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Abstract 
 
The problem studied in this thesis refers to scheduling activities related 

to the imperfect production of several products on the same facility, which is 

motivated by the optimal scheduling in a car paint shop. Items of the same 

product are identical. Operations on the items are performed sequentially in 

batches, where each batch is a set of operations on the same product. Some of 

the produced items are of the required good quality and some items can be 

defective. Defectiveness of an item is determined by a given function of its 

product, its preceding product, and the position of its operation in the batch. 

Defective items are kept in a buffer of a limited capacity, and then they are 

remanufactured on the same facility. There is a minimum waiting time for 

any defective item before its remanufacturing can start. For each product, 

there is a sequence independent setup time which precedes the production of 

its first batch or its batch following a batch of another product. A due date is 

specified for each product (all items of the same product have the same due 

date) and the objective is to determine a schedule which minimizes the 

maximum lateness of products’ completion times with respect to their due 

dates. The problem is proved to be NP-hard in the strong sense, and therefore 

a heuristic group technology solution approach is suggested, analyzed and 

tested with the computer program. The results of the research justify the 

application of the group technology approach to scheduling real car paint 

shops with buffered rework.  

 

Key words: production, scheduling, batching, rework,  group 

technology, car painting. 
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1. Introduction 
 

Consider a painting line in a car factory. A painting line is located in a car 

paint shop. Painting stage in the production of cars is preceded by car body 

production stage and followed by assembly stage, at which a car acquires its final 

form. A general car production scheme is presented in Fig.1. Different types of car 

bodies enter a car paint shop and have to be painted in various colors. After that, 

painted car bodies leave a paint shop and enter an assembly shop. 

 

 

 

 

Figure 1. A general car production scheme. 

 

Basic definitions must be given before the description of the problem of 

multi-product batching and scheduling with buffered rework.  Let a pair (car 

model, color) be called a product and a car body of a given car model and a color 

an item of the corresponding product. Items are painted sequentially and setup 

times are required to switch from painting an item of one product to an item of 

another product. The setup time depends only on the product to be processed 

immediately after the setup. There is a quality inspection after which an item either 

goes to the inventory of good quality items or to the buffer of defective items, 

which has a limited capacity. The defects can be the spots of wrong colors or 

shades, the non-smooth surface, and the absence or low thickness of paint. They 

can be due to the insufficient cleaning of the spray guns, catching dust pieces by 

the paint, the imperfect positioning of the spray heads or the incorrect painting 

time. At a time moment to be decided, the last produced item goes to the inventory 

of good quality items or to the buffer, and, at the same time, some or all defective 

items leave the buffer, enter the line and are repainted. Any item can be repainted 

several times. Thus, the production of any item may consist of a number of 

Car body shop Paint shop Assembly shop 
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operations: one work (manufacturing) operation and several rework 

(remanufacturing) operations. If an operation results in a defective item, this 

operation is called defective. A maximal set of operations on items of the same 

product manufactured and remanufactured sequentially since the last setup is 

called a batch. The batch size is the number of operations in this batch.  

It is assumed that the defectiveness of an item is a given function of its 

product, its preceding product on the line, and the position of its operation in the 

batch. Pawlak and Rucinski [14] suggested that these characteristics are the main 

factors affecting an item’s quality. The defectiveness function can be obtained by 

the historical data analysis or by a simulation. It is also assumed that there is a 

minimum time for any defective item to stay in the buffer, which is needed for the 

paint to dry. The objective is to construct a manufacturing/remanufacturing 

schedule such that the given product demands are satisfied close to their given due 

dates.  

The distinctions of this thesis from the earlier studied problems of optimal 

planning work and rework processes are:  

• the considered production is essentially discrete; 

•  the defective items are stored in a buffer of a limited capacity; 

•  a lower bound on the storage time is given; 

•  there are several products; 

•  product dependent setup times are given; 

•  no deterioration occurs to the defective items; 

• the objective function does not include the inventory holding costs and the 

production costs.  

The inventory holding costs are not considered because in the 

automotive industry they are mainly determined by the costs of the storage 

capacities, which are given. The manufacturing costs are not considered 

because all the given demands must be satisfied and the cost of the production 

of any item is given. It is assumed that the setup costs are mainly determined 
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by the workforce cost, which is constant. This assumption is relaxing because 

in reality the setup costs include the cost of the solvent used to purge the 

spray guns, see Gagne et al. [4].  

• Minimization of maximum lateness of products’ completion times with 

respect to their due dates is used as criterion in this research. 

In the following section the literature review on the concerned problem is 

given.  Section 3 contains problem definition with the required notations and 

formulation of the problem under study. Some additional assumptions not 

mentioned in the introduction and deadlock definition are given there as well. The 

proofs of the strong NP-hardness of two important special cases of the problem are 

presented in Section 4. A heuristic Group Technology (GT) approach to solving 

the problem is described and analyzed in Section 5. Section 6 presents a detailed 

GT algorithm in a form of pseudocode. Section 7 deals with the computational 

experiments carried out by the instrumentality of the GT algorithm.  Section 8 

states the conclusion and suggests the future research. 

 

2. Literature review 
 

Pawlak et al. [13] and Pawlak and Rucinski [14] observed the described 

situation at a real car factory. They discussed the factors that influence the 

appearance of the defects and suggested on-line solution procedures for 

minimizing the makespan and the number of color changes. In this thesis it is 

assumed that all the data are given and that a decision has to be made prior to the 

production start, i.e., off-line.  

As a part of a more general car sequencing problem observed in Groupe 

Renault, the problem of scheduling a car paint shop was studied by Gagne et al. [4] 

and Solnon et al. [18]. The due date satisfaction criterion for the car sequencing 

problem observed at another car producer was studied by Guerre-Chaley et al. [5]. 

Boysen et al. [2] noticed that the due dates are important in an assembly-to-order 

environment. The car production process considered in these studies includes three 
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main stages: the body production, the body painting and the car assembling in this 

order. Solnon et al. [18] assumed that the same color car bodies are produced 

contiguously and that the production sequence is the same for the paint shop and 

the assembly shop. Guerre-Chaley et al. [5], Spieckermann et al. [19] and Pawlak 

et al. [13] considered buffers between the stages, which are used for re-sequencing 

the car bodies. Meyr [10] wrote that the buffers between the stages are necessary 

because failures in the body and paint shops occur frequently. According to 

Holweg [7] cited by Meyr [10], the rework rate can be up to 40-50%. 

Computational complexity issues of a problem, in which a sequence of the car 

bodies of different models is given and a decision has to be made about the 

assignment of the colors to the car bodies of the same model, which minimizes the 

number of color changes, were studied by Epping et al. [3], Bonsma et al. [1], and 

Meunier and Sebo [9]. 

The thesis suggests using a group technology (GT) approach to build a good 

feasible schedule in case of buffered rework in a car paint shop. In general, GT is 

an approach to manufacturing and engineering management that seeks to achieve 

efficiency by exploiting similarities of different products and activities in their 

production/execution. Studies of GT were originated by Mitrofanov [11] and Opitz 

[12]. With respect to the scheduling, a GT environment is such that operations on 

the same product are never split into batches. The first publications on scheduling 

in the GT environments are due to Petrov [15], Yoshida et al. [21], and Ham et al. 

[6]. Results on the group scheduling problems were surveyed by Potts and Van 

Wassenhove [16] and Liaee and Emmons [8]. Properties which are sufficient for 

the optimality of a GT solution are established in this thesis. Most of these 

properties are naturally satisfied in real car paint shops, which justifies the 

usefulness of the GT approach to scheduling real car paint shops with buffered 

rework.  

 
3. Problem definition 
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This section includes notations, definitions, additional assumptions, deadlock 

definition and example of a schedule in a car paint shop. 

 
3.1. Notation 
 

The following notations will be used. 

F – the number of products; 

nf  – the demand (number of good quality items) of product f; 

pf  – the processing time requirement for any item of product f, the same value 

for manufacturing and remanufacturing; 

sf  – the setup time required to start a batch of product f if it is sequenced first 

on the line or immediately after a batch of another product; 

df  – the due date for the demand satisfaction of product f; 

Cf  – the completion time of the last good quality item of product f in a given 

schedule; 

Lf = Cf – df – the lateness of product f in a given schedule; 

Lmax = max{Lf | f = 1,…,F} - the maximum lateness of products in a given 

schedule (objective function to be minimized); 

B – the capacity of the buffer; 

M – the minimum time that any defective item should stay in the buffer (the 

buffer lower time limit); 

G(g, f, r) – a 0-1 function of the product index g of the preceding batch, the 

product index f of the current batch, and the position r of an operation in this batch 

such that G(g, f, r) = 1 if this operation is defective, and G(g, f, r) = 0, otherwise. 

Here g ∈ {0, 1,…, F}, f  ∈ {1,…,F}, f ≠ g, and g = 0 applies for the case in which f 

is the first product on the line. Notice that, given g and f, function G values are the 

same for the same positions of different batches. 

Vf , Uf  – the lower and upper bounds, respectively, on the batch size of 

product f. Thus, r ∈ {1, 2,...,Uf } for the function G(g, f, r). Let the batch sizes be 

called unbounded if Vf = 1 and Uf = ∞, f =1,..., F.  
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The upper bounds Uf  can be used to model the requirement that the spray 

guns should be cleaned after a certain number of items has been painted, see Gagne 

et al. [3].  

 

3.2. Additional assumptions 
 

It is assumed that the time of transporting an item to or from the buffer is 

equal to zero. Furthermore, any item that has stayed in the buffer for at least M 

time units can leave the buffer (there is a direct access to any item in the buffer). 

No two items can be manufactured or remanufactured at the same time, and no 

item can be manufactured or remanufactured while setting the line up. Since the 

line is expensive equipment, no idle time is allowed if there is an item to be 

processed or a setup to be performed at this time.  

 

3.3. Deadlock definition 
 

The line can be blocked by a defective item if: 1) the buffer is full, and 2) no 

item can leave the buffer because no item has stayed there for at least M time units. 

If the line is blocked, no item can be manufactured or remanufactured. However, a 

setup can be performed even if the line is blocked. A situation that there is a time 

interval in which no item is produced and no setup is performed, while there is an 

item to be manufactured (not the one in the buffer) called a deadlock, should be 

avoided. The situation that may happen at the end of the production, in which there 

is no item to be manufactured and the buffer is not empty, is not considered as a 

deadlock. The deadlock can always be avoided if the total setup and production 

time between the completion of a defective item and the completion of B-th 

defective item following this item is at least M for any feasible sequence of 

manufacturing/remanufacturing operations. For example, the deadlock can always 

be avoided if the batch sizes are unbounded and M ≤ B·pmin, where pmin = min{pf | 

f =1,...,F }.  
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3.4. Problem formulation 
 

The problem is to construct a feasible manufacturing/remanufacturing 

schedule such that no deadlock occurs (if such a schedule exists), all the demands 

are satisfied with no overproduction, and the maximum lateness Lmax is minimized. 

This problem is to be denoted as P (W, R, B, Lmax), which is an abbreviation for 

Problem (Work, Rework, Buffer, Latenessmax).  

Deadlock handling methods in computer and manufacturing systems were 

discussed and a deadlock avoidance scheme was presented by Valckenaers and 

Van Brussel [19], who used in their developments data from an existing car paint 

shop in Sindelfingen (Germany). Notice that an ideal implementation of a feasible 

solution to the problem P (W, R, B, Lmax) will not need a deadlock handling 

mechanism.  

Due to the fact that items of the same product are identical, it can easily be 

seen that a search for an optimal solution can be limited to schedules in which 

defective items of the same product leave the buffer in the same order as they enter 

it, following the well known First-In-First-Out (FIFO) strategy. A managerial 

implication of this observation is that the buffer can be designed as a collection of 

unidirectional lines each of which is dedicated to a specific product.  

 
3.5. Example of a schedule for the problem P (W, R, B, Lmax) 
 

An example of a schedule for the problem P (W, R, B, Lmax) is given in Fig. 2. 

In the corresponding problem, F = 2, n1 = 10, n2 = 9 and B = 2. It is assumed that 

M ≤ B · pmin = 2 min{t3 − t2,t8 − t7}. Therefore, no deadlock occurs. 

 

 

 



8 
 

 

Figure 2. An example of a schedule. Hatched boxes represent defective 

operations. 

 

Let vector b(t)=(b1(t),...,bF (t)) describe the buffer content at time t, where bf 

(t) is the number of items of product f  in the buffer at time t. For the example in 

Fig. 2, b(t) = (0, 0) for t < t0 and t  ≥  t9. Other values of b(t) are given in Table 1. 

 

t ∈ [t0,t1) [t1,t2) [t2,t3) [t3,t4) [t4,t5) [t5,t6) [t6,t7) [t7,t8) [t8,t9) 

b(t) (1,0) (2,0) (2,0) (1,0) (0,0) (0,1) (0,2) (0,2) (0,1) 

 

Table 1. Values of b(t)=(b1(t),b2(t)) for the example in Fig. 2. 

 

4. Proving strong NP-hardness 
 
The problem of deciding whether there exists a feasible schedule for the 

problem P (W, R, B, Lmax) is denoted as the problem Decide-Deadlock. A special 

case of the problem P (W, R, B, Lmax) in which there exists a feasible schedule is 

denoted as the problem No-Deadlock. The proof that each of the problems Decide-

Deadlock and No-Deadlock is NP-hard in the strong sense is given in the following 

subsections. Therefore, the general problem P (W, R, B, Lmax) is NP-hard in the 

strong sense as well.  

Theorems 1 and 2 will show that an optimal polynomial time solution 

algorithm for the problem P (W, R, B, Lmax) is unlikely to exist, and therefore 

efficient and practically relevant heuristic procedures are of interest.  

 
4.1.1. Formulation of Theorem 1. 
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Theorem 1. The problem Decide-Deadlock is NP-hard in the strong sense 

even if all setup times are equal to zero, the batch sizes are unbounded, and the 

function G(g, f, r) is independent of g.  

 

4.1.2. Proof of Theorem 1. 

 

Proof. A reduction from the strongly NP-complete problem 3-Partition is 

used.  

3-Partition problem formulation: Given 3q + 1 positive integer numbers 

h1,...,h3q and H such that H/4 < hi < H/2, i =1,...,3q, and ∑ ℎ𝑖𝑖 = 𝑞𝑞𝑞𝑞3𝑞𝑞
𝑖𝑖=1 , is there a 

partition of the set {1,..., 3q} into q disjoint sets X1,..,Xq such that ∑ ℎ𝑖𝑖 = 𝑞𝑞𝑖𝑖∈𝑋𝑋𝑙𝑙  for 

l = 1,…,q? 

Given an instance of 3-Partition, the following instance of the problem 

Decide-Deadlock is constructed. There are 3q + 1 products: 3q partition products f  

= 1,..., 3q, and one so-called enforcer product denoted as E. The demand of each 

partition product is one unit, i.e., nf = 1, f =1,...,3q, and the demand for the enforcer 

product is nE = q + 1. The processing requirements are pf = hf , f  = 1,..., 3q, and pE 

= 1. The batch sizes are all unbounded. The function G(g, f, r) is such that 

operations on the partition products are all non-defective, odd operations on the 

enforcer product are all defective and even operations on the enforcer product are 

all non-defective. All the setup times are equal to zero, the buffer capacity is B = 1, 

and the buffer lower time limit is M = H + 2. The due dates play no role in the 

problem Decide-Deadlock because there is no constraint related to the due dates. 

Therefore, they can be chosen arbitrarily. It is shown below that 3-Partition has a 

solution if and only if there exists a feasible schedule for the constructed instance 

of the problem Decide-Deadlock.  

Consider an arbitrary feasible schedule for the constructed instance of the 

problem Decide-Deadlock. Observe that there are exactly q + 1 non-defective 

operations on the enforcer product, and the line is blocked (idle) between the last 
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defective and the last non-defective operation on the enforcer product because 

otherwise these two last operations would belong to different batches and the very 

last operation would be the only operation of the last batch, which would be 

defective due to the definition of the function G(g, f, r). Since the schedule is 

feasible, there is no idle time before the last defective operation. Due to the buffer 

lower time limit M = H + 2 and the buffer capacity B = 1, the completion times of 

any two consecutive defective operations on the enforcer product should be at least 

H + 2 time units apart each other. Therefore, there are q time intervals of length at 

least H before the last defective operation, which should be filled with the 

operations on the partition products so that there is no idle time. Since the 

processing times of these operations are equal to hf, f = 1,…, 3q, and ∑ ℎ𝑓𝑓 =3𝑞𝑞
𝑓𝑓=1

𝑞𝑞𝑞𝑞, the q intervals can be filled with no idle time if and only if problem 3-

Partition has a solution. 

It follows from Theorem 1 that a modification of the problem P (W, R, B, 

Lmax) in which Lmax is replaced by any other objective function, or even if there is 

no objective at all is NP-hard in the strong sense.  

 

4.2.1. Formulation of Theorem 2. 
 

Theorem 2. The problem No-Deadlock is NP-hard in the strong sense even if 

all setup times are equal to zero, the batch sizes are unbounded, and the function 

G(g, f, r) is independent of g.  

 

4.2.2. Proof of Theorem 2. 
 

Proof. The proof is similar to the proof of Theorem 1. Given an instance of 

the problem 3-Partition, the following instance of the problem P (W, R, B, Lmax) is 

constructed, which will be later shown to be an instance of the problem No-

Deadlock. Assume that there are 5q + 2 products: 3q partition products f  = 1,..., 
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3q, q + 2 number of  E-enforcer products denoted as Ej, j =1,...,q + 2, and q 

number of  D-enforcer products denoted as Dj, j =1,...,q. All the setup times are 

equal to zero, the buffer capacity is B = 1, and the buffer lower time limit is M = H 

+ 2. The demand of each product is one unit. The processing requirements are pf = 

hf , f =1,..., 3q, pEj = 1, j =1,...,q + 2, and pDj = H, j =1,...,q. All the partition 

products have a common due date d = (H + 2)q. The due date of the enforcer 

product Ej is equal to dEj =2 + (H + 2)(j − 1), j = 1,...,q+1. The due date of the 

enforcer product E(q + 2) and the due dates of D-enforcer products are sufficiently 

large such that they can never be exceeded. For example, they are equal to d + 

∑ 𝑝𝑝𝑓𝑓
3𝑞𝑞
𝑓𝑓=1  + 2pE(q+1)  + 2pE(q+2) + M = (2H + 2)q + H + 6. The batch sizes are all 

unbounded. The function G(g, f, r) is such that operations on the partition products 

and D-enforcer products are all non-defective, odd operations on any E-enforcer 

product are all defective and even operations on any E-enforcer product are all 

non-defective.  

Observe that the following schedule is feasible for the constructed instance of 

the problem P (W, R, B, Lmax). There is a single batch of size two for each E-

enforcer product. There is a single batch of size one for each D-enforcer product 

and each partition product. In the schedule, the first q + 1 odd batches are the 

batches of the E-enforcer products in the order E1,..., E(q+1), and the first q even 

batches are batches of the D-enforcer products. The next 3q batches are the batches 

of the partition products, and the last batch is the batch of the E-enforcer product. 

See Fig. 3 for an illustration.  

It is deduced that the constructed instance is indeed an instance of the 

problem No-Deadlock. It is shown below that 3-Partition has a solution if and only 

if there exists a feasible schedule for the constructed instance of the problem No-

Deadlock with value Lmax ≤ 0.  
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Figure 3. A feasible schedule for the constructed instance of the problem 

P(W, R, B, Lmax).  

 

Consider an arbitrary feasible schedule for the constructed instance of the 

problem No-Deadlock with value Lmax ≤ 0. Similar to the previous proof, observe 

that there are exactly q + 2 non-defective operations on the E-enforcer products, 

and the line is blocked (idle) between the last defective and the last non-defective 

operation on the E-enforcer product E(q+2). Since the schedule is feasible, there is 

no idle time before the last defective operation. Due to the buffer lower time limit 

M = H + 2 and the buffer capacity B = 1, the completion times of any two 

consecutive defective operations on the E-enforcer products should be at least H + 

2 time units apart each other. Therefore, the (q + 1)-st defective operation can start 

not earlier than at time (H + 2)q, which is due date for the partition products. Since 

this due date cannot be exceeded, the partition products should fill completely the 

q time intervals of length at least H between every two consecutive defective 

operations in the time period [0, d]. Since the processing times of these operations 

are equal to hf , f =1,..., 3q, and ∑ ℎ𝑓𝑓
3𝑞𝑞
𝑓𝑓=1  = qH, the q intervals can be completely 

filled if and only if problem 3-Partition has a solution.  

Theorem 2 implies that a modification of the problem P (W, R, B, Lmax), in 

which the objective function is the total unsatisfied demand, is NP-hard in the 

strong sense. Furthermore, it follows from its proof that a modification of the 

problem P (W, R, B, Lmax), in which deadlocks are allowed is NP-hard in the strong 

sense.  

 

5. A group technology solution approach  
 

A heuristic Group Technology (GT) approach to solving the problem P (W, R, 

B, Lmax) is analyzed in this section. This GT approach suggests that a single batch 

is formed for each product. 
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The group technology (GT) scheduling decisions have several benefits 

comparing to the non-GT decisions. First of all, they are easy to implement 

because the structure of the GT schedule is simple. Secondly, coordination of the 

GT decisions of all the participants of the production/supply process is simpler 

because less information is involved into the coordination process. Thirdly, a GT 

schedule minimizes the number of setups, and the saved working time of the setup 

operators can be redirected for other purposes. Furthermore, the amount of solvent 

used to purge the spray guns is minimized. Fourthly, a GT schedule can be easily 

recomputed to adjust to a new production environment such as new demands or 

line breakdowns. The GT solution approach may be inefficient if the succeeding 

production prefers an even supply of different products over time. In this case, an 

intermediate buffer can be used to modify the product sequence accordingly. The 

GT decisions are used for scheduling real car paint shops, see, for example, Solnon 

et al. [18]. However, no results on their theoretical or practical efficiency were 

reported in the literature.  

Let the products be renumbered in the Earliest Due Date (EDD) order such 

that d1 ≤ ··· ≤ dF . Consider a heuristic solution for the problem P (W, R, B, Lmax), 

in which a single batch is formed for each product, every defective item of the 

same product leaves the buffer at the earliest possible time following the FIFO 

strategy, and the products are sequenced in the EDD order (1,...,F) with ties broken 

arbitrarily. Let such a solution be denoted as a GT-EDD schedule. Notice that the 

GT-EDD schedule may be infeasible in general because a deadlock may occur for 

it. The conditions under which a GT-EDD schedule is an optimal solution for the 

problem P (W, R, B, Lmax) are established in the following subsection.  

 

5.1 Sufficient conditions for the optimality of the GT-EDD sched-
ule  

 

It is convenient to introduce some additional notation, which is illustrated in 

Fig. 4.  
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Consider functions ∆𝑓𝑓(𝑔𝑔,ℎ) ≔  ∑ 𝐺𝐺(𝑔𝑔, 𝑓𝑓, 𝑟𝑟),𝑓𝑓 = 1, … ,𝐹𝐹ℎ
𝑟𝑟=1  of variables 𝑔𝑔 

and ℎ, which are defined for 𝑔𝑔 = 0,1, … ,𝐹𝐹, 𝑔𝑔 ≠ 𝑓𝑓, and ℎ ∈ {1,2, … ,𝑈𝑈𝑓𝑓}. The value 

of ∆𝑓𝑓(𝑔𝑔,ℎ) is the number of defective operations among all ℎ operations of a batch 

of product 𝑓𝑓 preceded by a batch of product 𝑔𝑔. If the lengths of the intervals of ℎ, 

in which this function has the same value, non-decreases as  ℎ increases with a 

possible exception for the last interval, then the function ∆𝑓𝑓(𝑔𝑔, ℎ) has a concave 

staircase structure in ℎ. 

 

Figure 4. Example of the function ∆𝑓𝑓(𝑓𝑓 − 1, ℎ) with a concave staircase 

structure in ℎ. For the corresponding batch with 𝑛𝑛𝑓𝑓 = 31 good quality items given 

above, 𝑎𝑎𝑓𝑓 = 1, 𝑏𝑏𝑓𝑓 = 6, 𝑐𝑐𝑓𝑓 = 34 and 𝑜𝑜𝑓𝑓 = 39. Hatched boxes represent defective 

operations. 

 

Recall that the products are numbered in the EDD order. Consider a batch of 

product 𝑓𝑓 preceded by a batch of product 𝑓𝑓 − 1, which contains 𝑛𝑛𝑓𝑓  non-defective 

operations. Denote by 𝑜𝑜𝑓𝑓  the total number of operations in this batch. It is the 

unique solution of the equation 𝑜𝑜𝑓𝑓 − ∆𝑓𝑓�𝑓𝑓 − 1, 𝑜𝑜𝑓𝑓� = 𝑛𝑛𝑓𝑓 . Obviously, the last 

operation is non-defective, i.e. 𝐺𝐺�𝑓𝑓 − 1,𝑓𝑓, 𝑜𝑜𝑓𝑓� = 0. Denote by 𝑎𝑎𝑓𝑓  the position of 

the earliest defective operation in this batch, 𝑎𝑎𝑓𝑓 = min{h |𝐺𝐺(𝑓𝑓 − 1,𝑓𝑓, ℎ) = 1}. 

Define 𝑎𝑎𝑓𝑓 = 0 if there is no defective operation. Denote by 𝑏𝑏𝑓𝑓  the earliest position 
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in this batch, in which the first defective item can be remanufactured, 𝑏𝑏𝑓𝑓 = 𝑎𝑎𝑓𝑓 +

1 + �𝑀𝑀
𝑝𝑝𝑓𝑓
�. Denote by 𝑐𝑐𝑓𝑓  the position of the last defective operation in this batch, 

𝑐𝑐𝑓𝑓 = max{ℎ | ℎ ≤ 𝑜𝑜𝑓𝑓 , 𝐺𝐺(𝑓𝑓 − 1,𝑓𝑓, ℎ) = 1}.  

 

5.1.1 Formulation of Theorem 3 
 

Theorem 3. The GT-EDD schedule is optimal for the problem P (W, R, B, 

Lmax) if the following conditions (i)-(vi) are satisfied.  

(i) each function Δf (g, h) is minimized in g at g = f − 1.  

(ii) each function Δf (g, h) has the concave staircase structure in h.  

(iii) Δf (f − 1,b f − 2)  ≤  B and Δf (f − 1,b f − 1) ≤ B +1, f =1,...,F .  For the 

example in Fig. 4 this condition is satisfied if B ≥ 2.  

(iv) if G(f − 1, f, r)=1 for at least one r, 1 ≤ r ≤ of , then M ≤ pf (of − cf − 1), f 

=1,...,F − 1. For the example in Fig. 4 this condition is satisfied.  

(v) if G(f − 1, f, r) = 1 for at least one r, 1 ≤ r ≤ of , then Vf ≥ af , f = 1,...,F .  

(vi) Vf ≤ of ≤ Uf , f =1,...,F.  

 

5.1.2. Proof of Theorem 3 
 

Proof. Consider an optimal schedule S∗ for the problem P (W, R, B, Lmax) with 

the objective value 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚∗ . Let S∗ contain xf defective operations on product f, f = 

1,...,F. Now consider a batch scheduling problem, which differs from the problem 

P (W, R, B, Lmax) in that each product f consists of nf + xf items, f =1,...,F , and the 

production is perfect such that every manufactured item is of the required good 

quality. Denote this problem as Perfect. Santos [17] proved that there exists an 

optimal solution of the problem Perfect, in which no product is split into batches, 

and the products are sequenced in the EDD order, see also Potts and Van 

Wassenhove [46]. Since schedule S* is feasible for the problem Perfect, optimal 

solution value of this problem, 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚0∗ , is a lower bound for 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚∗ : 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(0)  ≤ 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚∗ . 
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Furthermore, the optimal solution value, 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(1) , of the problem Perfect, in which 

each product f consists of no more than nf + xf items, is a lower bound for 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(0) : 

𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(1)  ≤ 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚

(0) . Therefore, 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(1)  is a lower bound for 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚∗ . 

Let the GT-EDD schedule contain yf defective operations of product f, f = 

1,...,F . Assume that the conditions (i)-(iii), (iv), (v) and (vi) are satisfied. Firstly, it 

will be shown that yf ≤ xf , f  = 1,...,F. Let there be qf batches of product  f  in the 

optimal schedule S∗, and let the j-th batch of product f consist of 𝑜𝑜𝑓𝑓
(𝑗𝑗 ) manufacturing 

and remanufacturing operations, among which there are 𝑚𝑚𝑓𝑓
(𝑗𝑗 )defective operations. 

Consider an artificial schedule which differs from the GT-EDD schedule in that the 

single batch of product f consists of ∑ 𝑜𝑜𝑓𝑓
(𝑗𝑗 )𝑞𝑞𝑓𝑓

𝑗𝑗=1  manufacturing and remanufacturing 

operations, f  = 1,...,F. Let 𝑧𝑧𝑓𝑓
(𝑗𝑗 )denote the number of defective operations among 

the operations in the positions 𝑜𝑜𝑓𝑓
(𝑗𝑗−1) + 1, 𝑜𝑜𝑓𝑓

(𝑗𝑗−1) + 2,…, 𝑜𝑜𝑓𝑓
(𝑗𝑗 ), 𝑜𝑜𝑓𝑓

(0) = 0, and let 𝑧𝑧𝑓𝑓  

denote the total number of defective operations on product f  in this artificial GT-

EDD schedule. Due to the properties (i), (ii) and (v), it is deduced that 𝑧𝑧𝑓𝑓
(𝑗𝑗 )

 ≤ 𝑚𝑚𝑓𝑓
(𝑗𝑗 )

 , j 

= 1,...,qf , which implies 𝑧𝑧𝑓𝑓  ≤ 𝑚𝑚𝑓𝑓  , f = 1,...,F. Therefore, the artificial GT-EDD 

schedule has the same total number of operations, the same or smaller number of 

defective operations and the same or larger number of non-defective operations on 

each product f in comparison with the schedule S∗ . Since the GT-EDD schedule 

and the artificial GT-EDD schedule have the same sequence of operations on 

product  f  up to the operation corresponding to the production of nf -th good 

quality item of this product, f  = 1,...,F, it is deduced that yf ≤ zf , and, hence, yf ≤ xf,  

f =1,...,F. It follows from the above discussion that the optimal solution value, 

𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(2) , of the problem Perfect, in which each product f consists of nf + yf  items, is a 

lower bound for 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚∗ : 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(2)  ≤ 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚∗ . 

It remains to show that there is no idle time in the GT-EDD schedule. If so, 

then it coincides with the optimal solution of the problem Perfect, in which each 

product  f  consists of nf  + yf items, and, therefore, has the value 𝐿𝐿𝑚𝑚𝑎𝑎𝑚𝑚
(2) . The no idle 
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time property of the GT-EDD schedule is guaranteed by the conditions (ii), (iii), 

(iv) and (vi). Condition (vi) guarantees that the batch sizes in the GT-EDD 

schedule are all feasible. Provided that the buffer is empty when an execution of 

the batch of product f starts, condition (iii) ensures that the buffer capacity will not 

be exceeded until the earliest time when the first defective item of this product can 

leave the buffer. Due to the condition (ii), this statement is also satisfied for any 

defective item. Since the defective items leave the buffer at the earliest possible 

times and the buffer capacity is never exceeded, condition (iv) guarantees that all 

operations of the same batch can be executed with no idle time so that any 

defective item can leave the buffer at a time when an operation on another item 

completes. Furthermore, at the end of the product f execution, the buffer will be 

empty. Thus, the GT-EDD schedule contains no idle time, which completes the 

proof.  

 

5.2. Examples of non-optimal GT-EDD schedules when one of the 
conditions (i)-(vi) fails  

 

Now it can be shown that if one of the conditions (i)-(vi) is violated and the 

remaining conditions are satisfied, then there exists an instance of the problem 

P(W, R, B, Lmax) for which no GT-EDD schedule is optimal. This statement does 

not mean that (i)-(vi) are the necessary conditions of the existence of an optimal 

GT-EDD schedule for any given instance because there may exist an instance, for 

which some of these conditions are violated but the GT-EDD schedule is optimal. 

In all the instances given below there are two products, s1 = s2 = 0, p1 = p2 = 1, and 

the definition of the functions G(g, f, r) can be deduced from the pictures of the 

schedules.  

Assume that condition (i) fails, n1 = n2 = 1, d1 = 2, d2 = 3, M = 0, B = 1, and 

the batch sizes are unbounded. An optimal schedule and the unique GT-EDD 

schedule are given in Fig. 5. 
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←  optimal schedule, Lmax = 0 

 

 

 

← GT-EDD schedule, Lmax = 1 

 

Figure 5. Condition (i) fails: ∆2(1,ℎ) > ∆2(0,ℎ). 

 

Assume that condition (ii) fails, n1 = 1, n2 = 2, d1 = 3, d2 = 5, M = 0, B = 1, 

and the batch sizes are unbounded. This example is illustrated by Fig. 6.  

 

←  optimal schedule, Lmax = 0 

 

 

 

← GT-EDD schedule, Lmax = 1 

 

Figure 6. Condition (ii) fails: ∆2(1,ℎ) does not have concave staircase 

structure in h. 

 

Assume that condition (iii) fails, M = 2, B = 1, n1 = 1, n2 = 3, d1 = 2, d2 = 3, 

and the batch sizes are unbounded. The function G(1,2,r) is such that the first two 

operations are defective. In this case no feasible schedule exists, including the GT-

EDD schedule, see Fig. 7. 

 

 

← GT-EDD schedule (infeasible) 
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Figure 7. Condition (iii) fails: ∆𝑓𝑓�𝑓𝑓 − 1, 𝑏𝑏𝑓𝑓 − 2� = ∆2(1,2) = 2 > B = 1. 

 

Assume that condition (iv) fails, M = 1, B = 1, n1 = n2 = 1, d1 = 1, d2 = 2, and 

the batch sizes are unbounded. In this case, the GT-EDD schedule is infeasible and 

a feasible schedule exists, see Fig. 8.  

 

 

←  optimal schedule, Lmax = 3 

 

 

 

← GT-EDD schedule (infeasible) 

 

 
 
 Figure 8. Condition (iv) fails: M = 1 > p1(o1 - c1 - 1) = 0. 
 
Assume that condition (v) fails, M = 0, B = 1, n1 = 1, n2 = 2, d1 = 2, d2 = 3, 

and the batch sizes are unbounded. An optimal schedule and the unique GT-EDD 

schedule are given in Fig. 9.  

 

 

←  optimal schedule, Lmax = 0 

 

 

 

← GT-EDD schedule, Lmax = 1 

 

 
Figure 9. Condition (v) fails: V2 = 1 < a2 = 2. 
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Finally, assume that condition (vi) fails. In this case, the GT-EDD schedule is 

infeasible because at least one of its batch sizes violates the corresponding lower or 

upper bound. 

 

5.3 Practical relevance and managerial implications  
 
Conditions (i) - (vi) are satisfied for the practically relevant situations, in 

which  

• the number of defective operations is smaller if the production switches from 

a lighter color to the most similar darker color and the products with lighter 

colors have earlier due dates (condition (i));  

• the probability that an operation is defective decreases as its position in the 

same batch increases (condition (ii)); 

• the buffer capacity is sufficiently large and the buffer lower time limit is 

sufficiently small to avoid a deadlock in the GT-EDD schedule (condition 

(iii)); 

• the buffer capacity is sufficiently large and the buffer lower time limit is 

sufficiently small such that no idle time occurs and the buffer is empty at the 

completion time of any product in the GT-EDD schedule (condition (iv)); 

• if the batch of any product in the GT-EDD schedule contains at least one 

defective operation, then every batch of this product in any schedule does 

(condition (v)),  

• the batch sizes in the GT-EDD schedule are feasible (condition (vi)).  

 

The established conditions justify the application of the GT solutions to 

scheduling the real car paint shops, even if the production is imperfect.  

The managerial implications of the results in this section are twofold:  

1. Conditions (i)-(vi) can be used for making a decision of implementing the 

GT-EDD schedule in a production environment with buffered rework.  
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2. Conditions (i)-(vi) can be used for making a decision of adapting the existing 

production environment so that the GT-EDD schedule can be expected to 

provide good solution quality. For example, it can be decided a priori that the 

products with lighter colors will have earlier due dates, the buffer lower time 

limit will be decreased by installing a more efficient drying device, or the 

buffer will be rebuilt to have a larger capacity. All these changes will increase 

the chances that the GT-EDD schedule minimizes the maximum deviation of 

the demand satisfaction times from their due dates, Lmax, which is good for the 

coordination of decisions in the corresponding make-to-order supply and 

production chain.  

 

6. GT-EDD algorithm 
 
This section presents a detailed GT-EDD algorithm in a form of pseudocode 

with explanatory comments.  

 

6.1. Notation 
 
A schedule is determined by two structures: TimeLine(i), i = 0,1,…,v and 

TimeBuffer(j), j = 0,1,…,u, where v and u are the last indices of the structures 

TimeLine(i) and TimeBuffer(j) correspondingly.  

1. TimeLine(i) = (t(i), Event(i), ProdOnLine(i)), where 

• t(i) - time instant of an event on the paint line;  

• Event(i) ∈ {Begin, SetupEnd, GoodEnd, DefectEnd, WaitEnd, 

DeadlockEnd} - indicator variable of an event’s end.   

• ProdOnLine(i) - product on the line at a time i.  

Variable Begin states for the beginning of a schedule. SetupEnd points on the 

end of the setup of a painting line for a certain product. Variables GoodEnd and 

DefectEnd mark the ends of good and defective operations accordingly. WaitEnd 
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shows the time when the waiting for a drying item to leave the buffer ends. In other 

words it is idle time. The end of a deadlock is denoted as DeadlockEnd. 

2. TimeBuffer(j) = (τ(j),b(j)), where 

• τ(j) - time instant of an event in the buffer (right after τ(j) buffer content 

changes, but number of items in the buffer can stay the same),  

• b(j) - number of items in the buffer right after τ(j).  

 

Auxiliary parameters:  

TimeLeaveBuffer(k) - the earliest time at which k-th item in the buffer can 

leave it, k =1,...,B, where B is a capacity of the buffer. 

It is maintained in the algorithm that TimeLeaveBuffer(1) < 

TimeLeaveBuffer(2) < ··· < TimeLeaveBuffer(B). 

RealNumberGood – the sum of already painted items with good quality. 

BufferTime – a fixed time that any item spends in the buffer 

 

Notation from subsections 3.1. and 5.1. will be used in pseudocode as well. 

 

 

6.2. Pseudocode 
 
Commentaries are marked in italic font style. 

Initialization: 

TimeLeaveBuffer(k) := 0, k = 1,…,B 

i := 0 

t(i) := 0 

Event(i) := Begin 

ProdOnLine(i) := 0 

j := 0 

τ(j) := 0 

b(j) := 0 
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Main computations: 

From  f = 1 to F Do1 – product cycle, where products are sorted in the EDD 

order; 

Event(i) := SetupEnd 

t(i + 1) := t(i) + sf 

ProdOnLine(i + 1) := f 

RealNumberGood := 0 

i := i + 1 

 

From r = 1 to of Do2 – operations cycle of product f 

If 1 TimeLeaveBuffer(0) > t(i) and RealNumberGood + b(j) = nf  then 

Event(i) := WaitEnd 

t(i + 1) := TimeLeaveBuffer(0) 

ProdOnLine(i  + 1) := f 

i := i + 1 

End If 1 

If 1 is needed to keep track of the sum of already painted items of good 

quality and items that in the meantime are drying in the buffer. If this sum equals 

the demand for this product then the line waits for the items to be dried. After that 

rework process continues. 

i := i + 1 

t(i) := t(i - 1) + pf 

 

If 2 G(g, f, r) = 0 then – instructions in case of a good quality operation 

RealNumberGood := RealNumberGood + 1 

Event(i) := GoodEnd 

If 2.1 TimeLeaveBuffer(1) ≤ t(i) and b(j) > 0 then – reflects a situation when 

a defective item can leave the buffer 

TimeLeaveBuffer(k) := TimeLeaveBuffer(k + 1), for k = 1,…,b(j) – 1 
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TimeLeaveBuffer(b(j)) := 0 

τ(j + 1) := t(i) 

b(j + 1) := b(j) – 1 

j := j + 1 

Continue EndDo2 

EndIf 2.1 

If 2.2 TimeLeaveBuffer(1) > t(i) and b(j) > 0 then – there is at least one 

defective item in the buffer but it  cannot leave it, because the drying time has not 

passed yet 

Continue EndDo2 

EndIf 2.2 

If 2.3 b(j) = 0 then –there is nothing in the buffer yet 

Continue EndDo2 

EndIf 2.3 

EndIf 2 

 

If 3 G(g, f, r) = 0 then – instructions in case of a defective operation 

Event(i) := DefectEnd 

If 3.1 b(j) = 0 then - there is nothing in the buffer yet 

τ(j + 1) := t(i) 

b(j + 1) := 1 

TimeLeaveBuffer(1) := t(i) + BufferTime 

j := j + 1 

Continue EndDo2 

EndIf 3.1 

If 3.2 TimeLeaveBuffer(1) ≤ t(i) and b(j) > 0 then – there is at least one item 

in the buffer and an item from the buffer which has already dried there can leave it     

TimeLeaveBuffer(k) := TimeLeaveBuffer(k + 1), for k = 1,…,b(j) – 1 

TimeLeaveBuffer(b(j)) := t(i) + BufferTime 

τ(j + 1) := t(i) 
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b(j + 1) := b(j) 

j := j + 1 

Continue EndDo2 

EndIf 3.2 

If 3.3 TimeLeaveBuffer (1) > t(i) and 0 < b(j) < B then - there is at least one 

item in the buffer and it cannot leave the buffer  yet 

TimeLeaveBuffer(b(j) + 1) := t(i) + BufferTime 

τ(j + 1) := t(i) 

b(j + 1) := b(j) + 1 

j := j + 1 

Continue EndDo2 

EndIf 3.3 

If 3.4 TimeLeaveBuffer (1) > t(i) and b(j) = B then – deadlock situation 

t(i + 1) := TimeLeaveBuffer(1) 

Event(i) := DeadlockEnd 

ProdOnLine(i  + 1) := f 

i := i + 1 

TimeLeaveBuffer(k) := TimeLeaveBuffer(k + 1), for k = 1,…,B – 1 

TimeLeaveBuffer(B) := t(i) + BufferTime 

τ(j + 1) := t(i) 

b(j + 1) := B 

j := j + 1 

Continue EndDo2 

EndIf 3.4 

EndIf 3 

EndDo2 

Cf := t(i) – completion time of product f 

Lf – lateness of product f in a built schedule 

EndDo1 
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Lmax = max{Lf | f = 1,…,F} - the maximum lateness of products in a given 

schedule 

 

Output: 

Lmax 

TimeLine(i), i = 1,…,v, as a table with 3 columns, representing the fields of 

structure TimeLine 

TimeBuffer(j), j = 1,…,u, as a table with 2 columns, representing the fields of 

structure TimeBuffer 

 

7. Computational experiments 
 

In order to test the GT-EDD algorithm it was programmed in C++ language 

using Microsoft Visual Studio 9.0 software. The code of the GT-EDD algorithm 

corresponds to the pseudocode in Section 6.  

G(g, f, r) function works as a random number generator, based on the 

predefined probability of defective operations. In the test instances presented in the 

following subsection this probability equals 30%. G(g, f, r) was coded in the 

program as a generator of Boolean variables for every combination of g and f 

(preceding and current products) until the number of 0-variables (good quality 

operations) equals the demand for a given product. After that, products are sorted 

by EDD order and a schedule of single batches for all products is constructed using 

the values of generated G(g ,f, r) function. The batch sizes are unbounded. 

Computer characteristics are the following: 

• Operating system: Windows Vista Home Premium (64-bit), SP1; 

• Computer model: HP Pavilion dv7 Notebook PC; 

• Processor: Intel(R) Core(TM)2 Duo CPU T9400 2.53GHz; 

• Memory(RAM): 4.00 GB. 
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7.1. Test instances  
 
There are 9 test instances that were created to test GT-EDD algorithm. 

Parameters for the test instances are shown in Table 2. 

 
Test 

instance, 

# 

 

Number  

of 

products 

Probability  

of a 

defective 

operation 

Demand, 

range, units  

Setup time, 

range, min 

Processing time, 

range, min 

Due date, 

range, days 

Buffer 

capacity, 

units 

Buffer 

time, 

min 

1 30 30% [10, 20] [10, 20] [2, 10] [1, 3] 2 20 

2 30 30% [10, 20] [10, 20] [2, 10] [1, 3] 3 20 

3 30 30% [10, 20] [10, 20] [2, 10] [1, 3] 5 20 

4 40 30% [10, 20] [10, 20] [2, 10] [1, 3] 2 20 

5 40 30% [10, 20] [10, 20] [2, 10] [1, 3] 3 20 

6 40 30% [10, 20] [10, 20] [2, 10] [1, 3] 5 20 

7 50 30% [10, 20] [10, 20] [2, 10] [1, 3] 2 20 

8 50 30% [10, 20] [10, 20] [2, 10] [1, 3] 3 20 

9 50 30% [10, 20] [10, 20] [2, 10] [1, 2] 5 20 

 

Table 2. The parameters for the 9 test instances. 
 

Test instances are divided into 3 groups of 30, 40 and 50 products. Each 

group consists of 3 instances. These instances differ from each other only by the 

buffer capacity which takes the values of 2, 3, or 5 units. Probability of a defective 

operation and a fixed time that any item spends in the buffer denoted in Table 2 as 

buffer time are held constant for all instances. Demand, setup times, processing 

times and due dates are randomly generated within the ranges specified in Table 2. 

Due dates vary between 1 and 3 days in minutes. 

Notice that buffer time is twice larger than the largest processing time. 

Moreover, the generated G(g,f,r) function has not a concave staircase structure in 

h. Therefore, none of GT-EDD schedules for these test instances will be optimal. 

 
7.2. Computational results  
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The computational results of the 9 test instances are shown in Table 3. The 

achieved results were computed in negligibly small amount of time (less than a 

second). Only variable parameters are included in Table 3. Objective values Lmax 

are marked in bold font type.  

 

Test instance, # Number of products Buffer capacity, units Lmax, min 

1 30 2 400 

2 30 3 283 

3 30 5 247 

4 40 2 2032 

5 40 3 1943 

6 40 5 1919 

7 50 2 3553 

8 50 3 3367 

9 50 5 3348 

 

Table 3. Computational results of the 9 test instances. 

 

As it is seen from Table 3, Lmax increases as the number of products grows. 

The correlation coefficient for these arrays equals 0.997 

Meanwhile, the variability of Lmax values dependent on buffer capacity is not 

high. Waitings and deadlocks have the same impact on a painting process in that 

the line stands idle. However, the number of waitings for drying items to leave the 

buffer is much higher than the number of deadlocks and it is more stable, see Table 

4. A larger buffer capacity entails the number of deadlocks to decrease. Tables 3 

and 4 reflect this regularity: the larger the buffer capacity the smaller is the number 

of deadlock. But the number of waitings does not change significantly with the 

change of the buffer capacity. 
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Test instance, # Number of waitings Number of deadlocks 

1 40 24 

2 41 9 

3 43 0 

4 39 18 

5 41 4 

6 40 0 

7 54 33 

8 58 6 

9 58 0 

 

Table 4. Comparison of the number of waitings and deadlocks for the 9 test 

instances. 

 

The correlation coefficient between Lmax and buffer capacity arrays is -0.046, 

although the dependence between them for the first 3 instances with 30 products is 

high – correlation coefficient equals  -0.884.  

Thus, having minimization of Lmax as criterion, the managerial decision on the 

buffer capacity should be based on the number of products to be produced, the cost 

of lateness and the cost of the buffer itself, because an advantage in Lmax induced 

by a larger buffer capacity may be too expensive considering the cost of extension. 

Although common sense prompts to extend the buffer capacity when the number 

of products increases, it can be seen from Table 3 that the positive effect on the 

objective function value Lmax is not impressive. A preliminary use of GT-EDD 

heuristic can help to take the right decision, considering all the given data. 

 

8. Conclusion 
 

A problem of scheduling work and rework processes on a single facility with 

buffered rework is studied in this thesis. The problem is motivated by the optimal 

scheduling decisions in a car paint shop. The specificity of the problem is that the 
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production is essentially discrete, the defective items are stored in a buffer of a 

limited capacity, a lower bound on the storage time is given, there are product 

dependent setup times, no deterioration occurs to the defective items, and the 

objective function is to minimize the maximum lateness of the product demand 

satisfaction times with respect to their given due dates. The defectiveness of an 

item is determined by a given function of three variables: the product of this item, 

the preceding product in the manufacturing/remanufacturing sequence, and the 

position of an operation on this item in its batch. An optimal search is limited to 

schedules which contain no deadlock. The deadlock is a situation when the buffer 

is full, a defective item blocks the line, and there is an item to be manufactured but 

it cannot because the line is blocked. The problem is proved to be NP-hard in the 

strong sense for two special cases in which the existence of a deadlock is unknown 

and known, respectively. 

 A heuristic Group Technology (GT) solution approach is suggested, which 

constructs the GT-EDD schedule, in which there is a single batch for each product, 

the products are sequenced in the Earliest Due Date (EDD) order, and defective 

items leave the buffer as soon as possible following the First-In-First-Out strategy. 

Sufficient conditions for the GT-EDD schedule to be an optimal solution for the 

studied problem are established. These conditions justify the application of the GT 

solutions in scheduling car paint shops with buffered rework.  

Computational experiments were held so as to test the GT-EDD algorithm 

coded in C++. The computational results showed that having Lmax as an objective 

function to be minimized, the managerial decision on the buffer capacity should be 

based on the number of products to produce, the cost of lateness and the cost of the 

buffer itself. The useful information on which this decision should be based on can 

be obtained by using the GT-EDD heuristic. 

For future research, it is interesting to study related problems with the 

following features:  

• The objective is to minimize the total (weighted) unsatisfied demand.  

• Various strategies for emptying the buffer.  
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• Various layouts of the buffer.  

• Batch sizes are bounded. 
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