4
M,t ∀i 6= j 6= k 6= l

(16)

where en
i,t = 1

L

∑t−1
x=t−L εn

i,x denotes the centered nth-moment of the error term for asset x =

i, j, k, l, and σ2
M , s3

M , and k4
M denote the variance, skewness and kurtosis of the market index,

respectively.

3.2.3 Bayesian shrinkage of mean over a rolling window

Jorion (1986) proposes the empirical Bayes-Stein estimator as a robust estimate of the mean.

The method is based on shrinking the sample estimate of mean, with high estimation error

and low bias, towards a grand mean. The GMVP serves as the grand mean, i.e. the shrinkage

target, since it does not rely on mean forecasts and is thus less vulnerable to estimation error.

The rolling shrinkage estimate of mean is given by the weighted average of the sample estimate

and the GMVP-estimate:

μ̂t = ω1,tμmvp,t1N + (1− ω1,t)μS,t ω1,t ∈ [0, 1] (17)

where ω1,t is the shrinkage intensity at time t, μmvp,t is the mean of the minimum variance

portfolio at time t, 1N is a Nx1 vector of ones and μS,t is the Nx1 sample mean vector from

(11). Note that the weight vector of GMVP is obtained by solving (38) with only the full-

investment constraint imposed, and the mean of the portfolio at time t is the weighted average

of the weight vector and the return vector, shown in formula (27). Adjusting the optimal

shrinkage intensity, derived by Jorion (1986), according to our notation and rolling-window
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approach, the shrinkage intensity for a portfolio of N assets is given by:

ω̂1,t =
N + 2

(N + 2) + (μS,t − μmvp,t1)′LΣ−1
t (μS,t − μmvp,t1)

(18)

where Σ is the true covariance matrix. Since Σ is unknown Jorion (1986) proposes the following

estimate:

Σ̂t =
L

L−N − 2
ΣS

t (19)

where ΣS
t is given by the covariance matrix from (11). The expression of the shrinkage

intensity (18) provides the following insight of the trade-off between the sample estimate and

the shrinkage target estimate; for a longer estimation window, i.e. L increases, more weight is

put on the sample estimate.

3.2.4 Bayesian shrinkage estimate of covariance, coskewness and cokurtosis, over

a rolling window

The Bayesian shrinkage approach proposed by Ledoit and Wolf (2003), is based on a robust

estimator that is the weighted average of the the sample- and single-index estimate of the

covariance matrix. Martellini and Ziemann (2010) extended the Bayesian shrinkage estimator

to the coskewness- and cokurtosis matrix, and we have used the authors’ framework and only

modified the notation as we implemented the rolling version. The implementation in R can

be found in Listing 2. The rolling shrinkage estimator for the covariance-, coskewness- and

cokurtosis matrix, is given by, respectively;

Σ̂t = ω2,tΣ
SI
t + (1− ω2,t)Σ

S
t ω2,t ∈ [0, 1] (20)

Φ̂t = ω3,tΦ
SI
t + (1− ω3,t)Φ

S
t ω3,t ∈ [0, 1] (21)

Ψ̂t = ω4,tΨ
SI
t + (1− ω4,t)Ψ

S
t ω4,t ∈ [0, 1] (22)

where ωn,t is the time t shrinkage intensity for moment n , for n = 2, 3, 4, S denotes a matrix

containing the sample estimates from section 3.2.1 and SI denotes a matrix with the single-index

estimates from section 3.2.2. Ledoit and Wolf (2003) derives the optimal shrinkage intensity

for the covariance matrix by minimizing a squared loss function, and (Martellini and Ziemann,

2010) analogously do the similar procedure to derive the shrinkage intensity for the coskewness-
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and cokurtosis matrix. The optimal shrinkage intensity for the covariance-, coskewness- and

cokurtosis matrix, at time t, is given by:

ω∗
n,t = max{0,min{

π̂n,t − ρ̂n,t

Lγn,t

, 1}} for n = 2, 3, 4 (23)

where π̂n,t is the sum of the asymptotic variance of the sample estimates for moment n, ρ̂n,t

is the sum of the asymptotic covariance of the single-index estimates and sample estimates for

moment n, and γ̂n,t is a measure of the misspecification of the single-index estimate. Note that

the shrinkage intensity has a floor value of 0 and a cap of 1 because the shrinkage estimator is

constructed as a weighted average between the sample estimate and the shrinkage target, but

in practice minimizing the aforementioned loss function might result in intensities outside [0, 1].

The closed-form expressions of π̂n,t, ρ̂n,t and γ̂n,t are given in appendix A.

3.3 Portfolio moments

We adopt the notation of Xu et al. (2008) for the notation of portfolio moments. The estimates

of the portfolio moments at time t, at time t − 1, are based on the expected portfolio mean,

-variance, -skewness and -kurtosis, respectively given by:

MP,t = Et−1[RP,t]

VP,t = Et−1

[
(RP − Et−1[RP ])2]

SP,t = Et−1

[
(RP − Et−1[RP ])3/(V

3/2
P,t )

]

KP,t = Et−1

[
(RP − Et−1[RP ])3/(V 2

P,t)
]

(24)

The percentage wealth invested in asset i at time t − 1 is denoted by xi,t−1, and the portfolio

weights of time t−1 are stored in the transposed weight vector XT
t−1 = (x1,t−1, x2,t−1, ..., xN,t−1).

Each asset contributes to the portfolio return at time t by the product of the return of the asset

at time t and the weight allocated to the asset at time t− 1. The return of portfolio P at time

t is then a linear combination of the weighted returns of the N assets, given by:

RP,t =
N∑

i=1

xi,t−1ri,t = XT
t−1Rt (25)
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The mean of portfolio P at time t is a weighted linear combination of the mean of each asset i;

MP,t =
N∑

i=1

xi,t−1μi,t = XT
t−1μt (26)

where μi,t is estimated by the rolling shrinkage method from section 3.2.3 and scaled by H,

due to the additivity property of logarithmic returns, in order to match the frequency of the

holding period. The Nx1-vector μt contains the forecasts of mean of time t for all the stocks.

The variance of portfolio P consists of the variance of each asset i, σ2
i = σii, and the covariance

between each combination of asset i and j, σij ;

VP,t =
N∑

i=1

N∑

j=1

xi,t−1xj,t−1σij,t = XT
t−1ΣtXt−1 (27)

where σij,t is estimated by the rolling-shrinkage method from section 3.2.4 and scaled by H in

order to match frequency of the estimated risk to the frequency of the holding period. This is

equal to summing the daily forecasts of the covariance over H days assuming each day is similar.

The Σt is a NxN -matrix containing the variances diagonally and the covariances elsewhere;

Σt =









σ11,t σ12,t ... σ1N,t

σ21,t σ22,t ... σ2N,t

... ... ... ...

σN1,t σN2,t ... σNN,t









(28)

We store the coskewness- and cokurtosis elements in a NxN 2- and NxN 3-matrix, respectively,

following the work of Athayde and Flores (2004). By stacking the higher-moment elements

column-wise, we work with two dimensional matrices as shown in (31) and (34). We do not

scale the higher-moments because there is no systematic pattern between skewness and kurtosis

of daily and annual returns (Jondeau et al., 2007). For instance, Jondeau et al. (2007) shows

empirically that daily skewness of S&P500 is larger than the annual skewness, while the opposite

is true for skewness of FT-SE.

The unstandardized skewness of portfolio P consists of the sum of the skewness of each asset

i, s3
i = siii, the coskewness between each permutation of asset i and j, siij , and the coskewness
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between each combination of asset i, j and k, sijk;

S ′
P,t =

N∑

i=1

N∑

j=1

N∑

k=1

xi,t−1xj,t−1xj,t−1sijk,t = XT
t−1Φt(Xt−1⊗Xt−1) (29)

where ⊗ is the kronecker product and Φ is a NxN 2-matrix:

Φt =
[
S1,t | S2,t | ... | SN,t

]
(30)

with

Sm,t =









sm11,t sm12,t ... sm1N,t

sm21,t sm22,t ... sm2N,t

... ... ... ...

smN1,t smN2,t .. smNN,t









(31)

The unstandardized kurtosis of portfolio P consists of the weighted sum of the kurtosis of each

asset i, k4
i = kiiii, the cokurtosis between each permutation of asset i and j, kiiij and kiijj , each

permutation of asset i, j and k, kiijk, and each combination of asset i, j,k and l, kijkl;

K ′
P,t =

N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

xi,t−1xj,t−1xk,t−1xl,t−1kijkl,t = XT
t−tΨt(Xt−t⊗Xt−t⊗Xt−t) (32)

where ⊗ is the kronecker product and Ψt is a NxN 3-matrix:

Ψt =
[

K11,t K12,t ... K1N,t | K21,t K22,t ... K2N,t | ... | KN1,t KN2,t... KNN,t

]
(33)

with

Kmg,t =









kmg11,t kmg12,t ... kmg1N,t

kmg21,t kmg22,t ... kmg2N,t

... ... ... ...

kmgN1,t kmgN2,t ... kmgNN,t









(34)

While the rolling-shrinkage forecasts are based on unstandardized coskewness and cokurtosis,

i.e. the third and fourth moment, we apply the standardized moments in the optimization

framework. We standardize portfolio skewness and -kurtosis by dividing the respective moments

by the portfolio variance to the power of 1.5 and 2, respectively. The standardized portfolio
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skewness and -kurtosis at time t are then given by:

SP,t =
XT

t−1Φt(Xt−1⊗Xt−1)

(XT
t−1ΣtXt−1)3/2

(35)

KP,t =
XT

t−tΨt(Xt−t⊗Xt−t⊗Xt−t)

(XT
t−1ΣtXt−1)2

(36)

3.4 Asset allocation by Polynomial goal programming

This section describes the PGP-framework that we use to construct the MVS- and MVSK

portfolio. Following the discussion of PGP in the literature review we also construct the MV

portfolio by this framework. We also describe the optimization techniques we use to solve the

convex and the non-convex parts of PGP.

3.4.1 Polynomial goal programming

PGP consists of two subsequent steps, G1 and G2. In the first step, G1, the optimal values

of the portfolio moments are found by solving the optimization problems separately. Step

G1a is the maximization problem of mean, step G1b is the minimization problem of variance,

step G1c is the maximization problem of skewness and G1d is the minimization problem of

kurtosis. Hence an investor solely focusing on one moment would determine his allocation by

solving the corresponding optimization procedure among G1a-G1d. The optimization problems

are presented in (37)-(40), and each includes the full-investment constraint and the long-only

constraint, and an additional set of constraints represented by C. C contains the diversification

constraint and the turnover constraint, and the format of the constraints are shown in section

3.4.2

G1a =






maximize
Xt−1

M∗
t = XT

t−1μt

subject to

XT
t−1I = 1

Xt−1 � 0

Xt−1 ∈ C

(37)
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G1b =






minimize
Xt−1

V∗
t = XT

t−1ΣtXt−1

subject to

XT
t−1I = 1

Xt−1 � 0

Xt−1 ∈ C

(38)

G1c =






maximize
Xt−1

S∗
t =

XT
t−1Φt(Xt−1⊗Xt−1)

(XT
t−1ΣtXt−1

)3/2

subject to

XT
t−1I = 1

Xt−1 � 0

Xt−1 ∈ C

(39)

G1d =






minimize
Xt−1

K∗
t =

XT
t−1Ψt(Xt−1⊗Xt−1⊗Xt−1)

(XT
t−1tΣtXt−1

)2

subject to

XT
t−1I = 1

Xt−1 � 0

Xt−1 ∈ C

(40)

The maximization problem of portfolio mean (37) and the minimization problem of portfolio

variance (38), are convex problems with non-linear constraints without any additional constraints.

Since the objective function of mean is linear, the problem can be solved by spending the budget

on the asset with the highest mean. To solve the maximization problem of mean with additional

constraints, and the minimization problem of variance with and without additional constraints,

we use the interior-point algorithm, described in section 3.4.3.

The maximization problem of portfolio skewness (39) and the minimization problem of portfolio

kurtosis (40), involve cubic and quadratic objective functions. Thus step G1c and G1d may

have several local maxima and several local minima, and the problems are non-convex. To

avoid suboptimal values of skewness and kurtosis, we apply a global optimization procedure,

outlined in section 3.4.4.

The optimal moments of time t are found by solving G1a, G1b, G1c and G1d, and then used

in the second step of PGP, G2. The four independent subproblems are consolidated into the

30



objective function Zt(λ) = Zt(λ1, λ2, λ3, λ4), where λi is the preference parameter for moment i,

where i = 1 is the portfolio mean, i = 2 is the portfolio variance, i = 3 is the portfolio skewness

and i = 4 is the portfolio kurtosis. We denote the difference between the actual and optimal

moment i, of time t, by di,t. The objective function Zt(λ) is minimized in step G2, and the

optimization problem is given by:

minimize
Xt−1

Zt(λ) = |
d1,t

Mt
∗ |

λ1 + |
d2,t

Vt
∗ |

λ2+|
d3,t

St
∗ |

λ3+|
d4,t

Kt
∗ |

λ4

subject to

XT
t−1μt + d1,t = M∗

t

XT
t−1ΣtWt−1 − d2,t = V ∗

t

XT
t−1Φt(Xt−1⊗Xt−1)

(XT
t−1ΣtXt−1

)3/2
+ d3,t = S∗

t

XT
t−1Ψt(Xt−1⊗Xt−1⊗Xt−1)

(XT
t−1ΣtXt−1

)2 + d4,t = K∗
t

dt � 0

XT
t−1I = 1

Xt−1 � 0

Xt−1 ∈ C

(41)

where dt = (d1,t, d2,t, d3,t, d4,t). By solving Zt(λ) we obtain the time-varying weight vector XT
t−1,

according to the specified preference parameters. In order to solve (41) we apply the global

optimization algorithm DEoptim, described in section 3.4.6.

We obtain the allocation of GMVP by solving step G1b as the portfolio is only based on

minimization of variance. As pointed out in the literature review regarding PGP, is the

traditional mean-variance efficient portfolio obtained by minimizing Zt(1, 1, 0, 0). The mean-

variance-skewness efficient portfolio is obtained by minimizing Zt(λ1, λ2, λ3, 0) for any λ1 ≥ 0,

λ2 > 0 and λ3 > 0. The mean-variance-skewness-kurtosis efficient portfolio is obtained by

minimizing Zt(λ1, λ2, λ3, λ4) for any λ1 ≥ 0, λ2 > 0, λ3 > 0 and λ4 > 0.

3.4.2 Additional constraints used in Polynomial goal programming

All the portfolios we construct have the full-investment constraint that forces the full budget to

be used on at least one of the N risky assets, and the long-only constraint that precludes short-
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positions, i.e. negative weights. To obtain more practical portfolios we also construct portfolios

with the diversification constraint, the turnover constraint and both. The implementation of

the optimization problems with these constraints in R is based on the matrix notation of the

constraints formulas presented in the literature review, in section 2.8.3 and 2.8.4. The turnover

constraint for the portfolio optimization problems at time t is given by:

(
1

N

)

IT |Xt−1 −Xt−2| ≤ c1 (42)

where c1 denotes the maximum allowed turnover and IT is a transposed Nx1-vector of 1s. Note

that initial portfolios, i.e. portfolios constructed at t1, are not affected by this constraint. The

diversification constraint for the portfolio optimization problems at time t is given by

N −XT
t−1Xt−1 ≥ c2 (43)

where c2 denotes the minimum required portfolio diversification.

3.4.3 Convex optimization by the interior-point method

We utilize the interpoint-algorithm to solve the convex nonlinear problems of maximization of

portfolio mean (37), step G1a, and minimization of portfolio variance (38), step G1b. The

implementation in R is based on the package Rmosek by Friberg (2014). The package solves

the following primal problem by minimization:

minimize
Xt−1

1

2
XT

t−1QXt−1 + cT Xt−1

subject to lci ≤ aT
i Xt−1 + zi(Xt−1) ≤ uc

i

lcx ≤ XT
t−1 ≤ uc

x

(44)

where ct, ai, lcx and uc
x are Nx1-vectors, Qt is a NxN positive semi-definite matrix, and zi(Xt−1)

a function given by:

zi(Xt−1) =
N∑

k=1

f(xk,t + h)g (45)

Since the format is minimization we specify the objective function of mean as c = −μt, and

Q = 0, where μt is the forecasted time t Nx1-mean vector from section X. When minimizing

portfolio variance the objective function is Q = 2Σt and c = 0, where Σt is the forecasted

time t NxN -covariance matrix from section Y. The same constraints apply to the optimization
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problem of mean and of variance. The base case constraints are the full-investment- and long-

only constraint. In addition we apply the turnover constraint (42) and the diversification

constraint (43), separately and simultaneously. Note that the turnover constraint is modified

in order to keep the optimization problems convex, as shown in appendix B.

Listing 4 and Listing 5 in appendix G show the implementation in R for solving the mean- and

variance problem, respectively, for all the different sets of constraints considered. We present

the implementation of the turnover- and diversification constraint, simultaneously, by matrix

notation. The weights for each asset xi,t−1 is stored together with the percent-wise amount

bought, bi,t−1, and sold, si,t−1, of asset i, ∀i, in a 3Nx1-vector given by:

XT
t−1 =

[
xi,t−1 ... xN,t−1 bi,t−1 ... bN,t−1 si,t−1 ... sN,t−1

]

The objective function of mean and variance only depends on asset weights, i.e. the mean

and covariances of bi and si are 0, implemented by matrix partitioning. Thus, the objective

function when maximizing mean is based on the following vector c while Q = 0, and the

objective function when minimizing variance is based on the following matrix Q while c = 0:

c =









−μt

02N









Q =









2Σt 0(Nx2N)

0(2NxN) 0(2Nx2N)









(46)

where 02N is a 2Nx1-null vector and 0(2Nx2N) is a 2Nx2N -null matrix. The constraint matrix,

denoted A, is together with the lower- and upper box constraint vectors, lc and uc, adjusted

to incorporate the turnover and diversification constraints in addition to the full investment

constraint:

A =



















aT
1

aT
2

aT
3

aT
4



















lc =



















l1

l2

l3

l4



















=



















1

0

X∗
N

−Inf



















uc =



















u1

u2

u3

u4



















=



















1

N×c1

X∗
N

1− c2



















(47)
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where X∗
N is a Nx1-vector of last period’s weights, N×c1 is the maximum allowed portfolio

turnover, c2 is the minimum allowed diversification, aT
1 is a transposed 3Nx1-vector for the full

investment constraint:

aT
1 =

[
1N 02N

]
,

The first part of the turnover constraint, aT
2 , is a transposed 3Nx1-vector representing the

left-hand side of formula (76) in appendix:

aT
2 =

[
0N 12N

]
,

The second part of the turnover constraint, aT
3 , is a transposed 3NxN-matrix representing the

left-hand side of formula (75) in appendix, for all N assets:

aT
3 =

[
IN −IN IN

]

where IN is a NxN-identity matrix. We denote the 3Nx1-null vector a4, and let f = 1, h = 0

and g = 2, so that the left-hand side of the diversification constraint (43) is given by:

z4(Xt−1) = x2
1,t−1 + x2

2,t−1 + ... + x2
N,t−1 (48)

Finally we specify the short-sale constraint and the lower limit of the amounts bought and sold,

i.e. bi,t−1 and si,t−1, by setting the lower box constraint as the 3Nx1-null vector lcx.

3.4.4 Non-convex optimization by differential evolution

Maximization of skewness (39), minimization of kurtosis (40) and step 2 of PGP (41) are

non-convex optimization problems with several local optima, hence a global optimizer must be

applied to avoid allocations based on sub-optimal solutions.. In order to solve the aforementioned

optimization problems we apply the global optimizer DEoptim by Ardia et al. (2011). DEoptim

implements the stochastic, evolutionary algorithm known as Differential Evolution (DE)

proposed by Price et al. (2005). The differential evolution algorithm is developed for solving

single-objective unconstrained optimization problems that are not necessarily continuous

nor differentiable. The process of DEoptim follows the stages of the differential evolutionary

algorithm; the mutation stage, the crossover stage and the selection stage. Since we use an

index to describe both the position in population and what generation each each vector belongs

to, we remove the time-index to simplify the notation. The concept of solving the non-convex

34



problems are still the same for each t.

The current population can be describe by Pz,g(X
T
z,g) and consists of NP parameter vectors,

XT
z,g, each containing N asset weights, where z = 0, ..., (NP − 1) and g = 0, ..., gmax. The

parameter vector Xz,g is the Nx1 transposed weight vector XT
z,g = (x1,z,g, x2,z,g, ...xN,z,g), where

z indicates the index of the vector within the population of generation g. We set the population

size by NP = 15N and amount of generations by gmax = 20.000. Initially, i.e. g = 0, random

weights for each parameter vector are generated by wi,z,g = randi(0, 1)∗(upper− lower)+ lower

for each asset i, i = 1, 2, ...N . The lower and upper boundaries are set to 0 and 1, respectively,

as we do not allow for short-sale, and randi(0, 1) denotes a value drawn from the uniform

distribution between 0 and 1, for asset i.

In the mutation stage a mutant vector is created by the sum of three parameter vectors, based

on randomly chosen vectors from the current population. A mutation strategy is then applied

to maintain the diversity of one generation of portfolio weights to the next generation, and

DEoptim allows the user to select among 6 different strategies for spawning the mutant vector.

According to Ardia et al. (2014), and our own experimenting, we utilize strategy 6 with adaptive

parameter control, known as the "DE/current-to-pbest/1" strategy. The strategy gives the

following mutant vector Sanderson and Zhang (2009):

vT
z,g

.
= XT

z,g + Fz(X
T
best,g −XT

z,g) + Fz(X
T
r1,g −XT

r2,g) (49)

whereXT
z,g, X

T
r1,g andXT

r2,g, are three parameter vectors from the population selected at random,

and XT
best,g is the adaptive parameter control and Fz = F is a fixed mutation factor that defaults

to 0.5. Note that the adaptive parameter control introduces learning by mutating one of the

randomly chosen top [100p%] best solutions and uses information of the average mutation factor

of all successful mutations to the next generation g. The adaptive parameter in the mutation

operation increases the models reliability because it alleviate the consequence of fast premature

convergence from only using the information from the best solution.

In the crossover stage trial vectors are created by combining generated asset weights from

different vectors; a crossover between asset weights from a parameter vector and a mutant

vector. The trial vector is given by:

X∗T
z,g =

(
x∗

1,z,g, x
∗
2,z,g, ..., x

∗
N,z,g

)
(50)

35



where x∗
i,z,g denotes the weight of asset i from parameter vector z for generation g.

x∗
i,z,g =






vi,z,g if {rand(0, 1) ≤ CR ∧ i = irand}

xi,z,g otherwise ∀i
(51)

where CR, by default CR = 0.5, is applied to each mutation vector vz,g in the population for

each asset weight and each parameter vector, and controls the fraction of the parameter values

that are copied from the mutant. Note that irand = randint(1, N), ie. we select a stock based

on the random index.

After the mutation stage and crossover stage we ensure that each asset weight is feasible

according to the long-only constraint, by:

xi,z,g =






1− randi(0, 1) for xi,z,g > 1

0 + randi(0, 1) for xi,z,g < 0 ∀i
(52)

In the selection stage we compare the target vector XT
z,g and trial vector X∗T

z,g, and the vector

that minimizes the objective function f takes place in the next generation g + 1, for each

z = 0, 1, ..., (NP − 1);

XT
z,g+1 =






X∗T
z,g if f(X∗T

z,g) < f(XT
z,g)

XT
z,g otherwise

(53)

where f(∙) is a static penalty function incorporating the full-investment constraint, and the

diversification- and/or turnover constraint if imposed. When all NP vectors have been evaluated

for g + 1 in (53), the mutation-, crossover- and selection stage, are repeated for g + 2, g + 3,

etc., until the optimum is located or maximum generations have been reached.

In (54) we use penalty functions to incorporate the full-investment constraint, and the additional

diversification- and turnover constraint, by adding penalty terms for each constraint considered

to the cost function f . Thus a constrained optimization problem is transformed to an

unconstrained one. Note that there is a trade-off when setting the value of the penalty p,

since a too large penalty may lead to neglecting the objective function, while a too low penalty

may lead to an infeasible portfolio. We use the default penalty value p = 1000 and have

confirmed that it is adequate for our purpose. The penalty function incorporating a constraint

is given by:

f(XT ) = Y + p ∗ constraint(s) (54)

where Y represents the objective function for portfolio skewness when solving step G1c of
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PGP, portfolio kurtosis when solving step G1d of PGP, and Zt(λ) when solving step G2 of

PGP. We denote the penalty of the full investment constraint by constraint1, the penalty

of the diversification constraint by constraint2 and the penalty of the turnover constraint by

constraint3;

constraint1 = max

{[

(
N∑

i=1

xi,t−1 − 1.01)

]

,

[

(0.99−
N∑

i=1

xi,t−1)

]}

constraint2 = max

{[

c2 − |1−
N∑

i=1

x2
i,t−1 |

]

, 0

}

constraint3 = max

{[
1

N

N∑

i=1

|xi,t−1 − xi,t−2 |−c1

]

, 0

}

(55)

for t = 1, 2, .., T . Note that we add slack to the full investment constraint according to the

recommendation of Peterson et al. (2015), in order to enable DEoptim to generate a sufficient

number of feasible portfolios. In fact, a strict constraint of 1 may reduce the number of feasible

portfolios by 1/3. Afterwards we normalize the weight vector to ensure the budget constraint

is met.

3.5 Performance evaluation

We evaluate the performance of the portfolios constructed from the first allocation to the end

of the last holding period, i.e. over the period [t1, T ] , where T = tK + H. The performance

evaluation is twofold as we use traditional measures such as accumulated returns and the

Sharpe-ratio, and in addition compare the out-of-sample moments of each portfolio to the

benchmark portfolios, by conducting a difference test using heteroscedastic and autocorrelation

robust (HAC) kernel estimation.

3.5.1 Traditional measures

The first evaluation criterium of the portfolios are based on portfolio wealth. For a $1 investment

in portfolio P, the wealth of portfolio P at time

WP,T =
T∏

t=1

(1 + RP,t) (56)
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where the return of the portfolio at time t is:

RP,t =

(
ptqt − pt−1qt−1

pt−1qt−1

)

(57)

where pt and qt are the Nx1-price vector and quantity vector containing each asset price and

number of shares, respectively, at time t. Note that for the buy-hold portfolio we have a

constant number of shares during the holding period, i.e. qt = q for a given holding period,

and that it q is changing between each revision. For the daily rebalanced portfolio the relative

wealth allocated to each stock is the same during the holding period, but this changes during

each revision as the target allocation changes.

We also evaluate the performance of the constructed portfolios by traditional criteria, extensively

explained in the finance literature, in order to capture the portfolios risk-adjusted return, risk

profile and practicability. We cover the risk profile of each portfolio by computing the annualized

standard deviation and expected shortfall. The expected shortfall formula, also known as

conditional Value-at-risk (VaR), is based on (Tsay, 2013) formula:

ES1−p = E(RP,t | RP,t > V aR) =

∫∞
V aR

rf(r)dx

Pr(RP,t > V aR)
(58)

The expected shortfall is the expected loss of RP,t given that RP,t exceeds its VaR (Tsay, 2013)

and is the average value of all the values exceeding the VaR.

The risk-adjusted return of the portfolio is measured by the annualized daily Sharpe-ratio:

SRP =
RP − rf

oP

(59)

where rf is the risk-free rate of return. The adjusted Sharpe-ratio incorporates skewness and

kurtosis, and is based on Pezier and White’s (2006) formula:

ASRP = SRP × [1 + (
SP

6
)× SRP − (

KP − 3

24
)× SR2

P ] (60)

3.5.2 Hypothesis test of difference between portfolio moments

We conduct a hypothesis test of the difference in the out-of-sample mean, variance, skewness

and kurtosis, between each portfolio constructed and the two benchmark portfolios, by using

heteroscedastic-autocorrelated consistent (HAC) standard errors. The method has been used
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by Ledoit and Wolf (2008) and Ledoit and Wolf (2011) to compare the Sharpe-ratio and the

variance between portfolios, respectively. By adjusting the method to compare out-of-sample

Sharpe-ratios and variance, and based on their derivation of moments we adjust the test by the

help of Wolf, in order to apply the test for mean, skewness and kurtosis.

The implementation of the hypothesis test for each moment, in R, is shown in Listings 13. The

null- and alternative hypothesis are given by:

H0 : Δ̂M = 0

H1 : Δ̂M 6= 0

where Δ̂M denotes the difference between the sample estimate of moment M of portfolio x, θ̂x,

and portfolio y, θ̂y;

Δ̂M = θ̂x − θ̂y (61)

In our case the x represents any portfolio we construct and y represents either of the benchmark

portfolios. The difference Δ̂M between the portfolio means, - log variances, -skewness’ and -

kurtosis’, is respectively given by:

Δ̂M =






μ̂x − μ̂y if M = 1

ln(σ̂x)− ln(σ̂y) if M = 2

ŝx − ŝy if M = 3

k̂x − k̂y if M = 4

(62)

where μ̂l, σ̂l, ŝl and k̂l, are the sample estimates of the first, second, third and fourth moment,

respectively, for portfolio l. Note that we use the difference of the log variance and not the

variance, as this is recommended by Ledoit and Wolf (2008). The standard error of the test,

s(Δ̂M), is given by:

s(Δ̂M ) =

√
5T f(v̂)Ψ̂M5f(v̂)

T
(63)

where 5T f(v̂) is the transposed gradient vector of function f , and Ψ̂M is estimated by the

heteroscedastic and autocorrelation robust (HAC) kernel estimate. The closed-form expressions

of these components are presented in appendix C. To determine whether there is a significant

difference between the out-of-sample moment of portfolio x and the benchmark portfolio y, we
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compute the p-value of the test given by Ledoit and Wolf (2011):

p̂ = 2P



Z ≤ −

∣
∣
∣Δ̂
∣
∣
∣

s(Δ̂)



 (64)

where Z is a standard normal variable.

4 Data

In this study we use an empirical data set containing the dividend-adjusted daily stock prices,

in USD, of 29 stocks obtained from DataStream(c), presented in appendix D. The stocks are

randomly selected from the S&P Global 1200-index in 1994, and belong to the investment

universe from January 1, 1995 to December 31, 2015. The S&P Global 1200-index covers

global, blue-chip stocks over the whole spectre of GICS-industries. The seventeen cyclical stocks

are within the following sectors; Consumer Discretionary, Financials, Industrials, Information

Technology and Materials. Most of the twelve defensive stocks are registered in Consumer

Staples, but we also find stocks belonging to the Energy- and Health Care-sector. The sample

period over 20 years includes both the dot-com bubble in 1996-2000, the financial crisis in 2007-

2008 and the sovereign debt crisis in 2010-2012. By including such business cycle fluctuations

we can observe the impact of including higher-moments during normal times but also during

extremely volatile periods.

The mean, variance, skewness, kurtosis, and the Jarque-Bera statistic of each stock in the

investment universe, over the period 1996 to 2015, are reported in appendix D. The overall

high annual median Jarque-Bera statistics indicate non-normal returns, and the presence of

skewness and leptokurtosis further confirms the need to control for higher moments.

In order to compute the Sharpe-ratio and the adjusted Sharper-ratio we use the risk-free rate

from Kenneth French’s Fama/French Global 3 Factors from the CRSP database (French, 2017).

5 Model

We construct and evaluate the performance of the higher-moment portfolios MVS and MVSK,

and the two benchmark portfolios, GMVP and MV. There are several versions of the mean-
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variance-, mean-variance-skewness- and mean-variance-skewness-kurtosis efficient portfolios, as

the allocation of the portfolios depend on the specified preference parameters of the investor. In

this thesis the MV-, MVS- and MVSK portfolio are constructed with the base case preference

1 for the relevant moments. Following the notation in section 3.4.1, the allocation of the MV

portfolio is based on the preference parameter vector λ = (1, 1, 0, 0), the allocation of the MVS

portfolio is based on λ = (1, 1, 1, 0), and the allocation of the MVSK portfolio is based on

λ = (1, 1, 1, 1).

The portfolios are revised quarterly with quarterly holding periods, and the revisions are based

on Bayesian shrinkage estimates of the daily stock moments over a 1-year rolling window. The

estimates are scaled to match a quarterly holding period. Each portfolio is revised 80 times

over the 20 year period, including the initial allocation. The initial allocations of the portfolios

are January 1, 1996, and based on the estimation window from January 1, 1995 to December

31, 1995. The corresponding holding period to the initial allocation is between January 1,

1996 and March 31, 1996. The last revision date for all portfolios is October 1, 2015, and the

corresponding holding period ends December 31, 2015.

Portfolios are constructed with a buy-hold strategy and daily rebalancing strategy, and in

addition we impose a variety of constraints, described in Table 1.

Table 1: Portfolio specifications

Portfolio constraints
Basic Diversification Turnover Div.- and turn.

Mild Strong Mild Strong Strong
Long-only Yes Yes Yes Yes Yes Yes
c∗1 - - - 0.05 0.03 0.03
c∗∗2 - 0.6 0.75 - - 0.75
Strategy BH/RB BH/RB BH/RB BH BH BH

∗c1 denotes the maximum allowed turnover per revision
∗∗c2 denotes the minimum required diversification per revision.

The basic constraints are imposed on all portfolios and include the full investment- and long-only

constraint. We also consider portfolios with additionally the strong or mild turnover constraint

of 0.03 and 0.05, respectively. We only impose this constraint on the buy-hold portfolios as we do

not want to limit the rebalancing within the holding periods for the daily rebalanced portfolios.

In addition, we construct portfolios with the strong and mild diversification constraint of 0.75

and 0.6, respectively. The allocation of the portfolios with both the diversification and the

turnover constraints are required to have a minimum diversification of 0.75 and a maximum

turnover of 0.03, per revision.
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Note that we impose the constraints per revision, and that the portfolios under the buy-hold

strategy with a diversification constraint may end up with a portfolio that is less diversified

than the target during the holding periods.

5.1 Forecasts of mean, variance, skewness and kurtosis

The inputs of the asset allocation framework are the forecasts of each stock’s moments. The

forecasts are in turn based on Bayesian shrinkage estimates of daily returns over a rolling-

window of 1 year, and the time-varying shrinkage intensities of the mean vector, covariance-

, coskewness- and cokurtosis matrices, are presented in appendix E.1. For the single-index

estimates we used the return series of the S&P Global 1200-index to obtain the beta of each

stock and the mean, variance, skewness and kurtosis, of the market.

We only present the forecast of the mean, variance, skewness and kurtosis for each of the 29

stocks, as the forecasts of the co-moment matrices consists of 435 unique forecasted covariance

elements, 4495 unique forecasted coskewness elements and 35.960 unique forecasted cokurtosis

elements, for each period. Figure 6 shows the quarterly forecasts of the stocks’ mean, variance,

skewness and kurtosis, for each quarterly holding period. Note that due to graphical purposes

the stock forecasts are separated by cyclical- and aggressive stocks, and the color code for each

stock is given in appendix D.2.

The small difference between the stocks’ mean over the whole period is a result of a high

shrinkage intensity over time, shown in appendix E.1., towards the common target, i.e. the

GMVP. As for the forecasts of variance, we observe high values during and after the dot-com

bubble and the financial crisis, and that the cyclical stocks are anticipated to have higher

variance than the defensive stocks. The patterns are less clear-cut for the higher-moments;

certain defensive stocks exhibit large values of positive skewness, while some defensive and

cyclical stocks exhibit negative values of skewness. Especially, the skewness of some cyclical

stocks are as low as -5. The forecasts of kurtosis shows that the cyclical stocks tend to have

higher kurtosis than the defensive stocks, but we also observe that two of the defensive stocks

have occasionally high kurtosis above 60.
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Figure 6: Quarterly forecasts of mean, variance, skewness and kurtosis by rolling shrinkage
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5.2 Portfolio allocation, diversification and turnover

The initial allocation and the allocations for each revision, for the GMVP and the MV-, MVS-

and MVSK with basic constraints, are shown in Figure 7. The pattern of all the portfolios’

allocations is quite similar over time as they are allocated about evenly between cyclical and

defensive stocks prior to the financial crisis, and heavily in defensive stocks during the crisis.

The GMVP is the most diversified portfolio overall, but the MVSK-portfolio is in fact more

diversified during and after the financial crisis. One explanation for this are the increasing

correlations between the assets, especially during the financial crisis, and the fact that the

objective of the MVSK portfolio also involves diversifying away idiosyncratic skewness and -

kurtosis. Thus the MVSK portfolio is less dependent on the covariances between the assets,

yet we notice that this is not the case for the MVS porfolio as it is always less diversified than

GMVP and the MV portfolio.
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Figure 7: Quarterly allocations of portfolios with basic constraints

The weight plots of the portfolios with the additional diversification- and/or turnover constraint

are presented in appendix E.2. As the most stable and diversified portfolio overall, the GMVP

is not affected by any of the additional constraints. The MVS portfolio is on the other hand
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highly affected by the strong turnover- and diversification constraints, and from Table 2 we

observe that this is due to the portfolio having the highest average quarterly turnover and lowest

average quarterly diversified allocation. The higher turnover of the higher-moment portfolios,

compared to the GMVP and the MV portfolio, is also partially explained by the occasionally

large positions in few stocks by the MVS- and MVSK portfolio. Furthermore we observe that

the MVSK portfolio on average has more diversified allocations than the MV portfolio, and

when the strong diversification constraint is imposed it obtains, on average, a more diversified

allocation than GMVP. The MVS portfolio has, on average, the least diversified allocations,

even when the strong diversification constraint is imposed.

Table 2: Turnover- and diversification rates

Diversification Turnover
Min Mean Max Min Mean Max

Global Minimum Variance portfolio
Basic constraints 0.800 0.887 0.949 0.004 0.011 0.034
Mild div. constraint 0.800 0.887 0.949 0.004 0.011 0.034
Strong div. constraint 0.800 0.887 0.949 0.004 0.011 0.034
Mild turn. constraint 0.800 0.887 0.949 0.004 0.011 0.034
Strong turn. constraint 0.800 0.887 0.949 0.004 0.011 0.034
Strong div.- and turn. constraint 0.800 0.887 0.949 0.004 0.011 0.034
Mean-Variance portfolio
Basic constraints 0.491 0.864 0.949 0.012 0.024 0.067
Mild div. constraint 0.709 0.869 0.946 0.007 0.024 0.052
Strong div. constraint 0.771 0.870 0.944 0.014 0.026 0.055
Mild turn. constraint 0.664 0.872 0.951 0.010 0.023 0.050
Strong turn. constraint 0.611 0.859 0.945 0.010 0.024 0.034
Strong div.- and turn. constraint 0.750 0.867 0.940 0.016 0.026 0.034
Mean-Variance-Skewness portfolio
Basic constraints 0.493 0.820 0.951 0.006 0.025 0.065
Mild div. constraint 0.600 0.821 0.948 0.012 0.025 0.055
Strong div. constraint 0.750 0.827 0.946 0.014 0.031 0.055
Mild turn. constraint 0.419 0.807 0.945 0.009 0.025 0.050
Strong turn. constraint 0.280 0.768 0.940 0.007 0.025 0.034
Strong div.- and turn. constraint 0.750 0.827 0.944 0.016 0.027 0.034
Mean-Variance-Skewness-Kurtosis portfolio
Basic constraints 0.554 0.880 0.946 0.008 0.025 0.065
Mild div. constraint 0.716 0.881 0.950 0.014 0.024 0.050
Strong div. constraint 0.752 0.896 0.942 0.014 0.029 0.051
Mild turn. constraint 0.689 0.879 0.945 0.014 0.025 0.047
Strong turn. constraint 0.511 0.850 0.944 0.011 0.025 0.034
Strong div.- and turn. constraint 0.751 0.848 0.937 0.019 0.026 0.034

45



While the buy-hold strategy and the rebalancing strategy have similar allocations per revision,

they differ during the holding periods. The daily rebalancing strategy leads to relatively high

turnover during the holding periods, but also a constant diversification ratio. This is due to

the fact that the portfolios with the rebalancing strategy only have daily fluctuations from the

initial allocation of the holding period. On the other hand, the buy-hold strategy leads to

portfolios with zero turnover during the holding period, and is considered to be the cheaper

strategy. Yet, we sometimes observe that an initially diversified buy-hold portfolio becomes

more concentrated under the holding period if a couple of the assets it holds have relatively

large increases in price.

5.3 Portfolio aspired moments

The aspired quarterly portfolio moments, known as the in-sample moments, for the GMVP

and the MV-, MVS- and MVSK portfolio with basic constraints, are shown in Figure 8. There

appears to be no clear dominating portfolio in terms of in-sample quarterly mean. The higher-

moment portfolios have a lower relative preference for the mean compared to the MV portfolio,

yet the difference between the portfolios’ means is negligible. This is a result of the stocks’

forecasted means being very similar due to being shrinked towards a common target, with a

high shrinkage intensity. By including higher-moments the relative preference for variance also

decreases in-sample. From Figure 8 we observe that the GMVP has the lowest variance, in

accordance with the definition of the portfolio, and that the MV portfolio has on average lower

variance than the higher-moment portfolios. Even though the MVS portfolio has a relatively

higher preference for variance than the MVSK portfolio, the trade-off between the moments

leads to MVS obtaining a higher skewness but also a higher variance than the MVSK portfolio.

The MVSK portfolio is the only portfolio with a preference for kurtosis, and we observe that

while it obtains the lowest in-sample kurtosis, the MVS portfolio obtains the highest one.
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Figure 8: Quarterly in-sample moments for portfolios with basic constraints

From appendix D we also show the aspired moments of the portfolios with the diversification

and/or turnover constraints. Naturally, the variance of the portfolios are more similar to the

variance of the GMVP when the diversification constraint is imposed, and the stronger it is.

The relationships between the portfolios’ in-sample moments are, in general, the same for all

the different sets of constraints except when both the strict turnover- and diversification are

imposed. In this case, the MVSK portfolio obtains a higher in-sample variance compared to

the MVS portfolio.

6 Results

We evaluate the out-of-sample performance of the portfolios from the initial allocation at

January 1, 1996 till the end of the last holding period at December 31, 2015. First, we evaluate

the wealth of the GMVP and the MV-, MVS- and MVSK portfolio. Then we compare other

criteria such as the risk-adjusted return, risk profile and overall turnover, and examine the out-

of-sample performance of the higher-moment portfolios versus the two benchmark portfolios,

and versus the different constraints imposed. Finally, we conduct a statistical test where we
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compare the out-of-sample mean, variance, skewness and kurtosis, for each portfolio against

each of the benchmark portfolios.

6.1 Out-of-sample performance

6.1.1 Portfolio wealth

Figure 9 to 12 illustrate the daily cumulative return of a $1 investment in each of the GMVP,

and the MV-, MVS- and MVSK portfolio, given different sets of constraints and strategies. The

portfolios are ranked based on terminal wealth for a given set of constraints, as if the investor

is subject to a set of constraints and chooses the portfolio that gives him the highest wealth at

the end of the period.

Given basic constraints the MVS portfolio obtains the highest terminal wealth, under both the

buy-hold and rebalancing strategy, as shown in Figure 9. The MVSK portfolio obtains higher

terminal wealth than GMVP, under both strategies, yet it loses to the MV portfolio. All of

the portfolios obtain higher returns when rebalanced compared to buy-hold, and the MV- and

MVS portfolio benefits the most being rebalanced.0
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Figure 9: Cumulative returns for portfolios with basic constraints

The mild and strong diversification constraint have different implications for the higher-moment

portfolios, as shown in Figure 10 and Figure 11. While the mild diversification constraint

reduces the dominance of the MVS portfolio, and reduces the relative performance of the

MVSK portfolio, the strong diversification constraint improves the relative performance of the
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higher-moments portfolios. In fact, the MVSK portfolio obtains a higher terminal wealth than

the MV portfolio under the strong diversification constraint, but vice versa under the mild

diversification constraint and the basic constraints, regardless of strategy.0

5

10

1995 2000 2005 2010 2015

Year

C
um

ul
at

iv
e 

re
tu

rn

BH portfolios w/ mild div. constraint

0

5

10

1995 2000 2005 2010 2015

Year

C
um

ul
at

iv
e 

re
tu

rn

RB portfolios w/ mild div. constraint

0

5

10

1995 2000 2005 2010 2015

Year

C
um

ul
at

iv
e 

re
tu

rn

BH portfolios w/ mild div. constraint

0

5

10

1995 2000 2005 2010 2015

Year

C
um

ul
at

iv
e 

re
tu

rn

RB portfolios w/ mild div. constraint

Global Minimum Variance portfolio Mean−Variance portfolio Mean−Variance−Skewness portfolio Mean−Variance−Skewness−Kurtosis portfolio

Figure 10: Cumulative returns for portfolios with mild div. constraint
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Figure 11: Cumulative returns for portfolios with strong div. constraint

From Figure 12 we observe that the higher-moment portfolios obtain the highest terminal wealth

with the turnover constraint imposed. The MVSK porfolio obtains the highest terminal wealth,

for both the mild and the strong turnover constraint, and is positively affected compared to its

counterpart with basic constraints. The MVS portfolio is negatively affected by the turnover

constraints, and we also observe that the MV portfolio obtains lower terminal wealth than the

GMVP.
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Figure 12: Cumulative returns for portfolios with turn. constraint

The higher-moment portfolios obtain higher terminal wealth given the strong diversification-

and strong turnover constraint, as shown in Figure 13. While GMVP is unaffected by this

constraint set, the MV portfolio performs relatively worse and even obtains the lowest terminal

wealth. The MVS portfolio ends up with the highest wealth, followed by the MVSK portfolio,

and this indicates that the strong diversification constraint is the more important driver as the

MVSK portfolio dominates MVS when only the additional turnover constraint is imposed.0
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Figure 13: Cumulative returns for portfolios with strong div. and turn. constraint

Figure 14 shows the cumulative returns of the MVS portfolio given different sets of constraints,

under the buy-hold- and the rebalancing strategy. The cumulative returns of the MVS portfolio

are particularly affected by the diversification constraint due to the occasional concentrated
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allocations. The scenario where the MVS portfolio obtains the highest terminal wealth is

with the strong diversification constraint and the rebalancing strategy. Imposing only the

turnover constraint, reduces the terminal wealth of the MVS portfolio, compared to the buy-

hold version with basic constraints. The MVS portfolio also performs well when both the strong

diversification- and the strong turnover constraints are imposed.
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Figure 14: Wealth of mean-variance-skewness portfolios

Figure 15 shows the cumulative returns of the MVSK portfolio given different sets of constraints

under the buy-hold- and the rebalancing strategy. The strong diversified MVSK portfolios end

up with the highest terminal wealth regardless of strategy, and we observe that the rebalanced

MVSK portfolio with the strong diversification constraint performs the best out of all of the

portfolios in Figure 15. Both the turnover and the strong diversification constraint have a

positive impact on the MVSK portfolio, in fact the wealth of the MVSK portfolio with any of

these constraints have been the best versions of this portfolio since 1997.
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Figure 15: Wealth of mean-variance-skewness-kurtosis portfolios

6.1.2 Performance measures

Table 3 reports the annual returns, Sharpe-ratio (SR) and Adjusted Sharpe-ratio (ASR),

standard deviation (SD), expected shortfall (ES) and quarterly turnover (TR), for all portfolios

constructed in this thesis. The quarterly turnover is included in the table to give an indication

of the relative cost of the portfolio, because higher turnover implies higher trading costs. Hence,

the rebalanced portfolios might not obtain higher profit than the buy-hold counterparts, even

though they obtain higher returns compared to the respective buy-hold portfolios. We compare

the higher-moment portfolios to the benchmark portfolios given the basic-, diversification-, and

turnover constraint, under the buy-hold and rebalancing strategy.

Given buy-hold portfolios with basic constraints, we observe that the MVS portfolio outperforms

the other portfolios in terms of annualized returns, Sharpe-ratio, adjusted Sharpe-ratio and

expected shortfall, while GMVP has the lowest standard deviation. The MVSK portfolio

generally performs worse than the two benchmarks. The MV portfolio outperforms MVSK

over any metric considered, and GMVP has a lower standard deviation and expected shortfall,
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than MVSK as well. MVSK obtains higher returns than GMVP and the difference between

the portfolios Sharpe-ratio when adjusted for skewness and kurtosis, is negligible. With basic

constraints and rebalancing, the MVS portfolio exhibits better annualized return, standard

deviation, Sharpe-ratio and adjusted Sharpe-ratio, compared to the other portfolios. The

MVSK portfolio is still outperformed by the MV portfolio and only outperforms GMVP in

terms of annual return and adjusted Sharpe-ratio. In general, we observe that with only basic

constraints imposed the higher-moment portfolios have consistently higher turnover compared

to the benchmark portfolios.

The diversification constraint has mixed implications for the higher moment portfolios compared

to the basic constraints, under both the rebalanced and buy-hold strategy. The buy-hold and

rebalanced higher-moment portfolios, with the additional mild diversification constraint, exhibit

a better standard deviation and expected shortfall, but at the same time lower returns. The

buy-hold and rebalanced higher-moment portfolios, with the additional strong diversification

constraint, exhibit higher returns, higher expected shortfall, but also higher standard deviation.

Imposing the mild diversification constraint on the MVS portfolio leads to lower annualized

returns, lower Sharpe-ratio, adjusted Sharpe-ratio, and higher expected shortfall. The MVSK

portfolio obtains a higher adjusted Sharpe-ratio under the buy-hold strategy, compared to the

counterpart with basic constraints, but a lower one given the rebalancing strategy. The strong

diversification constraint has a positive impact on the portfolios affected by it, i.e. the MV-,

MVS- and MVSK portfolio, both in terms of annualized returns, Sharpe-ratio, adjusted Sharpe-

ratio and expected shortfall. The best version of the MS portfolio when it comes to returns

and risk-adjusted return is the strong diversification constraint.

Given the mild- or strong diversification constraint under the buy-hold and the rebalancing

strategy, the MVS portfolios perform better in terms of Sharpe-ratio, adjusted Sharpe-ratio and

expected shortfall than the benchmark portfolios. The performance of the MVSK portfolios

compared to the benchmarks are mixed. The MVSK portfolios have a higher annualized

return and adjusted Sharpe-ratio than the GMVP, but lower Sharpe-ratio and higher expected

shortfall. The MVSK portfolios are worse than the MV portfolios on all metrics, given the

mild diversification constraint. However, given the strong diversification constraint, the MVSK

portfolio obtains better annualized returns, Sharpe-ratio and adjusted Sharpe-ratio than the

two benchmarks.

From a risk perspective the turnover has mixed implications on the higher moment portfolios

compared to their counterparts with basic constraints. The mild turnover constraint leads
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to lower standard deviations for the higher-moment portfolios, yet the expected shortfall is

reduced for the MVS portfolio while it is increased for the MVSK portfolio. Imposing the

turnover constraint on the MVS portfolios leads to lower annualized returns, Sharpe-ratio and

adjusted Sharpe-ratio, for both the mild and strong turnover constraint. It has a positive effect

on the MVSK portfolio from a return perspective as the annualized returns, Sharpe-ratio and

adjusted Sharpe-ratio improves.

Given the turnover constraint the higher-moment portfolios perform better than the two

benchmark portfolios, in terms of returns and risk-adjusted returns. The MVSK portfolio

has the highest Sharpe- and adjusted Sharpe-ratio, followed by the MVS portfolio. The higher-

moment portfolios also have the highest fluctuations overall as their standard deviations are

consistently higher than the standard deviations of the benchmark portfolios, in addition to

having the highest turnover.

By imposing both the diversification and turnover constraint, the higher-moment portfolios

obtain relatively high standard deviations compared to the portfolio with basic constraints.

Yet, additional constraint leads the higher- moment portfolio to outperform their counterpart

with basic constraints, in terms of the annualized returns, Sharpe-ratio and adjusted Sharpe-

ratio. As opposed to the situation with basic constraints, the MVSK portfolio with both the

diversification constraint and the turnover constraint imposed, obtains a lower expected shortfall

than GMVP. Yet the standard deviation of the higher-moment portfolio are still relatively high,

and the turnover of the MVS portfolio is the highest among the portfolios, given the additional

turnover and diversification constraint.
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Table 3: Annualized performance measures

Return SD SR∗ ASR∗ ES 5% Turnover∗∗

Buy-Hold portfolios with basic constraints
Global Minimum Variance portfolio 0.081 0.116 0.483 0.462 0.216 0.011
Mean-Variance portfolio 0.092 0.128 0.523 0.485 0.231 0.024
Mean-Variance-Skewness portfolio 0.105 0.129 0.620 0.572 0.210 0.025
Mean-Variance-Skewness-Kurtosis portfolio 0.084 0.132 0.448 0.462 0.258 0.025
Rebalanced portfolios with basic constraints
Global Minimum Variance portfolio 0.093 0.118 0.580 0.517 0.172 0.132
Mean-Variance portfolio 0.106 0.129 0.632 0.538 0.194 0.144
Mean-Variance-Skewness portfolio 0.119 0.130 0.720 0.628 0.176 0.139
Mean-Variance-Skewness-Kurtosis portfolio 0.098 0.134 0.545 0.533 0.231 0.152
Buy-hold portfolios with mild div. constraint
Global Minimum Variance portfolio 0.081 0.116 0.483 0.462 0.216 0.011
Mean-Variance portfolio 0.087 0.122 0.510 0.499 0.204 0.024
Mean-Variance-Skewness portfolio 0.093 0.128 0.529 0.514 0.193 0.025
Mean-Variance-Skewness-Kurtosis portfolio 0.083 0.128 0.455 0.464 0.230 0.024
Rebalanced portfolios with mild div. constraint
Global Minimum Variance portfolio 0.093 0.118 0.580 0.517 0.172 0.132
Mean-Variance portfolio 0.099 0.124 0.598 0.554 0.168 0.146
Mean-Variance-Skewness portfolio 0.108 0.129 0.640 0.587 0.158 0.139
Mean-Variance-Skewness-Kurtosis portfolio 0.095 0.130 0.538 0.525 0.188 0.150
Buy-hold portfolios with strong div. constraint
Global Minimum Variance portfolio 0.081 0.116 0.483 0.462 0.216 0.011
Mean-Variance portfolio 0.093 0.125 0.547 0.506 0.205 0.026
Mean-Variance-Skewness portfolio 0.119 0.136 0.686 0.612 0.201 0.031
Mean-Variance-Skewness-Kurtosis portfolio 0.101 0.134 0.569 0.545 0.232 0.029
Rebalanced portfolios with strong div. constraint
Global Minimum Variance portfolio 0.093 0.118 0.580 0.517 0.172 0.132
Mean-Variance portfolio 0.108 0.126 0.653 0.563 0.171 0.149
Mean-Variance-Skewness portfolio 0.134 0.137 0.786 0.665 0.157 0.149
Mean-Variance-Skewness-Kurtosis portfolio 0.113 0.136 0.650 0.596 0.195 0.153
Buy-hold portfolios with mild turn. constraint
Global Minimum Variance portfolio 0.081 0.116 0.483 0.462 0.216 0.011
Mean-Variance portfolio 0.079 0.122 0.445 0.445 0.261 0.023
Mean-Variance-Skewness portfolio 0.094 0.128 0.541 0.527 0.224 0.025
Mean-Variance-Skewness-Kurtosis portfolio 0.096 0.131 0.546 0.531 0.188 0.025
Buy-hold portfolios with strong turn. constraint
Global Minimum Variance portfolio 0.081 0.116 0.483 0.462 0.216 0.011
Mean-Variance portfolio 0.076 0.124 0.415 0.426 0.286 0.024
Mean-Variance-Skewness portfolio 0.091 0.136 0.487 0.499 0.207 0.025
Mean-Variance-Skewness-Kurtosis portfolio 0.097 0.137 0.531 0.525 0.253 0.025
Buy-hold portfolios with strong div. and turn. constraint
Global Minimum Variance portfolio 0.081 0.116 0.483 0.462 0.216 0.011
Mean-Variance portfolio 0.080 0.128 0.431 0.440 0.224 0.026
Mean-Variance-Skewness portfolio 0.118 0.144 0.644 0.574 0.218 0.027
Mean-Variance-Skewness-Kurtosis portfolio 0.093 0.143 0.477 0.488 0.213 0.026
∗ Using an annual risk-free rate of return at 2.3% ∗∗ Average quarterly turnover
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6.2 Out-of-sample portfolio moments

In this section we evaluate the differences between the portfolios’ monthly out-of-sample mean,

variance, skewness and kurtosis, using 240 monthly observations. In addition, we make inferences

based on the statistical difference test, presented in section 3.5.2, between the respective

moments of each portfolio constructed and each of the benchmark portfolios.

6.2.1 Test of out-of-sample portfolio mean

Table 4 reports the differences, and the corresponding p-values, between the monthly out-of-

sample mean of GMVP and the MV-, MVS- and MVSK portfolio, given the constraints and

strategies considered in this thesis. We observe that all of the portfolios obtain a higher out-of-

sample mean than GMVP, given any constraints with the buy-hold or rebalancing strategy, and

that the portfolios given certain constraints also obtain significantly higher mean. The relative

higher means of the MV-, MVS- and MVSK portfolios are consistent with the in-sample means

compared to GMVP, as the latter does not include mean in the optimization problem and the

other portfolios do. According to the relative preferences, the MV portfolio has the highest

preference for mean, yet we observe that the MVS portfolio has the highest mean given any set

of constraints and under both of the strategies.

Table 4: Difference test of monthly out-of-sample mean with GMVP as benchmark

MV MVS MVSK
Strategy Constraint Δ1 p-value Δ1 p-value Δ1 p-value
BH Basic 0.001 0.432 0.002 0.0591* 0.000 0.790
BH Mild div. 0.001 0.475 0.001 0.253 0.000 0.807
BH Strong div. 0.001 0.159 0.003 0.015** 0.002 0.098*
BH Mild turn. 0.000 0.699 0.001 0.435 0.001 0.269
BH Strong turn. 0.000 0.841 0.001 0.177 0.001 0.176
BH Strong div.- and turn. 0.000 0.934 0.003 0.038** 0.001 0.484
RB Basic 0.001 0.343 0.002 0.041** 0.001 0.709
RB Mild div. 0.001 0.485 0.001 0.172 0.000 0.844
RB Strong div. 0.001 0.085* 0.003 0.010** 0.002 0.098*

∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Table 5 reports the differences, and the corresponding p-values, between the monthly out-of-

sample mean of MV and the global minimum variance-, MVS- and MVSK portfolio. The MVS

portfolio has a significantly higher out-of-sample mean than the MV portfolio, given the strong

diversification constraint or the strong diversification- and strong turnover constraint. The out-
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of-sample mean between the MV- and MVSK portfolio is different over the constrains; under

basic constraints the MVSK portfolio obtains a lower mean than the MV portfolio and also

when the mild diversification constraint is imposed (negative on the fourth decimal). Given

the strong diversification constraint, both with buy-hold or rebalancing strategy, the MVSK

portfolio obtains a higher out-of-sample mean than the MV, although neither of their differences

are significant.

Table 5: Difference test of monthly out-of-sample mean with MV portfolio as benchmark

GMVP MVS MVSK
Strategy Constraint Δ1 p-value Δ1 p-value Δ1 p-value
BH Basic -0.001 0.432 0.001 0.197 -0.001 0.522
BH Mild div. -0.001 0.475 0.001 0.559 0.000 0.716
BH Strong div. -0.001 0.159 0.002 0.097* 0.001 0.523
BH Mild turn. 0.000 0.699 0.001 0.328 0.002 0.188
BH Strong turn. 0.000 0.841 0.001 0.138 0.001 0.162
BH Strong div.- and turn. 0.000 0.934 0.003 0.037** 0.001 0.515
RB Basic -0.001 0.343 0.001 0.248 -0.001 0.493
RB Mild div. -0.001 0.485 0.001 0.380 0.000 0.705
RB Strong div. -0.001 0.085* 0.002 0.092* 0.001 0.628
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

6.2.2 Test of out-of-sample portfolio variance

Table 6 reports the differences between the monthly out-of-sample log variance of GMVP and

the MV-, MVS- and MVSK portfolio, and the corresponding p-values. Given any constraint

and strategy, GMVP obtains a lower out-of-sample variance than the other portfolios. This is

consistent with the in-sample prediction as GMVP has the highest relative preference of this

moment and also has the lowest in-sample variance. Most of the differences are significant,

except the difference for the rebalanced MV portfolio with basic constraints.

Table 7 reports the differences between the monthly out-of-sample log variance of MV and the

global minimum variance-, MVS- and MVSK portfolio, and the corresponding p-values. The

higher-moment portfolios obtain generally higher out-of-sample variance than the MV portfolio,

but given the mild diversification constraint the MVS portfolio obtains a lower variance, and

given the strong turnover constraint the MVSK obtains a lower variance. According to the

relative preferences, the MV portfolio should have the lowest in-sample variance compared to

the MVS- and MVSK portfolio, yet there might be an allocation where the MV portfolio obtains
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Table 6: Difference test of monthly out-of-sample log variance with GMVP as benchmark

MV MVS MVSK
Strategy Constraint Δ2 p-value Δ2 p-value Δ2 p-value
BH Basic 0.165 0.081* 0.187 0.008*** 0.191 0.014**
BH Mild div. 0.104 0.016** 0.100 0.091* 0.153 0.000***
BH Strong div. 0.082 0.048** 0.245 0.006*** 0.269 0.000***
BH Mild turn. 0.178 0.006*** 0.312 0.000*** 0.288 0.000***
BH Strong turn. 0.137 0.000*** 0.155 0.001*** 0.123 0.030**
BH Strong div.- and turn. 0.308 0.000*** 0.466 0.000*** 0.438 0.000***
RB Basic 0.179 0.170 0.203 0.011** 0.236 0.012**
RB Mild div. 0.111 0.017** 0.093 0.094* 0.173 0.001***
RB Strong div. 0.137 0.002** 0.207 0.017** 0.301 0.000***
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

a higher mean, but also has to accept a higher variance than the higher-moment portfolios. We

observe that given the mild diversification constraint or the strong turnover constraint, the

MVS- or the MVSK portfolio obtain higher out-of-sample mean and lower variance, thus each

of the higher-moment portfolios are better than the MV portfolio, given these constraints, in

the out-of-sample mean-variance space.

Table 7: Difference test of monthly out-of-sample log variance with MV portfolio as benchmark

GMVP MVS MVSK
Strategy Constraint Δ2 p-value Δ2 p-value Δ2 p-value
BH Basic -0.165 0.081* 0.021 0.760 0.025 0.687
BH Mild div. -0.104 0.016** -0.004 0.942 0.049 0.311
BH Strong div. -0.082 0.048** 0.163 0.112 0.187 0.065*
BH Mild turn. -0.178 0.006*** 0.134 0.079* 0.110 0.242
BH Strong turn. -0.137 0.000*** 0.018 0.722 -0.014 0.839
BH Strong div.- and turn. -0.308 0.000*** 0.158 0.064* 0.130 0.162
RB Basic -0.179 0.170 0.025 0.754 0.058 0.370
RB Mild div. -0.111 0.017** -0.018 0.793 0.062 0.167
RB Strong div. -0.137 0.002*** 0.070 0.502 0.165 0.043**
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

6.2.3 Test of out-of-sample portfolio skewness

Table 8 reports the differences, and the corresponding p-values, between the monthly out-of-

sample skewness of GMVP and the MV-, MVS-, and MVSK portfolio, given the constraints

and strategies considered in this thesis. The higher-moment portfolios, who also incorporate
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skewness into the portfolio selection process, obtain higher skewness compared to GMVP, except

the rebalanced MVSK portfolio given the mild diversification constraint. The MVS portfolio has

the highest skewness differences versus GMVP, and they are significantly higher, except given

the basic constraint or the strong turnover constraint. According to the in-sample moments we

expect MVS, and then MVSK, to have the highest out-of-sample skewness, and based on the

out-of-sample differences this relationship seems to persist to some extent.

Table 8: Difference test of monthly out-of-sample skewness with GMVP as benchmark

MV MVS MVSK
Strategy Constraint Δ3 p-value Δ3 p-value Δ3 p-value
BH Basic 0.267 0.485 0.245 0.227 0.345 0.177
BH Mild div. -0.004 0.976 0.321 0.033** 0.002 0.986
BH Strong div. -0.030 0.773 0.602 0.020** 0.301 0.147
BH Mild turn. -0.107 0.479 0.375 0.018** 0.247 0.081*
BH Strong turn. -0.172 0.024** 0.171 0.180 0.088 0.556
BH Strong div.- and turn. 0.045 0.759 0.422 0.024** 0.044 0.873
RB Basic 0.599 0.351 0.401 0.124 0.487 0.167
RB Mild div. -0.146 0.318 0.309 0.018** -0.063 0.656
RB Strong div. -0.071 0.536 0.478 0.013** 0.249 0.092*
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Table 9 reports the differences, and the corresponding p-values, between the monthly out-of-

sample skewness of MV and the global minimum variance-,MVS- and MVSK portfolio, given

the constraints and strategies considered in this thesis. The MVS portfolio obtains significantly

higher out-of-sample skewness than the MV portfolio, except when the basic constraint is

imposed. The MVSK portfolio obtains higher out-of-sample skewness than the MV portfolio,

except given strong diversification- and strong turnover constraint, or when the portfolios are

rebalanced given mild diversification constraint.

6.2.4 Test of out-of-sample portfolio kurtosis

Table 10 reports the differences, and the corresponding p-values, between the monthly out-of-

sample kurtosis of GMVP and the MV-,MVS- and MVSK portfolio, given the constraints and

strategies considered in this thesis. The only portfolio to incorporate kurtosis in the allocation

framework is the MVSK portfolio, yet it only obtains a significantly lower out-of-sample kurtosis

under buy-hold with the mild diversification constraint. We also observe that the MVS portfolio

obtains significantly lower out-of-sample kurtosis compared to GMVP, given certain constraints.

The MVS portfolio also has a lower kurtosis compared to the MVSK portfolio given most of the
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Table 9: Difference test of monthly out-of-sample skewness with MV portfolio as benchmark

GVMP MVS MVSK
Strategy Constraint Δ3 p-value Δ3 p-value Δ3 p-value
BH Basic -0.267 0.485 -0.023 0.936 0.078 0.695
BH Mild div. 0.004 0.976 0.324 0.007*** 0.006 0.964
BH Strong div. 0.030 0.773 0.632 0.022** 0.331 0.078*
BH Mild turn. 0.107 0.479 0.482 0.006*** 0.354 0.077*
BH Strong turn. 0.172 0.024** 0.343 0.005*** 0.259 0.083*
BH Strong div.- and turn. -0.045 0.759 0.376 0.044** -0.001 0.995
RB Basic -0.599 0.351 -0.199 0.633 -0.112 0.716
RB Mild div. 0.146 0.318 0.456 0.034** 0.083 0.448
RB Strong div. 0.071 0.536 0.549 0.017** 0.321 0.097*
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

constraints, as shown by the negative coefficients and the magnitudes of the differences versus

GMVP.

Table 10: Difference test of monthly out-of-sample kurtosis with GMVP as benchmark

MV MVS MVSK
Strategy Constraint Δ4 p-value Δ4 p-value Δ4 p-value
BH Basic 1.194 0.212 -0.605 0.256 -0.276 0.660
BH Mild div. -0.175 0.681 -0.939 0.061** -0.504 0.094*
BH Strong div. -0.331 0.259 0.582 0.424 -0.646 0.278
BH Mild turn. 0.182 0.707 -1.210 0.023** -0.630 0.171
BH Strong turn. 0.355 0.098 -0.741 0.054* -0.747 0.115
BH Strong div.- and turn. -0.092 0.855 -0.378 0.491 0.101 0.905
RB Basic 3.232 0.134 0.160 0.792 0.935 0.330
RB Mild div. 0.616 0.336 -0.767 0.031** 0.229 0.697
RB Strong div. 0.116 0.797 -0.028 0.950 -0.484 0.172
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Table 11 reports the difference between the monthly out-of-sample kurtosis of the MV portfolio

and the global minimum variance-, MVS- and MVSK portfolio, given the constraints and

strategies considered in this thesis. We observe that the higher-moment portfolios obtain

significantly lower out-of-sample kurtosis than the MV portfolio, given most constraints. The

magnitude of the out-of-sample kurtosis difference between the MVS and MVSK portfolio

reveals that the value of kurtosis is highly dependent on constraint and strategy.

While kurtosis is not considered in the asset allocation framework of the MVS portfolio,

the portfolio obtains a more optimal value for this moment out-of-sample than the MVSK

portfolio given the basic constraints, under both the buy-hold and rebalancing strategy. This
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Table 11: Difference test of monthly out-of-sample kurtosis with MV portfolio as benchmark

GMVP MVS MVSK
Strategy Constraint Δ4 p-value Δ4 p-value Δ4 p-value
BH Basic -1.194 0.212 -1.799 0.020** -1.469 0.007***
BH Mild div. 0.175 0.681 -0.764 0.004*** -0.329 0.263
BH Strong div. 0.331 0.241 0.913 0.138 -0.315 0.420
BH Mild turn. -0.182 0.707 -1.391 0.003*** -0.811 0.101
BH Strong turn. -0.355 0.098* -1.095 0.003*** -1.101 0.018**
BH Strong div.- and turn. 0.092 0.855 -0.286 0.475 0.193 0.729
RB Basic -3.232 0.134 -3.072 0.059** -2.298 0.071*
RB Mild div. -0.616 0.336 -1.383 0.124 -0.387 0.095*
RB Strong div. -0.116 0.797 -0.144 0.856 -0.600 0.392
∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

might be an indication of the kurtosis estimate containing too much error; there are large

discrepancies between the relative in-sample and out-of-sample kurtosis between the portfolios

and constraints, complicating the inference.
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7 Conclusion

In this thesis we have provided dynamic moment-based portfolios, with and without higher-

moments, over a 20-year horizon with quarterly revisions, given different sets of constraints

imposed. We evaluate the performance of the higher-moment portfolios, the MVS- and MVSK

portfolio, against two benchmark portfolios in terms of annualized returns, risk-adjusted returns,

risk and allocation. The benchmark portfolios are two popular portfolios based on the traditional

Markowitz framework; the mean-variance portfolio and the global minimum variance portfolio.

In addition, we test if the relationship between the in-sample moments of the higher-moment

portfolios persist out-of-sample; i.e. whether the higher-moment portfolios also obtain better

out-of-sample higher-moments, and worse out-of-sample mean and/or variance, compared to

the benchmark portfolios, as anticipated by the in-sample moments.

The MVS- and the MVSK portfolio require relatively high turnover for the quarterly revisions,

and are in general not as diversified as GMVP and the MV portfolio. All of the moment-based

portfolios follow a similar trend of allocating about evenly between cyclical and defensive stocks

before the financial crisis occurs mid 2007, while during the crisis either of them allocate 70%, or

more, of the portfolio wealth in defensive stocks. Since variance is the only moment connecting

all of the portfolios, this indicates that this is the most important determinant of the allocation

for all of the portfolios.

Our findings suggest that by adding skewness to the traditional Markowitz portfolio one can

improve performance in terms of return and risk-adjusted return. We find that the MVS

portfolio, for any given constraints considered, obtains a higher annualized return, Sharpe-ratio

and adjusted Sharpe-ratio, compared to GMVP and the MV portfolio. The MVS portfolio also

outperforms the MVSK portfolio for these performance measures, except when the high or the

low turnover constraint is imposed. The MVSK portfolio yields mixed results as the portfolio

only outperforms the MV portfolio when the high diversification constraint, or any combination

with turnover constraint, is imposed. This may indicate that kurtosis to some extent steers the

portfolio allocation away from stocks with high returns at the cost of focusing on minimizing

kurtosis, or that the estimation error related to this moments leads to a misleading objective

function.

The higher-moment portfolios are riskier in terms of annualized standard deviation, than GMVP

and the MV portfolio. Yet, the tail risk is lower for MVS as it obtains a lower expected shortfall

for any given constraints compared to the MV portfolio, and a lower expected shortfall in general

for GMVP. The MVSK only obtains a better expected shortfall than the benchmark portfolios
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given a turnover constraint, this indicates that incorporating kurtosis into portfolio selection

does not improve the out-of-sample tail risk. With the high turnover constraint or the high

diversification- and low turnover constraint, the MVSK portfolio also outperforms MVS in terms

of expected shortfall. Yet, for any other constraint the MVS portfolio has a better expected

shortfall and also a lower annualized standard deviation, compared to the MVSK portfolio.

Thus we conclude that MVS clearly dominates the traditional Markowitz portfolio, as well as

the MVSK portfolio, when it comes to risk management.

From the aspired moments plots, shown in section 5.3 and appendix XX, we observe the

higher-moment portfolios having a slightly higher variance, but in return have more optimal

skewness and/or kurtosis. The out-of-sample test for the mean, variance, skewness and kurtosis

reveals that the MVS portfolio over most constraints obtains the most optimal out-of-sample

mean, skewness and kurtosis, while GMVP consistently obtains the lowest variance. There is

a trend of the out-of-sample mean increasing when the portfolios are rebalanced, and all the

portfolios obtain the highest respective out-of-sample mean under daily rebalancing with a high

diversification constraint imposed. The MVS- and MVSK portfolio have the highest variances

for any given constraints, in fact both of the portfolios even have significantly higher variance

than the MV portfolio for certain strong constraints.

There is a clear tendency of both the MVS- and MVSK portfolio obtaining higher out-of-

sample skewness compared to the other portfolios. This relationship is consistent with the

differences in in-sample skewness, as the higher-moment portfolios incorporate skewness in the

asset allocation framework. As for kurtosis, the higher-moment portfolios obtain, in general,

significantly lower kurtosis compared to the MV portfolio with basic constraints. This finding

is somewhat diffuse as the allocation framework of the MVS portfolio does not explicitly take

into account portfolio kurtosis.

On the basis of this thesis’ findings we recommend the incorporation of skewness into the

traditional Markowitz framework, even if the investor is limited to a certain degree of turnover

or a required diversification target. Ideally the MVS portfolio is implemented based on frequent

rebalancing, but this strategy also incur higher transaction costs and the trade-off has to be

considered. Finally, the higher-moment portfolios do what they promise to a certain extent;

our findings show that the MVS- and MVSK portfolio obtain significantly higher out-of-sample

skewness and lower out-of-sample kurtosis, given most constraints, at the cost of higher variance.
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8 Limitations

Although it is encouraging to discover that by incorporating skewness into the portfolio selection

process the investor can improve the out-of-sample return and risk-adjusted return, we caution

readers that the improved performance can be driven by estimation error, selection bias, and/or

the length of the estimation window, frequency of revisions, and holding period.

The moments are prone to estimation error, even though we reduce estimation error to some

extent by Bayesian shrinkage. The improved estimates still contains error so that the allocation

of the higher-moment portfolios could be driven by rare outliers, some of which can easily be

observed in the forecasts of skewness and kurtosis in Figure 6. For instance, a positive skewed

stock that exhibit extra-ordinary right tail performance over a one year estimation period might

be overvalued.

In addition, our results are prone to selection bias as the selected S&P Global 1200-index consists

of multi-national, well-established and stable companies with a long history of consistent growth

and dividend payments. These stocks often have a relatively low volatility and usually require

lower risk tolerance, while growth stocks usually require an higher risk tolerance. Consequently,

the constructed portfolios can have different characteristics for different sets of stocks and assets.

Constructed portfolios with different length of the estimation- and holding periods are likely to

exhibit different characteristics. For instance, many investors bought into the market, prior to

the financial crisis in 2007, when the market was booming and showing positive skewness, and

experienced a massive decline after the financial crisis 2008-2009. Thus, a too narrow estimation

window may encourage risk-seeking behavior and a too wide estimation window may encourage

a more risk-averse behavior.

We highlight two additional suggestions for further research. First, we believe it is possible to

make progress on the last two limitations to generalize the results. This involves an analysis

of more portfolios with various length of the estimation- and holding periods on different sets

of stocks and asset classes. We further suggest an analysis of the length of the holding period

to reflect the trading costs; because a shorter holding period should, in theory, better reflect

the investor’s preference for statistical moments, but at a higher cost. Secondly, PGP is an

adequate framework, but it relies on good forecasts of moments. Hence, we suggest research on

more robust estimators for higher-moments.
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Appendix

A Components for shrinkage intensities

Ledoit and Wolf (2003) and Martellini and Ziemann (2010) derive the formulas for πn,t, ρn,t

and γn,t, for n = 2, 3, 4, by the delta-method. We present the closed-form expressions of

the shrinkage intensity for the covariance matrix, derived by Ledoit and Wolf (2003), and for

the coskewness- and cokurtosis matrix, derived by Martellini and Ziemann (2010), and briefly

comment on the components. The reader is referred to Martellini and Ziemann (2010) for a

thorough derivation. Note that we use the same notation as defined in methodology, i.e. length

of estimation window is L, the sample estimates are denoted S and the single-index estimates

are denoted by SI.

The sum of asymptotic variances of the sample estimates of moment n at time t is given by:

π̂2,t =
N∑

i=1

N∑

j=1

πij,t π̂3,t =
N∑

i=1

N∑

j=1

N∑

k=1

π̂ijk,t π̂4,t =
N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

π̂ijkl,t (65)

where

π̂ij,t = AsyV ar[
√

LσS
ij,t] =

1

L

t−1∑

x=t−L

{(ri,x − r̄i,t)(rj,x − r̄j,t)− σS
ij,t}

2

π̂ijk,t = AsyV ar[
√

LsS
ijk,t] =

1

L

t−1∑

x=t−L

{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)− sS
ijk,t}

2

π̂ijkl,t = AsyV ar[
√

LkS
ijkl,t] =

1

L

t−1∑

x=t−L

{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)(rl,x − r̄l,t)− kS
ijkl,t}

2

(66)

where σS
ij,t, s

S
ijk,t and kS

ijkl,t are the sample estimates of the covariance, coskewness and cokurtosis,

respectively, for time t. Connecting (26) and (27) we observe that π̂n, for n = 2, 3, 4, increases

as a result of an increase in the squared difference between the product of the excess returns of

one or several assets and the the sample estimate. This illustrates that as π̂n increases, ceteris

paribus, we weight more in the single-index estimate, and less in the sample estimate as its bias

increases.
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The misspecification of the single-index estimate of moment n at time t is given by:

γ̂2,t =
N∑

i=1

N∑

j=1

γ̂ij,t γ̂3,t =
N∑

i=1

N∑

j=1

N∑

k=1

γ̂ijk,t γ̂4,t =
N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

γ̂ijkl,t (67)

where
γ̂ij,t = (σSI

ij,t − σS
ij,t)

2 ∀i, j

γ̂ijk,t = (sSI
ijk,t − sS

ijk,t)
2 ∀i, j, k

γ̂ijkl,t = (kSI
ijkl,t − kS

ijkl,t)
2 ∀i, j, k, l

(68)

The greater the difference is between the sample and single-index estimate, the larger the

denominator of the shrinkage intensity is, and the less weight put in the single-index estimate

of the respective moment.

The sum of asymptotic covariances of the single-index estimates and sample estimates for

moment n is given by:

ρ̂2,t =
N∑

i=1

N∑

j=1

ρ̂ij,t ρ̂3,t =
N∑

i=1

N∑

j=1

N∑

k=1

ρ̂ijk,t ρ̂4,t =
N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

ρ̂ijkl,t (69)

where
ρ̂ij,t = AsyCov[

√
LσSI

ij,t,
√

LσS
ij,t] ∀i, j

ρ̂ijk,t = AsyCov[
√

LsSI
ijk,t,
√

LsS
ijk,t] ∀i, j, k

ρ̂ijkl,t = AsyCov[
√

LkSI
ijkl,t,

√
LkS

ijkl,t] ∀i, j, k, l

(70)

where σy
ij,t, s

y
ijk,t and ky

ijkl,t are the time t estimates of the covariance, coskewness and cokurtosis,

respectively, where y = S, SI . We observe that as the difference between the estimates increases,

the shrinkage intensity decreases and we place more weight in the sample estimate and less in

the single-index estimate.

The sample estimate of the variance, skewness and kurtosis, of each asset, is the same as the

single-index estimate, i.e. σS
ii = σSI

ii , s
S
iii = sSI

iii and kS
iiii = kSI

iiii. Hence the asymptotic covariance

of the single-index and sample estimate of each these moments equals the asymptotic variance

of the corresponding moment, given for asset i by:

ρ̂ii,t = AsyCov[
√

Lσ
SI

ii,t,
√

Lσii,t] = AsyV ar[
√

LσS
ii,t] = π̂ii,t ∀i

ρ̂iii,t = AsyCov[
√

LsSI
iii,t,
√

LsS
iii,t] = AsyV ar[

√
LsS

iii,t] = π̂iii,t ∀i

ρ̂iiii,t = AsyCov[
√

LkSI
iiii,t,
√

LkS
iiii,t] = AsyV ar[

√
LkS

iiii,t] = π̂iiii,t ∀i

(71)
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The closed-form solution of the asymptotic covariance of the single-index and sample estimates

of the covariance, coskewness and cokurtosis, are more complex as the single-index estimates

consists of betas and the market moments, e.g. σSI
ij,t = βi,tβj,tσM,t.

ρ̂ij,t =
σjM,t

σ2
M,t

AsyCov[
√

LσiM,t,
√

Lσij,t]

+
σiM,t

σ2
M,t

AsyCov[
√

LσjM,t,
√

Lσij,t]

−
σiM,tσjM,t

(σ2
M,t)

2
AsyCov[

√
Lσ2

M,t,
√

Lσij,t]

ρ̂ijk,t =
σjM,tσkM,ts

3
M,t

(σ2
M,t)

3
AsyCov[

√
LσiM,t,

√
Lsijk,t]

+
σiM,tσkM,ts

3
M,t

(σ2
M,t)

3
AsyCov[

√
LσjM,t,

√
Lsijk,t]

+
σiM,tσjM,ts

3
M,t

(σ2
M,t)

3
AsyCov[

√
LσkM,t,

√
Lsijk,t]

− 3 ∗
σiM,tσjM,tσkM,ts

3
M,t

(σ2
M,t)

4
AsyCov[

√
Lσ2

M,t,
√

Lsijk,t]

+
σiM,tσjM,tσkM,t

(σ2
M,t)

3
AsyCov[

√
Ls3

M,t,
√

Lsijk,t]

ρ̂ijkl,t =
σjM,tσkM,tσlM,tk

4
m,t

(σ2
M,t)

4
AsyCov[

√
LσiM,t,

√
Lkijkl,t]

+
σiM,tσkM,tσlM,tk

4
m,t

(σ2
M,t)

4
AsyCov[

√
LσjM,t,

√
Lkijkl,t]

+
σiM,tσjM,tσlM,tk

4
m,t

(σ2
M,t)

4
AsyCov[

√
LσkM,t,

√
Lkijkl,t]

+
σiM,tσjM,tσkM,tk

4
m,t

(σ2
M,t)

4
AsyCov[

√
LσlM,t,

√
Lkijkl,t]

+ 4 ∗
σiM,tσjM,tσkM,tσlM,tk

4
m,t

(σ2
M,t)

5
AsyCov[

√
Lσ2

M,t,
√

Lkijkl,t]

+
σiM,tσjM,tσkM,tσlM,t

(σ2
M,t)

3
AsyCov[

√
Lk4

M,t,
√

Lkijkl,t]

+ rijkl,t

(72)

for z = i, j,M .
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for ∀i, j, k, l and the idiosyncratic terms of the cokurtosis elements are:

riiij,t = 3 ∗ (
σjM,tε̄ii,t

σ2
M,t

AsyCov[
√

LσiM,t,
√

Lkiiij,t] +
σjM,tε̄jj,t

σ2
M,t

AsyCov[
√

LσjM,t,
√

Lkiiij,t]

−
σiM,tσjM,tε̄ii,t
(
σ2

M,t

)2 AsyCov[
√

Lσ2
M,t,
√

Lkiiij,t] +
σiM,tσjM,t

σ2
M,t

AsyCov[
√

Lε̄ii,t,
√

Lkiiij,t])

riijj,t =
2σiM,tε̄jj,t

σ2
M,t

AsyCov[
√

LσiM,t,
√

Lkiijj,t] +
2σjM,tε̄ii,t

σ2
M,t

AsyCov[
√

LσjM,t,
√

Lkiijj,t]

−
σ2

iM,tε̄jj,t
(
σ2

M,t

)2 AsyCov[
√

Lσ2
M,t,
√

Lkiijj,t] −
σ2

jM,tε̄ii,t
(
σ2

M,t

)2 AsyCov[
√

Lσ2
M,t,
√

Lkiijj,t]

+
σ2

iM,t

σ2
M,t

AsyCov[
√

Lε̄jj,t,
√

Lkiijj,t] +
σ2

jM,t

σ2
M,t

AsyCov[
√

Lε̄ii,t,
√

Lkiijj,t]

+ ε̄jj,tAsyCov[
√

Lε̄ii,t,
√

Lkiijj,t] + ε̄ii,tAsyCov[
√

Lε̄jj,t,
√

Lkiijj,t]

riijk,t =
σkM,tε̄ii,t

σ2
M,t

AsyCov[
√

LσjM,t,
√

Lkiijk,t] +
σjM,tε̄ii,t

σ2
M,t

AsyCov[
√

LσkM,t,
√

Lkiijk,t]

−
σjM,tσkM,tε̄ii,t
(
σ2

M,t

)2 AsyCov[
√

Lσ2
M,t,
√

Lkiijk,t] +
σjM,tσkM,t

σ2
M,t

AsyCov[
√

Lε̄ii,t,
√

Lkiijk,t]

rijkl,t = 0

(73)

Note that σ2
M,t = σMM,t, so that the asymptotic covariance of the market variance and the

sample estimates of covariance, coskewness and cokurtosis for all assets i, j, k, l are also given

by (81), (82) and (83), respectively.

75



The AsyCov-terms are given by:

AsyCov[
√

LσzM,t,
√

Lσij,t] =

1

L

t−1∑

x=t−L

{(rz,x − r̄z,t)(rM,x − r̄M,t)− σxM,t}{(ri,x − r̄i,t)(rj,x − r̄j,t)− σij,t}

AsyCov[
√

LσzM,t,
√

Lsijk,t] =

1

L

t−1∑

x=t−L

{(rz,x − r̄z,t)(rM,x − r̄M,t)− σzM,t}{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)− sijk,t}

AsyCov[
√

LσzM,t,
√

Lkijkl,t] =

1

L

t−1∑

x=t−L

{(rz,x − r̄z,t)(rM,x − r̄M,t)− σzM,t}{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)(rl,x − r̄l,t)− kijkl,t}

AsyCov[
√

Ts3
M,t,
√

Lsijk,t] =

1

L

t−1∑

x=t−L

{(rM,x − r̄M,t)
3 − s3

M,t}{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)− sijk,t}

AsyCov[
√

Tk4
M,t,
√

Lkijkl,t] =

1

L

t−1∑

x=t−L

{(rM,x − r̄M,t)
3 − k4

M,t}{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)(rl,x − r̄l,t)− kijkl,t}

AsyCov[
√

Tσzm,
√

Lkijkl,t] =

1

L

t−1∑

x=t−L

{(rz,x − r̄z,t)(rM,x − r̄M,t)− σzM,t}{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)(rl,x − r̄l,t)− kijkl,t}

AsyCov[
√

T ε̄ii,t,
√

Lkijkl,t] =

1

L

t−1∑

x=t−L

{(ε̄2
ii,x −

t−1∑

y=t−L

ε̄2
ii,y}{(ri,x − r̄i,t)(rj,x − r̄j,t)(rk,x − r̄k,t)(rl,x − r̄l,t)− kijkl,t}

(74)

for z = i, j,M .
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B Modifying turnover constraint for convex set

By imposing the turnover constraint (X) in the mean- or variance optimization, the problems

become non-convex and we might lose accuracy and, definitely, efficiency. We regain convexity

by modifying the turnover constraint, where the first step is to introduce auxiliary variables.

We let bi and si denote the percent-wise amount bought and sold of asset i, respectively, so

that the difference of wealth invested from time t-1 to t is described by:

xt,i − bt,i + st,i = xt−1,i ∀i (75)

where the initial position x0,i is found solving the optimization problem for the first portfolio

revision, i.e. disregarding the turnover constraint. We impose the turnover constraint for the

N-asset portfolio by precluding an average turnover above a specified turnover target of c2:

1

N

N∑

i=1

(bt,i + st,i) ≤ c1

bt,i, st,i ≥ 0 ∀i

(76)

- Write about implication of last constraint

C Standard error of hypothesis test

In this section we present the standard error of the HAC-hypothesis test. We assume the period

of evaluation is T, where T is the time between the initial allocation and the end of the holding

period of the last revision, for simplicity assumed to be t = 1, .., T . The asymptotic standard

error is given by:

s(Δ̂M ) =

√
5T f(v̂)Ψ̂M5f(v̂)

T
(77)

where 5T f(v̂) is the transposed gradient vector for function f , and Ψ̂ is estimated by the

heteroscedastic and autocorrelation robust (HAC) kernel estimate.

The difference between the moments can be written as a function of the differences

f(v̂M ) = Δ̂M = h(v̂x,M )− h(v̂y,M ) (78)
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where we assume that the moment θl for portfolio l can be written as a function of up till M

uncentered moments:

h(v̂l,M ) = h(v̂1
l , v̂

2
l , ..., v̂

M
l ) l = x, y (79)

where M ≥ 1, h is a continuously differentiable function, and v
(m)
l is the uncentered mth-

moment given by:

v̂
(m)
l =

1

T

T∑

t=1

Rm
l,t l = x, y (80)

We simplify the notation by setting the uncentered first moment as al, i.e. al = v̂
(1)
l , the

uncentered second moment as bl, i.e. bl = v̂
(2)
l , the uncentered third moment as cl, i.e. cl = v̂

(3)
l ,

and the uncentered fourth moment as dl, i.e. and dl = v̂
(4)
l , for portfolio l. Then we can write

the mean, log variance, skewness and kurtosis, of portfolio l, as:

h(v̂l,M ) =






al M = 1

ln (bl − a2
l ) M = 2

2a3
l +cl−3albl

(bl−a2
l )1.5 M = 3

[
−3a4

l +dl−4alcl+6a2
l bl

(bl−a2
l )2

− 3
]

M = 4 for l = x, y

(81)

Note that we use the logarithm of variance instead of just variance, due to the recommendation

of Ledoit and Wolf (2011), portfolio l = x, y

The difference between portfolio x and y as a function of the uncentered moments is thus given

by:

f(v̂M ) =






ax − ay M = 1

ln (bx − a2
x)− ln

(
by − a2

y

)
M = 2

2a3
x+cx−3axbx

(bx−a2
x)1.5 −

2a3
y+cy−3ayby

(by−a2
y)1.5 M = 3

[
−3a4

x+dx−4axcx+6a2
xbx

(bx−a2
x)2

−
−3a4

y+dy−4aycy+6a2
yby

(by−a2
y)2

]
M = 4

(82)

The transposed gradient vector of the difference between the mean of portfolio x and y is given

by:

5T f(v̂1) =

(
∂f(v̂1)

∂ax

,
∂f(v̂1)

∂ay

)T

= (1,−1)T (83)

The transposed gradient vector of the difference between the log variance of portfolio x and y,
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is given by:

5T f(v̂2) =

(
∂f(v̂2)

∂ax

,
∂f(v̂2)

∂ay

,
∂f(v̂2)

∂bx

,
∂f(v̂2)

∂by

)T

=

(
−2ax

bx − a2
x

,
2ay

by − a2
y

,
1

by − a2
y

,
−1

by − a2
y

)T

(84)

The transposed gradient vector of the difference between the skewness of portfolio x and y, is

given by:

5T f(v̂3) =

(
∂f(v̂3)

∂ax

,
∂f(v̂3)

∂ay

,
∂f(v̂3)

∂bx

,
∂f(v̂3)

∂by

,
∂f(v̂3)

∂cx

,
∂f(v̂3)

∂cx

)T

=

(
−3b2

x + 3axcx

(bx − a2
x)

2.5
,
3b2

y − 3aycy

(by − a2
y)

2.5
,
−3cx + 3axbx

2(bx − a2
x)

2.5
,

3cy − 3ayby

2(by − a2
y)

2.5
,

1

(bl − a2
l )

1.5
,

−1

(bl − a2
l )

1.5

)T (85)

The transposed gradient vector of the difference between the skewness of portfolio x and y, is

given by:

5T f(v̂4) =

(
∂f(v̂4)

∂ax

,
∂f(v̂4)

∂ay

,
∂f(v̂4)

∂bx

,
∂f(v̂4)

∂by

,
∂f(v̂4)

∂cx

,
∂f(v̂4)

∂cx

,
∂f(v̂4)

∂dx

,
∂f(v̂4)

∂dx

)T

=

(
12axb

2
x − 12a2

xcx + 4axdx − 4bxcx

(bx − a2
x)

3
,
−12ayb

2
y + 12a2

ycy − 4aydy + 4bycy

(by − a2
y)

3
,

−6a2
xbx + 8axcx − 2dx

(bx − a2
x)

3
,
6a2

yby − 8aycy + 2dy

(by − a2
y)

3
,
−4ax

(bx − a2
x)

2
,

4ay

(by − a2
y)

2
,

1

(bx − a2
x)

2
,
−1

(by − a2
y)

2

)T

(86)

The kernel estimate of moment M is given by:

Ψ̂M =
T

T − 2M

T−1∑

j=−T+1

κ

(
j

ŜT

)

Γ̂T (j) (87)

where k(∙) is a kernel function and ST the bandwidth of this function, and Γ̂T (j) is given by:

Γ̂T (j) =






1
T

∑T
t=j+1 ŷtŷ

T
t−j for j ≥ 0

1
T

∑T
t=−j+1 ŷt+j ŷ

T
t for j < 0

(88)
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with the Tx2M -dimensional vector ŷT
t given by

ŷT
t =

(
Rx,t − v̂(1)

x , ..., RM
x,t − v̂(M)

x , Ry,t − v̂(1)
y , ..., RM

y,t − v̂(M)
y

)
(89)

where Rl,t is the return of portfolio l at time t, for l = x, y. There are different ways of

estimating the kernel density κ(∙), and as we follow the procedure of Ledoit-Wolf (var-paper),

we use the formula of the Parzen kernel estimate from Andrew (1991), given by:

κ(x) =






1− 6x2 + 6 |x|3 for 0 ≤ |x| ≤ 0.5

2(1− |x|)3 for 0.5 < |x| ≤ 1

0 otherwise

(90)

The bandwidth of the Parzen kernel estimate ST is given by:

Ŝ = 2.6614 (α̂(2)T )1/5 (91)

where α̂(2) is given by:

α̂(2) =

(
2M∑

i=1

4ρ̂i
2σ̂i

4

(1− ρ̂i)8

)

/

(
2M∑

i=1

σ̂i
4

(1− ρ̂i)4

)

(92)

where ρ̂i and σ̂2
i denote the autoregressive parameter and innovation variance parameter,

respectively, for i = 1, 2, .., 2M , as a result of running OLS with autoregressive errors, using an

AR(1)-model, on each vector vector ŷT
t . We obtain these parameters using the R-function.
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D Description of stocks in empirical data set

D.1 Descriptive statistics of the empirical data set

The composition of stocks for S&P Global 1200 (1994) was found from the Bloomberg Terminal,

whereas we collected the sample data from Datastream. The descriptive statistics of the stocks

are given below.

Table 12: Descriptive statistics for cyclical stocks
Bloomberg
Ticker

Datastream
Ticker

Stock Name Annual return SD Skewness Kurtosis JB*

6201 JT 932034 Toyota Industries 0.04 0.30 0.35 6.9 33

NYT US 912377
The New York
Times Company

0.01 0.36 0.53 13.5 55

NC UN 741924
NACCO Industries
Inc.

0.08 0.44 0.44 10.5 76

CAL UN 921334 Caleres Inc 0.04 0.48 0.49 13.7 160
NKE UN 993249 NIKE Inc 0.14 0.32 0.17 11.5 234
NXT LN 901203 NEXT PLC 0.13 0.32 -0.21 14.1 80

23 HK 951410
The Bank of
East Asia, Ltd.

0.03 0.32 0.46 13.6 61

BBVA SM 779090
Banco Bilbao
Vizcaya Argentaria,
S.A.

0.05 0.35 0.38 10.6 22

DLX UN 916704 Deluxe Corp. 0.06 0.35 0.38 18.8 129

TKR UN 903720
The Timken
Company

0.05 0.37 -0.03 14.5 134

VOLVB SS 944486 Volvo AB 0.06 0.37 0.18 7.8 31
6702 JT 912718 Fujitsu Limited -0.03 0.38 0.31 6.9 27
HRS UN 905409 Harris Corporation 0.12 0.33 0.41 11.5 216

5711 JT 930960
Mitsubishi Materials
Corporation

-0.02 0.42 0.49 7.6 31

CSR AT 904735 CSR Limited 0.03 0.34 -0.15 8.4 13

JMAT LN 901152
Johnson Matthey
PLC

0.07 0.32 0.24 7.9 26

ASH UN 905342
Ashland Global
Holdings Inc.

0.06 0.33 -0.43 16.9 52

∗ Median of annual Jarque-Bera statistic
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Table 13: Descriptive statistics for defensive stocks
Bloomberg
Ticker

Datastream
Ticker

Stock Name Annual Return SD Skewness Kurtosis JB*

4911 JT 905323 Shiseido Company 0.03 0.30 0.23 7.2 33
CA FP 922029 Carrefour SA 0.01 0.32 0.13 6.1 21

KO UN 904282
Coca-Cola
Company

0.05 0.22 0.20 10.2 55

KR UN 912134 The Kroger Co. 0.11 0.29 -0.50 13.2 113

HSY UN 905077
The Hershey
Company

0.10 0.23 1.25 27.1 105

RB/ LN 900484
Reckitt Benckiser
Group PLC

0.10 0.27 0.21 12.9 52

AD NA 779426
Koninklijke Ahold
Delhaize N.V.,

0.07 0.29 -0.08 9.1 82

BHI UN 921431 Baker Hughes Inc 0.06 0.41 0.17 9.5 30
SAN FP 992594 Sanofi 0.09 0.30 0.16 6.9 31
NOVN VX 992594 Novartis AG 0.08 0.21 0.75 15.6 40
TIT IM 923374 Telecom Italia S.p.A., -0.05 0.40 0.11 8.6 37

ELET6 BS 501893
Centrais Eletricas
Brasileiras S.A.
(Eletrobras)

-0.03 0.54 0.57 10.1 40

∗ Median of annual Jarque-Bera statistic
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D.2 Encoded colors for defensive and cyclical stocks

The table presents the encoded colors for the forecasts of statistical moments (5.1) and weight

plots for the basic portfolio (5.2) and for the constrained portfolios in appendix (A.X)

Table 14: Encoded colors for stocks in empirical data set
Cyclical Defensive

Bloomberg GICS Color Bloomberg GICS Color
6201 JT Consumer Discretionary 4911 JT Consumer Staples
NYT US Consumer Discretionary CA FP Consumer Staples
NC UN Consumer Discretionary KO UN Consumer Staples
CAL UN Consumer Discretionary KR UN Consumer Staples
NKE UN Consumer Discretionary HSY UN Consumer Staples
NXT LN Consumer Discretionary RB/ LN Consumer Staples
23 HK Financials AD NA Consumer Staples
BBVA SM Financials BHI UN Energy
DLX UN Industrials SAN FP Health Care
TKR UN Industrials NOVN VX Health Care
VOLVB SS Industrials TIT IM Telecommuncation
6702 JT Information Technology ELET6 BS Utilities
HRS UN Information Technology
5711 JT Materials
CSR AT Materials
JMAT LN Materials
ASH UN Materials
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E Model

E.1 Shrinkage intensities
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Figure 16: Shrinkage intensities
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E.2 Portfolio weight plots
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Figure 17: Quarterly allocation of portfolios with mild div. constraint
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Figure 18: Quarterly allocation of portfolios with strong div. constraint
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Figure 19: Quarterly allocation of portfolios with mild turn. constraint
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Figure 20: Quarterly allocation of portfolios with strong turn. constraint
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Figure 21: Quarterly allocation of portfolios with strong div.- and turn. constraint

E.3 Quarterly in-sample portfolio mean, variance skewness and kurtosis
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Figure 22: Quarterly aspired portfolio moments given mild div. constraint
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Figure 23: Quarterly aspired portfolio moments given strong div. constraint
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Figure 24: Quarterly aspired portfolio moments given mild turn. constraint
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Figure 25: Quarterly aspired portfolio moments given strong turn. constraint
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Figure 26: Quarterly aspired portfolio moments given strong div.- and turn. constraint
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F Cumulative returns for benchmark portfolios

0

5

10

1995 2000 2005 2010 2015

Year

C
um

ul
at

iv
e 

re
tu

rn

Global Minimum Variance portfolios

BH w/ basic constraints

RB w/ basic constraints

RB w/ mild div. constraint

RB w/ strong div. constraint

BH w/ mild div. constraint

BH w/ strong div. constraint

BH w/ mild turn. constraint

BH w/ strong turn. constraint

BH w/ strong div.− and turn. constraint

Figure 27: Wealth of global minimum variance portfolios
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Figure 28: Wealth of mean-variance portfolios
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G R-code Appendix

Listing 1: Load packages

1 # Load packages
2 library(sqldf); library(zoo); library(xts); library(ROI); library(Rmosek)
3 library(RiskPortfolios); library(optimbase); library(ggplot2); library(PortfolioAnalytics)
4 library(DEoptim); library(boot); library(tseries); library(PerformanceAnalytics)

Listing 2: Forecast of stock moments by shrinkage

6 rolling_shrinkage ←function(R, R2) {
7 # Storing returns as matrix
8 r ← as.matrix(R)
9

10 # Sample estimate of covariance,coskewness and cokurtosis
11 M2 ← covp(R2); M3 ←M3.MM(R2); M4 ←M4.MM(R2)
12

13 # Regression of market on each return series to obtain betas and residuals
14 b ← sapply(1:N, function(i) lm(R[,i] ~ M)$coefficients[2])
15 et ← sapply(1:N, function(i) summary(lm(R[,i]~M))$residuals)
16

17 # Market mean & centered market moments of n-degree
18 mrktmean ←mean(M); mu_02 ←mrktmom(2); mu_03 ←mrktmom(3); mu_04 ←mrktmom(4)
19

20 # Idiosyncratic var(e2), skewness(e3) and kurtosis(e4); stored in a matrix
21 e2 ← e(2)*diag(x = 1, nrow = N, ncol = N)
22 e3 ← matrix(0, nrow = N, ncol = N^2)
23 for(i in 1:N) {
24 e3[i, (1 + (N+1)*(i - 1))] ←e(3)[i]
25 }
26

27 # Identifying elements of cokurtosis matrix
28 cok_p ←function(N){
29 x ← matrix(nrow = N, ncol = 1)
30 for(i in 1:N) { #When Q =/= K
31 for(j in 1:N) {
32 m ← matrix(5, nrow = N, ncol = N)
33 m[,j] ←4; m[j,] ←4 ; diag(m) ←4; m[,i] ←4; m[i,] ←4
34 m[j,i] ←3; m[i,j] ←3
35 m[j,j] ←2; m[i,i] ←2
36 x ← cbind(x,m)
37 }
38 }
39 x ← x[,2:(N^3 + 1)]
40

41 for(i in 1:N) { #When Q =/= K
42 m ← matrix(4, nrow = N, ncol = N)
43 diag(m) ←3
44 m[,i] ←2; m[i,] ←2
45 m[i,i] ←1
46 x[,(1+N*((N+1)*(i-1))):(N+N*((N+1)*(i-1)))] ←m
47 }
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48 return(x)
49 }
50

51 e4 ← cok_p(N)
52

53 for(k in 1:N^3) {
54 for(l in 1:N) {
55 if(e4[l,k] == 1) { #viiii
56 e4[l,k] ←e(4)[l]
57 } else if(e4[l,k] == 2) { #viiij
58 e4[l,k] ←3*b[I[k]]*b[J[k]]*mu_02*e(2)[I[k]]
59 } else if(e4[l,k] == 3) { #viijj
60 e4[l,k] ←((b[I[k]]^2)*mu_02*e(2)[J[k]] + (b[J[k]]^2)*mu_02*e(2)[I[k]] +
61 (e(2)[J[k]])*(e(2)[I[k]]))
62 } else if(e4[l,k] == 4) { #viijk
63 e4[l,k] ←b[J[k]]*b[K[k]]*mu_02*e(2)[I[k]]
64 } else if(e4[l,k] == 5) { #vijkl
65 e4[l,k] ←0
66 }
67 }
68 }
69

70 # Single-Index covariance-, coskewness- and cokurtosis matrix
71 cov ← (b%*%t(b))*mu_02 + e2
72 coskew ←kronecker(b%*%t(b),t(b))*mu_03 + e3
73 cokurt ← kronecker(kronecker(b%*%t(b),t(b)),t(b))*mu_04 + e4
74

75 ## Bayesian Shrinkage
76

77 # Vector containing the covariance of assets and market
78 cm ← sapply(1:N, mrktcov, f = R)
79

80 # Shrinkage of mean (Bayes-Stein, Formula: 16)
81 sM1 ← meanEstimation(r, control = list(type = "bs"))
82

83 # Shrinkage of the covariance matrix(M2)
84

85 # Asymptotic covariance between single-index and sample estimate
86 covpie ←function(f, R, covar) {
87 pie ← matrix(ncol = N, nrow = N)
88 for(i in 1:N) {
89 for(j in 1:N) {
90 pie[j,i] ←sum((f(R,i)*f(R,j) - covar[j,i])^2)/T
91 }
92 }
93 return(pie)
94 }
95

96 p2 ← covpie(f = ex_ri, R = R, covar = M2)
97 pie2 ←sum(p2)
98

99 # Asymptotic variance of single-index covariance matrix (rho)
100 r_diag ←sum(diag(p2))
101
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102 #Asymptotic covariance for covariance by single-index
103 AsyCov_V ←function(f, R, n = 0, x, y) {
104 o ← (f(R,x)*f(R,y) - M2[x,y])
105 if(n == 0) {
106 return(sum((f(R,x)*(M-mean(M)) - mrktcov(R,x))*o)/T)
107 } else {
108 return(sum(((M - mean(M))^n - mrktmom(n))*o)/T)
109 }
110 }
111

112 # Asymptotic covariance of single-index covariance matrix (rho)
113 l1 ← 0; l2 ←0
114 for(i in 1:N) {
115 for(j in 1:N) {
116 if(i != j) {
117 ij ← list(f=ex_ri, R=R2, x=i, y=j)
118 l1 ← (l1 + do.call(AsyCov_V, ij)*cm[j]/mu_02)
119 l2 ← (l2 + do.call(AsyCov_V, c(n=2, ij))*cm[i]*cm[j]/(mu_02^2))
120 }
121 }
122 }
123

124 rho2 ←r_diag + (2*l1 - l2)
125 # Asymptotic covariance of single-index- and sample covariance matrix (gamma)
126 gamma2 ←sum((cov - M2)^2)
127

128 # Shrinkage Intensity
129 k2 ← (pie2-rho2)/gamma2
130 a2 ← max(0, min(1, k2/T))
131

132 # Shrinkage estimate of covariance matrix
133 sM2 ← a2*cov + (1 - a2)*M2
134

135 # Shrinkage of the coskewness matrix
136 # Asymptotic variance of sample coskewness
137

138 #Asymptotic covariance for coskewness matrix by single-index estimate
139 cospie ←function(f, N, R, coskew) {
140 p ← 0; pie ←matrix(nrow = N, ncol = N)
141 for(i in 1:N) {
142 for(j in 1:N) {
143 for(k in 1:N) {
144 pie[j, k] ←sum((f(R,i)*f(R,j)*f(R,k) - coskew[i,(k + (j - 1)*N)])^2)/T
145 }
146 }
147 p ← cbind(p, pie)
148 }
149 return(p[,2:(N^2 + 1)])
150 }
151

152 p3 ← cospie(f = ex_ri, N = N, R = R, coskew = M3)
153 pie3 ←sum(p3)
154

155 # Asymptotic variance of single-index coskewness
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156 r_diag ←sum(sapply(1:N, function(i) p3[i,(1 + (N + 1)*(i - 1))]))
157

158 #Asymptotic covariance for skewness by single-index
159 AsyCov_S ←function(f, R, n = 0, x, y, z) {
160 o ← (f(R,x)*f(R,y)*f(R,z) - M3[x,(z + (y - 1)*N)])
161 if(n == 0) {
162 return(sum((f(R,x)*(M-mean(M)) - mrktcov(R,x))*o)/T)
163 } else {
164 return(sum(((M - mean(M))^n - mrktmom(n))*o)/T)
165 }
166 }
167

168 # Asymptotic covariance of single-index coskewness
169 l1 ← 0; l2 ←0; l3 ←0
170 for(i in 1:N) {
171 for(j in 1:N) {
172 for(k in 1:N) {
173 if(i != j | i != k) { #for ijk
174 ijk ← list(f=ex_ri,R=R,x=i,y=j,z=k)
175 l1 ← l1 + do.call(AsyCov_S, ijk)*cm[j]*cm[k]*mu_03/(mu_02^3)
176 l2 ← l2 + do.call(AsyCov_S, c(ijk, n=2))*cm[i]*cm[j]*cm[k]*mu_03/(mu_02^4)
177 l3 ← l3 + do.call(AsyCov_S, c(ijk, n=3))*cm[i]*cm[j]*cm[k]/(mu_02^3)
178 }
179 }
180 }
181 }
182

183 rho3 ←r_diag + (3*l1 - 3*l2 + l3)
184

185 # Asymptotic covariance of sample- and single-index coskewness (gamma)
186 gamma3 ←sum((coskew - M3)^2)
187

188 # Shrinkage Intensity
189 k3 ← (pie3 - rho3)/gamma3
190 a3 ← max(0, min(1, k3/T))
191

192 # Shrinkage estimate of coskewness matrix
193 sM3 ← a3*coskew + (1 - a3)*M3
194

195 # Shrinkage of the cokurtosis matrix (M4)
196 # Asymptotic variance of sample cokurtosis
197 p4 ← cokpie(f = ex_ri, N = N, R = R, cokurt = M4)
198 pie4 ←sum(p4)
199

200 # Asymptotic variance of single-index cokurtosis
201 r_diag ←sum(sapply(1:N, function(i) p4[i,(1 + (N^2 + N + 1)*(i - 1))]))
202

203 cokpie ←function(f, N, R, cokurt) {
204 p ← 0; pie ←matrix(nrow = N, ncol = N)
205 for(i in 1:N) {
206 for(j in 1:N) {
207 for(k in 1:N) {
208 for(l in 1:N) {
209 pie[k, l] ←sum((f(R, i)*f(R, j)*f(R, k)*f(R, l) -
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210 cokurt[i,(l + (k - 1)*N + (j - 1)*(N^2))])^2)/T
211 }
212 }
213 p ← cbind(p, pie)
214 }
215 }
216 return(p[, 2:(N^3 + 1)])
217 }
218

219 #Asymptotic covariance for kurtosis by single-index
220 AsyCov_K ←function(f, R=R, n = 0, x, y, z,v) {
221 o ← (f(R,x)*f(R,y)*f(R,z)*f(R,v) - M4[x,(v + (z - 1)*N + (y - 1)*(N^2))])
222 if(n == 0) {
223 return(sum((f(R,x)*(M-mean(M)) - mrktcov(R,x))*o)/T)
224 } else if(n == "e") {
225 return(sum((et[,x]^2 - e(2)[x])*o)/T)
226 } else {
227 return(sum(((M - mean(M))^n - mrktmom(n))*o)/T)
228 }
229 }
230

231 # Asymptotic covariance of single-index cokurtosis
232 l1 ← 0; l2 ←0; l3 ←0; l4 ←0; l5 ←0; l6 ←0
233 for(i in 1:N) {
234 for(j in 1:N) {
235 if(i != j) { #for riiij & riijj
236 iiij ←list(f=ex_ri,R=R,y=i,z=i); iijj ←list(f=ex_ri,R=R,y=i,v=j)
237 l4 ← (l4 + 3*((cm[j]*e(2)[i]/mu_02)*do.call(AsyCov_K, c(iiij,x=i,v=j)) +
238 (cm[i]*e(2)[i]/mu_02)*do.call(AsyCov_K, c(iiij,x=j,v=i)) -
239 (cm[i]*cm[j]*e(2)[i]/(mu_02^2))*do.call(AsyCov_K, c(iiij,n=2,x=i,v=j)) +
240 (cm[i]*cm[j]/mu_02)*do.call(AsyCov_K, c(iiij,n="e",x=i,v=j))))
241 l5 ← (l5 + (2*cm[i]*e(2)[j]/mu_02)*do.call(AsyCov_K, c(iijj,x=i,z=j)) -
242 ((cm[i]^2)*e(2)[j]/(mu_02^2))*do.call(AsyCov_K, c(iijj,n=2,x=i,z=j)) +
243 ((cm[i]^2)/mu_02)*do.call(AsyCov_K, c(iijj,n="e",x=j,z=i)) +
244 2*((cm[j]^2)*e(2)[i]/mu_02)*do.call(AsyCov_K, c(iijj,x=j,z=i)) -
245 ((cm[j]^2)*e(2)[i]/(mu_02^2))*do.call(AsyCov_K, c(iijj,n=2,x=i,z=j)) +
246 ((cm[j]^2)/mu_02)*do.call(AsyCov_K, c(iijj,n="e",x=i,z=j)) +
247 e(2)[j]*do.call(AsyCov_K, c(iijj,n="e",x=i,z=j)) +
248 e(2)[i]*do.call(AsyCov_K, c(iijj,n="e",x=j,z=i)))
249 }
250 for(k in 1:N) {
251 if(i != j & i != k & j != k) { #for riijk
252 iijk ←list(f=ex_ri,R=R,y=i)
253 l6 ← (l6 + (cm[k]*e(2)[i]/mu_02)*do.call(AsyCov_K, c(iijk,x=j,z=i,v=k)) +
254 (cm[j]*e(2)[i]/mu_02)*do.call(AsyCov_K, c(iijk,x=k,z=i,v=j)) -
255 (cm[j]*cm[k]*e(2)[i]/(mu_02^2))*do.call(AsyCov_K, c(iijk,n=2,x=i,z=j,v=k)) +
256 (cm[j]*cm[k]/mu_02)*do.call(AsyCov_K, c(iijk,x=i,z=j,v=k)))
257 }
258 for(l in 1:N) {
259 if(i != j | i != k | i != l) { #for rijkl
260 ijkl ←list(f=ex_ri,R=R,x=i,y=j,z=k,v=l)
261 l1 ← (l1 + do.call(AsyCov_K, ijkl)*cm[j]*cm[k]*cm[l]*
262 mu_04/(mu_02^4))
263 l2 ← (l2 + do.call(AsyCov_K, c(ijkl,n=2))*cm[i]*cm[j]*
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264 cm[k]*cm[l]*mu_04/(mu_02^5))
265 l3 ← (l3 + do.call(AsyCov_K, c(ijkl,n=4))*cm[i]*cm[j]*
266 cm[k]*cm[l]/(mu_02^4))
267 }
268 }
269 }
270 }
271 }
272

273 r_spes ←4*l4 + 3*l5 + 6*l6
274 rho4 ←r_diag + (4*l1 - 4*l2 + l3) + r_spes
275

276 # Asymptotic covariance of single-index- and sample cokurtosis matrix (gamma)
277 gamma4 ←sum((cokurt - M4)^2)
278

279 # Shrinkage Intensity
280 k4 ← (pie4 - rho4)/gamma4
281 a4 ← max(0, min(1, k4/T))
282

283 # Shrinkage estimate of cokurtosis matrix
284 sM4 ← a4*cokurt + (1 - a4)*M4
285

286 shrink_list ←list(sM1, sM2, sM3, sM4)
287 return(shrink_list)
288 }
289 x ← rep(0, length(m))

Listing 3: Apply portfolio constraints

290 # Apply (1) / Exclude (0) turnover constraint
291 constraint_t ←1
292 # Specify the turnover constraint, reset constraint if excluded
293 turnoverrate ← 0.05; if(constraint_t==0){turnoverrate ←0}
294

295 # Apply (1) / Exclude (0) diversification constraint
296 constraint_d ←1
297 # Specify the diversification constraint, reset constraint if excluded
298 divrate = 0.6; if(constraint_d==0){divrate ←0}

Listing 4: Maximization of portfolio mean (Formula 50)

300 optmean ←function(m, N, div = 0, tr = Inf, oldw = NULL) {
301 cqo1 ←list(sense = "max"); cqo1$c ←m
302 if(div == 0) {
303 # If no diversification- and turnover constraint
304 if(tr == Inf) {
305 # Return maximum mean
306 x ← rep(0, length(m))
307 for(i in 1:length(m)) {
308 if(m[i]==max(m)) {
309 x[i] ←1
310 break
311 } else {
312 x[i] ←0
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313 }
314 }
315 return(x)
316 } else {
317 m1 ← c(as.numeric(m), rep(0,2*N)); cqo1$c ←c(m,rep(0,(2*N)))
318 #Full-investment and turnover constraint
319 cqo1$A ←Matrix(rbind(rbind(c(rep(1,N),rep(0,2*N)),
320 c(rep(0,N),rep(1,2*N))), cbind(diag(1,N),
321 diag(-1,N),diag(1,N))), sparse = TRUE)
322 cqo1$bc ←rbind(blc = c(1,-Inf, oldw), buc = c(1,tr, oldw))
323 #Inequality constraint: long-only
324 cqo1$bx ←rbind(blx = rep(0,3*N), bux = c(rep(Inf,(3*N))))
325 #Solve optimization procedure by interior-point method
326 return(mosek(cqo1, opts = list(verbose = 1))$sol$itr$xx[1:N])
327 }
328 #
329 } else {
330 # If diversification constraint, but no turnover constraint
331 if(tr == Inf) {
332 #Equality constraint: Full-investment
333 cqo1$A ←Matrix(c(rep(1,N), rep(0,N)), nrow=2, byrow=TRUE, sparse=TRUE)
334 oprc ←sapply(1:N, function(j) list("POW", 2, j, 1, 2, 0))
335 rownames(oprc) ←c("type","i","j","f","g","h")
336 cqo1$scopt ←list(oprc=oprc)
337 cqo1$bc ←rbind(blc = c(1,-Inf), buc = c(1,(1-div)))
338 #Box constraints: long-only
339 cqo1$bx ←rbind(blx = rep(0,N), bux = rep(1,N))
340 #Solve optimization procedure by interior-point method
341 return(mosek(cqo1, opts = list(verbose = 1))$sol$itr$xx[1:N])
342 # If diversification- and turnover constraint
343 } else {
344 m1 ← c(as.numeric(m), rep(0,2*N)); cqo1$c ←c(m,rep(0,(2*N)))
345 #Full-investment, diversification-, and turnover constraint
346 cqo1$A ←Matrix(rbind(rbind(c(rep(1,N),rep(0,2*N)),
347 c(rep(0,N),rep(1,2*N))), cbind(diag(1,N),
348 diag(-1,N),diag(1,N)), rep(0,3*N)), sparse = TRUE)
349 oprc ←sapply(1:N, function(j) list("POW", (N+3), j, 1, 2, 0))
350 rownames(oprc) ←c("type","i","j","f","g","h")
351 cqo1$scopt ←list(oprc=oprc)
352 cqo1$bc ←rbind(blc = c(1,-Inf, oldw,-Inf), buc = c(1,tr, oldw,(1-div)))
353 #Inequality constraint:
354 cqo1$bx ←rbind(blx = rep(0,3*N), bux = c(rep(Inf,(3*N))))
355 #Solve optimization procedure by interior-point method
356 return(mosek(cqo1, opts = list(verbose = 1))$sol$itr$xx[1:N])
357 }
358 }
359 }

Listing 5: Minimization of portfolio variance (Formula 50)

360 optvar ←function(Q, N, div = 0, tr = Inf, oldw = NULL) {
361 qo1 ← list(sense = "min")
362 # If no diversification- and turnover constraint
363 if(div== 0) {
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364 if(tr == Inf) {
365 n ← (1+nrow(Q))*(nrow(Q)/2); qo1$c ←rep(0,N)
366 i ← do.call(c,sapply(1:N, function(i) seq(i,N)))
367 j ← do.call(c,sapply(1:N, function(j) rep(j, (N+1-j))))
368 v ← as.numeric((2*sapply(1:n, function(x,Q) Q[j[x],i[x]], Q=Q)))
369 qo1$qobj ←list(i = c(i),j = c(j), v= c(v))
370 # Constraints: Full investments
371 qo1$A ←Matrix(rep(1,N), nrow=1, byrow=TRUE, sparse=TRUE)
372 qo1$bc ←rbind(blc = 1, buc = 1)
373 # Box constraints: Long-only
374 qo1$bx ←rbind(blx = rep(0.0,N), bux = rep(1.0,N))
375 # Solve optimization procedure by interior-point method
376 return(mosek(qo1, opts = list(verbose = 1))$sol$itr$xx[1:N])
377 # If turnover constraint, but no diversification constraint
378 } else {
379 Q ← cbind(rbind(Q,matrix(0,2*N,N)), matrix(0,3*N,2*N)); qo1$c ←c(rep(0,(3*N)))
380 n ← (1+nrow(Q))*(nrow(Q)/2)
381 i ← do.call(c,sapply(1:(3*N), function(i) seq(i,3*N)))
382 j ← do.call(c,sapply(1:(3*N), function(j) rep(j, (3*N+1-j))))
383 v ← as.numeric((2*sapply(1:n, function(x,Q) Q[j[x],i[x]], Q=Q)))
384 qo1$qobj ←list(i = c(i),j = c(j), v= c(v))
385 # Full-investment and turnover constraint
386 qo1$A ←Matrix(rbind(rbind(c(rep(1,N),rep(0,2*N)), c(rep(0,N),rep(1,2*N))),
387 cbind(diag(1,N), diag(-1,N),diag(1,N))), sparse = TRUE)
388 qo1$bc ←rbind(blc = c(1,-Inf, oldw), buc = c(1,tr, oldw))
389 # Inequality constraint: Portfolio with basic constraints
390 qo1$bx ←rbind(blx = rep(0.0,3*N), bux = c(rep(Inf,(3*N))))
391 # Solve optimization procedure by interior-point method
392 return(mosek(qo1, opts = list(verbose = 1))$sol$itr$xx[1:N])
393 }
394 # If diversification constraint, but no turnover constraint
395 } else {
396 if(tr == Inf) {
397 n ← (1+nrow(Q))*(nrow(Q)/2); qo1$c ←rep(0,N)
398 i ← do.call(c,sapply(1:N, function(i) seq(i,N)))
399 j ← do.call(c,sapply(1:N, function(j) rep(j, (N+1-j))))
400 v ← as.numeric((2*sapply(1:n, function(x,Q) Q[j[x],i[x]], Q=Q)))
401 qo1$qobj ←list(i = c(i),j = c(j), v= c(v))
402 # Constraints: Full investments & diversification
403 qo1$A ←Matrix(c(rep(1,N),rep(0,N)), nrow=2, byrow=TRUE, sparse=TRUE)
404 oprc ←sapply(1:N, function(j) list("POW", 2, j, 1, 2, 0))
405 rownames(oprc) ←c("type","i","j","f","g","h")
406 qo1$scopt ←list(oprc=oprc)
407 qo1$bc ←rbind(blc = c(1,-Inf), buc = c(1,(1-div)))
408 # Box constraints: Long-only
409 qo1$bx ←rbind(blx = rep(0,N), bux = rep(1,N))
410 # Solve optimization procedure by interior-point method
411 return(mosek(qo1, opts = list(verbose = 1))$sol$itr$xx[1:N])
412 # If diversification- and turnover constraint
413 } else {
414 Q ← cbind(rbind(Q,matrix(0,2*N,N)), matrix(0,3*N,2*N)); qo1$c ←c(rep(0,(3*N)))
415 n ← (1+nrow(Q))*(nrow(Q)/2)
416 i ← do.call(c,sapply(1:(3*N), function(i) seq(i,3*N)))
417 j ← do.call(c,sapply(1:(3*N), function(j) rep(j, (3*N+1-j))))
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418 v ← as.numeric((2*sapply(1:n, function(x,Q) Q[j[x],i[x]], Q=Q)))
419 qo1$qobj ←list(i = c(i),j = c(j), v= c(v))
420 # Full-investment, turnover and div constraint
421 qo1$A ←Matrix(rbind(rbind(c(rep(1,N),rep(0,2*N)), c(rep(0,N),rep(1,2*N))),
422 cbind(diag(1,N), diag(-1,N),diag(1,N)), rep(0,3*N)), sparse = TRUE)
423 oprc ←sapply(1:N, function(j) list("POW", (N+3), j, 1, 2, 0))
424 rownames(oprc) ←c("type","i","j","f","g","h")
425 qo1$scopt ←list(oprc=oprc)
426 qo1$bc ←rbind(blc = c(1,-Inf, oldw,-Inf), buc = c(1,tr, oldw,(1-div)))
427 # Inequality constraint:
428 qo1$bx ←rbind(blx = rep(0,3*N), bux = c(rep(Inf,(3*N))))
429 return(mosek(qo1, opts = list(verbose = 1))$sol$itr$xx[1:N])
430 }
431 }
432 }

Listing 6: Load modified DEoptim scripts from code "constrained_objective.R"

434 # Line numbers refer to the lines in "constrained_objective.R" found from
435 # https://github.com/R-Finance/PortfolioAnalytics/tree/master/R
436

437 # First step of PGP
438

439 # Formula 45 (G1c)
440 # Code 1: Function for maximization of skewness for MVS portfolio
441 source(".../TurnandDist/Step1/MVS_maxskew.R")
442 # Code 2: Function for maximization of skewness for MVSK portfolio
443 source(".../TurnandDist/Step1/MVSK_maxskew.R")
444

445 # Formula 46 (G1d)
446 # Code 3: Function for minimization of kurtosis for MVSK portfolio
447 source(".../TurnandDist/Step1/MVSK_minkurt.R")
448

449 # Second step of PGP
450

451 # Formula 47 (G2)
452 # Code 4: Function for minimizing Z (MV portfolio)
453 source(".../Moments/Step2/MV.R")
454 # Code 5: Function for minimizing Z (MVS portfolio)
455 source(".../Moments/Step2/MVS.R")
456 # Code 6: Function for minimizing Z (MVSK portfolio)
457 source(".../Moments/Step2/MVSK.R")
458

459 # Load dependent scripts to our modified DEoptim script
460 source(".../PortfolioAnalytics-master/R/utils.R")
461 source(".../PortfolioAnalytics-master/R/constraints.R")
462 source(".../PortfolioAnalytics-master/R/generics.R")

Listing 7: objective function for non-convex optimization problems

464 # Modified from "constrained_objective.R"
465 # First step of PGP
466 # Formula 39 (G1c) and Formula 40 (G1d)
467 # For Code 1 and 2: Maximize Skew (G1c) for MVS- and MVSK portfolio
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468 #(Formula 39 excl. constraints)
469 # "-" used to convert the equation to a maximization problem from a minimization problem.
470 tmp_measure ←-((w%*%sM3%*%kronecker(transpose(w),transpose(w)))/
471 ((w%*%sM2d%*%transpose(w))^1.5))
472

473 # For Code 3: Compute the minimum kurtosis (G1d) for MVSK portfolio
474 #(Formula 40 excl. constraints)
475 tmp_measure ←((w%*%sM4%*%kronecker(kronecker(transpose(w),transpose(w)),
476 transpose(w)))/((w%*%sM2d%*%transpose(w))^2))w%*%sM3%*%kronecker(transpose(w),
477 transpose(w)))/((w%*%sM2d%*%transpose(w))^1.5))
478

479 # Second step of PGP
480 # Formula 41 (G2)
481

482 # For Code 4: Compute PGP (Step 2) for the MV portfolio (Formula 7)
483 # The skewness and kurtosis expressions in PGP equal 1, the skewness and kurtosis
484 # expression are adapted from Code 6
485 tmp_measure ←(abs((mvRet - m%*%transpose(w))/mvRet)^1 + abs((w%*%sM2%*%transpose(w) - mvV)/mvV)^1)
486 abs((mvskSk - ((w%*%sM3%*%kronecker(transpose(w),transpose(w)))/((w%*%sM2d%*%transpose(w))^1.5)))/
487 mvsSk)^0 + abs((((w%*%sM4%*%kronecker(kronecker(transpose(w),transpose(w)),transpose(w)))/
488 (w%*%sM2d%*%transpose(w))^2) - mvskk)/mvskk)^0)
489

490 # For Code 5: Compute PGP (Step 2) for the MV portfolio (Formula 7)
491 # The kurtosis expression in PGP equal 1, the kurtosis expression is adapted from Code 6
492 tmp_measure ←(abs((mvsRet - m%*%transpose(w))/mvsRet)^1 + abs((w%*%sM2%*%transpose(w) - mvsV)/
493 mvsV)^1 + abs((mvsSk - ((w%*%sM3%*%kronecker(transpose(w),transpose(w)))/
494 ((w%*%sM2d%*%transpose(w))^1.5)))/mvsSk)^1) + abs((((w%*%sM4%*%kronecker(kronecker(transpose(w),
495 transpose(w)),transpose(w)))/(w%*%sM2d%*%transpose(w))^2) - mvskk)/mvskk)^0)
496

497 # For Code 6: Compute PGP (Step 2) for the MVSK portfolio (Formula 7)
498 tmp_measure ←(abs((mvskRet - m%*%transpose(w))/mvskRet)^1 + abs((w%*%sM2%*%transpose(w) - mvskV)/
499 mvskV)^1 + abs((mvskSk - ((w%*%sM3%*%kronecker(transpose(w),transpose(w)))/
500 ((w%*%sM2d%*%transpose(w))^1.5)))/mvsSk)^1 + abs((((w%*%sM4%*%kronecker(kronecker(transpose(w),
501 transpose(w)),transpose(w)))/(w%*%sM2d%*%transpose(w))^2) - mvskk)/mvskk)^1)

Listing 8: Diversification penalty

503 # Apply diversification constraint if added, skip otherwise
504 if(!is.null(constraints$div_target)){
505 # Define diversification target (Formula: 7)
506 div_target ←constraints$div_target
507 # Calculate the diversification rate for the estimated weights
508 div ← diversification(w)
509 # Penalize the portfolio if the div.rate is lower than div. target (Formula: 7)
510 if((div < div_target) | (div > 1)){
511 out ← out + penalty * abs(div - div_target)
512 }
513 }

Listing 9: Turnover penalty

515 # Apply diversification constraint if added, skip otherwise
516 if(!is.null(constraints$turnover_target)){
517 # Define turnover target (Formula: 8)
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518 turnover_target ←constraints$turnover_target
519 # Changes in Code 4 for the MV weights
520 # Calculate the turnover rate from the last to next quarter
521 to ← turnover(w, mvlw)
522 # Penalize the portfolio if the turnover rate is above the turnover target (Formula 8)
523 if((to < turnover_target * 0) | (to > turnover_target)){
524 out = out + penalty * mult * abs(to - turnover_target)
525 }
526 }
527

528 # Code 1 and 5: Customized penalties for the MVS portfolio
529 to ← turnover(w, mvslw)
530 # Code 2,3 and 6: Customized penalties for the MVS portfolio
531 to ← turnover(w, mvsklw)

Listing 10: Adjust objective function to include penalties

533 out ← out + abs(objective$multiplier)*tmp_measure
534 # out is calculated from the penalties of the div. constraint
535 # and turn. constraint
536 # tmp_measure is the objective function excluding div. and turn. constraint

Listing 11: Dynamic portfolio optimization

537 # Length of estimation window (trading days)
538 L ← 261
539 # Number of portfolio revisions
540 K ← 80
541

542 for(i in 1:K) {
543 for(o in 1:nrow(ln_returns)) {
544 # search column for the "i+4" for the first date of the estimation period
545 # Replace aggreb4 med aggreb
546 if (ln_returns$aggreb4[o] == (i+4)) {
547 # acquire the row number for the first date of the estimation period
548 number ←ln_returns$obs[o+1]
549 }
550 }
551 # extract the first day of the estimation period
552 a ← c(index$Date[1 + number-L])
553 # extract the last day of the estimation period
554 b ← c(index$Date[number-1])
555 # store the date for the start of the start of the forecast period
556 date[i,] ←c(index$Date[number])
557

558 for(o in 1:nrow(ln_returns)) {
559 # search column for the "i+5" for the last date of the forecast period
560 if (ln_returns$aggreb4[o] == (i+5)) {
561 # acquire the row number for the last date of the forecast period
562 number2 ←ln_returns$obs[o]
563 }
564 }
565

566 # Generate the length of the forecast period
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567 # H is the length of the holding period
568 H ← (number2 - number)
569 # Extract the rolling period using the eXtensible Time Series (xts) package
570 R2 ← (window(index, start = a, end = b))
571 # Convert the extracted rolling period to a data frame
572 R ← as.data.frame(window(index, start = a, end = b))
573

574 # Repeat the procedure for the market vector
575 M ← num(window(market, start = a, end = b))
576

577 # Acquire the time period for the estimated period
578 T ← nrow(R)
579 # Acquire the number of stocks for the estimated period
580 N ← ncol(R)
581

582 # Extract shrinkage estimates
583 m ← shrink_list[[1]]
584 sM2 ← shrink_list[[2]]
585 sM3 ← shrink_list[[3]]
586 sM4 ← shrink_list[[4]]
587

588 # Specify turnover constraint and assign weight for previous date
589 if(i == 1) {
590 # set last year's weights to null
591 mvplw ←NULL; mvslw ←NULL; mvklw ←NULL; mvsklw ←NULL; mvlw ←NULL
592 # store turnoverrate
593 secondturnover ←turnoverrate
594 # set turnover rate to inf
595 turnoverrate ←Inf
596 } else {
597 # set stored turnover rate to the second period
598 if((constraint_t == 1)&(i == 2)) {
599 turnoverrate ←secondturnover
600 }
601 if(constraint_t==1) {
602 # read last year's weights (assign to variable)
603 mvplw ←as.double(W1[(i - 1),-(1:1)])
604 mvlw ←as.double(W2[(i - 1),-(1:1)])
605 mvslw ←as.double(W3[(i - 1),-(1:1)])
606 mvsklw ←as.double(W4[(i - 1),-(1:1)])
607 }
608 }
609

610 # Diversification constraint follows the same formula for all portfolios
611 # divrate ←0 is equivalent to no diversification constraint
612

613 # Interior-point method to solve maximization of mean
614 res$mvuw ←optmean(m=m,N=N,div=divrate,tr=turnoverrate*N,oldw=mvlw); mvRet ←m%*%res$mvuw
615 res$mvsuw ←optmean(m=m,N=N,div=divrate,tr=turnoverrate*N,oldw = mvslw); mvsRet ←m%*%res$mvsuw
616 res$mvskuw ←optmean(m=m,N=N,div=divrate,tr=turnoverrate*N,oldw=mvsklw); mvskRet ←m%*%res$mvskuw
617

618 # Interior-point method to solve maximization of minimum variance
619 wvV ← optvar(Q=sM2, N=N, div=divrate, tr=turnoverrate*N, oldw=vlw); vV ←variance(wvV)
620 wmvV ←optvar(Q=sM2, N=N, div=divrate, tr=turnoverrate*N, oldw=mvlw); mvV ←variance(wmvV)

102



621 wmvsV ←optvar(Q=sM2, N=N, div=divrate, tr=turnoverrate*N, oldw=mvslw); mvsV ←variance(wmvsV)
622 wmvskV ←optvar(Q=sM2, N=N, div=divrate, tr=turnoverrate*N, oldw=mvsklw); mvskV ←variance(wmvskV)
623

624 # Set constraints and specify the settings for DEoptim
625 funds ←colnames(R2)
626 init.portf ←portfolio.spec(assets=funds)
627 init.portf ←add.constraint(portfolio=init.portf, type="full_investment")
628 init.portf ←add.constraint(portfolio=init.portf, type="long_only")
629 init.portf ←add.objective(portfolio=init.portf, type="risk", name="StdDev")
630 init.portf ←add.constraint(portfolio=init.portf, type="weight_sum",
631 min_sum=0.99, max_sum=1.01)
632 if(constraint_d ==1) {init.portf ←add.constraint(portfolio=init.portf,
633 type="diversification", div_target=divrate)}
634 if((i > 1)&(constraint_t == 1)) {init.portf ←add.constraint(portfolio=init.portf,
635 type="turnover", turnover_target=turnoverrate)}
636

637 # Apply settings for DEoptim
638 portfolio = init.portf
639 optimize_method="DEoptim"
640 search_size=20000
641 trace=TRUE
642 momentFUN='set.portfolio.moments'
643 parallel = TRUE
644 rp=NULL
645

646 N ← length(portfolio$assets)
647 if (ncol(R) > N) {
648 R ← R[,names(portfolio$assets)]
649 }
650

651 out ← list(); weights ←NULL
652 constraints ←get_constraints(portfolio)
653 .formals ←formals(momentFUN)
654 .formals ←modify.args(formals=.formals, arglist=NULL, dots=FALSE)
655 .formals ←modify.args(formals=.formals, arglist=NULL, R=R, dots=FALSE)
656 .formals ←modify.args(formals=.formals, arglist=NULL, portfolio=portfolio, dots=FALSE)
657 .formals$... ←NULL
658

659 if(optimize_method == "DEoptim"){
660 stopifnot("package:DEoptim" %in% search() || require("DEoptim",quietly = TRUE))
661

662 if(hasArg(itermax)) itermax=match.call(expand.dots=TRUE)$itermax else itermax=N*50
663

664 #Specify parameters according to section 3.3.4
665 NP ← round(search_size/itermax)
666 # Set population size
667 if(NP < (N * 15)) NP ←N * 15
668 if(!hasArg(itermax)) {
669 itermax ←round(search_size / NP)
670 #set minimum number of generations
671 if(itermax < 20000) itermax ←20000
672 }
673

674 # Store settings for DEoptim
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675 DEcformals ←formals(DEoptim.control)
676 DEcargs ←names(DEcformals)
677 pm ← pmatch(names(dotargs), DEcargs, nomatch = 0L)
678 names(dotargs[pm > 0L]) ←DEcargs[pm]
679 DEcformals$NP ←NP
680 DEcformals$itermax ←itermax
681 DEcformals[pm] ←dotargs[pm > 0L]
682

683 # Our specification of DEoptim parameters
684 # use DE/current-to-p-best/1 (Formula 61)
685 if(!hasArg(strategy)) DEcformals$strategy=6
686 # 1/1000000 of 1% change in objective is significant
687 if(!hasArg(reltol)) DEcformals$reltol=1/1000000
688 # number of assets times 50 tries to improve
689 if(!hasArg(steptol)) DEcformals$steptol=N*50
690 # JADE mutation parameter (set by default)
691 if(!hasArg(c)) DEcformals$c=.4
692 if(!hasArg(storepopfrom)) DEcformals$storepopfrom=1
693 }
694

695 # Add constraint for lower and upper bound (Formula 58)
696 traceDE=FALSE; DEcformals$trace ←traceDE; upper ←constraints$max; lower ←constraints$min
697

698 # Additional settings for DEoptim
699 if(hasArg(rp_method)) rp_method=match.call(expand.dots=TRUE)$rp_method else rp_method="sample"
700 if(hasArg(fev)) fev=match.call(expand.dots=TRUE)$fev else fev=0:5
701 rp ← random_portfolios(portfolio=portfolio, permutations=(NP+1),
702 rp_method=rp_method, eliminate=FALSE, fev=fev)
703 DEcformals$initialpop ←rp
704 controlDE ←do.call(DEoptim.control, DEcformals)
705 controlDE$trace ←1000; controlDE$itermax ←20000
706

707 # include these specification of DEoptim optimization in the do.call function
708 cond ←list(lower=lower[1:N], upper=upper[1:N], control=controlDE, R=R, portfolio=portfolio,
709 env=dotargs, normalize=FALSE, fnMap=function(x) fn_map(x, portfolio=portfolio)$weights)
710

711 # Please find the codes from Listing 6
712 # The function from the sourced code is indicated as
713 # the function before cond in the do.call function
714

715 # Step 1 in PGP
716 # Formula 39 (G1c)
717 # Code 1: Maximize skewness for MVS portfolio
718 maxsmvs = try(do.call(DEoptim, c(max_skew1,cond)), silent = FALSE)
719 wmvsSk ←maxsmvs$optim$bestmem; mvsSk ←-maxsmvs$optim$bestval
720 print(paste("Max Skewness Value (MVS) and Weights:", (mvsSk))); print(wmvsS,k)
721

722 # Code 2: Maximize skewness for MVSK portfolio
723 maxsmvsk = try(do.call(DEoptim, c(max_skew2,cond)), silent = FALSE)
724 wmvskSk ←maxsmvsk$optim$bestmem; mvskSk ←-maxsmvsk$optim$bestval; rm(maxsmvsk)
725 print(paste("Max Skewness Value (MVSK) and Weights:", (mvskSk)))
726

727 # Formula 40 (G1d)
728 # Code 3: Minimize kurtosis for MVSK portfolio
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729 minkmvsk = try(do.call(DEoptim, c(min_kurt,cond)), silent = FALSE)
730 wmvskk ←minkmvsk$optim$bestmem; mvskk ←minkmvsk$optim$bestval
731 print(paste("Min Kurtosis Value (MVSK) and Weights:", (mvskk))); print(wmvskk)
732

733 # Step 2 in PGP
734

735 # Formula 41 (G2)
736 # Code 4: Derive weight vector by minimizing Z (MV portfolio)
737 mv = try(do.call(DEoptim, c(o_mv,cond)), silent = FALSE)
738 mvweights ←mv$optim$bestmem; mvv ←mv$optim$bestval
739 rm(mv); gc(reset = TRUE)
740

741 # Code 5: Derive weight vector by minimizing Z (MVS portfolio)
742 mvs = try(do.call(DEoptim, c(o_mvs,cond)), silent = FALSE)
743 mvsweights ←mvs$optim$bestmem; mvsv ←mvs$optim$bestval
744 rm(mvs); gc(reset = TRUE)
745 print(paste("MVS and Weights:", (mvsv))); print(mvsweights)
746

747 # Code 6: Derive weight vector by minimizing Z (MVSK portfolio)
748 mvsk = try(do.call(DEoptim, c(o_mvsk,cond)), silent = FALSE)
749 mvskweights ←mvsk$optim$bestmem; mvskv ←mvsk$optim$bestval
750 rm(mvsk); gc(reset = TRUE)
751 print(paste("MVSK and Weights:", (mvskv))); print(mvskweights)
752 }
753

754 # Weights for the holding period:
755 w_V ← round(wvV,5)
756 w_MV ←round(mvweights/sum(mvweights),5)
757 w_MVS ←round(mvsweights/sum(mvsweights),5)
758 w_MVSK ←round(mvskweights/sum(mvskweights),5)
759 }

Listing 12: Hypothesis test

760 # Load monthly returns
761 mret ←read.csv("mrett.csv")
762 n = ncol(mret)
763

764 # Function for difference in moments
765 meandiff ←function(ret) { return(mean(ret[,1]) - mean(ret[,2]))}
766 vardiff ←function(ret) { return(log(var(ret[,1]))- log(var(ret[,2])))}
767 skewdiff ←function(ret) { return(skewness(ret[,1], method = "sample") -
768 skewness(ret[,2], method = "sample"))}
769 kurtdiff ←function(ret) { return(kurtosis(ret[,1], method = "sample_excess") -
770 kurtosis(ret[,2], method = "sample_excess"))}
771

772 # Alpha-component in SE for HAC
773 alpha ←function (V.hat){
774 dimensions = dim(V.hat)
775 T = dimensions[1]
776 p = dimensions[2]
777 o = 0; u = 0
778 for (i in (1:p)) {
779 # AR(1) with ols estimates
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780 fit = ar(V.hat[, i], 0, 1, method = "ols")
781 rho.hat = as.numeric(fit[2])
782 sig.hat = sqrt(as.numeric(fit[3]))
783 u = u + 4 * rho.hat^2 * sig.hat^4/(1-rho.hat)^8
784 o = o + sig.hat^4/(1 - rho.hat)^4
785 }
786 return(u/o)
787 }
788

789 # Parzen kernel estimate for Psi
790 Psi.hat ←function (V.hat, moment_num) {
791 T ← length(V.hat[, 1])
792 alpha.hat ←alpha(V.hat)
793 S.star ←2.6614*(alpha.hat*T)^0.2
794 Psi.hat ←compute.Gamma.hat(V.hat, 0)
795 j ← 1
796 while (j < S.star) {
797 Gamma.hat ←compute.Gamma.hat(V.hat, j)
798 Psi.hat ←Psi.hat + kernel.Parzen(j/S.star)*(Gamma.hat + t(Gamma.hat))
799 j ← j + 1
800 }
801 Psi.hat ←(T/(T-2*moment_num))*Psi.hat
802 return(Psi.hat)
803 }
804

805 # Asymptotic standard error for Parzen kernel for each moment
806 ste.pw ←function(ret, moment){
807 ret1 ←ret[, 1]
808 ret2 ←ret[, 2]
809 T ← length(ret1)
810 mu1.hat ←mean(ret1)
811 mu2.hat ←mean(ret2)
812

813 if(moment == "mean"){
814 moment_num ←1
815 # Gradient vector
816 gradient ←rep(0, 2)
817 gradient[1] ←1
818 gradient[2] ←-1
819 T ← length(ret1)
820 V.hat ← cbind(ret1 - mean(ret1), ret2 - mean(ret2))
821 A.ls ←matrix(0,2,2)
822 V.star ←matrix(0,(T-1),2)
823 reg1 ←V.hat[1:T-1,1]
824 reg2 ←V.hat[1:T-1,2]
825 for(j in 1:2) {
826 fit ← lm(V.hat[2:T,j] ~ -1 + reg1 + reg2)
827 A.ls[j,] ←as.numeric(fit$coef)
828 V.star[,j] ←as.numeric(fit$resid)
829 }
830 svd.A ←svd(A.ls); d ←svd.A$d; d.adj ←d
831 for(i in 1:2){
832 if(d[i] > 0.97){d.adj[i] ←0.97}
833 else if(d[i] < -0.97){d.adj[i] ←-0.97}
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834 }
835 A.hat ←svd.A$u%*%diag(d.adj)%*%t(svd.A$v)
836 D ← solve(diag(2) - A.hat)
837 reg.mat ←rbind(reg1, reg2)
838 for(j in 1:2) {
839 V.star[,j] ←V.hat[2:T,j]-A.hat[j,]%*%reg.mat
840 }
841 } else if(moment == "var"){
842 moment_num ←2
843 gamma1.hat ←mean(ret1^2)
844 gamma2.hat ←mean(ret2^2)
845 # Gradient vector
846 gradient ←rep(0, 4)
847 gradient[1] ←-2*mu1.hat/(gamma1.hat - mu1.hat^2)
848 gradient[2] ←2*mu2.hat/(gamma2.hat-mu2.hat^2)
849 gradient[3] ←1/(gamma1.hat-mu1.hat^2)
850 gradient[4] ←-1/(gamma2.hat-mu2.hat^2)
851 T ← length(ret1)
852 V.hat ←cbind(ret1 - mean(ret1), ret2 - mean(ret2),
853 ret1^2 - mean(ret1^2), ret2^2 - mean(ret2^2))
854 A.ls ←matrix(0,4,4)
855 V.star ←matrix(0,(T-1),4)
856 reg1 ←V.hat[1:T-1,1]
857 reg2 ←V.hat[1:T-1,2]
858 reg3 ←V.hat[1:T-1,3]
859 reg4 ←V.hat[1:T-1,4]
860 for(j in 1:4){
861 fit ← lm(V.hat[2:T,j] ~ -1 + reg1 + reg2 + reg3 + reg4)
862 A.ls[j,] ←as.numeric(fit$coef)
863 V.star[,j] ←as.numeric(fit$resid)
864 }
865 svd.A ←svd(A.ls)
866 d ← svd.A$d; d.adj ←d
867 for(i in 1:4){
868 if(d[i] > 0.97) {d.adj[i] ←0.97}
869 else if(d[i] < -0.97) {d.adj[i] ←-0.97}
870 }
871 A.hat ←svd.A$u%*%diag(d.adj)%*%t(svd.A$v)
872 D ← solve(diag(4) - A.hat)
873 reg.mat ←rbind(reg1, reg2, reg3, reg4)
874 for(j in 1:4){
875 V.star[,j] ←V.hat[2:T,j] - A.hat[j,]%*%reg.mat
876 }
877 } else if(moment == "skew"){
878 moment_num ←3
879 gamma1.hat ←mean(ret1^2)
880 gamma2.hat ←mean(ret2^2)
881 s1.hat ← mean(ret1^3)
882 s2.hat ←mean(ret2^3)
883 # Gradient vector
884 gradient ← rep(0,6)
885 gradient[1] ←(-3*gamma1.hat^2+3*mu1.hat*s1.hat)/((gamma1.hat-mu1.hat^2)^2.5)
886 gradient[2] ←-(-3*gamma2.hat^2+3*mu2.hat*s2.hat)/((gamma2.hat-mu2.hat^2)^2.5)
887 gradient[3] ←(-3*s1.hat+3*mu1.hat*gamma1.hat)/(2*(gamma1.hat-mu1.hat^2)^2.5)

107



888 gradient[4] ←-(-3*s2.hat+3*mu2.hat*gamma2.hat)/(2*(gamma2.hat-mu2.hat^2)^2.5)
889 gradient[5] ←1/((gamma1.hat-mu1.hat^2)^1.5)
890 gradient[6] ←-1/((gamma2.hat-mu2.hat^2)^1.5)
891 T ← length(ret1)
892 V.hat ← cbind(ret1 - mean(ret1), ret2 - mean(ret2),
893 ret1^2 - mean(ret1^2), ret2^2 - mean(ret2^2),
894 ret1^3 - mean(ret1^3), ret2^3 - mean(ret2^3))
895 A.ls ←matrix(0,6,6)
896 V.star ←matrix(0,T-1,6)
897 reg1 ←V.hat[1:T-1,1]
898 reg2 ←V.hat[1:T-1,2]
899 reg3 ←V.hat[1:T-1,3]
900 reg4 ←V.hat[1:T-1,4]
901 reg5 ←V.hat[1:T-1,5]
902 reg6 ←V.hat[1:T-1,6]
903 for(j in 1:6){
904 fit ← lm(V.hat[2:T,j] ~ -1 + reg1 + reg2 + reg3 + reg4 + reg5 + reg6)
905 A.ls[j,] ←as.numeric(fit$coef)
906 V.star[,j] ←as.numeric(fit$resid)
907 }
908 svd.A ←svd(A.ls)
909 d ← svd.A$d; d.adj ←d
910 for(i in 1:6){
911 if(d[i] > 0.97){d.adj[i] ←0.97}
912 else if(d[i] < -0.97){d.adj[i] ←-0.97}
913 }
914 A.hat ←svd.A$u%*%diag(d.adj)%*%t(svd.A$v)
915 D ← solve(diag(6)-A.hat)
916 reg.mat ←rbind(reg1,reg2,reg3,reg4,reg5,reg6)
917 for(j in 1:6){
918 V.star[,j] ←V.hat[2:T,j] - A.hat[j,]%*%reg.mat
919 }
920 } else if(moment == "kurtosis"){
921 moment_num ←4
922 gamma1.hat ←mean(ret1^2)
923 gamma2.hat ←mean(ret2^2)
924 s1.hat ← mean(ret1^3)
925 s2.hat ←mean(ret2^3)
926 k1.hat ←mean(ret1^4)
927 k2.hat ←mean(ret2^4)
928 # Gradient vector
929 gradient ← rep(0, 8)
930 gradient[1] ←(12*mu1.hat*gamma1.hat^2-12*(mu1.hat^2)*s1.hat+
931 4*mu1.hat*k1.hat-4*gamma1.hat*s1.hat)/((gamma1.hat-mu1.hat^2)^3)
932 gradient[2] ←-(12*mu2.hat*gamma2.hat^2-12*(mu2.hat^2)*s2.hat+
933 4*mu2.hat*k2.hat-4*gamma2.hat*s2.hat)/((gamma2.hat-mu2.hat^2)^3)
934 gradient[3] ←(-6*(mu1.hat^2)*gamma1.hat+8*mu1.hat*s1.hat
935 -2*k1.hat)/((gamma1.hat-mu1.hat^2)^3)
936 gradient[4] ←-(-6*(mu2.hat^2)*gamma2.hat+8*mu2.hat*s2.hat
937 -2*k2.hat)/((gamma2.hat-mu2.hat^2)^3)
938 gradient[5] ←-4*mu1.hat/((gamma1.hat-mu1.hat^2)^2)
939 gradient[6] ←4*mu2.hat/((gamma2.hat-mu2.hat^2)^2)
940 gradient[7] ←1/((gamma1.hat-mu1.hat^2)^2)
941 gradient[8] ←-1/((gamma2.hat-mu2.hat^2)^2)
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942 T ← length(ret1)
943 V.hat ←cbind(ret1-mean(ret1), ret2-mean(ret2), ret1^2-mean(ret1^2),
944 ret2^2-mean(ret2^2), ret1^3-mean(ret1^3), ret2^3-mean(ret2^3),
945 ret1^4-mean(ret1^4), ret2^4-mean(ret2^4))
946 A.ls ←matrix(0,8,8)
947 V.star ←matrix(0,T-1,8)
948 reg1 ←V.hat[1:T-1,1]
949 reg2 ←V.hat[1:T-1,2]
950 reg3 ←V.hat[1:T-1,3]
951 reg4 ←V.hat[1:T-1,4]
952 reg5 ←V.hat[1:T-1,5]
953 reg6 ←V.hat[1:T-1,6]
954 reg7 ←V.hat[1:T-1,7]
955 reg8 ←V.hat[1:T-1,8]
956 for(j in 1:8) {
957 fit ← lm(V.hat[2:T,j] ~ -1+reg1+reg2+reg3+reg4+reg5+reg6+reg7+reg8)
958 A.ls[j,] ←as.numeric(fit$coef)
959 V.star[,j] ←as.numeric(fit$resid)
960 }
961 svd.A ←svd(A.ls)
962 d ← svd.A$d; d.adj ←d
963 for(i in 1:8){
964 if(d[i] > 0.97){d.adj[i] ←0.97}
965 else if(d[i] < -0.97){d.adj[i] ←-0.97}
966 }
967 A.hat ←svd.A$u%*%diag(d.adj)%*%t(svd.A$v)
968 D ← solve(diag(8)-A.hat)
969 reg.mat ←rbind(reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8)
970 for(j in 1:8) {
971 V.star[,j] ←V.hat[2:T,j]-A.hat[j,]%*%reg.mat
972 }
973 }
974 ##Compute standard.error based on the chosen moment
975 Psi_hat ←D%*%Psi.hat(V.star, moment_num)%*%t(D)
976 se ← as.numeric(sqrt(t(gradient)%*%Psi_hat%*%gradient/T))
977 return(se)
978 }
979

980 # P-value for difference test w/HAC-standard errors
981 hac ← function(returns, moment, digits = 3) {
982 ret1 = returns[, 1]
983 ret2 = returns[, 2]
984

985 if(moment == "mean") {
986 # Difference between each portfolio's mean
987 Delta.hat ←meandiff(returns)
988 # Standard error
989 se.pw ←ste.pw(ret=returns, moment = "mean")
990 } else if(moment == "var") {
991 # Difference between each portfolio's log var
992 Delta.hat ←vardiff(returns)
993 # Standard error
994 se.pw ←ste.pw(ret=returns, moment = "var")
995 } else if (moment == "skew") {
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996 # Difference between each portfolio's skew
997 Delta.hat ←skewdiff(returns)
998 # Standard error
999 se.pw ←ste.pw(ret=returns, moment = "skew")
1000 } else if (moment == "kurtosis") {
1001 # Difference between each portfolio's excess kurtosis
1002 Delta.hat ←kurtdiff(returns)
1003 # Standard error
1004 se.pw ←ste.pw(ret=returns, moment = "kurtosis")
1005 }
1006 # Two-sided P-value
1007 PV.pw = 2*pnorm(-abs(Delta.hat)/se.pw)
1008 return(data.frame("Diff" = Delta.hat, "PV.pw" = PV.pw))
1009 }
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