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Preface

This dissertation presents the summary of the research work performed to obtain a PhD
degree in Logistics at Molde University College, Molde, Norway.

I have been employed by the college as a Research Fellow for four years and three months
starting from October 2011 until January 2016. The research was supervised by Associate
Professor Johan Oppen from Molde University College, Norway and Professor David L.
Woodruff from University of California, Davis, USA.

The dissertation consists of four papers and an introduction devoted to studies of stochas-
tic joint replenishment and capacitated lot-sizing problem. A general overview related to
the joint replenishment and the lot-sizing problems is provided in the introduction part of
the dissertation. Problem formulations given in the papers are based on the special case
of Stokke AS, and solution algorithms are tested on the data provided by the company.
The main attribute of the presented problem formulations, making them different from the
existent research, is the piecewise linear structure of transportation costs. To solve the
proposed problems author develops enumeration and stochastic programming algorithms.
To facilitate the stochastic programing algorithm a new method of scenario generation is
developed and presented in paper 2.

The evaluation committee for this work is Professor Maria Grazia Speranza from Universita
degli Studi di Brescia, Brescia, Italy, Professor Asgeir Tomasgard from Norwegian Univer-
sity of Science and Technology, Trondheim, Norway, and the local Associate Professor
Arild Hoff from Molde University College, Molde, Norway.
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Introduction

Inventory management as well as transportation is crucially important for a large num-
ber of companies operating in continuously changing markets. Since the introduction of
the single item economic order quantity (EOQ) model by F.Harris (1913), the problem of
trading off inventory costs against ordering (transportation) costs has been in focus of nu-
merous researchers. Nevertheless, challenges such as development of robust solution
methods for the coordinated stochastic lot-sizing problem still stand.

Joint replenishment and coordinated lot-sizing in a stochastic environment gained the at-
tention of the researchers a number of years ago. Sox et al. (1999) presented a review of
the literature on the stochastic economic lot scheduling problem (SELSP), considering the
stochastic capacitated lot sizing problem as a version of it. Khouja and Goyal (2008) pre-
sented the most recent review of the literature on the joint replenishment problem (JRP),
including a section on the stochastic JRP. They indicated a can-order policy (Balintfy, 1964)
among the first solution approaches developed to deal with the SJRP. Despite the broad
variety of literature on the topic, majority of the research simplify the structure of the trans-
portation costs, what complicates the implementation of the developed solution methods
on practice.

The focus of this thesis is on the development of solution methods for the stochastic joint
replenishment problem and coordinated stochastic lot-sizing problem with a piecewise lin-
ear structure of transportation costs. In the following, a brief review of inventory manage-
ment in a stochastic demand setting is given. After that, the contribution of this research
and the summary of the four papers are presented.

1.1 Inventory management in a stochastic demand envi-
ronment

Inventory management, as well as any other major part of Logistics and Supply Chain
Management, is broad and has roots in ancient times. One of the very first documented
examples of Inventory Management application on practice was presented in the Bible
(Genesis,41). The Egyptians collected harvest for seven productive years to supply the
demand for the next poor years. Since those times not much has changed, and inventory
management practitioners are dealing with all kind of problems of demand satisfaction
using the inventory.



Models and algorithms for coordinated lot-sizing and joint replenishment

The modern era of inventory management started with the introduction of the EOQ (eco-
nomic order quantity) formula (Harris, 1913) and an introduction of the general formulation
for the newsvendor problem (Arrow et al., 1951). Their combination led to the develop-
ment of a series of inventory replenishment policies (systems), each of which relies on
the function of the total costs, which includes, ordering, holding and backordering costs.
Robinson et al. (2009) considers the joint replenishment problem (JRP) and the economic
lot scheduling problem (ELSP) as the natural extensions to the EOQ model presented by
Harris (1913). According to Sox et al. (1999), the ELSP is a generalized version of the lot-
sizing problem. The stochastic joint replenishment problem and the stochastic lot-sizing
problem were taken as the starting point for the current research.

1.1.1 The Joint Replenishment Problem

Settings of the JRP include total inventory holding costs and ordering costs, consisting of
individual and joint setup costs, which are minimized over an infinite time horizon.

Table 1.1: Notation

Sets

K a set of integer multipliers
Parameters

TC total annual holding and ordering costs
i 1,2,...n, a product index
n number of products
S major ordering cost for each replenishment
si minor ordering cost, occurred if product i is ordered in a replenishment
hi annual holding cost of product i
di annual demand for product i
Ii,0 initial inventory of product i

Variables

T time interval between successive replenishments
ki integer multiplier of replenishment cycle length for each product i
Xi,t quantity of product i produced in period t
Ii,t inventory of product i in the end of period t
Yi,t ∈ {0, 1} decision variable indicating whether production of product i takes place

in period t (Yi,t = 1)

The classical formulation for the JRP are presented below using the notation from Table
1.1:

minTC (T, K) =
T

2

n∑

i=1

kidihi +

(
S +

∑n
i=1

si
k1

)

T
(1.1)

While solving the JRP problem one aims to find an optimal length of the replenishment
cycle interval and a set of integer multipliers. Shifting from the deterministic demand to
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. Introduction

the stochastic leads to the inclusion of safety stock and backordering (lost sales) costs in
the model. Khouja and Goyal (2008) presented the most recent review of the literature
on this topic. They indicated the two most common policies to deal with the problem: a
periodic review policy and a can-order policy.

One of the first periodic review policies was developed by Atkins and Iyogun (1988). They
proposed a (T, Mi) policy, where all the products were reviewed after time interval T
and ordered up to the level Mi. Viswanathan (1997) developed a periodic (m, M ) policy.
Following this policy, all items are review each T time units, and items with inventory lower
then mi level are ordered to Mi level. If to fix the time interval T , than the optimal pair
(m, M ) can be found using the Zheng and Federgruen (1991) algorithm.

Another class of policies can be related to the can-order policy type, which assumes a
continuous review of inventory level. Whenever inventory for any of the products drops
down to the must-order level, mi, this product is replenished up to level Mi. All other
products j 6= i with inventory level lower than the can-order level, cj, are also ordered to
the level Mj. According to Pantumsinchai (1992), the can-order policy outperforms the
periodic review policy for problems with small ordering costs. Melchiors (2002) proposed
an improvement to the can-order policy, which was further developed by Johansen and
Melchiors (2003). The compensation approach developed by the authors indicates that
the major ordering costs assigned to the product considered for replenishment should
be discounted by the expected value of the benefit of other products with low-inventory
included in the order.

A policy proposed by Ozkaya et al. (2006) combined features of the periodic review
and the can-order policies. Following this policy, the inventory level is reviewed continu-
ously and whenever aggregated demand reaches level A, or time since last replenishment
reaches T units, the order for all products is placed up to level Mi. Compared to the mod-
ified periodic review policy and can-order policy with compensation approach, this policy
demonstrated 1,14% cost improvement from the second best policy for 100 out of 139
instances from Atkins and Iyogun (1988) and Viswanathan (1997).

The model discussed in Paper 1, presented later, is based on the periodic review replen-
ishment system, determining the optimal pair of review period length and upper level of
inventory. The analyzed problem differs from the previous research on the topic by inclu-
sion of heterogeneous fleet where an unlimited number of vehicles of different sizes are
used for transportation, and both full truck and less than full truck loads are allowed. This
leads to the replacement of minor ordering costs by direct transportation costs, which are
no longer linear and not continuous. The author developed an algorithm capable to solve
such problems to optimality for instances of real world size.

1.1.2 The Lot-Sizing Problem

Paper 2 and 3 of this thesis are devoted to the solution of the coordinated capacitated
stochastic lot-sizing Problem. The lot-sizing problem (LSP) is another extension of the
EOQ problem. As apposed to the solution of the JRP, which is a production (ordering)
policy, the solution of the LSP is a production (ordering) plan for a finite time horizon.

3
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The classical formulation for the deterministic LSP is presented below using the notation
from Table 1.1:

Table 1.2: Formulation for the deterministic uncapacitated LSP

minTC =
n∑

i=1

τ∑

t=1

(SYi,t + hiIi,t) (1.2)

Subject to:

Ii,t−1 +Xi,t = di,t + Ii,t, ∀ i = 1, .., n, t = 1, ..., τ (1.3)

Xi,t ≤ Yi,t

τ∑

t=1

di,t, ∀ i = 1, .., n, t = 1, ..., τ (1.4)

Xi,t ≥ 0, ∀ ∀ i = 1, .., n, t = 1, ..., τ (1.5)

Ii,t ≥ 0, ∀ ∀ i = 1, .., n, t = 1, ..., τ (1.6)

Yi,t ∈ {0, 1} , ∀ ∀ i = 1, .., n, t = 1, ..., τ (1.7)

While solving this variant of the LSP one aims to minimize the sum of the setup and in-
ventory costs, satisfying the demand. Different extensions to the classical LSP are best
presented with the use of the taxonomy proposed by Robinson et al. (2009) (Figure 1.1).
The authors applied the taxonomy to classify the literature on the problems under de-
terministic dynamic demand, but it also suits the problems with stochastic demand as
well.

The focus of the present thesis is on multi-item problems. The amount of literature on
such problems with stochastic demand is limited. Authors have mostly concentrated on
the development of models and algorithms for the multi-item capacitated lot-sizing prob-
lems (MCLSP). Sox and Muckstadt (1999) were among the first dealing with the problem.
They modified the formulation of the economic lot-scheduling problem to adapt it for the
finite, discrete time horizon settings. The solution to the problem was found with use of
a heuristic. Brandimarte (2006) reformulated the problem as a plant-location model and
used a Stochastic Programming approach (see (King and Wallace, 2010)) to deal with it.
He implemented a node based multi stage scenario tree and used the time-sweep heuris-
tic to solve the resulting problem. Tempelmeier and Herpers (2010) and later Tempelmeier
(2011) used a target service level βn, limiting the expected number of backordered items in
each production cycle to model the stochastic MCLSP. Tempelmeier and Herpers (2010)
used an ABCβ heuristic to deal with the problem while Tempelmeier (2011) implemented
a column generation heuristic. Helber et al. (2013) introduced σ− service level represent-

4
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Figure 1.1: Taxonomy of lot-sizing problems by Robinson et al. (2009)

ing the expected percentage of the maximum possible demand-weighted waiting time that
the customers of product n are protected against. A fix-and-optimize heuristic was used to
solve the problem. The same type of heuristic was used by Tempelmeier and Hilger (2015)
to solve the problem, where non-linear functions of the expected inventory and backorders
were replaced by piecewise linear functions.

Papers 3 and 4 of this thesis are dealing with the coordinated capacitated lot-sizing
problem under stochastic demand (CSCLSP), previously not addressed in the literature.
A Stochastic Programming approach is proposed as the solution method for the prob-
lem.

1.2 Scientific contribution and summary of papers

The present thesis consists of four papers. They are united along the core problem which
is joint replenishment and coordinated lot-sizing under stochastic demand and nonlinear
transportation cost function requirements. Scientific contribution and summary of the pa-
pers is given below.

5
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Paper 1 - Minimization of Transportation and Inventory Costs in a Multi-Product
Probabilistic Demand Environment

Paper 1 is devoted to the developing of a model and a solution algorithm for a modified
version of the stochastic joint replenishment problem. The contribution of the paper to the
literature on the topic is in explicit consideration of transportation costs versus inventory
costs without significant simplification of any of them in a multi-item, stochastic demand,
and heterogeneous vehicle fleet setting. The model and the solution algorithm presented
in the paper are tested on real world data from Stokke AS, characterized by about 100
products, a one year business cycle and two container sizes. The computational perfor-
mance of the algorithm shows the potential for practical usefulness of the algorithm.

The paper is a result of joint work with my supervisors Professor David L. Woodruff and
Associate Professor Johan Oppen. The model and algorithm development and implemen-
tation is done by the author of this PhD thesis with guidance of supervisors. The paper is
submitted for publication to OR Spectrum.

Preliminary paper results were presented at Informs Annual Meettings 2012 in Phoenix,
Arizona, USA, October 12-17, 2012.

Paper 2 - Multi-stage scenario generation by the combined moment matching and
scenario reduction method

This paper describes the opportunity to speed up multi-stage scenario generation by com-
bination of the moment matching method (Høyland and Wallace, 2001) and the method
for scenario reduction to approximately minimize a metric (Heitsch and Römisch, 2009).
The proposed method helps to improve the scenario generation process and is used to
obtain scenarios for the coordinated capacitated stochastic lot-sizing problem discussed
in paper 3.

The method was developed by the author with the help of supervisors Professor David L.
Woodruff and Associate Professor Johan Oppen. The paper is published in the journal
Operations Research Letters, Volume No. 42 2014, pages 374-377. The paper was
also presented at the conference LOT- Logistics, optimization and transportation 2014,
September 1-2, in Molde, Norway.

Paper 3 - A Stochastic Programming Approach to solve a Coordinated Capacitated
Stochastic Dynamic Demand Lot-Sizing Problem with Emergency Supplies

The paper addresses a Coordinated Capacitated Stochastic Dynamic Demand Lot-Sizing
Problem previously not discussed in the literature. We have developed a mathematical
model to deal with the problem and solved it for a real world case from Stokke using the
Stochastic Programming approach (King and Wallace, 2010). To test the advantage of
the stochastic model with respect to a deterministic model, the production plan in a rolling
horizon setting was applied. The total cost of the solution for the stochastic model was
51.4% lower than the one for the deterministic model.

The paper uses the scenario generation method discussed in paper 2 to implement the
Stochastic Programming solution approach. Discussiones with Professor David L. Woodruff

6
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and Associate Professor Johan Oppen helped to formulate the final model and summa-
rize the results. TThe paper is submitted to International Journal of Logistics Systems and
Management.

An early version of the paper was presented at 2013 INFORMS Computing Society Con-
ference at Santa Fe, New Mexico, USA, January 6-8, 2013. The model was presented at
Informs Annual Meettings 2013 in Minneapolis, USA, October 6-9, 2013.

Paper 4 - Stochastic capacitated lot-sizing problems: a review of models and solu-
tion methods

The paper discusses recent advances in modeling and solution algorithms for the stochas-
tic capacitated lot-sizing problem. Despite the particular importance of practically imple-
mentable solution methods for the problem, it has not been significantly analyzed in the
literature. Aiming to fill in the gap in literature, the author developed a formulation for
the general version of the Coordinated Capacitated Stochastic Lot-Sizing Problem, not
covered in the literature.

1.3 Future research

Based on the contribution of the research presented in this thesis, the author suggest
development of models and algorithms for the the Coordinated Capacitated Stochastic
Lot-Sizing Problem as the main direction for the future research. The lack of literature on
the problems with non-stationary stochastic demands can be overcome with the broader
implementation of the Stochastic Programming approach.

7
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Minimization of Transportation and Inventory
Costs in a Multi-Product Probabilistic Demand

Environment

Uladzimir Rubasheuski∗1, Johan Oppen†1 and David L. Woodruff‡3

1Molde University College, Specialized University in Logistics, Britvegen 2,
6411, Molde, Norway

2Graduate School of Management, University of California in Davis, One
Shields Ave, 95616, Davis, CA, USA

Abstract

This paper is devoted to the optimization of logistics costs, trading-off transportation
costs against inventory costs, in a setting of a multiple product flow on a single link.
The problem is to determine, for each of the products, the safety stock level and a
common shipping frequency during a continuous time horizon. This paper contributes
to the literature on the topic by explicit consideration of transportation costs as a part
of the total cost function. As an example, we use a problem faced by the Norwegian
company Stokke, which designs and distributes furniture and equipment for children.
Part of Stokke’s supply chain is used as a source of real world data for model testing.
This example is characterized by about 100 products, a one year business cycle and
two container sizes. The results of the algorithm implementation on a set of simulated
data shows that the algorithm performance is dependent on the data, but that runtimes
are tractable for instances with up to 100 units. The implementation of the algorithm
on the real world data from Stokke shows the potential for practical usefulness of the
algorithm.

Keywords: Transportation; Inventory; Nonlinear Optimization; Decomposition

1 Introduction

Replenishment systems designed to minimize inventory costs are quite well developed
and known in the business world. Meanwhile, the increase in transportation distances
between production facilities and distribution centers has lead to an increased focus on
transportation costs minimization, which often conflicts with the goal of inventory costs

∗Uladzimir.Rubasheuski@himolde.no
†Johan.Oppen@himolde.no
‡dlwoodruff@ucdavis.edu
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minimization. Such a problem is also closely related to the problem of coordinating distri-
bution and production (Boudia, 2008).

This paper is devoted to the optimization of logistics costs, trading-off transportation costs
against inventory costs, in a setting of a multiple product flow on a single link. In this
system, a set of products with stochastic demand is shipped through a single direct link
from a producer to a distribution center where the products are stored. The transportation
can be performed using transport units of different capacity, but with the same constant
lead time. The problem is to determine, for each of the products, the shipping frequency,
order quantity, safety stock level and number and size of transport units needed to perform
the delivery during a finite time horizon. As an example, we use a problem faced by the
Norwegian company Stokke, which designs and distributes furniture and equipment for
children. Part of Stokke’s supply chain is used as a source of real world data for model
testing. The scope of this example includes about 100 products, a one year business cycle
and two container sizes.

Though the field of inventory management is heavily explored (Williams and Tokar, 2008),
including works on cooperation between buyer and seller (Lin, 2010; Boute, 2007), and
quite a few works are concerned with combined inventory management and routing prob-
lems (Andersson et al., 2010), only a few authors have studied the simultaneous mini-
mization of transportation and inventory costs without significant simplification of either
of them. Many authors mainly consider the transportation part of the problem, signifi-
cantly simplifying the inventory optimization part. One of the first papers devoted to a
discussion of transportation and inventory costs together is (Burns et al., 1985). The pa-
per analyzes distribution strategies based on the total cost of transportation and inventory
keeping. Speranza and Ukovich (1994) examined the influence of shipment frequencies
on the transportation and inventory costs in a situation when several products are shipped
via a single link. They based their study on inventory costs consisting only of handling
costs. These ideas were further developed in the paper of Bertazzi and Speranza (1999).
The model was extended by the introduction of a set of intermediate nodes. Inventory
can be kept at all nodes including supplier and intermediate nodes. Ben-Khedher and
Yano (1994) developed a multi-item joint replenishment model with consideration of trans-
portation and proposed a heuristic to solve it. They considered holding costs as the only
inventory costs. Bertazzi (2008) examined direct shipping policies with discrete shipping
times. The work was based on a simplified inventory holding cost function. Berman and
Wang (2006) have developed a combined model for transportation and inventory cost min-
imization in a multi-supplier-multi-consumer environment. Bahloul et al. (2010) examined
the combined transportation and inventory cost minimization problem using an extended
function of inventory costs. Their model included ordering, handling and back-order costs.
To avoid problems with non-linearity in the model, the authors introduced a constant ser-
vice level.

Gupta (1992) considered a model where ordering, handling and transportation costs were
considered explicitly. He provides an algorithm to find optimal order quantity minimiz-
ing the total logistical costs of the system, consisting of one product and a homogeneous
transportation fleet. His ideas were further developed by Madadi et al. (2010). They based
their research on an (r,S) inventory replenishment system and included fixed and variable
transportation costs. The system they were dealing with also included only one product
and a homogeneous transport fleet. An approximation method was used to predetermine

Models and algorithms for coordinated lot-sizing and joint replenishment
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the safety factor. Zhao et al. (2004) considered an inventory problem including production,
ordering, holding and transportation costs, where transportation costs included fixed and
variable parts. This model, as well as others, included only one product and a homoge-
neous transportation fleet.

Taking into consideration multiple items adds significant difficulties. One of the first models
designed to manage coordinated replenishment from a single supplier to a single consol-
idation point was presented by Balintfy (1964). This model is widely known as a “can-
order” system. This model did not provide an optimal inventory policy. Simmons (1972)
presented an optimal inventory policy under a hierarchy of setup costs and developed
an algorithm capable of giving a near optimal solution for this policy. His algorithm was
improved by Hartfiel and Curry (1974) to give an optimal solution. According to Aksoy
and Erenguk (1988) and Silver et al. (1998) most authors worked with periodic review
multi-item replenishment systems.

Since the 1960s, the problem of joint replenishment has been heavily explored. Khouja
and Goyal (2008) presented a review of the joint replenishment problem literature until
2005. According to them, most authors by 2005 concentrated on finding optimal and sub-
optimal solutions for classical JRP. Khouja and Goyal indicate some papers issued after
2005, where authors are dealing with constrained versions of JRP, including storage, trans-
portation, budget and other restrictions. Hoque (2006) considered the joint replenishment
problem with storage and transport capacities in deterministic demand settings.

Qu et al. (1999) combined the ideas of shipment consolidation theory and JRP models
in order to develop a model capable of optimizing the costs of an integrated inventory-
transportation system for multiple items. One of their assumptions is unlimited transporta-
tion capacity. A heuristic approach was used to solve the problem, and a lower bound to
the optimal solution was given. Wang et al. (2013) modified the problem discussed by Qu
et al. into a multi objective stochastic JRP. Instead of considering the costs of back-orders
as a part of the total cost function, they modeled another objective of minimizing the num-
ber of backlogged items. A heuristic was used to solve the problem, assuming unlimited
transportation capacity.

Another area of study, closely related to the problem discussed in this paper, is shipment
consolidation. Çetinkaya (2005) discussed several integrated policies for stochastic prob-
lems, all of which assume negligible lead times and uncapacitated vehicles. Kiesmüller
and de Kok (2005) combined the ideas of shipment consolidation, assuming target service
level and no vehicle capacity restrictions in a multi-item multi-echelon inventory system.
Kiesmüller (2010) presented the JRP problem with shipment consolidation under assump-
tions of full truck load and targeted service level in stochastic settings.

The model discussed in this paper is based on the periodic review replenishment system,
determining the optimal pair of review period length r and upper level of inventory S. The
detailed description of this type of model can be found in Silver et al. (1998). The aim
of the model is to represent a replenishment system capable to fulfill the task of demand
satisfaction with minimal logistical costs, including ordering, transportation, inventory han-
dling and back-order costs.
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Our research differs from previous works in one or more of the following ways: we con-
sider multiple items with normally i.i.d demands in a stochastic setting, a single-echelon
inventory system is analyzed, a heterogeneous fleet where an unlimited number of vehi-
cles of different sizes are used for transportation, both full truck and less than full truck
loads are allowed, neither the replenishment cycle length nor the service level for any of
the items are predetermined and fixed, and the solution algorithm finds an optimal solution
for a given problem.

The problem of trading-off holding costs against ordering (transportation) costs was first
raised by F.Harris (1913). Considering multiple items authors typically include fixed cost
to place an order and an item-dependent part of ordering costs (Balintfy, 1964; Hartfiel
and Curry, 1974). According to Khouja and Goyal (2008), if a certain item is included in
the order then a fixed amount is added to the major ordering costs. Thus ordering costs
are independent on the quantity of a given item included in the order. In this paper we
distinguish transportation costs from ordering costs. Ordering costs include all kind of
clerical costs and are fixed, while transportation costs include inbound logistics costs and
depend on the ordered transportation capacity, which should fit to an order. In this setting
transportation costs have a piecewise linear structure. We optimize total logistical costs
by trading-off the size of ordered capacity against the amount of inventory held on stock.
One can save on transportation costs, ordering larger transportation capacity. On the
other hand, savings on transportation are extreme only if capacity is utilized completely.
Hence the order should be large, leading to the higher holding costs. When transportation
costs are balanced with holding costs the overall logistical costs are minimized.

The contribution of the current paper to the literature on the topic is in explicit considera-
tion of transportation costs versus inventory costs without significant simplification of any
of them in a multi-item, stochastic demand, and heterogeneous vehicle fleet setting. Most
authors consider transportation costs as a linear function of product quantity by adding mi-
nor per unit ordering costs to the objective function. We argue that many wholesalers use
third party logistics companies to perform transportation, thus paying a fixed price for a
unit of given capacity on a route, and not for a unit of product. Thus transportation costs in
our paper have a piecewise linear structure and are dependent on the number and quan-
tity of product indirectly. Some other features of the proposed model, such as a common
review period, certain level of transportation capacity buffer, the type of backorder costs
among others, are driven by the restrictions from the real world case from Stokke. The pro-
posed model is optimally solved both for simulated and real case data, showing significant
improvement compared to the other model traditionally used for a problem.

The paper is organized in the following way: Section 2 is devoted to the description of
the integrated mathematical model. Section 3 presents development of several algorithms
capable of finding optimal solutions based on the given model. Section 4 presents the
results of the algorithm implementation on a given problem together with the discussion of
possible extensions of the model or modifications of the algorithm. Section 5 summarizes
the findings and presents conclusions.
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2 An Integrated Logistics Model

A buyer maintains inventory of |N | different products, which are all ordered from a single
supplier. The demands for all products are assumed to be i.i.d. and follow normal distri-
bution ∼ N (Dn;σn), where Dn and σn are expected yearly demand and standard deviation
of yearly demand for product n ∈ N respectively. Any of |M| transport unit sizes can be
used to perform the transportation. There is no limit on the number of available units of
each capacity. All products are assumed to be ordered simultaneously based on an (r,S)
periodic review replenishment system. This means that reviews are performed 1

r times
during time horizon and at each review all the products are ordered up to the specified
level Sn. Many authors (Silver et al., 1998) assume multiple review periods when using
a periodic review replenishment policy in multiple items environment. A common review
period is assumed in our model. There could be a few reasons to do that in practice:

• Items in a group have approximately the same relative standard deviation of demand
σi
Di

=
σj
Dj

. Then it is optimal to review these items simultaneously

• The cost of a review does not depend on the number of items reviewed

• Managerial aspects, such as contract restrictions or error elimination in order pro-
cessing, etc.

In case of Stokke, the main reason to have the common review period for all items is a
managerial restriction. In order to decrease the mismatch between planned review and
actual review for each particular item, company decided to have a common review period
for all of them. Beside, since the cost of review does not depend on the number of items
in the review, this will not add extra costs, even if it will be found out, that there is no need
to order a particular item in a particular period.

The order-up-to level for any of the items is defined based on the well-known formula from
Silver et al. (1998):

Sn = DL+r
n + kn · σL+r

n (1)

where DL+r
n is the expected demand for product n during the review period r and the lead

time L, kn is the safety factor for product n, and σL+r
n is the standard deviation of demand

for product n during the risk period.

The replenishment system presented in this paper accounts for four types of logistics
costs: ordering costs - costs of checking the inventory, issuing and following the order till
its fulfillment; holding costs - costs of keeping the inventory in a warehouse; back-order
costs - penalties for inability to fulfill the customer’s order on time; and transportation costs
- costs associated with the necessary transportation capacity. To manage this system one
is interested in finding a pair (r,S) for each of the products in such a way that the total costs
are minimized and the review period length is the same for all products.

Since the problem discussed here is inspired by a real world case, it has a set of specific
features. Nevertheless, such features of the problem are common for many companies.
Thus the presented model is suitable for practical use. The most striking difference be-
tween the model and those common in the academic literature is the type of back-order
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cost used. We assume a fixed charge for occurrence of back-order of each of the items.
We analyze the inventory problem of a wholesaler, so whenever he receives an order
which cannot be satisfied in full, the wholesaler ships the order without the missing items.
When the missing items are back in stock, they are immediately shipped to the customer.
According to the contract between the wholesaler and its customers, there are no penal-
ties charged for delay of shipment of absent items disregarding the quantity, and the length
of shortage. Nevertheless, an extra shipment leads to an increase in outbound transporta-
tion costs. The average of this costs is used as the cost per shortage. Since both inbound
and outbound transportation are ordered from a third party logistics company (compa-
nies), the need to make an extra transportation to the customer will not restrict the amount
of vehicles available for inbound transportation.

We also assume that the ordering costs depend only on the number of orders per time
unit, and does not depend on inclusion of a certain product in the order. Whenever an
order is placed, there is a need to review each item, disregarding whether the item will be
included in the order or not, thus the cost of placing an order stays constant. It is worth
mentioning that at Stokke, the warehouse is operated by a third party logistics company,
hence the handling (unloading and inspection) costs are fixed according to the contract,
which corresponds to fixed ordering costs.

Another assumption is that the transportation costs are charged per transportation unit
of a given size, and does not depend on the transportation unit load. This assumption is
often true in cases where a company orders a long haul transport from a third party. In
addition, the price per transportation unit typically does not change depending on the total
number of units ordered.

Table 1: Notation

Sets

N = set of products
M = set of transport units size indexes
Parameters

Dn = expected value of yearly demand for product n , n ∈ N
σn = standard deviation of annual demand for product n , n ∈ N
Vn = volume of the product unit n, n ∈ N
Um = capacity of the transport unit of size index m, m ∈M
Em = transportation costs per transport unit of size index m, m ∈M
Wn = unit costs for product n, n ∈ N
A = ordering costs per order
H = annual holding costs as a fraction of unit costs
Bn = back-order costs per occurrence of product n shortage, n ∈ N
L = length of the lead time as a fraction of a year
α = probability that the transportation capacity will not be exceeded

Variables

r = the length of the review period as a fraction of a year
kn = safety factor for product n, n ∈ N
ym = number of transport units of size index m used in one replenishment,

m ∈M
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Table 1: (continued)

Stochastic

Parameter

on (r) = amount of product n ordered in a review period , n ∈ N

Functions

Φ (x) = 1 −
Pu≥ (x)

= cumulative probability function of standard normal distribution

Given these assumptions together with those mentioned before, we propose the model
presented in Table 2 that makes use of parameters and variables shown in Table 1. Solving
this model to optimality will allow us to find minimal total costs, and, corresponding to them,
optimal (r,Sn) pairs. While solving the model one will also find the expected number of
vehicles of each size, ym, to be ordered in each review period. However, since the demand
is varying, the number of transport units used can differ from period to period, and thus
has to be decided on a later (operational) stage.

Table 2: Combined model for minimization of annual transportation and inventory costs

minC =
1

r
· A +

∑

n∈N

(
Dn · (r + L)

2
+ kn · σn ·

√
(r + L)

)
·Wn · H+

+
1

r
·
∑

m∈M
ym · Em +

1

r
·
∑

n∈N
Pu≥ (kn) · Bn (2)

Subject to:

Prob

(∑

n∈N
on (r) · Vn ≤

∑

m∈M
ym · Um

)
≥ α (3)

r > 0 (4)

kn ≥ 0, ∀n ∈ N (5)

ym ∈ N, ∀m ∈M (6)

The objective function (2) is the total expected costs which consist of ordering costs, inven-
tory holding costs, shortage costs and transportation costs. Ordering costs are dependent
on the number of replenishments per year. As all the products are ordered simultaneously,
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the cost of issuing one order is independent of the products included in the order and is
constant. The number of replenishments is the same for all products.

Holding costs are dependent on the average inventory level and the chosen level of safety
stock. The average inventory level in turn depends on the length of the review period.
Fewer review points during the year (i.e., a long review period) results in higher average
levels of inventory for each of the products. The safety stock level is determined by a
combination of the safety factor value and the review period length. The third term in the
objective function is transportation costs, which are dependent on the number of transport
units of each size needed to transport the order. Finally, back-order costs represent the
expected penalty which is paid for each occurrence of unsatisfied demand. This depends
on the total number of orders per year and the cumulative probability of the standard
normal distributed variable u being larger then the safety factor k.

The objective function is subject to only one operational constraint (3). It is presented as
a chance constraint, which requires that the ordered transportation capacity is capable to
carry an order with at least α probability. In this case on (r) denotes stochastic order during
review period r. Since the demand for all the products is i.i.d. normal, there are no lost
sales, and an order-up-to policy is used, the order size for each of the products will be i.i.d.
normal, i.e., ∼ N (r · Dn , r · σn).

Constraint (3) together with the minimization objective function leads to a piece-wise so-
lution function. Other constraints (4)-(6) impose non-negativity requirements on decision
variables, and integrality requirements on the number of transport units of each size. It
can be seen that constraint (3) is not linear, thus we will rearrange it to form a linear con-
straint. Because of the random order sizes, on, the constraint expression can be viewed
as a random variable. We will rewrite the constraint expression in the following way:

∑

n∈N
on · Vn −

∑

m∈M
ym · Um ≤ 0 (7)

Assuming that the order for each individual item is an independently distributed random
variable following normal distribution, the left hand side of the constraint expression is also
a random variable following normal distribution:

∼ N


r ·

∑

n∈N
Dn · Vn −

∑

m∈M
ym · Um , r ·

√∑

n∈N
σ2

n · V2
n


 (8)

Hence, chance constraint (3) can be rewritten in the following way:

0−
(
r ·∑n∈N Dn · Vn −

∑
m∈M ym · Um

)

r ·
√∑

n∈N σ
2
n · V2

n

≥ Φ−1 (α) , (9)

where Φ−1 (α) is the quantile function of a standard normal distribution for α probability
level. By re-arranging (9) we get:

r ·
∑

n∈N
Dn · Vn + Φ−1 (α) · r ·

√∑

n∈N
σ2

n · V2
n ≤

∑

m∈M
ym · Um (10)
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Here we need to notice that we assume that for each given order the number of transport
units is ordered separately. Thus, in case when the predetermined transport capacity will
not fit all the units of a given order, some extra transport units will be ordered. Since the
demand distribution is stationary, in the long run there will appear situations when the
predetermined capacity is excessive, thus some of the transport units will not be used
and paid for. Hence the expected cost of the system will not change. Moreover, the
assumption of stationary demand means that, if we analyze an infinite horizon, on average
we will need to transport Dn units of each product n during the time horizon. So, in the
long run, the model overestimates the expected transportation costs, since we assume
that the transport capacity will manage to transport both the average volume of demand
∑

n∈N Dn · Vn and some extra volume Φ−1 (α) ·
√∑

n∈N σ
2
n · V2

n of products. The level of
capacity buffer is determined by α, and is set by the contract with the third party logistic
provider. Hence one of the purposes of the model being solved is to determine the range
of possible capacity variation within one replenishment period. However, it does not mean
that the maximum level of transportation capacity is to be paid for. In contrast, the case
company can vary the capacity without extra costs.

The solution function (constrained objective function) is non-convex and discontinuous. To
illustrate the shape of the solution function we will use a simplified version of the prob-
lem:

1. There is only one product analyzed in the replenishment system.

2. Units of only one size are used to transport the orders.

The model can be then written in the following way:

minC =
1

r
· A +

(
D · (r + L)

2
+ k · σ ·

√
(r + L)

)
·W · H+

+
1

r
y · E +

1

r
· Pu≥ (k) · B (11)

subject to:
r · D · V + Φ−1 (α) · r · σ · V ≤ y · U (12)

The solution function for this model presents a set of banana-shaped surfaces (Figure 1)
disconnected in points, where

r · D · V + Φ−1 (α) · r · σ · V = X · U, X = 1, 2..,

⌈
D · V + Φ−1 (α) · σ · V

U

⌉
, (13)

where X is a parameter, “chosen” from the domain of y. X denotes the number of trans-
portation units used in one review period.

In other words, for each given number of transport units there is a separable surface with
its unique local optimum. The global optimum should be found among these local optima.
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Figure 1: Simplified Solution Function

If the number of transport units is fixed then the solution function of the model, presented
by equations (11-12), is convex and continuous on the (r,k ) space, according to Whitin
(1953). Moreover this function can be easily extended to handle multiple items, and the
extended function is also convex on the (r, kn) space, since the sum of two convex functions
is also convex. Thus one can find a number of nonlinear solvers capable to deal with the
problem. Hence our task is to construct bounds for the number of transport units of each
size.

3 Solution algorithms for problem variants

We now present a set of algorithms to provide optimal solutions for different types of the
problems presented above. They will include algorithms for the following models: Multiple
Items One Transport Unit Size model; Multiple Items Multiple Transport Unit Sizes model;
and a specific case of Multiple Items Two Container Sizes model.

The first algorithm is developed for the Multiple Items One Transport Unit Size prob-
lem:

1. Define the domain of y : y =

[
1, . . . ,

⌈∑
n∈N Dn·Vn+Φ−1(α)

√∑
n∈N σ2

n ·V2
n

U

⌉]
, where the max-

imum number of transport units is defined based on the expected total volume of all
goods ordered during the time horizon. So, if the time horizon is one year, the max-
imum number of transport units shall fit such number of products, which will satisfy
the total yearly demand.

2. Decompose the solution function based on each given value of y.

3. Find the minimum of the objective function for each given value of y using any avail-
able non-linear solver. The Ipopt (Wächter and Biegler, 2006) solver was used in
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this paper to get the optimal solution for each segment of the decomposed solution
function using a model written in Pyomo (Hart et al., 2012). Let’s call these solutions
local minima.

4. Find the global minimum of the objective function among all local minima.

Algorithm 1 Algorithm’s pseudo code for Multiple Items One Transport Unit Size Problem

1: Calculate ymax =

⌈∑
n∈N Dn·Vn+Φ−1(α)

√∑
n∈N σ2

n ·V2
n

U

⌉
.

2: Solve model (2)-(6) fixing variable y to 1; Set C∗ = C (1), record solution
3: for y = {2, . . . , ymax} do
4: Solve model (2)-(6) fixing variable y to current value
5: if C∗ ≥ Ĉ (y) then
6: Set C∗ = Ĉ (y); record solution
7: end if
8: end for

Algorithm 1 shows the simple method for computing the solution with multiple items, but
only one transport unit size.

As the value of variable y from the model presented in (2)-(6) is fixed in each iteration
(lines 2 and 4), the search space becomes convex so sub-problems can be solved to
optimality with the Ipopt non-linear solver. The next algorithm is developed for the most
general Multiple Items Multiple Transport Unit Sizes problem:

1. Order transport unit sizes in increasing order of unit load costs. I.e., if Ei

Ui
≤ Ej

Uj
, then

yi should be considered before yj.

2. Define the domains of ym:

(a) For the transport unit size with the lowest unit load cost,

y1 =

[
0, . . . ,

⌈∑
n∈N Dn·Vn+Φ−1(α)

√∑
n∈N σ2

n ·V2
n

U1

⌉]
. The maximum number of trans-

port units of size index 1 is defined based on the total volume of all goods.
So the maximum number of transport units of the cheapest size shall fit yearly
demand for all products simultaneously.

(b) For all others find the least common multiplier of ym and ym−1 capacities lcm (Um,Um−1).

Then ym =
[
0, . . . , lcm(Um,Um−1)

Um
− 1
]
. In other words, one should first find the

least common multiplier for capacities of transport units with current and previ-
ous size index. Then divide it by the capacity of transport unit with current size
index and subtract 1. For example, if we have 10 and 25 foot trucks and the
25 foot truck has the cheapest unit load, then we at most will use four 10 foot
trucks. The reason is, that five 10 foot trucks can be replaced with two 25 foot
trucks which will cost less.
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3. Decompose the solution function based on each given value of ym. So now the total

number of decomposed solutions will be equal to
⌈∑

n∈N Dn·Vn+Φ−1(α)
√∑

n∈N σ2
n ·V2

n

U1

⌉
·

∏
m∈M\{1}

(
lcm(Um,Um−1)

Um
− 1
)

.

4. Find minimum of the objective function for each given value of ym.

5. Find the global minimum of the objective function among all local minima.

Algorithm 2 Algorithm’s pseudo code for Multiple Items Multiple Transport Unit Sizes
Problem

1: Order ym ∀m ∈M in ascending order of Em

Um
.

2: Calculate ymax1 =

⌈∑
n∈N Dn·Vn+Φ−1(α)

√∑
n∈N σ2

n ·V2
n

U1

⌉
.

3: for ym, ∀m ∈M\{1} do
4: Calculate ymaxm = lcm (Um,Um−1)− 1
5: end for
6: Let Y be the set that enumerates all ŷ vectors with elements ym from 0 to ymaxm

7: Let ŷ0 be the vector where all elements ym = 0
8: Set C∗ =∞
9: for each ŷ ∈ Y\{ŷ0} do

10: if C∗ ≥ Ĉ (ŷ) then
11: Set C∗ = Ĉ (ŷ); record solution
12: end if
13: end for

Algorithm 2 establishes upper bounds on the number of transport units of all sizes.

As an example, let us again consider the situation with 10 and 25 foot trucks, when a
25 foot truck has the cheapest unit load. Assume that five 25 foot trucks can carry the
total volume of yearly demand, so the same volume can be transported by thirteen 10
foot trucks. This means that during some replenishment period we can use from zero to
thirteen 10 foot trucks and from zero to five 25 foot trucks. While all possible combinations
of transport capacities are equal to 14 ·6 = 84, the algorithm we propose limits this amount
to 5 ·6−1 = 29, cutting off combinations which will not improve the objective function.

The upper bounds for all variables ym are set up in lines 1-5 of algorithm 2. In line 6 a set is
created that enumerates all possible combinations of available transport units of different
sizes. The number of transport units of each size ordered in one replenishment, ym, can
be from 0 to ymaxm . So Y will have

∏
m∈M ymaxm elements. Then in line 7 the algorithm

establishes a vector ŷ0, where each element ym = 0, i.e., ŷ0
= (0, 0, ..., 0).

In line 8 the algorithm establishes an initial reference solution value, which is equal to a
sufficiently large number. In practice, the initial solution can be calculated as a function
Ĉ (ŷ) of any vector ŷ realization, except vector ŷ0. The function Ĉ (ŷ) is defined here as
an optimal solution of the model defined in equations (2)-(6) with the vector of variables y
fixed to vector ŷ.
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Lines 9-12 presents code to solve model (2-6) for each realization of vector ŷ except vector
of all zeros and to set the reference solution to the best of found solutions Ĉ (ŷ). The final
reference solution is globally optimal for the problem.

Algorithm 3 Algorithm’s Pseudo code for Multiple Items Two Container Sizes Problem

1: Calculate ymax40′ =

⌈∑
n∈N Dn·Vn+Φ−1(α)

√∑
n∈N σ2

n ·V2
n

U40′

⌉
.

2: Solve model (2)-(6) fixing ym to 1, ∀m ∈M; Set C∗ = C (1); record solution
3: for y40′ = {0, . . . , ymax

40′ } do
4: for y20′ = {0, . . . , 1} do
5: Solve model 2 fixing variable ym, ∀m ∈M to current value
6: if C∗ ≥ Ĉ (ŷ) then
7: Set C∗ = Ĉ (ŷ); record solution
8: end if
9: end for

10: end for

Note that procedures to set the upper bound for the number of transport units with size
index greater than 2 as given in step 4 can be improved upon in some situations. To
decrease the number of decomposed solutions, i.e. the number of realizations of vector
Y, one can, for example, look for the least common multipliers of the capacities of current
size index and all previous size indexes. Then the upper bound on the number of units with
current size index will be ymaxm = mint∈(1,m-1) (lcm (Um,Um−t)− 1) , ∀m ∈ M\{1}. Due to a
decreased number of elements in set Y, a smaller number of optimization sub-problems
will be solved, leading to an overall speed-up of the algorithm; however, we did not use
this enhancement in our computational experiments.

Note also that we did not assume lower per unit transportation costs for larger sizes of
vehicles. In cases when vehicles of different capacity have the same per unit cost, it does
not matter which of them will have the lower order, since lcm (Um,Um−1) will be the same
disregarding which of the vehicles has order m and which m− 1.

Now we will present a specific case of the algorithm for the problem, when 20 and 40
foot containers are used for transportation (Algorithm 3). This algorithm is specifically
designed to deal with the problem of the case company Stokke.

4 Algorithm implementation and performance

The general algorithm (Algorithm 2), presented in the previous section was used to solve
a set of simulated problems as well as a real-world problem of Stokke. The algorithm was
coded using Python and Pyomo (Hart et al., 2011) and in each iteration a constrained non-
linear problem was solved using the Ipopt non-linear solver (Wächter and Biegler, 2006).
The CPU running times were computed for an 16x Intel Xeon(R) CPU E5620 2400 GHz
processor with 11,7 GB RAM. At first the algorithms were tested on a set of simulated
instances, where instance of type ”2-10”, for example, includes 2 transport unit sizes and
10 products to consider. 10 instances of each type were used to compute average CPU
running time as well as its standard deviation. In each instance of a given type capacities
of transport units, α value, transportations costs per transport unit and ordering costs
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stayed the same. Other parameters, such as products’ demand, standard deviation of
demand, unit costs and backorder costs varied from instance to instance. Table 3 shows
the average computing time in seconds used by the algorithm to solve problem instances
of a given type to optimality.

Table 3: CPU times for cases with products yearly demand up to 1000 units

Problem Instance Type Average time, sec. Standard deviation of time
2-10 21.3 4.73
2-100 5076.4 535.83
2-1000 1793614.6 52924.11
3-10 36.0 6.95
3-100 11342.4 1629.40
4-100 50068.2 5422.45

The simulation outcome showed that the algorithm performance is highly dependent on
the ratio of total demand volume (weight, etc.) to the transport units capacities. In gen-
eral, the more transport units with the cheapest unit load needed to transport the total
yearly demand, the more time required by the algorithm. This might require a parallel
implementation for companies working with a large volumes of many products. As well, if
the number of vehicle sizes becomes very large, an improved procedure to find reason-
able combinations of the fleet should be implemented in order to reduce the number of
non-linear problems to solve.

The algorithm was also applied to solve a real world problem of Stokke using algorithm
3. The instance included 98 products and two sizes of containers (40 foot and 20 foot) to
transport them. This problem instance was solved in 3317.16 seconds of CPU time. As
the problem is typically solved on the tactical stage of planning and budgeting, i.e. at most
once per year, such a runtime is reasonable enough to say that it is useful for business
practitioners. We have also tested the performance of the proposed model against the one
which is typically used in the company. The common practice is to compute the length of
the review period and the values of safety factors without consideration of transportation
costs. If to compute expected total logistical costs using the approach commonly used
on practice, they will be 8.04 % higher compared to the expected total logistical costs
found with use of proposed model. Hence, we can conclude that the model demonstrates
practical usefulness for Stokke.

5 Conclusion

This paper is devoted to a problem of optimization of expected total logistical costs in a
system where joint replenishment can be implemented. A mathematical model to deal
with such a problem is presented together with an algorithm to find a globally optimal so-
lution. The model proposed to deal with the problem is solved on a tactical level in order
to find optimal (r,Sn) pairs, allowing minimization of expected total costs. The expected
number of transport units of each size to be ordered during each review period is found
as a bi-product. However, the actual number of ordered transport units can differ from
period to period. Such variation is allowed by one of the assumptions indicating that the
transportation is ordered through a third party logistics company. Other assumptions in-
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clude heterogeneous fleet of transport units, stochastic and stationary i.i.d items’ demands
following normal distribution, and back-order costs per occurrence of stockout.

The results of the algorithm implementation on a set of simulated data have shown that
the algorithm performance is dependent on the data but that runtimes are tractable for
instances with up to 100 products. However, difference in parameters can lead to changes
in running time. The main reason for that lies in the iterative structure of the algorithm. A
constrained inventory optimization problem is solved for each allowed option of transport
combinations. All else being equal, higher total demand volume leads to a larger number
of iterations, and hence to a longer algorithm running time. Applying the algorithm on a
real life case gave an 8% reduction in the expected total cost function, compared to the
existing practice.

Future research can be devoted to set tighter bounds on the number of iterations, i.e.,
on the number of vectors ŷ. Another option to speed up the algorithm is to parallelize
it. Nevertheless, the implementation of the algorithm on the real world data from the
Norwegian company Stokke shows its practical usefulness.
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Abstract

We describe an opportunity to speed up multi-stage scenario generation and reduc-
tion using a combination of two well known methods: the moment matching method
(Høyland and Wallace 2001) and the method for scenario reduction to approximately
minimize a metric (Heitsch and Römish 2009). Our suggestions is to combine them
rather than using them in serial by making use of a stage-wise approximation to the
moment matching algorithm. Computational results show that combining the methods
can bring significant benefits.

Keywords: Scenario Generation; Multi-stage stochastic programming; moment match-
ing; scenario reduction

1 Introduction

Multi-stage, stochastic, optimization models receive increased interest as solver technol-
ogy improves. Many solvers require that stochastic data be presented in the form of
discrete realizations with attached probabilities. In the multi-stage case, they are almost
always organized into a tree with the property that scenarios with the same realization up
to decision stage share a node at that stage. See, e.g., (King and Wallace, 2010) for more
discussion of scenario trees and stochastic optimization modeling.
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In this note we describe an opportunity to speed up multi-stage scenario generation and
reduction using a combination of two well known methods: the moment matching (MM)
method (Høyland and Wallace, 2001) and the method for scenario reduction to approxi-
mately minimize a metric (SR) (Heitsch and Römisch, 2009). While the MM is designed
to generate scenarios, SR is used to reduce an existing scenario tree to a tractable size.
Although Monte Carlo methods can be used to generate a scenario tree before reducing it
(Geyer et al., 2013; Hochreiter and Pflug, 2007; Latorre et al., 2007), a sensible alternative
is to use MM to generate scenarios and then SR to make the scenario tree tractable (see
(Feng and Ryan, 2013)). In all cases, the scenario tree is constructed in full before reduc-
tion. Our suggestions is to combine MM and SR rather than using them in serial. This
is done making use of a stage-wise approximation to the MM algorithm. We give a brief
review of the methods in the next two sections and then give the combined method in Sec-
tion 4. Experimental results that confirm significant speed improvements are presented in
Section 5, along with concluding remarks.

2 The Moment Matching Method for Scenario Generation

The idea of MM is to match the statistical properties of the generated scenarios with those
of the observed data process. Following the notation presented by Høyland and Wallace
(2001), define Γ as a set of statistical properties to be matched, and ΓV ALi as the observed
value of statistical property i from Γ. Then let N be the number of random variables, T be
the number of stages and Θt be the number of conditional outcomes in stage t. Define the
outcome vector x of dimension N ·Θ1 + N ·Θ1 ·Θ2 + ...+ N ·Θ1 ·Θ2 · · · ·ΘT, which means
that there are Θ1 ·Θ2 · · · ·Θt outcomes of each variable n = {1, ...,N} in stage t = {1, ...,T}.
The probability vector ρ of dimension Θ1 +Θ1 ·Θ2 + ...+Θ1 ·Θ2 · · · ·ΘT. The function f i (x,ρ)
is the mathematical expression for statistical property i in Γ. Finally, let wi be the weight
for statistical property i in Γ.

We then construct vectors x and ρ by solving the non-linear optimization problem:

min
x,ρ

∑

i∈Γ

wi

(
f i (x, ρ)− ΓV ALi

)2
(1)

ρ1,1 = 1 (2)
jΘt∑

k=(j-1)Θt+1

ρt,k = 1, ∀t = 2,...,T, j = 1, ...,
t-1∏

h=1

Θh (3)

ρt,k > 0, ∀t ∈ T, k ∈ 1, ...,
t∏

h=1

Θh (4)

In this model, ρt,k expresses probability of the outcome k = 1, ...,
∏t

h=1 Θh in stage t =
1, ...,T.

In principle, one can use as many moments and state dependent statistical properties as
desired. To be concrete, we will refer to an example where we are matching the three
first moments of demand for a set of products N and the paired correlation function as
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statistical properties in the objective function, and where the mean value is the only state
dependent statistical property. The data set used to compute the target values of the
statistical properties was taken from the Norwegian company Stokke, and includes data
on the demand of a set of products for children.

The statistical properties can be expressed in the following way:

fmeann,t,k (x, ρ) =

kΘt∑

g=(k−1)Θt+1

xn,t,gρt,g, ∀n ∈ N , t = 2,...,T, k = 1, ...,
t-1∏

h=1

Θh (5)

f variancen,t,k (x, ρ) =
Θt

Θt − 1

kΘt∑

g=(k−1)Θt+1

((
xn,t,g − fmeann,t,k (x, ρ)

)2
ρt,g

)
,

∀n ∈ N , t = 2,...,T, k = 1, ...,
t-1∏

h=1

Θh (6)

f skewnessn,t,k (x, ρ) =

√
Θt (Θt − 1)

Θt − 2

∑kΘt
g=(k−1)Θt+1

((
xn,t,g − fmeann,t,k (x, ρ)

)3
ρt,g

)

(∑kΘt
g=(k−1)Θt+1

((
xn,t,g − fmeann,t,k (x, ρ)

)2
ρt,g

))3/2 ,

∀n ∈ N , t = 2,...,T, k = 1, ...,
t-1∏

h=1

Θh (7)

f correlationn,m,t,k (x, ρ) =
∑kΘt

g=(k−1)Θt+1

((
xn,t,g − fmeann,t,k (x, ρ)

) (
xm,t,g − fmeann,t,k (x, ρ)

)
ρt,g
)

√∑kΘt
g=(k−1)Θt+1

((
xn,t,g − fmeann,t,k (x, ρ)

)2
ρt,g

)∑kΘt
g=(k−1)Θt+1

((
xm,t,g − fmeanm,t,k (x, ρ)

)2
ρt,g

) ,

∀n,m ∈ N , t = 2,...,T, k = 1, ...,
t-1∏

h=1

Θh (8)

In formulas (5-8) xn,t,g expresses the value of variable x for product n ∈ N in outcome
g = 1, ...,

∏t
h=1 Θh on stage t ∈ T.

In addition to matching the first three moments and the correlation matrix, Høyland and
Wallace (2001) suggest using autocorrelation in a special way. Let î be the index for the
mean, so ΓV ALî is treated as the observed value for the mean. For a particular scenario
tree parent with indexes (n,t-1,k) , ∀n ∈ N ; t = 1, ...,T; k = 1, ..,

∏t
h=1 Θh the computation

of ΓV ALî for its children is as follows:

αn · xn,t-1,k + (1− αn) · µn, (9)

where µn represents the grand mean demand for product n ∈ N and αn ∈ [0, 1] represents
the mean reversion factor for product n ∈ N . The expected demand on the first stage can
be defined in two different ways. The first option is to set it equal to µn. The second option
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is to specify the current actual value of demand and use the formula above to calculate
the expected demand on the first stage. Note that it is the presence of state dependent
factors such as mean reversion makes stage-wise decomposition an approximation. Such
factors, and mean reversion in particular, can be very important in modeling multi-stage
stochastic processes.

As pointed out by Høyland and Wallace (2001), in general such an optimization problem
is not convex. So, one is likely to find a locally optimal solution, rather that one that is
globally optimal. However, for purposes of scenario generation, finding a perfectly optimal
match of properties is not necessary. Consequently, we propose decomposition of the
presented problem into sub-problems, so that a matching problem can be solved for each
stage separately. The stage-by-stage algorithm can be stated as follows:

Step 1. Set t = 1 and ΓV ALî = µn for each xn,t,1, ∀n ∈ N

Step 2. Set t = t + 1. For each parent xn,t-1,k, ∀n ∈ N , k = 1, ...,
∏t-1

h=1 Θh compute
ΓV ALî for its children using formula (9).

Step 3. Solve the moment matching optimization model (1-4) with respect to the t-th
stage components only. If t < T , go to step 2.

Step 4. Construct scenarios S, where x̃it, ∀ i ∈ S is a vector of n variables related to
scenario i at stage t, and ρit is the conditional probability of obtaining vector x̃it. Then
ρi =

∏T
t=1 ρ

i
t is the probability of a scenario i ∈ S.

We have compared the performance of the original MM with the performance of the de-
composed MM based on five instances of each of two configurations types. The results
are shown in Table 1). The configurations are labeled (N , T , b) where b is the branching
factor, indicating the constant number of child nodes generated from each node at stage
t = 1, ..., T − 1. Both algorithms were coded using Python and Pyomo (Hart et al., 2011);
the nonlinear minimization problems were solved using the IPOPT (Wächter and Biegler,
2006) nonlinear solver version 3.10.2. The CPU running times were computed for an 8x
Intel(R) Core(TM) i7-2600 CPU 3400 GHz processor with 15 GB RAM. The same arbitrary
initial solution was used as a starting point for both algorithms.

Table 1: The Original and the Decomposed MM: Comparison of Performance based on
averages taken over five replicates for each configuration.

Configuration Original MM Decomposed MM
CPU (sec) Objective CPU (sec) Objective

(2,4,6) 333.84 0.317 11.15 1.67 · 10−6

(2,5,6) 6942.10 1.97 · 1013 135.49 0.571

One can see that the original MM algorithm requires more time to find a solution and the
quality of this solution is actually much worse then quality of the solution found by the
decomposed MM for these instances. This is because the original problems are so large.
If we use the solution obtained by the decomposed MM as a starting point for the original
MM, it was improved in approximately 10% of the cases.
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Nevertheless, the average objective values do not present the entire picture of algorithms’
performance. In the case of the (2,4,6) configuration, the original MM got an objective
value significantly different from 0 (1.5844) only once out of five instances. That resulted
in a comparably high average objective value. For the same instance the decomposed
MM resulted in an objective value of factor 10−6. In the case of the (2,5,6) configuration,
when the original MM was used, the objective function for one of the instances was equal
to 5.21, which is comparably close to 0. However, it didn’t affect the average objective
value, since the smallest objective value among other instances was of factor 106. In the
same cases, when the decomposed MM was used the highest objective value was equal
to 1.44.

We also conducted some experiments with configuration (44,4,12). IPOPT could not con-
verge on a solution for the original MM for this instance, but it was able to for the decom-
posed MM (it took 10739.69 CPU seconds). The reason is in the size of the optimization
problem to be solved. In the case of the original MM, instances of configuration (44,4,12)
are characterized by one non-linear problem with a highly non-linear objective and 84825
variables. The decomposed MM for the same instance is characterized by 157 nonlinear
problems with 540 variables each.

It is clear a priori that it is computationally expedient to decompose by stages. An impor-
tant conclusion from these experiments is that for practical reasons, a decomposition by
stages may be required in some situations.

3 The Scenario Reduction Method

When the number of scenarios generated is large, one could be interested in a scenario
tree reduction in order to be able to run the stochastic optimization model in a shorter
amount of time. The scenario reduction (SR) method proposed by Heitsch and Römisch
(2009) and the forward construction algorithms based on this method (Eichhorn et al.,
2010) are intended to accomplish this task. The forward construction algorithm succes-
sively computes partitions of scenario set S into λt, t = 1, ..., T clusters of the form:

∆t :=
{

∆1
t , ...,∆

λt
t

}
, λt ∈ N, (10)

where N is any natural number not exceeding Θt.

The elements of ∆t are called clusters. Now let us consider the algorithm:

Step 1. Define ∆1 = S and set t := 2

Step 2. For each cluster of scenarios ∆i
t−1, run the scenario reduction procedure

with respect to x̃jt , j ∈ ∆i
t−1.

Step 3. Obtain the mapping βλt from the deleted scenarios J λ
t to the remaining

scenarios Sλt such that:

βλt (i) ∈ argmin
j∈Sλt
‖x̃it − x̃jt‖, i ∈ J λ

t (11)
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Step 4. Define the overall mapping αt from the original set of scenarios S to the new
set of scenarios S:

αt (i) =

{
βλt (i) , i ∈ J λ

t , for some λ = 1, ..., λt-1

i, otherwise
(12)

Then a new partition at t is:

∆t :=
{
α−1
t (i) | i ∈ Sλt , λ = 1, ..., λt-1

}
(13)

If t < T , set t := t+ 1 and continue from Step 2, otherwise go to Step 5.

Step 5. Define new set of scenarios according to the partition set ∆T and mappings
(12). Each scenario will be the centroid of a cluster. The probability of each sce-
nario from a new set will then be equal to the sum of probabilities of the scenarios
belonging to the same cluster, plus the probability of the scenario itself.

In Step 1 a single cluster consisting from all the initial scenarios is defined. In Steps 2-4
the number of scenarios is iteratively reduced. We consider all scenarios at a given stage
and refer to a component of a scenario corresponding to a given stage as a node. Thus
these steps can be understood as the selection of a given number of nodes λt from nodes
belonging to the scenarios remaining in the previous stage. For example, consider stage
3. Suppose, that in the previous stage we have defined 2 clusters: ∆1

2 and ∆2
2. This

means that only scenarios having the same node as the centroid scenarios on the second
stage were selected for further consideration. Suppose also that λ3 = 2. Then from all the
third stage nodes belonging to the remaining scenarios of a given cluster ∆λ

2 we form two
clusters on stage 3. So, in total we will have four clusters of scenarios after stage 3. Each
of these clusters will have centroid scenarios with a given node at stage 3. Only scenarios
which are going through these centroid nodes are selected for further consideration on the
next stage.

Once the scenarios at all of the stages have been considered, the new set of scenarios
from the remaining list of scenarios in the last stage are formed. To understand the pro-
cedure for selecting the centroid nodes of clusters in Step 2 and the mapping in Steps 3-4
of the forward construction algorithm, consider a set of nodes It with given coordinates
x̃it, i ∈ I and probabilities ρit. Selecting λt centroid nodes from them can be considered as
a P-median problem, where the distance between the nodes i and j is defined as a norm
of the difference between coordinates of the nodes di,j = ‖x̃it − x̃jt‖ and the weight of the
node is denoted by probability of this node ρit.

The P-median problem is known to beNP-hard, thus Eichhorn et al. (2010) proposed use
of a greedy forward selection algorithm:

Step 1. Set J := It

Step 2. Determine an index l ∈ J such that

l ∈ argmin
u∈J

∑

k∈J\{u}
ρk min

j /∈J\{u}

∣∣xkt − xjt
∣∣ , (14)
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and set J := J \{l}. If the cardinality of J equals to desired number of clusters go
to termination step. Otherwise continue with a further index selection step.

Step 3. Find a mapping from the original set J to a reduced set J by assigning each
node that is not in the new J to the closest median.

Instead of applying the forward selection heuristic one can try to solve a MIP formulation
of the P-median problem, using a commercially available solver, which gives a provably
bounded, nearly exact solution in comparable time for the problem we use as an example.
Define two sets of variables: φi ∈ {0, 1} ∀ i ∈ It which indicates if scenario i was selected
as centroid of a cluster on stage t (φi = 1), and τi,j ∈ {0, 1} ∀ i ∈ It, j ∈ It which denotes
if scenario j is mapped to scenario i on stage t. Then the linear model for the P-median
problem is:

min
∑

i∈It

∑

j∈It

τi,jdi,jρ
j
t (15)

subject to: ∑

i∈It

φi = λt (16)

∑

i∈It

τi,j = 1, ∀ j ∈ It (17)

∑

j∈It

τi,j ≤ φi (|It| − 1) , ∀ i ∈ It (18)

τi,j ∈ {0, 1} , ∀ i ∈ It, j ∈ It (19)

φi ∈ {0, 1} , ∀ i ∈ It (20)

Applying the forward construction algorithm along with any algorithm for P-median problem
will allow us to reduce the original set of scenarios to the desired size.

4 Combined Moment Matching Scenario Reduction method

It is easy to see that the steps of the stage-wise MM algorithm given in Section 2 can
be combined with the steps of the forward construction algorithm for the SR method in
two different ways. One way is to apply the MM algorithm and then apply the forward
construction. Another way is to apply the two methods simultaneously while constructing
the scenario tree stage by stage. The combined algorithm can significantly reduce the
time required to construct the scenario tree.

The combined moment matching forward construction algorithm for the combined moment
matching scenario reduction method is as follows:

Step 1. Set t = 1 and ΓV ALî = µn for each xn,t,1, ∀n ∈ N
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Step 2. Set t = 2. Define set Kt-1 =
{

1, ...,
∏t-1

h=1 Θh

}

Step 3. Compute ΓV ALî for the children of each parent xn,t-1,k,
∀n ∈ N , k ∈ Kt-1 using formula (9).

Step 4. Solve the moment matching optimization model (1-4) with respect to the t-th
stage components only. Create nodes with variable vector x̃it = (x1,t,i, ..., xn,t,i)

T , i =
(k-1) ·Θt, ..., k ·Θt, ∀ k ∈ Kt-1 and probabilities pt,i.

Step 5. Create λt clusters of nodes with centroid nodes xjt , j ∈ {1, ..., λt} by solving
the P-median problem for the nodes at stage t. Set Kt = {1, ..., λt}. If t < T , set
t := t+ 1 and continue from Step 3, otherwise go to Step 6.

Step 6. Construct scenarios S from obtained centroid nodes.

In other words, at each stage except the first one, we create a set of nodes using the
Moment Matching method, then we reduce the number of nodes using the Scenario Re-
duction method. To create the nodes at the next stage we branch only from the remaining
nodes using the given branching factor.

5 Experiments and Conclusions

Let us consider the process of scenario creation by two separated methods and the com-
bined method. If the MM and SR methods are applied sequentially, then we will have to
solve 1 + 1 ·Θ2 + ...+ 1 ·Θ2 · · · ·ΘT-1 matching problems and 1 + 1 ·λ2 + ...+ 1 ·λ2 · · · · ·λT−1

P-Median problems. If the two methods are combined, the total number of matching prob-
lems and the total number of P-median problems to solve will be the same and equal to
1 + 1 · λ2 + ... + 1 · λ2 · · · · · λT−1. Hence, the larger the difference between the branching
factor Θt and the number of clusters λt, the greater time savings can be achieved.

Consider the following example: Suppose, that we have 4 stages in our scenario tree, the
branching factor is chosen to be Θt = 12, ∀ t = {2, 3, 4} and the number of clusters is
λt = 2, ∀ t = {2, 3, 4}. If the two methods are applied in series we will have to solve 157
nonlinear matching problems and 7 P-median problems. If we apply the combined Moment
Matching Scenario Reduction method we will have to solve only 7 matching problems and
the same number of P-median problems. It means that we will avoid solving 150 nonlinear
matching problems.

Examples of time savings in seconds can be seen in Table 2. The configurations are la-
beled as (N , T , b), where b is the branching factor, indicating the constant number of child
nodes generated from each node at stage t = 1, ..., T −1. We formulated the models using
Pyomo and solved them using IPOPT as a nonlinear solver and we used a greedy forward
selection algorithm coded in Python for the P-median problems. The MM algorithm used
in serial experiments (and in the combined method experiments) was decomposed by
stages. For the simultaneous solution of all stages, the computational times are dramati-
cally higher.

Models and algorithms for coordinated lot-sizing and joint replenishment

40



Table 2: CPU Time (seconds) for the Serial and Combined Moment Matching Scenario
Reduction method

Instance Serial Combined
Configuration MM SR MM and SR
(2,3,6) 0.54 0.12 0.36
(2,4,6) 1.73 0.13 0.57
(2,4,12) 8.89 0.15 0.92
(2,5,12) 104.52 0.29 1.69
(2,6,12) 3398.81 1.43 2.99

As we can see, whenever scenario generation may constitute a large and time consuming
part of solving a stochastic optimization problem, using the combined moment matching
scenario reduction method can bring significant benefits.
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Abstract

We consider the coordinated capacitated lot-sizing problem (CCLSP) with dynamic,
stochastic demand, previously not addressed in the literature. We provide important
extensions to the classical version of related problems in order to provide solutions
that reflect conditions in a real-world application. To test the advantage of the stochas-
tic model with respect to a deterministic model we applied the production plan in a
rolling horizon settings with data from a company providing worldwide distribution of
children’s furniture and equipment. The stochastic model out-performed the determin-
istic model with 51.4% lower total cost, leading to a significant reduction in inventory
costs and to a slight increase in use of emergency supplies.

Keywords: Inventory; Stochastic programming; Coordinated capacitated lot-sizing
problem; Stochastic dynamic problem; Scenario generation

1 Introduction

In this paper we consider the coordinated capacitated lot-sizing problem (CCLSP) with
dynamic, stochastic demand. Though the deterministic version of the problem has been
well studied (see, e.g., Robinson et al. (2009)), the CCLSP with stochastic demand has
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not been addressed in the literature before. The main difference between the coordinated
capacitated lot-sizing problem and the stochastic capacitated lot-sizing problem (SCLSP)
is the presence of joint setup costs. We apply a stochastic programming approach, previ-
ously used by Brandimarte (2006) to address the SCLSP, to solve a variant of the CCLSP
taken from the real world.

The problem comes from the Norwegian company Stokke, designing and distributing prod-
ucts for children. The company operates a supply chain, which is characterized by lead
times significantly exceeding the length of the replenishment period. In practice this means
that there are several (normally three) orders on the way from a supplier to the company’s
warehouse at any time. Hence, when placing an order one shall account for at least three
periods ahead to optimize the overall performance of the system.

The problem considered in this paper is related to the class of lot-sizing problems (LSP).
Harris (1913a,b) introduced the first model of this class, assuming single-item static de-
terministic demand, continuous time and unlimited lot-size. Since then, a vast variety of
lot-sizing problems have been discussed in the literature. Robinson et al. (2009) presented
the most recent review of the literature on the topic. Authors have mostly concentrated on
the discussion of the coordinated deterministic dynamic demand LSP. This problem is
characterized by multiple items, which can be jointly replenished on a single link. The
demand for each of the items is deterministic, but dynamic. There are two main vari-
ants of the problem: capacitated and uncapacitated. Different problem formulations are
presented in the literature together with solution approaches.

The natural extension of the coordinated capacitated deterministic demand LSP would be
a problem with stochastic demands. Robinson et al. (2009) considered the Joint Replen-
ishment Problem (JRP) as a sub-class of the LSP. Khouja and Goyal (2008) presented
the most recent review of the literature on the JRP. The paper includes a discussion of the
JRP under stochastic demands among others. Unlimited replenishment size and station-
ary demands are assumed for this kind of problem. Lee and Chew (2005) developed an
algorithm for a version of the problem with independent and auto-correlated demands.
Rubasheuski et al. (2014a) used a JRP setting to consider a problem with stationary
stochastic demands and modified setup costs.

While considering stochastic demands in more general settings of LSP, most authors con-
centrate on single-item models (Levi and Shi, 2013; Levi et al., 2005; Smith and Tan,
2013; Delaert and Melo, 1998). Only a few authors aimed to solve capacitated stochastic
demand LSP. Tempelmeier (2011) used a column generation heuristic to obtain the fixed
production plan for the whole time horizon. Helber et al. (2013) proposed two different pro-
cedures to approximate the stochastic nature of demand and then used a fix-and-optimize
heuristic in order to find a solution for the problem.

Another area of research closely related to the coordinated LSP deals with the stochastic
economic lot-scheduling problem (SELSP). While solving a SELSP one aims to establish
a set of rules (policy) to manage a production process, rather than a concrete production
plan. Together with absence of joint setup costs in the classical model formulation, this
makes the SELSP different from the CCLSP. The most recent review on this topic is given
by Winands et al. (2011).

Models and algorithms for coordinated lot-sizing and joint replenishment

46



We propose to use a stochastic programming approach (Ruszczynski and Shapiro, 2003)
in order to solve a special case of a coordinated capacitated stochastic dynamic demand
LSP with emergency supplies. Some authors have used scenario trees in order to deal
with stochastic demand LSP (Li and Thorstenson, 2013; Brandimarte, 2006; Beraldi et al.,
2006). They developed algorithms competing to find optimal solutions to the classically
formulated problems.

The current work differs from previous research in several ways: a new variant of a co-
ordinated capacitated LSP is considered; stochastic, non-stationary in mean, correlated
demands are assumed; back-order costs are considered as part of the total cost function;
back-orders are limited by the target service level and cannot exceed a certain share of
demand during a particular period; emergency supplies are allowed; the setup costs are
dependent on the number and size of transportation units used.

First, a new variant of the coordinated capacitated LSP with emergency supplies is con-
sidered. The formulation of the problem is presented together with a solution approach.
Second, the problem is solved for multiple items with stochastic, non-stationary in mean,
correlated demands. Third, the proposed problem formulation was applied to solve the
real world case of Stokke AS, indicating significant improvements compared to the com-
mon business practice.

The rest of the paper is organized as follows. Section 2 is devoted to the description of
assumptions and problem formulation. Section 3 is used to discuss the scenario genera-
tion procedure and the solution approach. Section 4 presents the results of the algorithm
implementation on a given problem together with the discussion of possible extensions of
the model. Section 5 summarizes the findings and presents conclusions.

2 Problem statement

We assume a system where multiple products are ordered from a single source of sup-
ply. The time between orders is fixed and orders are transported using transport units of
different capacities. The lead time for all units, regardless of the capacity, is identical and
constant. It is equal to L time intervals where L is an integer value. To illustrate this we
make use of Figure 1. Assume that the lead time length L=3. Then order o1, placed in
the beginning of the first period, is delivered in the beginning of time period t=4. Prod-
uct demands are stochastic, correlated between each other, and auto-correlated. So the
expected demand in period t, can be expressed as follows:

E (Dt) = α · Dt-1 + (1− α) · µ, (1)

where µ represent the grand mean demand and α ∈ [0, 1] represents the mean reversion
factor. Other statistical properties of demand are assumed to be state-independent.

Considering demand within one time interval, we assume that it arrives in a continuous
manner at a constant rate. Then there could be three possible inventory states in the end
of the period as shown on Figure 2:
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Figure 1: An example of order placing and allocation at a warehouse for lead time length
L=3 time periods
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Figure 2: Inventory level fluctuations

• The demand does not exceed the available inventory, as in period 1 and 3. Then
neither backorder nor emergency supply will occur.

• The demand exceeds the available inventory, but the limit for allowed backorders, Q,
is not reached (period 2), then no emergency supply will occur.

• The demand exceeds the available inventory and the limit for allowed backorder
quantity, Q, is reached (period 4), then the option of emergency supply is used.

We assume that the time to deliver an item using the emergency supply source is negli-
gible, and that the cost of delivering one unit of the product is constant and exceeds the
backorder cost per unit of this product. Hence, the emergency supply is used only when
the limit for the number of backordered units is reached.

Table 1: Notation

Sets

N = set of products
M = set of transport unit sizes
Parameters

T = number of time periods to review
L = length of the lead time as number of time periods, integer
Dn,t = demand for product n in period t, n ∈ N , t ∈ {1, ..,T + L + 1}
On,t = order for product n which was placed at time t, n ∈ N , t ∈

{2-L, ..,0}
Vn = volume per unit of product n, n ∈ N
Um = capacity of the transport unit of size index m, m ∈M
Em = transportation cost per transport unit of size index m, m ∈M
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Table 1: (continued)

F = transportation cost per cubic meter from emergency supply
source

Wn = unit cost for product n, n ∈ N
H = one period holding cost as a fraction of unit cost
B = one period backorder cost as a fraction of unit cost
Qn = limit for backorder quantity of product n, n ∈ N
In = initial inventory of product n, n ∈ N

Variables

on,t = number of units of product n ordered at the beginning of period
t, n ∈ N , t ∈ {1, ..,T}

ym,t = number of transport units of size index m used for orders placed
at the beginning of period t, m ∈M, t ∈ {1, ..,T}

in,t = inventory of product n at the end of period t, n ∈ N , t ∈
{L, ..,T + L}

qn,t = backorder quantity of product n at the end of period t, n ∈ N , t ∈
{L, ..,T+L}

fn,t = quantity of product n supplied during period t using the emer-
gency source, n ∈ N , t ∈ {L, ..,T+L}

Given these assumptions and with use of parameters and variables shown in Table 1 , the
average inventory of product n during period t can be expressed in the following way:

{(
in,t-1 + on,t − qn,t-1

)2
/2
(
in,t-1 + on,t − qn,t-1 + qn,t + fn,t

)
, if in,t = 0,

1
2

(
in,t-1 + on,t − qn,t-1 + in,t

)
, otherwise.

(2)

In order to simplify the calculations of the objective function we assume that the average
inventory of product n can be always expressed as:

in,t-1 + in,t + on,t − qn,t-1

2
(3)

Joint setup costs and item specific setup costs are replaced with transportation costs
which depends on the number of transport units of given capacities being ordered. Making
use of parameters and variables shown in Table 1 one can express the transportation
(setup) costs as follows:

Transportation costs =
T∑

t=1

∑

m∈M
ym,t · Em (4)

A model for a deterministic version of the problem is formulated in Table 2 with use of
parameters and variables shown in Table 1 and an extra set of assumptions:

• Product demands can be determined in advance with 100% confidence for T time
periods.
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• Inventory and transportation costs are fixed for all periods.

• An order is placed in the beginning of the time period.

• Product demands are continuous and arrive with a constant rate.

• Inventory level or backorder quantity are measured in the end of the time period.

Table 2: Deterministic multi period model

minC =
T∑

t=1

∑

m∈M
ym,t · Em +

T+L∑

t=L+1

∑

n∈N

in,t-1 − qn,t-1 + on,t-L + in,t
2

·Wn · H

+
T+L+1∑

t=L+1

∑

n∈N
qn,t ·Wn · B +

T+L+1∑

t=L

∑

n∈N
fn,t · F · Vn (5)

Subject to:

in,L − qn,L − fn,L =
0∑

t=1-L

On,t +
L∑

t=1

Dn,t + In, ∀n ∈ N (6)

on,t + in,t+L-1 + qn,t+L + fn,t+L = Dn,t+L + in,t+L + qn,t+L-1,

∀n ∈ N , t ∈ {1, ..,T} (7)

∑

n∈N
on,t · Vn ≤

∑

m∈M
ym,t · Um, ∀t ∈ {1, ..,T} (8)

on,t ≥ 0, ∀n ∈ N , t ∈ {1, ..,T} (9)

qn,t ≤ Qn, ∀n ∈ N , t ∈ {L, ..,T+L} (10)

qn,t ≥ 0, in,t ≥ 0, ∀n ∈ N , t ∈ {L, ..,T+L} (11)

ym ∈ N,∀m ∈M (12)
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In the deterministic case we consider a multi-period problem where the objective (5) is to
minimize the sum of transportation and inventory holding costs. Estimating the inventory
costs, we assume that demand is constant and continuous during the time period. Then
the average inventory level during the period is measured as the sum of the inventories in
the beginning and end of the period divided by two. The inventory level in the beginning of
a time period is equal to the sum of an order arriving in the beginning of this time period
and the inventory (or backorder) left at the end of the previous time period.

It should be noted, that such an estimation of the inventory costs leads to an overestima-
tion of the real costs. In our model, it is assumed that the inventory level can drop to 0 only
in the end of the time period, however in practice it can get down to 0 in the middle of the
period. Hence the estimated average inventory level exceeds the real average inventory
level. This leads to an overestimation of the inventory holding costs. Such a drawback can
be eliminated by a significant complication of the model, which we consider unnecessary,
as the inventory level in practice almost never drops down to 0.

As all the demands are assumed to be known in advance, the orders for all review periods
T can be optimized simultaneously at one stage. But even though we know the demands
exactly, we allow having inventory, backorder and emergency supplies to make a better
use of fixed transport unit capacities.

Constraint set (6) estimates the inventory and backorder amount at the end of time period
L, i.e., just before the arrival of the first order. As both the inventory level and the backorder
quantity affect the objective function, at least one of them will be equal to 0 in an optimal
solution. Constraint set (7) requires that demand for each product was balanced with
available inventory during each time period.

The constraint set (8) requires that all orders fit into the ordered transport capacity. Con-
straint sets (9-11) set upper and lower bounds for the number of ordered products, inven-
tory level and backorder level values for each of the products and each of the relevant
periods. Constraint set (12) requires that the number of transport units of each type and
during each period are non-negative integers.

3 Multi-stage Stochastic model formulation

In the real world demands are almost never known in advance. Thus we suggest that the
problem discussed in this paper can be better handled using a stochastic programming
approach. In real life one typically makes a decision only about the first order, while
decisions about the next orders will be made at the time they are placed. We propose the
Multi-Stage Stochastic Model presented in Table 3 to account for these changes.

Notation for the Multi-Stage Stochastic Model will stay the same as in the previous section,
but decisions will be made at T+1 stages. At each stage t ∈ {1,..,T} we will make a
decision about the order size on,t for each product n, so the stages will be consistent
with time periods. At the last stage T+1 we will make ”decisions” about all the inventory,
backorder and emergency order quantities for periods t ∈ {L+1,..,T+L+1}, where L is the
length of the lead time. This means that the last stage is not consistent with one single
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Figure 3: Relationship between stages and time periods in the Multi-Stage Stochastic
Model

time period. One can make use of Figure 3 to better understand the relationship between
time periods and stages.

To simplify the modeling task we assume that demands for each product during each pe-
riod can be described using a discrete distribution with a limited number of options. Then
using any scenario generation method, we can get a set of possible scenarios S.

The solution system of a multi-stage model must be admissible and implementable. A
solutions system, which satisfies the constraints for all of the scenarios, is referred to as
admissible. We refer to a system of solutions as implementable if, for scenarios s and s’
that follow the same branch of the scenario tree up to stage k, it is true that on (s, k’) =
on (s’, k’) for all 1 ≤ k’ ≤ k and each n in N . The set of all solution systems for a given set
of scenarios S is referred as DS . Shorthand X is referred to as the entire solution system
of x vectors (that is, X=x(1,1), ... ,x(S,K ), where K is the last considered stage).

Table 3: Multi-Stage Stochastic Model

minC =
∑

s∈S
ps ·

(
T∑

t=1

∑

m∈M
ym,t,s · Em

+
T+L∑

t=L+1

∑

n∈N

in,t-1,s − qn,t-1,s + on,t-L,s + in,t,s
2

·Wn · H

+
T+L∑

t=L+1

∑

n∈N
qn,t,s ·Wn · B +

T+L∑

t=L

∑

n∈N
fn,t,s · Vn · F

)
(13)

Subject to:

Models and algorithms for coordinated lot-sizing and joint replenishment

52



Table 3: (continued)

in,L,s − qn,L,s − fn,L,s =
0∑

t=1-L

On,t +
L∑

t=1

Dn,t,s + In, ∀n ∈ N , s ∈ S (14)

on,t,s + in,t+L-1,s + qn,t+L,s + fn,t+L,s = Dn,t+L,s + in,t+L,s + qn,t+L-1,s,

∀n ∈ N , t ∈ {1, ..,T}, s ∈ S (15)

∑

n∈N
on,t,s · Vn ≤

∑

m∈M
ym,t,s · U, ∀s ∈ S, t ∈ {1,..,T} (16)

X ∈ DS (17)

on,t,s ≥ 0,∀n ∈ N , t ∈ {1, ..,T}, s ∈ S (18)

qn,t,s ≤ Qn, ∀n ∈ N , t ∈ {L, ..,T+L}, s ∈ S (19)

in,t,s ≥ 0,qn,t,s ≥ 0, ∀n ∈ N , t ∈ {L, ..,T+L}, s ∈ S (20)

ym,t,s ∈ N, ∀m ∈M, t ∈ {1, ..,T}, s ∈ S (21)

The objective function (13) consists of T+1 stage costs. On each stage t ∈ {1,..,T} costs
are associated with expenses on transport needed to deliver the order placed on this
stage. As the ordering decisions are taken on stage t, the transportation costs are also
associated with the corresponding stage. The costs on stage T+1 consist of inventory
holding, backorder costs and emergency supply costs. Parameter ps is the estimated
probability of a given scenario s. Then the expected costs are dependent on the probability
of each scenario and the costs associated with this scenario.

The set of constraints (14-16) correspond to the constraints (6-8) of the deterministic
model . The only difference is that they are now valid for all of the scenarios.

Constraint set (17) requires that the system of solution vectors is implementable. This
means that the first stage variables must have the same values for all of the scenarios.
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The second stage variables will be the same for all branches of the scenario tree starting
from the same second-stage node, etc. Assume that there can be six different outcomes
of the stochastic process on the second stage, i.e., each of the scenarios goes through
one of the six nodes on the second stage. Hence, all scenarios going through the same
node, should have the same values of the decision variable on the second stage. Such
logic applies for all the stages and scenarios.

Note that we are only interested in the solution elements corresponding to the first time
period. At the start of the second and any other time period the model will be run again
with updated demands and scenarios.

4 Scenario Tree Generation and Stability Testing

To run the Stochastic Programming Model we need a set of scenarios to review. In the
real-world problem that motivates our work, products are typically produced in ensembles.
For example, you can order a stroller, which includes shopping bag, parasol, cover coat
etc. of the same color. The demand for all these separate items will be positively correlated
but not identical (as not everyone orders a parasol, for example). At the same time the
demand for strollers of different colors are likely to be negatively correlated. Indeed, the
experience of Stokke shows that if the demand for green strollers goes up, the demand
for red ones typically decreases. Hence demands are stochastic, auto-correlated and
correlated both within and outside of the product families.

There are many ways to construct scenario trees in order to reflect the stochastic nature of
the process (Kaut and Wallace, 2007; King et al., 2012). The combined moment matching
and scenario reduction method (Rubasheuski et al., 2014b) is used to create scenario
trees in this paper in order to reflect the properties of demand efficiently. Since demand
for all the products is assumed to be random, we are matching its three first moments and
the paired correlation function as statistical properties in the objective function. The mean
value is the only state-dependent statistical property, while other properties are assumed
to be stationary. At each time period t = 2...T the number of possible outcomes from the
parent node is reduced to 3. In our practical example the scenario tree will include 729
scenarios.

The methodology proposed by King et al. (2012) was used to test the in-sample and out-
of-sample stability of the scenario generation procedure. Since the procedure to construct
the scenarios is deterministic, the in-sample stability was tested using 10 scenario trees
including from 725 to 734 scenarios. The standard variation of objective function value
made up 0.0005% of the mean, indicating that the model is in-sample stable. The out-of-
sample stability was tested fixing the root solution from the first scenario tree and solving
the model for other scenario trees. Since the first stage decisions were exactly the same
for all the scenario trees, there was no variation of objective function value, indicating that
the model is out-of-sample stable. Thus we can claim that the solution does not depend
on a specific scenario tree.
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5 Model implementation and results

To evaluate the performance of the multi-stage stochastic model compared to the perfor-
mance of the deterministic model, we used a data sample from Stokke, which included
44 products and two sizes of transportation units. Both models were re-run with updated
information for 3 periods using an 16x Intel Xeon(R) CPU E5620 2400 GHz processor with
11,7 GB RAM. Both models were coded using Python and Pyomo (Hart et al., 2012) and
the problem given in Table 3 is solved directly by Gurobi 5.6.3 (Gurobi, 2014).

A constrained non-linear problem was solved using the Ipopt non-linear solver (Wächter
and Biegler, 2006) to generate each scenario tree for the stochastic model implementa-
tion. The demand forecasts for the deterministic model were received using the expo-
nential smoothing method. During the analyzed time period the demand for the selected
range of products was decreasing, which can be seen on the graph representing the value
of the total demand (Figure 4).

The demand data for the first six months and the information about available inventory
and placed orders by the end of the sixth month were utilized to find the order quantities
for period 1 using the deterministic and the stochastic model. To find the order quantities
for period 2 the demand information was updated and the information about the order
placed in period 1 was utilized. The same procedure was used to find an order quantities
in period 3. Then the demand information for the last four months was used to compute
inventory, backorder and emergency costs. It means that both the stochastic model and
the deterministic model were run three times to determine order quantities for periods 1,
2 and 3.

Figure 4: Value of the total demand during the analyzed time horizon

The multi-stage stochastic model outperformed the deterministic model with 51.4% lower
total cost. Application of the deterministic model lead to significantly higher inventory costs
(see Figure 5), whereas the stochastic model application lead to a slight increase in use
of emergency supplies.

One run of the stochastic model took on average 39471.1 seconds of CPU time to be
solved. Of that, 39279.9 seconds of that were used to generate a scenario tree and 153.2
seconds were used to solve an extensive form of the stochastic model. The deterministic
model was solved in 0.56 seconds of CPU time on average. In the case company such
a model is supposed to be solved once in a month, hence the time to solve a stochastic
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Figure 5: Distribution of the total cost

model is reasonable. Nevertheless, in other applications a faster method of scenario
generation can be required.

6 Conclusions

In this paper we propose a model formulation and a solution approach for the coordinated
capacitated lot-sizing problem (CCLSP) with stochastic demand and demonstrate its im-
portance with real-world data. Whereas the deterministic version of the problem has been
considered by a number of researches (see Robinson et al. (2009) for the most recent
overview), the CCLSP with stochastic demand has not been addressed in the literature
before.

Inclusion of joint setup costs makes the CCLSP different from the stochastic capacitated
lot-sizing problem (SCLSP) (Tempelmeier, 2011; Helber et al., 2013) and, together with
the aim to establish a concrete production plan rather than a policy, distinguishes it from
the stochastic economic lot-scheduling problem (SELSP) (Winands et al., 2011).

The considered problem is characterized by stochastic, non-stationary in mean and cor-
related, general distribution product demands. Compared to the classical coordinated
lot-sizing problem, the proposed models include a set of important changes reflecting the
real world case: back-order costs are considered as part of the total cost function; emer-
gency supplies are allowed and not limited; the setup costs are dependent on the number
and size of used transportation units rather than on the inclusion of a particular item in an
order.

A deterministic and a stochastic model formulation to deal with such a problem are pre-
sented and implemented on the data from the Norwegian company Stokke, designing and
distributing products for children. The combined moment matching and scenario reduc-
tion method (Rubasheuski et al., 2014b) is used to create scenario trees to implement
the stochastic model, and the exponential smoothing method was used to produce the
demand forecasts for the deterministic model. The multi-stage stochastic model outper-
formed the deterministic model with 51.4% lower total cost when applied to a 3 period
real data case from Stokke. 153.2 seconds of CPU time were used to solve an extensive
form of the stochastic model with 731 scenarios and 0.56 seconds were used to solve the
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deterministic model. However, significant time required to generate a scenario tree could
restrict the implementation of the stochastic model formulation in other applications.

We have demonstrated that a stochastic model can be used for this important class of lot
sizing problems. Scenario generation takes significant, but tractable computational effort
and the problem itself can be solved in reasonable time for a realistic sized instance. We
have shown an example using real-world data where significant savings are possible using
the stochastic model we have proposed.
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Abstract

The present literature review focuses on the stochastic capacitated lot-sizing problem
(SCLSP). The SCLSP deals with make-to-stock production of multiple items sharing
limited resources under stochastic demand over a finite time horizon divided into dis-
crete time periods. A typical solution for such a problem would be a fixed production
plan for the next period. We present an overview of all available models for the unco-
ordinated SCLSP and develop a new formulation for the coordinated SCLSP together
with an indication of areas for future research.

Keywords: Inventory Theory; Stochastic Capacitated Lot-Sizing Problem;Coordinated
Stochastic Capacitated Lot-Sizing Problem

1 Introduction

The problem of trading off inventory costs against ordering (transportation) costs has been
in focus of researchers since F.Harris (1913) introduced the single item economic order
quantity (EOQ) model. In this paper we present an overview of the literature on stochastic
capacitated lot sizing problems for multiple items. These problems are characterized by a
finite time horizon divided into discrete time periods, period-specific stochastic demands
for multiple items, a target service level and limited shared resources.

In their survey Sox et al. (1999) considered the stochastic capacitated lot sizing prob-
lem as a version of a more general stochastic lot scheduling problem. The paper mainly
considered the literature on the stochastic economic lot scheduling problem (SELSP), indi-
cating only one paper dealing with the stochastic capacitated lot sizing problems (SCLSP)
(Sox and Muckstadt, 1999). To the author’s knowledge there are not other reviews of
literature on stochastic capacitated lot sizing problems for multiple items.

Following and extending the taxonomy of deterministic dynamic demand lot-sizing prob-
lems presented by Robinson et al. (2009), we distinguish between coordinated (CSCLSP)
and uncoordintated (SCLSP) versions of the problem. The CSCLSP is solved to minimize
the total costs, which include joint setup costs induced whenever any of the items from the
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product group is produced, individual setup costs and inventory costs. In the SCLSP joint
setups are not considered.

This review focuses on the development of formulations and solution methods for the
stochastic capacitated lot sizing problems for multiple items over the last decade. We
first give a short and limited overview of the literature on related problems, such as the
stochastic joint replenishment problem (SJRP) and the stochastic economic lot scheduling
problem (SELSP). In section 3 we discuss available formulations and solution methods
of the uncoordinated and the coordinated stochastic capacitated lot sizing problems for
multiple items. We also present a new formulation for the CSCLSP in section 3.2 and
discuss the direction for the future research in section 4 of this paper.

2 Related Problems

Both the stochastic joint replenishment problem (SJRP) and the stochastic economic lot
scheduling problem (SELSP) are extensions of the EOQ model, determining a replenish-
ment policy for a set of products that minimizes total ordering and inventory costs.

The SELSP deals with make-to-stock production. The problem setting includes multiple
items sharing common resources with limited capacity, under random demands, possibly
random setup and production times. Solving the problem, one aims to establish a set of
rules (policy) to manage a production process, rather than a concrete production plan.
The policy describes for each possible state of the system, whether the production of the
current item should be continued, whether the production of another item should begin, or
whether the production should be terminated for a while. Winands et al. (2011) presented
the most recent overview of the literature on the topic.

Another area of research, closely related to the stochastic capacitated lot sizing problem,
is well studied within the frame of the stochastic joint replenishment problem (SJRP). In
the classic SJRP one is interested to minimize total inventory holding and ordering costs,
where the ordering costs include both individual and joint setup costs.

The two most common approaches for solving a stochastic JRP include implementation
of a periodic review policy (Aksoy and Erenguk, 1988) or a can-order policy (Balintfy,
1964). Implementing the first policy one will find the time period between two reviews
and the upper limit for inventory on hand. The order size in each particular order will stay
unknown. Minimizing the total ordering and inventory costs under the can-order-policy,
one will utilize a must-order level, a can order level and an up-to inventory level for each of
the items. In this case neither the order size nor the time between two consecutive orders
is known in advance. Khouja and Goyal (2008) presented the most recent review of the
literature on the JRP, including a section on the SJRP.

Models and algorithms for coordinated lot-sizing and joint replenishment

62



3 Formulations of the Stochastic Capacitated Lot-Sizing
Problem

3.1 The Uncoordinated Stochastic Capacitated Lot-Sizing Problem
(SCLSP)

The stochastic uncoordinated capacitated lot-sizing problem (SCLSP) for multiple items
was first analyzed by Sox and Muckstadt (1999). They developed a model formulation
for the ”stochastic lot-scheduling problem as a finite-horizon, discrete-time, production
and inventory problem with multiple products and random demand”. The authors have
proposed a heuristic to solve the problem, capable to find a production plan, minimizing
the total cost. Since the solution to the problem is not a policy but a fixed production plan,
the common practice is to refer to the problem as to the SCLSP.

Table 1: Notation

Sets

N set of products
T set of time periods to consider
J set of set of transport unit sizes
Parameters

hn one period inventory holding cost for each unit of item
n ∈ N

sn setup cost for item n ∈ N
S joint setup cost
dn,t demand for item n ∈ N in period t ∈ T
rn unit processing time for item n ∈ N
r′n setup time for item n ∈ N
Rt available capacity in time period t ∈ T
c cost of production source
β∗n target fill rate per cycle for product n ∈ N
qn,t lot size of item n ∈ N in period t ∈ T
M sufficiently large number
l length of the lead time as number of time periods, integer
on,t order for product n which was placed at time t, n ∈ N , t ∈

{2-l, ..,0}
vn volume per unit of product n, n ∈ N
uj capacity of the transport unit of size index j, j ∈ J
wj transportation cost per transport unit of size index j, j ∈

J
wem transportation cost per cubic meter from emergency

supply source
fn one period backorder cost for product n, n ∈ N
fmaxn limit for backorder quantity of product n, n ∈ N
in, 0 initial inventory of product n, n ∈ N

Variables

yn,t lot size of product n ∈ N in period t ∈ T

SCLSP: a review of models and solution methods
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Table 1: (continued)

yn,t,p lot size of product n ∈ N in period t ∈ T to be consumed
in period p ∈ T : p ≥ t

Int net inventory for product n ∈ N at the end of period
t ∈ T

Iendnt backlog of product n ∈ N at the end of period t ∈ T
Iprodnt backlog of product n ∈ N after production in period t ∈

T , but before demand occurrence
Fnt backorders of product n ∈ N in period t ∈ T
lnt number of periods since the last setup (product n ∈ N ,

period t ∈ T ∪ {0})
γn,t ∈ {0, 1} variable denoting if product n ∈ N was produced in pe-

riod t ∈ T (γn,t = 1)
αt ∈ {0, 1} variable denoting if any of the products was produced in

period t ∈ T (αt = 1)
ωnt indicates if product n ∈ N was produced in period t +

1, ∀t ∈ T (ωnt = 1)
Qj,t number of transport units of size index j used for orders

placed at the beginning of period t, j ∈ J , t ∈ {1, ..,T}
An,t quantity of product n supplied during period t using the

emergency source, n ∈ N , t ∈ {L, ..,T+L}

We present the model formulation, developed by Sox and Muckstadt (Table 2), with use of
notation presented in Table 1, and where E [g (x)] is expected value of function g (x).

Table 2: Sox and Muckstadt model formulation for the SCLSP

min
∑

n∈N

∑

t∈T


snγn,t + hnE

[
t∑

tt=1

yn,tt −
t∑

tt=1

dn,tt

]+
+

+fnE

[
t∑

tt=1

dn,tt −
t∑

tt=1

yn,tt

]+
+ c

(
rnyn,t + r’nγn,t

)

 (1)

Subject to:

t-1∑

tt=1

yn,tt ≤
t∑

tt=1

yn,tt, ∀n ∈ N , t ∈ T (2)

t∑

tt=1

yn,tt −
t-1∑

tt=1

yn,tt ≤Mγn,t, ∀n ∈ N , t ∈ T (3)
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Table 2: (continued)

∑

n∈N

(
rnyn,t + r’nγn,t

)
≤ R, ∀n ∈ N (4)

yn,t ≥ 0, ∀n ∈ N , t ∈ T (5)

γn,t ∈ {0, 1} , ∀n ∈ N , t ∈ T (6)

Brandimarte (2006) proposed a plant-location model formulation for the SCLSP with mul-
tiple products. The problem setting included multiple items with stochastic demand, finite
and discrete time horizon, item- dependent setup times, and lost sales in case of insuffi-
cient inventory.

For the sake of compactness we present the formulation for the problem assuming deter-
ministic demand (Table 3).

Table 3: A plant-location model formulation for SCLSP

min
∑

n∈N

∑

t∈T

∑

p∈T :p≥t

hn (p− t) yntp +
∑

n∈N

∑

t∈T
snγnt (7)

Subject to:
∑

t∈T :t≤p

yntp ≥ dnp, ∀n ∈ N , p ∈ T (8)

yntp ≤ dnpγnt, ∀n ∈ N , t ∈ T , p ∈ P : p ≥ t (9)

∑

n∈N

∑

p∈T :p≥t

rnyntp +
∑

n

r′nsnt ≤ Rt, ∀t ∈ T (10)

yntp ≥ 0, ∀n ∈ N , t ∈ T , p ∈ P : p ≥ t (11)

γnt ∈ {0, 1} , ∀n ∈ N , t ∈ T (12)
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Brandimarte used a node-based stochastic programming approach to tackle the stochastic
variant of the problem. The model formulation is then extended by inclusion of variables
x
[g]
n , determining the lost sales of product n ∈ N at node g of the scenario tree. Constraint

set 8 is replaced by a balance constraint for each product at each node. Big-M-type
constraint 9 is also modified in order to reflect the stochastic nature of the problem. To
solve the problem Brandimarte successfully applied a time-sweep-based heuristic solving
relaxed MILP subproblems using CPLEX 8.0.

Another approach to tackle the SCLSP was introduced by Tempelmeier and Herpers
(2010) and further developed by Tempelmeier (2011). They introduced a target service
level βn, limiting the expected number of backordered items in each production cycle. A
model formulation for the SCLSPβ is presented in Table 4

Table 4: A model formulation for the SCLSPβ

min
∑

n∈N

∑

t∈T

(
snγnt + hnE

{
[Int]

+}) (13)

Subject to:

In,t−1 + ynt − dnt = Int, ∀n ∈ N , t ∈ T (14)

ynt −Mγnt ≤ 0, ∀n ∈ N , t ∈ T (15)

∑

n∈N
rnynt ≤ Rt, t ∈ T (16)

Iprodnt = − [In,t−1 + qnt]
− , ∀n ∈ N , t ∈ T (17)

Iendnt = − [Int]
− , ∀n ∈ N , t ∈ T (18)

Fnt = Iendnt − Iprodnt , ∀n ∈ N , t ∈ T (19)

lnt = (ln,t−1 + 1) · (1− γn,t) , ∀n ∈ N , t ∈ T (20)

ln0 = −1, ∀n ∈ N (21)
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Table 4: (continued)

ωnt = γn,t+1, ∀n ∈ N , t ∈ T \
{

t|T |
}

(22)

ωn,|T | = 1, ∀n ∈ N (23)

1−
E
{∑t

j=t−lnt
Fnj

}

E
{∑t

j=t−lnt
dnj

} ≥ β∗n, ∀n ∈ N , t ∈ {T |ωnt = 1} (24)

ynt ≥ 0, ∀n ∈ N , t ∈ T (25)

γnt ∈ {0, 1} , ∀n ∈ N , t ∈ T (26)

The model formulation is based on the assumption of a fixed production plan for the whole
time horizon, and this production plan should be determined at the beginning of the plan-
ning horizon. Tempelmeier and Herpers (2010) implemented an ABCβ heuristic to deal
with the problem and Tempelmeier (2011) used a column generation heuristic. Compari-
son of numerical results for both heuristics (Tempelmeier, 2011) indicates that the column
generation heuristic outperformed the ABCβ heuristic in 97.95% of all solved problem in-
stances, however it was not able to solve 148 of 2804 problem instances. Implementing
the column generation Tempelmeier (2011) generated a number of production plans for
each of the products, and then selected the best combination of them in the master prob-
lem.

Helber et al. (2013) changed the type of service level in the model formulation proposed by
Tempelmeier and Herpers (2010). They used σ − service level representing the expected
percentage of the maximum possible demand-weighted waiting time that the customers of
product n are protected against:

σ = 1−
∑

t∈T E {Fnt}∑
t∈T
(
t|T | − t + 1

)
E {dnt}

(27)

Helber et al. (2013) proposed to use a fix-and-optimize heuristic to solve the problem.
They used a product-oriented decomposition and absence of improvement on last iteration
as the termination criterion.

The same type of heuristic was used by Tempelmeier and Hilger (2015) to solve the lin-
earized version of the problem. Non-linear functions of the expected inventory and back-
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orders were replaced by piecewise linear functions. The model was also modified to ac-
count for different types of service level as well as for possible setup carry overs.

3.2 The Coordinated Stochastic Capacitated Lot-Sizing Problem (CSCLSP)

Solving a coordinated SCLSP under stochastic demand, one aims to determine a replen-
ishment schedule (Robinson et al., 2009). This schedule contains information about order
quantities and time intervals between two consequent orders. In addition to individual
setup costs considered in the uncoordinated version of the problem, joint setup costs are
included in the objective function.

Despite the fact that the coordinated lot-sizing problem with deterministic demand is broadly
analyzed (see, e.g., Robinson et al. (2009)), literature on the stochastic version of the
problem can hardly be found. A modified version of the CSCLSP was discussed by
Rubasheuski et al. (2015).

The authors replaced joint setup costs and item specific setup costs with transportation
costs which depend on the number of transport units of given capacities being ordered.
Making use of parameters and variables shown in Table 1 one can express the transporta-
tion (setup) costs as follows:

Transportation costs =
T∑

t=1

∑

j∈J
Qj,t · wj (28)

In addition the authors considered backorder costs and emergency supply costs as a
part of the objective function. A multi-stage stochastic programming model optimizing the
objective function over Z possible scenarios was used to solve the problem (see Table
5).

Table 5: Multi-Stage Stochastic Programming model for the CSCLSP

minC =
∑

z∈Z
pz ·




T∑

t=1

∑

j∈J
Qj,t,z · wj

+
T+l∑

t=l+1

∑

n∈N

In,t-1,z − Fn,t-1,z + yn,t-l,z + In,t,z
2

· hn

+
T+l∑

t=l+1

∑

n∈N
Fn,t,z · fn +

T+l∑

t=l

∑

n∈N
An,t,z · vn · wem

)
(29)

Subject to:

In,l,z − Fn,l,z − An,l,z =
0∑

t=1-l

on,t +
l∑

t=1

dn,t,z + in,0 , ∀n ∈ N , z ∈ Z (30)
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Table 5: (continued)

yn,t,z + In,t+l-1,z + Fn,t+l,z + An,t+l,z = dn,t+l,z + In,t+l,z + Fn,t+l-1,z,

∀n ∈ N , t ∈ {1, ..,T}, z ∈ Z (31)

∑

n∈N
yn,t,z · vn ≤

∑

j∈J
Qj,t,z · Uj, ∀z ∈ Z, t ∈ {1,..,T} (32)

X ∈ DZ (33)

yn,t,z ≥ 0,∀n ∈ N , t ∈ {1, ..,T}, z ∈ Z (34)

Fn,t,z ≤ fmax
n , ∀n ∈ N , t ∈ {l, ..,T+l}, z ∈ Z (35)

In,t,z ≥ 0,Fn,t,z ≥ 0, ∀n ∈ N , t ∈ {l, ..,T+l}, z ∈ Z (36)

Qj,t,z ∈ N, ∀ j ∈ J , t ∈ {1, ..,T}, z ∈ Z (37)

Constraint set (33) requires that the system of solution vectors X is implementable. This
means that the first stage variables must have the same values for all scenarios. The
second stage variables will be the same for all branches of the scenario tree starting from
the same second-stage node, etc. Assume that there can be six different outcomes of the
stochastic process on the second stage, i.e., each of the scenarios goes through one of
the six nodes on the second stage. Hence, all scenarios going through the same node,
should have the same values of the decision variable on the second stage. Such logic
applies for all the stages and scenarios.

Table 6: An overview of models for the SCLSP

Representation of a stochastic process
Model type Scenario Tree Functions of expected val-

ues
Uncoordinated Brandimarte (2006) Sox and Muckstadt (1999)

Tempelmeier and Herpers
(2010)
Tempelmeier (2011)
Helber et al. (2013)
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Table 6: (continued)

Tempelmeier and Hilger
(2015)

Coordinated Rubasheuski et al. (2015)

The presented review of available models for the SCLSP (Table 6 indicates that authors
so far mostly concentrated on the uncoordinated version of the problem. Developing the
model of Rubasheuski et al. (2015), we propose a scenario-based formulation for a classic
version of the coordinated SCLSP under stochastic demand.

Table 7: Multi-Stage Stochastic Programming model for the classic CSCLSP

minC =
∑

z∈Z
pz ·

(∑

t∈T
Sαt,z +

∑

n∈N

∑

t∈T
sn,zγn,t,z+

+
∑

n∈N

∑

t∈T
In,thn +

∑

t∈T

∑

n∈N
Fn,t,z · fn

)
(38)

Subject to:

In,1,z − Fn,1,z = yn,1,z + dn,1,z + in,0, ∀n ∈ N , z ∈ Z (39)

yn,t,z + In,t-1,z + Fn,t,z = dn,t,z + In,t,z + Fn,t-1,z,

∀n ∈ N , t ∈ {2, ..,T}, z ∈ Z (40)

∑

n∈N
yn,t,zrn ≤ Rtαt,z, ∀z ∈ Z, t ∈ {1,..,T} (41)

yn,t,zrn ≤ Rtγn,t,z, ∀n ∈ N , z ∈ Z, t ∈ {1,..,T} (42)

γn,t,z ≤ αt,z, ∀n ∈ N , z ∈ Z, t ∈ {1,..,T} (43)

X ∈ DZ (44)

yn,t,z ≥ 0,∀n ∈ N , t ∈ {1, ..,T}, z ∈ Z (45)
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Table 7: (continued)

In,t,z ≥ 0,Fn,t,z ≥ 0, ∀n ∈ N , t ∈ {l, ..,T}, z ∈ Z (46)

γn,t,z ∈ {0, 1} ,∀n ∈ N , t ∈ {l, ..,T}, z ∈ Z (47)

αt,z ∈ {0, 1} , ∀ t ∈ {l, ..,T}, z ∈ Z (48)

This formulation is an extension of the formulation presented by Federgruen et al. (2007)
for the deterministic coordinated capacitated lot-sizing problem. It takes into account the
possibility of backorder occurrence in stochastic demand settings, and tackles the stochas-
tic nature of demand via scenario representation. This formulation will be suitable for
scenarios with stationary and non-stationary, correlated and uncorrelated demands, and
different values of other parameters.

4 Conclusion

The present paper has focused on models and solution methods for the stochastic capac-
itated lot-sizing problem. Following the taxonomy presented by Robinson et al. (2009),
the literature on the coordinated and uncoordinated versions of the SCLSP was analyzed.
Related problems have been discussed, including the most recent literature reviews, in
section 2.

The current survey indicates that the majority of researchers have concentrated on de-
velopment of model formulations and solution methods for the uncoordinated version of
SCLSP. Authors have used two common methods to tackle the stochasticity of demand,
either by solving a problem for a number of scenarios or by functions of expected inventory
and backorder volumes. The only paper dealing with the coordinated SCLSP is presented
by Rubasheuski et al. (2015) and deals with a special case of the problem.

As a contribution to the literature on the topic, a scenario based formulation for the classic
version of CSCLSP is presented, based on the formulation for the deterministic version
of the problem by Federgruen et al. (2007). Development of more sophisticated formula-
tions and solution methods for the classic CSCLSP can be a promising direction for future
research on the topic.
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