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Abstract 

This thesis shows that the Norwegian stock market deviates significantly from what one might 

think of as a baseline model with identically and independently normally distributed returns. 

Firstly, the stock market return does not seem to be normally distributed over any observation 

frequency (daily, monthly and quarterly) we have investigated in this thesis. More specifically, 

the return distribution is both leptokurtic and negatively skewed. Secondly, the empirical return 

distribution is time-varying; we find both autocorrelation in returns and volatility clustering. Both 

of these deviations from the baseline model can potentially have important implications for 

theoretical models and practical applications.  

In this paper, we will model the return distribution with a normal inverse Gaussian (NIG) 

distribution, which we indeed find to outperform Gaussian distributions both in- and out of 

sample. Our NIG modelling approach allows us to deviate from the normality assumption, but it 

is not able to capture the dependencies across time. This model of returns turns out to be useful in 

risk measurement, where the baseline model grossly underestimate well-known metrics such as 

value at risk and expected shortfall the NIG model fits these measures nicely.  

This thesis also applies a bivariate NIG distribution to a theoretical model of equilibrium risk-free 

interest rates and the equity premium, suggested by Aase and Lillestøl (2015), in order to explain 

the equity premium puzzle. The NIG model allows for fatter tails and negative skewness in the 

joint return and consumption distribution, thereby reducing the implied risk aversion parameter 

and increasing the impatience rate of the representative consumer. Although the model takes us in 

the right direction in terms of both implied parameters, the improvement is only slightly more 

than negligible and it happens at the cost of a great increase in complexity. 
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1. Introduction 

1.1 Background 

Many theoretical results and applied models in finance and economics are based upon “mean-

variance” analysis, i.e., the drivers of the results are the mean and variance of a certain process, 

e.g. stock market returns or a consumption process. In utility optimization problems, this type of 

analysis can only be justified if either the utility function is quadratic or if the process in 

consideration is normally distributed. In practical applications in finance, e.g. portfolio risk or 

performance measurement, “mean-variance” analysis is only justified if the return distribution is 

approximately normal.  

In the case of quadratic utility, the marginal utility is a linear function, which implies that all we 

need to determine expected utility is the mean and variance of the underlying process. However, 

quadratic utility exhibits increasing absolute risk aversion, which has the unfortunate implication 

that the dollar amount invested in risky assets is decreasing in wealth.
1
 This is in contrast to 

empirical observations (see e.g. Friend and Blume (1975)) and is therefore a problematic 

assumption whenever portfolio optimization is an integral part of the analysis. 

Whenever the process in consideration follows a Gaussian law, the mean and variance is enough 

to describe the entire process. Indeed, there is some theoretical backing for assuming Gaussian 

processes from the central limit theorem (CLT); the sum of a large number of identically and 

independently distributed (i.i.d.) random variables with a well-defined mean and variance, is 

normally distributed, regardless of the underlying distribution. There are however, at least two 

reasons to give pause at such an argument. Firstly, in many situations the i.i.d. assumption does 

not hold, in particular; there might be significant dependence across time. Secondly, in some 

situations it might be the case that neither the mean nor the variance is well defined, e.g. 

Mandelbrot (1963) suggested that infinite variance might explain the non-normality in financial 

                                                           
1
 To see this, consider the certainty equivalent (CE) in the case of constant absolute risk aversion (CARA) of a 

lottery ℎ̃ that returns ℎ > 0 and 0 with equal probability. The CARA utility function is given by 𝑢(𝑤) = 1 − 𝑒−𝛼𝑤, 

where the coefficient of absolute risk aversion  𝐴(𝑤) = 𝛼 > 0.  The CE of this lottery is given implicitly by 

  𝐸[𝑢(𝑤 + ℎ̃)] =
1

2
[𝑢(𝑤 + ℎ) + 𝑢(𝑤)] = 𝑢(𝑤 + 𝐶𝐸) and explicitly as 𝐶𝐸 =

1

𝛼
𝑙𝑛 [

2

1+𝑒−𝛼ℎ] > 0.  

Notice that the CE is decreasing in A(w), which (anecdotally) means that a utility function that exhibits increasing 

absolute risk aversion in wealth, implies a decreasing CE in wealth. 
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data. If either of these underlying assumptions of the CLT should fail, we have less theoretical 

backing for assuming normality. 

This paper consists of four chapters that are looking at what might seem as different issues. There 

is however, a main theme throughout the entire thesis – deviations from normality. Each chapter 

attempts to provide some valuable insight as to when a normality assumption is justified and 

when it is not. The thesis as a whole is meant to provide an overview of how non-normality might 

be modelled, in both a univariate and bivariate setting, and its implications. Furthermore, even 

though some topics, e.g. practical risk measurement and theoretical models for stock market 

returns and risk-free rate might not seem immediately connected, we expect on intuitive grounds 

that a ceteris paribus (i.e. keep the first two moments constant) increase in tail-risk on the stock 

market should give rise to a higher risk premium. 

1.2 Outline of this thesis 

Chapter 2 provides an empirical investigation of Norwegian stock market returns. Here we will 

explain how the return distribution differs from what one might think of as a baseline model – 

identically and independently normally distributed returns. In particular, we find that the return 

distribution deviates in two major ways: there is significant non-normality and it is time-varying. 

Tests for skewness and kurtosis are also applied to investigate what kind of non-normality we 

have in our data. All our results provide motivation for leaving the baseline model and this paper 

will do so by abandoning the normality assumption. However, we will not allow for a time-

varying return distribution, with the exception of a brief discussion in chapter 3.  

Chapter 3 presents an alternative model for the return distribution, namely the normal inverse 

Gaussian (NIG) distribution. This distribution has many attractive features when modeling 

financial data, one of which is that it has a (relatively) simple moment generating function, which 

also implies that moments of all orders exist. Another important feature is that it allows for 

skewness, heavy tails and peakedness in the distribution of returns. In this chapter, we will also 

use the maximum likelihood approach to estimate the parameters of the NIG distribution in two 

different ways: a direct and an indirect approach. The direct approach simply fits the NIG 

distribution to the Norwegian stock market returns. The indirect approach first fits an inverse 

Gaussian (IG) distribution to a variance series and then mixes this distribution with a normal 

distribution in order to obtain a NIG model of returns. The final section of the chapter provides a 
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way of assessing the parameter uncertainty in the model using a parametric bootstrap approach, 

and the parameter uncertainty for monthly returns is shown to be quite extensive. 

Chapter 4 applies a NIG model of daily ex-dividend returns to risk measurement. More 

specifically, we test how well the model fits two simple risk metrics: value at risk (VaR) and 

expected shortfall (ES). It is important to note that the chapter is not aiming to provide a thorough 

analysis/description of risk measurement as a whole or the specific risk measures. Instead, we 

simply aim to illustrate what is to gain by abandoning a simple Gaussian framework in favor of 

more complex distributional assumptions. This chapter provides overwhelming support for the 

NIG model when tested against Gaussian models, both in sample and out of sample. 

Chapter 5 encompasses three (more or less) distinct topics: an empirical analysis of the 

Norwegian consumption growth, an empirical analysis of the joint consumption growth and stock 

market returns and a theoretical model for the equity premium and risk free rate in a NIG 

framework suggested by Aase and Lillestøl (2015). We find that the consumption growth does 

not deviate significantly from an i.i.d. Gaussian process. We do however find that the joint return 

and consumption process significantly deviates from bivariate normality. More specifically, the 

joint distribution exhibits both coskewness and cokurtosis. In the final sections of chapter 4, we 

test whether the observed non-normal properties of the joint distribution is enough to explain the 

equity premium puzzle posed by Mehra and Prescott (1985). It turns out that non-normality is 

only able to explain a small fraction of the equity premium at the cost of rather uninformative and 

complex expressions for the equity premium and risk-free rate. This is however in itself a useful 

insight – the normality assumption might be justified in (some) equilibrium models. 

1.3 Data description 

The first four datasets are daily, monthly and quarterly Norwegian stock market indices and a 

monthly US stock market index. Additionally, we also have datasets on population, consumption, 

inflation and three-month Norwegian government bill rates.    

Our monthly index data set, which is applied in most of the analysis of chapter 3, consists of the 

cum dividend MSCI index for mid and large-cap stocks in the Norwegian stock market (MSCI, 

2015a; MSCI, 2015b). For our quarterly analysis in chapter 4, we have aggregated monthly 

returns into quarterly returns. Daily returns are calculated from an ex dividend version of the 
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same MSCI index, due to unavailability of a daily cum dividend index
2
. We will also present 

some results from the US stock market based on a similar mid and large-cap index for the US 

generated by MSCI (2015a). All these data sets are covering the period from the beginning of 

1970 until the end of 2014, except daily Norwegian returns, which covers January 1972 to 

February 2015.  

Data for seasonally and inflation adjusted Norwegian quarterly consumption from 1978 to 2014, 

population data
3
 and inflation data are collected from Statistics Norway (2015), while data for 

Norwegian 3 month treasury rates are from Eitrheim, Klovland, and Qvigstad (2007)
4
. 

2. Empirical analysis of Norwegian stock market returns 

2.1 Stylized facts 

2.1.1 Return data 

In this sub-section, we analyze return data. For daily, monthly and quarterly indices, we have 

calculated a continuously compounded return series the following way: 

 

𝑟𝑡 = log (
Level of indext

Level of indext−1
), (1)  

                                                           
2
 To get a feeling for whether (and how) our results might be influenced by using ex dividend returns as opposed to 

cum dividend returns, we have calculated several descriptive statistics for a time interval where daily returns from 

both indices are available (2001-2015). Firstly, the correlation between total returns and price returns is 0.99. 

Secondly, the average return on the price index has been 0.000164 while it has been 0.0003095 on the total return 

index, the difference representing dividend payments. Thirdly, the volatility of the price return and total return are 

0.01564 and 0.01562 respectively. An almost equal volatility, almost perfect correlation and about twice as high 

return for total returns imply that dividend payments have been a near constant share of the total return index from 

2001. This implied low volatility of dividend yields compared to total returns is consistent with empirical findings 

for the US (Shiller, 1981; Campbell & Shiller, 1988). Shiller (1981) shows, conventionally assuming stock prices to 

be expected future dividends discounted, that the volatility of dividends is way too low in order to explain the 

observed volatility in stock returns (the so-called “volatility puzzle”, for recent explanations of this puzzle see for 

instance van Binsbergen, Brandt, and Koijen (2012)). Minimum, maximum, sample skewness and sample kurtosis 

are also calculated and found to be similar in the two indices. The main relevance for us is that the ex-dividend 

returns will deliver results similar to what we would obtain by using a cum-dividend return data set with a constant 

shift-parameter on the mean.  
3
 Population data from 1978-1998 is collected on a yearly basis while 1998-2014 is on a quarterly basis. 

4
 Up until 2003 the 3 month treasury rates are collected from Eitrheim, Klovland and Qvigstad (2007). From 2003 

and onwards the treasury rates are calculated as an average of the yields for the treasuries each day, collected from 

Macrobond (2015). 
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where t corresponds to the current day, month or quarter and log represents the natural logarithm. 

Henceforth we will refer to the continuously compounded returns simply as returns. 

In Table 1 we have calculated some simple descriptive statistics for the Norwegian daily, 

monthly and quarterly returns, in addition to monthly US returns for comparison. The monthly 

returns in the Norwegian stock market have been between negative 35 percent in October 1987 

and positive 23 percent in April 1973. The average monthly return has been 0.87 percent, which 

corresponds to an annual return of 10.39 percent. For comparison the US market generated a 

monthly return of 0.81% from 1970 to 2014. 

We also note that the Norwegian market is more volatile than the US market. The coefficient of 

variation, defined as the sample standard deviation divided by the mean, is 8.32 in Norway 

compared to 5.49 in the US. The coefficient of variation decreases when we aggregate from daily 

to monthly to quarterly returns.  

The skewness and kurtosis measure presented in Table 1 are standardized, which means that they 

can be used to compare the empirical distributions of returns for all time intervals, regardless of 

scale. The sample skewness and sample kurtosis are calculated by using the R-package e1071 

developed by Meyer, Dimitriadou, Hornik, Weingessel, and Leisch (2014), which uses the 

following expressions from Joanes and Gill (1997): 

Sample skewness =
𝑚3

𝑚2

3
2

, (2)  

Sample kurtosis =
𝑚4

𝑚2
2

, (3)  

where 𝑚𝑞 is the sample moment of order q calculated as 

𝑚𝑞 = ∑
(𝑟𝑖 − 𝑟̅)𝑞

𝑛

𝑛

𝑖=1

. (4)  

Here n is the total number of observations and 𝑟̅ =
1

𝑛
∑ 𝑟𝑖

𝑛
𝑖=1 . Joanes and Gill (1997) point out that 

these measures are not unbiased estimates of the population moments. For our purpose however 
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these measures works well enough, and we only get negligible differences by using the 

alternative measures suggested by Joanes and Gill (1997). 

The Gaussian distribution has skewness always equal to zero and kurtosis (by our measure) 

always equal to three
5
. The calculated sample skewness and kurtosis differ from what is expected 

by a Gaussian distribution in all our data sets, which is an indicator of stock returns being non-

normal. We will address the issue of non-normality further in section 2.3.  

 

Table 1: Descriptive statistics and sample moments for stock returns. 

In Figure 1, we have plotted the monthly return data from January 1970 until December 2014. 

We notice that there are no linear long-term trends in the returns
6
. Figure 1 shows no obvious 

signs of autocorrelations of returns, but we will address this more formally in section 2.2. 

Another feature worth mentioning is that extreme negative outcomes are more severe than 

extreme positive outcomes. This is a common feature of stock returns also noted by for instance 

Duffie and Pan (1997). The larger absolute size of negative returns compared to positive returns 

is connected with the negative skewness in returns. Figure 1 also seems to point to non-constant 

variation in stock returns over time, which is another common feature in stock returns (Engle, 

                                                           
5
 Conventionally, when we use the term excess kurtosis in this paper we refer to our calculated kurtosis minus three, 

i.e., the kurtosis relative to the Gaussian distribution.  
6
 We have run an OLS regression that confirms that there is no statistically significant trend in stock returns. 

Daily Monthly Quarterly US Monthly

Min -0.23697 -0.35229 -0.56850 -0.23855

Max 0.11440 0.23189 0.42932 0.16374

Mean 0.00027 0.00866 0.02576 0.00810

Variance 0.00022 0.00518 0.01906 0.00198

Coefficient of variation (CV) 54.53 8.31 5.36 5.49

Skewness -0.5752 -0.7410 -0.7253 -0.6727

Kurtosis 11.870 5.445 5.206 5.525

N 10838 541 180 542

P-value in normality test NA 6.732e-10 8.315e-05 5.323e-09
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2002). It seems for instance that the years 1976-1978 were years with low variation in the stock 

returns, while 2007-2009 were a period of high variation. We will address this issue of volatility 

clustering further by analyzing volatility of returns by itself in sub-section 2.1.2. 

 

Figure 1: Monthly continuously compounded returns (1970-2014). 

In Figure 2, we have made a density plot (histogram) of our return data, together with a Gaussian 

distribution with the same mean and variance. As previously stated, the left tail seem more heavy 

than the right tail (negative skewness in the data). There also seems to be more weight at the 

center (high peakedness) of the distribution compared to the Gaussian distribution. The 

combination of peakedness and heavy tails gives us a sample kurtosis greater than 3 (Balanda & 

MacGillivray, 1988). The return data seems to deviate from a Gaussian distribution, and we will 

test whether this is the case in section 2.3. 
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Figure 2: Distribution of monthly returns (1970-2014). 

2.1.2 Volatility data 

In this sub-section, we analyze the volatility of monthly returns, calculated using the MSCI 

(2015a) index for monthly data. Volatility at time t is calculated as 

𝜎𝑡̂ = √
1

𝑛 − 1
∑ (𝑟𝑡+𝑖 − 𝑟𝑡̅)2

𝑛
2

𝑖=1−
𝑛
2

,   (5)  

where 𝑟̅ is defined as  

𝑟𝑡̅ =
1

𝑛
∑ 𝑟𝑡+𝑖

𝑛
2

𝑖=1−
𝑛
2

.  (6)  

When we are calculating monthly
7
 volatility, we take 𝑛 = 12, which we have plotted in Figure 3. 

This picture is in line with our earlier observation that the volatility of stock returns are changing 

over time. We will also formally test whether this is the case in section 2.2. There are no obvious 

trends in the monthly volatility data and it seems to be mean reverting, with a mean around seven 

percent.  
                                                           
7
 For daily data these measures are defined the same way but with 𝑛 = 30. 
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Figure 3: Monthly volatility of returns (1970-2014). 

Figure 4 is a density plot of return variances similar to the one for returns in Figure 2. This 

variance is defined as 

Variance at time t ∶= 𝜎𝑡̂
2, (7)  

 

where 𝜎̂ is the volatility calculated by equation (5). One obvious observation is that variance, like 

volatility, is non-negative. This has implications for model specifications – a good model of 

variance needs to be restricted away from negative territory. Another observation from Figure 4 

is that it exhibits most of its weight in the interval [0.000, 0.010]. There are however, also some 

observations with substantially higher variance, i.e. the variance has a heavy right tail. 
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Figure 4: Distribution of variance of monthly returns. 

2.1.3 Return and volatility data 

In Figure 5, we have plotted monthly volatility together with 𝑟̅ from equation (6), which has the 

interpretation of a monthly smoothed average return. The reason why this is an interesting plot is 

that it describes how stock returns are related to volatility; more specifically, volatility and return 

seems to be negatively correlated. Schwert (2011) finds similar patterns in the US stock market. 

We will investigate this correlation further using regression analyses in section 2.2. Note 

however, that the relationship between volatility and returns before the early 1980s seems to be a 

positive one
8
. The shift in the 1980s is something we will touch upon again in this thesis, as it has 

an effect on some of our results in chapter 4. 

                                                           
8
 The correlation between 𝜎̂ and 𝑟̅ is 0.0647 before 1983 while -0.5984 after 1983. 
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Figure 5: Monthly volatility of returns and smoothed average returns. 

2.2 Regressions 

In Table 2, we present some results of regressions addressing some of the stylized facts 

mentioned in the previous sections. The dependent variables (Y) in the six regressions are given 

in the top row, while independent variables (X) are given in the left column. All regressions are 

performed on the dataset of monthly returns on the Norwegian stock market, which consists of 

about 540 observations. Each regression has only one independent variable and takes the form 

𝑌 = 𝛼 + 𝛽𝑋. 
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Table 2: Regression analyses. Significance levels: ‘***’ 0.000, ‘**’ 0.001, ‘*’ 0.01, ‘.’ 0.05. 

The first regression is estimated by regressing squared residuals on its lagged value. The residuals 

squared is calculated as follows: 

residuals𝑡
2 = [𝑟𝑡 −

1

𝑛
∑ 𝑟𝑖

𝑛

𝑖=1

]

2

,   (8)  

where n is the total number of observations. The regression results give a significantly positive 

effect of lagged squared residuals on squared residuals, which is evidence for autocorrelation in 

residuals squared. This result suggests that we have volatility clustering in our data. The second 

regression model, where the square root of residuals𝑡
2 (the absolute residuals) is regressed on its 

lagged value, confirms this. The interpretation of a significantly positive coefficient on the lag is 

that the volatility we observed in the previous month can help predict the volatility seen this 

month
9
. Figure A1 and Figure A2 in Appendix A plot the autocorrelation functions (ACF)

10
 

connected to these two regressions, which allows us to evaluate lags further back. 

The third regression in Table 2 tests whether there is a relationship between return and lagged 

return. The result is a statistically significant autocorrelation, which implies that return this period 

in fact can help predict return next period. The significant autocorrelation in stock returns (and 

                                                           
9
 We interpret the residuals here as volatility even though it is not calculated the same way as volatility in equation 

(5). 
10

 Regressions like the first two in Table 2 but with more lags. 

Residuals squared |Residuals| Returns Returns ReturnBar ReturnBar

Intercept 0.0042*** 0.0475*** 0.0073* 0.0206*** 0.0311*** 0.0204***

Lagged residuals squared 0.1987***

Lagged |residuals| 0.1227**

Lagged returns 0.1491***

Residuals squared -2.3183***

Volatility -0.3386***

Variance -2.3479***

N 540 540 540 541 541 541
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volatility) is surprising if one believes the efficient market hypothesis, which states that all prices 

capture all available information at any time. We note however that the size of the autocorrelation 

is 0.15, which means that it might be economically insignificant when accounting for transactions 

costs, etc. Significant autocorrelation in returns for both individual stocks and indices is, 

however, a stylized fact in empirical finance according to Anderson, Eom, Hahn, and Park 

(2012)
11

. Anderson et al. (2012) make a review of the literature on this topic and address the 

possible explanations to this phenomenon in fixed interval stock returns. In our analysis in 

chapters 3-5, we will sometimes make the assumption of identically and independently 

distributed returns. We will therefore discuss this issue further in these chapters.  

Regressions four to six address the correlation between stock returns and the volatility of the 

returns. The three regressions provide the same qualitative results. Regression number four 

suggest a significant negative relationship between monthly stock returns and its residuals 

squared as defined in equation (8). Regression number five gives the same negative relationship 

between our constructed volatility measure in equation (5) and its corresponding 𝑟̅ from equation 

(6). Finally, we get a significantly negative relationship between 𝑟̅ and the variance as defined in 

(7). These regressions confirm our observation in sub-section 2.1.3 where we pointed out that a 

period of poor performance of the index is typically connected with high volatility in the 

market
12

. 

The regression analyses confirm that some of our findings in section 2.1 – non-constant volatility 

and its negative correlation with the stock market returns – are statistically significant. As we will 

point out in chapter 3, these properties of the volatility have implications for the distributional 

assumptions underlying a model of stock returns. 

2.3 Normality 

This final section of chapter 2 tests whether monthly stock returns are normally distributed. Stock 

returns are often (implicitly or explicitly) assumed to be normally distributed in the finance and 

economics literature, making many theoretical and empirical results dependent on this underlying 

assumption. For this reason, the assumption of Gaussian returns has received extensive attention 

                                                           
11

 This autocorrelation is common for stock returns at fixed intervals (daily, monthly, quarterly), as in our case.  
12

 We also ran a regression analysis of 𝑟̅ on 𝜎̂ and a dummy variable equal to 1 after 1983 and 0 before. This 

regression showed that the correlation between 𝑟̅ and  𝜎̂ was positive before 1983 and negative after, and the 

difference is statistically significant. 
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in research (Mandelbrot, 1963; Asparicio & Estrada, 1997). This section evaluates whether there 

is non-normality in the Norwegian stock market returns and provides possible explanations for 

this finding. 

2.3.1 Normality test 

In Table 1, we have provided P-values for the Shapiro and Wilk (1965) test (R Core Team, 2014) 

for normality on our four datasets of stock returns. The null hypothesis of this test is that the data 

are drawn from a Gaussian distribution. In all our four cases, this null hypothesis can be rejected 

with P-values close to zero
13

. Field (2009) however points out that this test is biased by sample 

size in such a way that for large samples, the P-value could be low even though the deviations 

from normality are negligible. It is therefore important to supplement the test results with Q-Q 

plots in order to fully conclude whether data is normal (Field, 2009). 

In Figure 6, we provide a normal Q-Q plot with sample quantiles on the vertical axis and 

theoretical (normal) quantiles on the horizontal axis. If the data is drawn from a Gaussian 

distribution, all data points should to be located on a straight line. We can clearly see that there 

are deviations from a straight line in Figure 6; we therefore conclude that the data are non-

normal. Figure A3, A4 and A5 in Appendix A, provide similar normal Q-Q plots for daily and 

quarterly returns on the Norwegian stock market and monthly returns on the US market, 

respectively. These plots corroborate the conclusion from Table 1. The normality test for US 

monthly returns has a somewhat higher P-value than for the Norwegian monthly returns. 

Additionally, the data points lie closer to a straight line in the US Q-Q plot. This may be an 

indication of the US market being closer to normal than the Norwegian one for monthly return 

data, even though the conclusion of non-normality is (qualitatively) the same in both markets. 

Another observation is that monthly and quarterly returns seem to be closer to normality than 

daily returns. 

The central limit theorem (CLT) states that the sum of identically and independently distributed 

(i.i.d.) random variables with well-defined expected value and variance will approach normality 

when the number of observations gets sufficiently large, regardless of the underlying distribution 

                                                           
13

 For the daily return data a P-value is not provided due to the fact that the test does not handle that large amount of 

data. The Q-Q plot for daily return data in Figure A3 in Appendix A however makes it clear that we draw the right 

conclusion by rejecting the null hypothesis. 
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(Rice, 2007). One can view stock market returns at any frequency as a sum of returns of higher 

frequency, thus CLT provides a hypothesis that even daily returns should be normal. There are 

however, at least two possible explanations for why CLT might break down for stock returns: 

firstly, the returns might not have well-defined expectation or variance, and secondly returns 

might not be i.i.d. Mandelbrot (1963) advocated the first explanation, more specifically that 

returns in the financial markets have infinite variance. The regression analyses made in section 

2.2 provide some support for the second explanation – we find that returns are dependent on its 

own lagged value and negatively correlated with volatility, which in turn is dependent on its own 

lagged value. 

 

Figure 6: Normal Q-Q plot for monthly returns. 

We see from Figure 6 that there are a few outliers in our dataset. There are observations in our 

sample that have a negative return of more than 20 percent, even though in a theoretical normal 

distribution, this would occur a lot less frequent than our data suggest
14

. We investigate the origin 

of the non-normality by removing the extreme negative outcomes (remove returns less than -0.2) 

and then evaluating whether the data is normal. The dataset is reduced by eight extreme negative 

outcomes and the Shapiro and Wilk (1965) normality test now yields a P-value of 0.9057. Thus 

                                                           
14

 An observation as extreme as our lowest observation of monthly continously compounded return of -0.35 would 

occur approximately once every 315,000 years if our monthly return data in fact was normally distributed with mean 

and standard deviation like our sample. 
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we are nowhere close to reject the null hypothesis of normality. The Q-Q plot in Figure 7 

confirms this conclusion. Our monthly return dataset hence moves from an empirical distribution 

clearly non-normal to a dataset looking normal by just removing eight extreme negative 

outcomes. 

 

Figure 7: Normal Q-Q plot for monthly returns without outliers. 

That we seemingly remove all non-normality from our data by removing the worst crises in the 

Norwegian stock market, suggests that an assumption of normality of returns on a monthly basis 

could be acceptable during normal times. The problem of making this assumption in general 

however is that occasionally extreme negative observations will occur, and these events are 

almost certainly ruled out if one assumes normality. A model of monthly returns expected to 

capture the risks involved in investing in the Norwegian stock market should therefore be able to 

capture these rare and extreme negative outcomes. We performed a similar exercise in order to 

try to explain non-normality in daily and quarterly return data, but just removing the most 

extreme outcomes did not change the conclusion of non-normality. 

2.3.2 Skewness and kurtosis testing 

As DeCarlo (1997) points out, univariate skewness and kurtosis tests can help pinpoint what type 

of properties that makes a particular set of observations deviate from normality. DeCarlo (1997) 

suggests that an informative way of testing for normality is to combine our approach in sub-
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section 2.3.1, using the Shapiro and Wilk (1965) test and Q-Q plots, with skewness and kurtosis 

testing. The tests we apply in this thesis for univariate skewness and kurtosis is the one presented 

by D’Agostino, Belanger, and D’Agostino (1990). The purpose of these tests is to evaluate 

whether the skewness or kurtosis are significantly different from what one would find in a 

normally distributed dataset (D’Agostino et al., 1990). 

The first test made in this section is a skewness test where the null hypothesis of normality is 

tested against the alternative hypothesis of non-normality due to skewness
15

. We apply a normal 

approximation of the test by D’Agostino et al. (1990), valid for datasets with more than eight 

observations. P-values for the skewness test in all of our four datasets are provided in Table 3. It 

is evident from the results in Table 3 that all datasets exhibit skewness that are significantly 

different from zero. The Z values in Table 3 are the test statistics that should be standard 

normally distributed under the null hypothesis of normality. We notice that the test results reject 

the null-hypothesis most strongly for daily returns. 

The second test made in this section is a kurtosis test where the null hypothesis is that the data are 

normal, and the alternative hypothesis is that the data are non-normal due to non-normal kurtosis. 

We also apply a normal approximation to this test, valid for datasets consisting of more than 20 

observations, by Anscombe and Glynn (1983). We see from Table 3 that we can reject the null 

hypothesis for all four datasets. The excess kurtosis is thus statistically significant. In this case 

too, we are most confident in rejecting the null hypothesis for daily data. The conclusion of this 

sub-section is thus that returns at all frequencies considered here deviates from normality due to 

both skewness and kurtosis. 

                                                           
15

 We apply two-sided tests for skewness and kurtosis in this section, so we have H0: Normality, HA: Non-normality 

due to skewness/kurtosis, without saying anything beforehand of which direction the skewness or kurtosis measure 

deviates from normality. 
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Table 3: Z and P-values in skewness and kurtosis tests. 

3. Modelling of stock returns – a normal inverse Gaussian approach 

We consider a baseline case for stock returns where they are assumed to be i.i.d. Gaussian. From 

this baseline, there are two possible extensions, as illustrated by the branches in Figure 8. The 

first is to allow for dependence of returns and volatility across time, by dropping the i.i.d. 

assumption and using for instance GARCH-models (Engle, 2002). The second possible extension 

is to drop the assumption of normality, by using more flexible i.i.d. Levy-processes. In this thesis 

we will consider, and investigate the implications of, the latter and only mention the first branch 

when discussing possible extensions to our modelling approach. 

 

Figure 8: Decision tree for modelling of stock returns. 

Daily returns Monthly returns Quarterly returns US monthly returns

Z in skewness test -22.8 -6.42 -3.75 -5.93

P-value skewness test 5.413e-115 1.346e-10 0.00018 3.098e-09

Z in kurtosis test 36.8 5.82 3.62 5.92

P-value kurtosis test 0 5.997e-09 0.00029 3.314e-09
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In the following we model continuously compounded returns as normal inverse Gaussian (NIG) 

distributed random variables. The NIG distribution was introduced to finance by Barndorff-

Nielsen (1997), and it has since gained attention for its ability to fit financial data. In particular, 

the NIG distribution allows for skewness, heavy tails and peakedness, all of which are common 

features in most financial markets, including the Norwegian stock market, as seen in chapter 1. 

Another desirable quality of the NIG distribution, as opposed to certain other fat-tailed 

distributions like for instance the Cauchy distribution, is that a moment generating function exists 

and so therefore do all moments. An added advantage of the NIG distribution, along with its 

close relatives in the generalized hyperbolic family of distributions, is that there are readily 

available software packages (such as the package ghyp for R developed by Luethi and Breymann 

(2013)) that are able to handle complex calculations. 

3.1 Theoretical model 

Formally, we are considering the following model of returns 

log (
𝑆𝑡

𝑆𝑡−1
) ∶= 𝑟𝑡 ~ NIG(𝛼, 𝛽, 𝜇, 𝛿). (9)   

Loosely speaking, the parameter alpha is related to tail-heaviness, beta to symmetry, mu to 

location and delta to scale (Benth, Groth & Kettler, 2005). The normal distribution is obtained in 

the limit when alpha and delta goes to infinity, regardless of beta (Lillestøl, 1998).  

The NIG(𝛼, 𝛽, 𝜇, 𝛿) distribution has the following probability density function (Eriksson, Ghysels 

& Wang, 2009) 

𝑓NIG(𝑥; 𝛼, 𝛽, 𝜇, 𝛿) =
𝛼

𝜋
e𝛿√𝛼2−𝛽2−𝛽𝜇  

𝐾1 (𝛼𝛿√1 + (
𝑥 − 𝜇

𝛿
)

2

)

√1 + (
𝑥 − 𝜇

𝛿
)

2
𝑒𝛽𝑥, (10)   

where 𝐾1(∙) denotes the Bessel function of the third kind with index 1 (see Abramovich and 

Stegun (1974) for descriptions of these types of functions). 

The NIG distribution can also be written as a mean-variance mixture of the normal distribution 

and an inverse Gaussian (IG) distribution in the following way 
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𝑟𝑡 = 𝜇 + 𝛽𝑍𝑡 + √𝑍𝑡𝑈𝑡   where    𝑈 ~ 𝑁(0,1)  and 𝑍 ~ 𝐼𝐺 (𝛿, √𝛼2 − 𝛽2 ), (11)  

where Z and U are independently drawn from their respective distributions (Lillestøl, 1998).  

It is important to note that we are not allowing for the possibility of time varying parameters of 

the NIG distribution in our specification of the model. This implies that we are in fact assuming 

both Z and U to be i.i.d., which is a questionable assumption given our results of volatility 

clustering and autocorrelations in returns from chapter 1. We can view our model of returns as a 

one-period model without prior knowledge of last period’s return and volatility, i.e. an 

unconditional model of returns.  

From specification (11), we see that Z has a close resemblance to the variance of returns. In fact, 

the marginal distribution of returns conditional on Z equal some z, is normal with variance z, 

 𝑟𝑡|𝑍 = 𝑧 ~ 𝑁(𝜇 + 𝛽𝑧, 𝑧). (12)  

This implies that controlling for Z should give us normally distributed returns, which is 

something we will explore further with our return data in section 3.3. We will henceforth refer to 

any realization of Z as the instantaneous variance. One may loosely think of (11) as a model of 

normally distributed returns with stochastic expectation and volatility. 

From (11) and (12), it can easily be seen that a negative (positive) beta will give rise to negative 

(positive) skewness in the return series. To see this, consider a negative beta and two given 

values of Z – a high and a low value. In the case when Z is high, expected returns will be low and 

the conditional distribution will be symmetric with a high variance, i.e. it is fairly likely to end up 

with extremely low returns. When Z is low, expected return is high, but the conditional 

symmetric distribution will have a low variance, i.e. extremely high returns are quite unlikely. 

Similarly, it is easy to see that a beta equal to zero gives rise to a symmetric return distribution.  

The first four moments of the theoretical return distribution of NIG type have the following 

expressions (Lillestøl, 1998) 

𝐸[𝑟] =  𝜇 + 𝛽
𝛿

𝛾
 ,       Var[𝑟] = 𝛿

𝛼2

𝛾3
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    Skewness[𝑟] = 3
𝛽

𝛼

1

(𝛿𝛾)1/2
,       Kurtosis[𝑟] = 3 (1 + 4 (

𝛽

𝛼
)

2

)
1

𝛿𝛾
, 

where 𝛾 ∶= √𝛼2 − 𝛽2. 

From the expression for kurtosis it is easily seen that even with a beta equal to zero the NIG 

distribution can match important aspects of the stock market, e.g. peakedness and heavy tails. 

The first two moments of the IG distribution are (Barndorff-Nielsen, 1997) 

𝐸[𝑍] =
𝛿

𝛾
     𝑎𝑛𝑑     𝑉𝑎𝑟[𝑍] =

𝛿

𝛾3
. 

We note that if 𝛽 is small relative to 𝛼, then 𝛾 ≈ 𝛼. In this case, the mean of Z would be 

approximately equal to the variance of returns. We also note that whenever 𝛽 is different from 

zero, the variance of returns is higher than the expected value of Z – the extra variance of returns 

is coming from the effect of 𝛽𝑍 on the expected return in (12). Note also that the expectation of Z 

and the variance of returns are both proportional to the scale parameter, 𝛿.  

As mentioned already, when returns are modelled as a mean-variance mixture of the normal and 

the IG distribution, it is in fact a stochastic volatility model of returns. This specification is able 

to handle the non-normality we see in returns, but it is not able to model volatility clustering. The 

reason is that our return distribution is time-invariant. One way to deal with this issue is to make 

use of the proportionality of the variance of returns with respect to delta. Andersson (2001) does 

this by allowing a time-dependent structure of 𝛿 in the model, more specifically 

𝛿𝑡 = 𝜌0 + ∑ 𝜌𝑖𝑟𝑡−𝑖
2 + ∑ 𝜋𝑗𝛿𝑡−𝑗.

𝑞

𝑗=1

𝑝

𝑖=1

 

Andersson (2001) calls this model the normal inverse Gaussian stochastic volatility 

(NIGSV(p,q)) model. In addition to capturing the non-normality in the data, this model is also 

able to capture the volatility clustering. 
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3.2 Fitted return distribution 

In this section, we estimate the parameters of the NIG distribution by fitting it to the sample 

distribution of monthly returns, using the maximum likelihood estimation (MLE) in the R-

package ghyp developed by Luethi and Breymann (2013). Maximum likelihood estimations solve 

the following optimization problem. 

max
𝜽

L(𝜽; 𝑥1, 𝑥2, … , 𝑥𝑛), (13)  

where L(𝜃; 𝑥1, 𝑥2, … , 𝑥𝑛) is the likelihood function of a model, representing the likelihood of the 

model generating the data points 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛 when applying the (vector of) parameters, 𝜽. 

An equivalent, and often simpler, approach is to rather maximize the log-likelihood: 

max
𝜽

log[L(𝜽; 𝑥1, 𝑥2, … , 𝑥𝑛)] ,  

which can be written as a sum of the log-likelihood of obtaining each data point 𝑥𝑖∀𝑖 = 1,2, … 𝑛, 

max
𝜽

∑ log [𝑓𝑥(𝑥𝑖; 𝜽

𝑛

𝑖=1

)].  

Here 𝑓𝑥(𝑥𝑖; 𝜽) represents the probability density function of a given distribution. In the case of 

NIG, the probability density function is given in equation (10). Loosely speaking, the MLE finds 

the particular parameter values of a distribution that maximizes the likelihood of obtaining a 

given set of observations. In the R-package ghyp by Luethi and Breymann (2013), a modified 

expectation-maximization (EM) approach (the multi-cycle, expectation, conditional estimation 

(MCECM) algorithm, see McNeil, Frey and Embrechts (2005)) is used with an augmented 

likelihood function, but the intuition provided here still applies.  

One obvious issue when estimating a return distribution is that we do not observe returns in 

different states of the economy – we only observe a realized time series, which we take as a 

proxy for returns across states. For this approach to be valid, we need all the observed returns to 

be independent realizations of the same underlying distribution. As mentioned in section 3.1, this 

is a problematic assumption given our findings of significant autocorrelation in returns and 

volatility. For our purposes the perhaps most problematic consequence of the i.i.d. assumption is 

that we are not using all the information available at time t when forecasting the time t+1 return, 

e.g. we probably could get a more accurate estimate of the time t+1 return distribution by taking 
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into account our knowledge of time t volatility. Forsberg and Bollerslev (2002) suggest that a 

combination of a return distribution of NIG type and a GARCH model for volatility might be a 

good model for financial data that also takes into account the information embedded in realized 

volatility
16

.  

Our estimated NIG model for returns is shown in Figure 9 (for daily, quarterly and US monthly 

returns see Figure A6, A7 and A8 respectively in Appendix A) as a solid red curve together with 

a Gaussian distribution as a dotted curve, for comparison. We see that the fitted NIG is able to 

capture quite a bit of the peakedness and some of the fatness in the left tail. We also note that the 

fitted NIG distribution is slightly negatively skewed, as we also found to be a feature of the return 

data in chapter 2.  

The Q-Q plot in Figure 10 is interpreted as follows. The triangular points are data points that 

should be compared to the theoretical Gaussian quantiles given by the dotted line. Similarly, the 

circular points are data points that should be compared to the theoretical NIG model given by the 

solid line. Figure 10 tells us that the fitted NIG model seems to match the empirical distribution 

nicely, perhaps with the exception of the left tail, which is even fatter in reality than what our 

model is able to predict (we will address this finding further for daily returns in chapter 4). 

We have also calculated the Akaike information criterion (AIC) for the fitted NIG and Gaussian 

distributions (Akaike, 1974). The AIC is defined as 

AIC = 2𝑘 − 2log (𝐿), (14)  

where k is the number of parameters and L is the likelihood value of the model (attained from the 

optimal solution to problem (13)). A high AIC means that the model performs poorly and a low 

AIC implies that the model performs well. Note that AIC punishes the inclusion of more 

parameters by the principle of parsimony. Burnham and Anderson (2004) suggest using AICc
17

, 

which adjusts AIC for the number of observations. For a large number of observations, however, 

like we have (in this respect) at all frequencies, the AICc converges to AIC, which is why AIC is 

                                                           
16

 This is a similar approach to the NIGSV(p,q) of Andersson (2001) outlined in section 2.1. 
17

 AICc = AIC + 2k(k + 1)/(n − k − 1), where n is the number of observations. 
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a sufficient alternative to AICc in this thesis
18

. Based on the AIC score, the NIG model
19

 clearly 

outperforms the Gaussian model
20

. 

A question to be addressed regarding model selection using AIC is whether we can say if a more 

complicated model significantly outperforms another model. For this purpose we apply the 

likelihood ratio (LR) test (used as an addition to AIC), which uses the following test statistic 

(Lütkepohl, 2006), 

λLR = 2 ∗ [log(L[𝜽𝑼𝑹; 𝒙]) − log(L[𝜽𝑹; 𝒙])]. 

Here 𝜽𝑼𝑹 and 𝜽𝑹 denotes the optimal parameters from two MLEs on an unrestricted (UR) and a 

restricted ® version of two nested models
21

, respectively. Like in problem (13), 𝒙 is the vector of 

data points. Under the null hypothesis, which states that the restricted model is the data 

generating process, λLR~𝜒2(𝑣), with degrees of freedom 𝑣 equal to the number of parameters in 

the unrestricted model less the number of parameters in the restricted model (Lütkepohl, 2006). 

We use the R-package ghyp (Luethi & Breymann, 2013) to apply the chi-squared distribution, 

𝜒2(𝑣) (valid under H0), in order to get P-values for the likelihood ratio test. A low P-value 

implies rejection of H0 and a conclusion that the unrestricted model significantly outperforms the 

restricted one. 

Using the likelihood ratio test on our NIG model (with parameters 𝜽𝑼𝑹) and Gaussian model 

(with parameters 𝜽𝑹) estimated in this section we get an extremely low P-value
22

, suggesting that 

our NIG model significantly outperforms the Gaussian model. 

                                                           
18 

Using AICc instead of AIC in all analyses of this thesis does not alter any conclusions. 
19

 AIC(NIG) = 2 ∗ 4 − 2 ∗ 676.76 = −1345.52. 
20

 AIC(Gaussian) = 2 ∗ 2 − 2 ∗ 656.51 = −1309.02. 
21

 Nested models are defined as two models where the first one (the unrestricted, complex one) can be transformed 

into the second one (the restricted, simple one) by imposing constraints on the parameters of the first one. 
22

 The test provides a P-value= 1.6 ∗ 10−9, suggesting NIG having a substantially better fit than the Gaussian. 
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Figure 9: Distribution of monthly returns with NIG-fit. 

 

Figure 10: Generalized hyperbolic Q-Q plot for monthly returns. 

Table 4 shows that both the expected value and the variance of returns match the empirical 

counterparts in Table 1 closely, but we are somewhat underestimating the negative skewness, and 

the sample kurtosis is a bit higher than our model kurtosis. The NIG distribution could of course 

match all these four moments perfectly, seeing as it has four free parameters. The reason for why 
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this is not the case here is as mentioned earlier that we are using the maximum likelihood 

estimation (as opposed to a method of moments approach), which takes into account that our 

empirical distribution is not fully described by its first four moments.  

Table 5 shows our parameter estimates. Of particular interest is the negative beta, which gives us 

a negative relationship between expected returns and variance (in line with what we observed in 

our monthly return data in chapter 2). 

 

Table 4: Moments for NIG-fit of monthly returns. 

  

Table 5: Parameter values for monthly NIG-fit of returns. 

3.3 Return distribution conditional on instantaneous variance 

From the expression in (12), we know that the distribution of returns conditional on the 

instantaneous variance should be normal if the true return distribution is indeed NIG. In this part, 

we will try to control for the instantaneous variance in our return data and then test whether the 

resulting distribution is normal. Our approach is to split the data set into several sub-datasets, 

where each sub-datasets consist only of observations with instantaneous variances between 

Monthly NIG-fit

Expected value 0.00865

Variance 0.00506

Skewness -0.4764

Kurtosis 4.5475

Monthly NIG-fit

α 23.239

δ 0.1070

β -5.7292

μ 0.0359

γ=(α^2-β^2)^0.5 22.521
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certain levels. We will use the variance from expression (7) in sub-section 2.1.2 as a proxy for the 

instantaneous variance of our return series. This approach allows us to reduce the variability of 

the variance, but it is not a perfect control for the instantaneous variance. Even with such a rough 

approach however, the conclusion is that we are able to get quite far. 

As mentioned in chapter 2, monthly returns are normal except for eight observations in the 

extreme negative territory. This implies that we really do not have enough non-normality
23

 for 

our approach to be of any use for monthly data. In this section, we will therefore use daily data, 

where the non-normality is much more severe and, importantly, where there are many more 

observations readily available. The dataset for daily returns and variances consist of 10 823 

observations. We split this dataset into 20 subsets – subset 1 consisting of the five percent 

observations with the lowest variance and subset 20 the five percent observations with the highest 

variance. 

Table 6 shows descriptive statistics and test results for the three least normal subsets and the most 

normal subset (measured by their corresponding P-values in the Shapiro and Wilk (1965) test). 

As a control set, we have also included a subset of the same size of randomly chosen 

observations from the whole dataset. Figure 11, 12 and 13 show Q-Q plots for the randomly 

drawn subsample, the most normal subsample and the least normal subsample, respectively. In 

total, we cannot reject normality for 11 of 20 subsets on a five percent significance level. All the 

9 remaining subsets have a significantly higher P-value from the normality test than the random 

control set. It is worth mentioning that the least normal set (subsample 20) has one extreme 

negative observation and if we remove this, the P-value rises to 0.5%.  

Furthermore, the skewness and kurtosis is significantly lower for all subsets (except perhaps 

subsample 20) compared to the control set. From the tests explained in section 2.3.2, (expectedly) 

neither kurtosis nor skewness is significantly different from what one would expect from a 

normal distribution in the 11 subsamples with P-values above five percent in the Shapiro and 

Wilk (1965) normality test. For the remaining 9 subsamples, kurtosis and/or skewness are 

                                                           
23

 All of these eight observations end up in the same high volatility subsample, making all other subsamples normal, 

and this sample non-normal. This implies that we are not really testing the effect of controlling for the variance on 

normality. 
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significantly different from a normal distribution on a five percent level (and hence the source of 

non-normality is varying). 

We see that our method of controlling for the instantaneous variance has reduced the volatility of 

volatility
24

 significantly for all subsets, except subsample 20, compared to the random subsample. 

Herein lies also some of the problems with our approach – the dispersion in volatility is much 

higher in the highest variance subset compared to the medium and low variance subsets, the 

reason being that there are relatively few high-variance observations in our dataset. Another issue 

with our approach is that the variance series is too smooth
25

 to capture the “real” volatility in the 

most extreme observations. Overall we conclude that our calculated variance series using 

expression (7) is a proxy, albeit not a perfect one, for Z. 

                                                           
24

 Defined as the standard deviation of the square root of our variance series. 
25

 The variance series is calculated as the variance of returns of the 30 days surrounding any given day (see sub-

section 2.1.2). This implies that the calculated variance series will never jump abruptly. When using this variance 

series we are therefore not controlling for the instantaneous variance, but rather the volatility environment, i.e. 

whether volatility (here defined as √𝑍) is high or low in the time period surrounding the observation. This approach 

does not make any sense if our i.i.d. assumption holds, as this would imply that high volatility in one period would 

not in general be surrounded by other high volatility observations. Our smoothed volatility series would in this case 

be random noise around a constant. As noted in chapter 2 however, we know that there is significant autocorrelation 

in volatility (particularly in daily data), thus controlling for the volatility environment could be a useful approach.  

The failure of the i.i.d. assumption is however, as pointed out in section 3.2, problematic in itself – we need the 

observations in the time series to be independent if we are to use it as a representation for the return distribution at 

any particular point in time, i.e., as a representation of the distribution across states as opposed to across time. The 

only justification we have is that the time series is quite long compared to the half-life of the autocorrelation of 

volatility, which should give us a time series that is approximately independent as a whole. 
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Table 6: Properties of subsamples with tests for normality, skewness and excess kurtosis. 

 

Figure 11: Normal Q-Q plot of random sample. 

Random sample Subsample 7 Subsample 10 Subsample 15 Subsample 20

Average volatility 0.0131 0.0095 0.0111 0.0146 0.0332

Volatility of volatility 0.00659 0.00014 0.00017 0.00030 0.01147

Volatility interval [0.0052, 0.0631] [0.0093, 0.0098] [0.0107, 0.0113] [0.0140, 0.0150] [0.0238, 0.0645]

P-value in normality test 2.821e-16 0.9786 0.0004 0.0043 3.365e-09

Skewness -0.6991 0.0514 -0.1536 -0.2174 -0.4648

Kurtosis 9.0586 2.9763 4.2326 3.8483 6.4514

Z in skewness test -6.12 0.49 -1.47 -2.07 -4.27

Z in kurtosis test 8.54 0.04 3.94 3.08 6.85

N 541 541 541 541 541
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Figure 12: Normal Q-Q plot of subsample 7. 

 

Figure 13: Normal Q-Q plot of subsample 20. 

3.4 Fitted variance 

Section 3.3 gave us an indication that our variance series can in fact be a proxy for the variable Z 

in the mean-variance mixture of the IG and normal distribution for daily returns. In this part we 

will therefore model our variance of returns series from (7) as an IG distribution (using the R-

package STAR by Pouzat (2012)), going back to monthly observations. This will give us 

estimates of the parameters delta and gamma, which we in turn will use when fitting the NIG 

distribution to the return series. A particularly interesting approach would have been to estimate 
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an independent variance series, e.g. constructed from implied volatilities or a volatility index, and 

thereby nail down some of the free parameters of the NIG distribution for the return series. Such 

a volatility series would arguably be a better estimate of the instantaneous volatility, seeing as it 

is forward-looking, able to respond quickly to changes in the “true” volatility, and because it 

would typically be the volatility that makes an option price based on normality assumptions 

correct. A similar approach is pursued by Benth et al. (2005), where they develop an option-

pricing model based on the NIG distribution and use this model to find an implied value for the 

parameter delta. In this paper however, we will use the variance series for monthly return data 

constructed from a 12-month moving standard deviation of returns (see sub-section 2.1.2). 

Figure 14 illustrates that the IG distribution matches the sample distribution of variance from (7) 

well (we get similar results for daily and quarterly data, see Figure A9 and A10 in Appendix A). 

From Table 7 we see that the estimates for delta and gamma have both decreased relative to what 

we got in section 3.2. This implies that the resulting fitted NIG distribution of returns here will be 

less normal than what we got in section 3.2.  

The results we get from our constructed variances from (7) are, however, likely to overestimate 

both gamma and delta relative to what we would get by using a variance series that responds 

faster to changes in the volatility. The reason is that our volatility series probably understates the 

highest volatility and overstates the lowest volatility – these observations are “averaged out”. To 

get a feeling for how our results might change for another proxy of the variances, we also 

estimate an IG distribution for a series of residuals squared (the residuals squared are calculated 

using expression (8)). In this case, the estimate for gamma decreases to 0.3561 and the estimate 

for delta decreases to 0.00184, which is qualitatively in line with what we expect.  

We now turn to estimating the NIG distribution for returns, but we keep gamma and delta fixed at 

their respective values calculated from the variance distributions.
26

 All resulting parameter values 

in the case of IG distributed variance calculated as in (7) are reported in Table 7. Figure 15 shows 

the result of the three different ways of estimating the NIG distribution mentioned in this chapter, 

with the corresponding Gaussian distribution for comparison.  

                                                           
26

 In R using ghyp, we do this by a change of parametrization, keeping alpha bar (from the standard parametrization 

of NIG in the R-package, see Luethi and Breymann (2013)) fixed to the value implied by delta and gamma. 
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Table 8 provides the AIC values for the four models estimated in this chapter, calculated using 

equation (14). The AIC scores do not provide a clear indication that modelling NIG directly on 

the return data outperforms modelling return indirectly by pre-fitting an IG distribution to our 

variance series from expression (7). Using the likelihood ratio test approach from section 3.2 we 

cannot reject the null hypothesis that the two models fit the data equally well
27

. We do however 

notice in Table 8 that the approach of modelling residuals squared (from expression (8)) as IG, is 

generating a NIG distribution which performs much worse than even the Gaussian distribution. 

 

Figure 14: Monthly variance data and inverse Gaussian fit. 

                                                           
27

 We are testing whether our unrestricted model in 3.2 with 4 free parameters outperforms the model of section 
3.4 where one of the parameters are pre-estimated through IG distributed variance (calculated using (7)). This test 
provides a P-value= 0.1423, and we cannot significantly discriminate between the two. 
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Table 7: Fitted NIG distribution after fitting variance as inverse Gaussian. 

 

Table 8: Akaike (1974) information criterion (AIC) for the four models estimated in this chapter. 

 

Figure 15: NIG distributions corresponding to our different ways of modelling variance. 

3.5 NIG-triangle 

In Table 9, we have calculated the measures steepness and asymmetry, which are alternative 

measures to skewness and kurtosis. The measures were suggested by Barndorff-Nielsen, Blæsild, 

Monthly NIG-fit with 

IG-estimated variance

α 16.956

δ 0.0847

β -3.5649

μ 0.0268

γ=(α^2-β^2)^0.5 16.577

Monthly NIG-fit

Monthly NIG-fit 

with IG-estimated 

Monthly NIG-fit with IG-

estimated residuals squared

Gaussian 

distribution

AIC -1345.52 -1343.36 -1196.63 -1309.02
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Jensen, and Sørensen (1985) and provide a way to compare steepness and asymmetry across 

different NIG models. Additionally, these measures can give an indication of how a particular 

model deviates from normality. The steepness parameter is given by 

𝜉 = (1 + 𝛿√𝛼2 − 𝛽2)
−

1
2

 (15)  

and the asymmetry parameter is given by 

𝜒 =
𝛽

𝛼
𝜉. 

(16)  

 

As Barndorff-Nielsen and Prause (1999) points out the domain of variation for (𝜒, 𝜉), which is 

known as the NIG triangle in the literature because of its shape if graphed, is 

{(𝜒, 𝜉) ∶ −1 < 𝜒 < 1, 0 < 𝜉 < 1}. (17)  

The pair (𝜒, 𝜉) = (0, 0) corresponds to the normal distribution (Barndorff-Nielsen & Prause, 

1999). Barndorff-Nielsen and Prause (1999) also points out that the pair (𝜒, 𝜉) = (0, 1) 

corresponds to the Cauchy distribution. We include these special cases in Table 9 for comparison. 

Figure 16 plots the NIG-triangle with all the univariate models for return estimated in this paper. 

 

Table 9: NIG-triangle with benchmarks and all our different univariate NIG models. 

NIG-triangle Steepness (ξ) Asymmetry (χ)

Theoretical Gaussian 0 0

Cauchy distribution 1 0

Daily (1972-2015) 0.774 -0.029

Daily (1972-1993) 0.778 0.033

Monthly (1970-2014) 0.542 -0.134

Monthly with pre-estimated variance 0.645 -0.136

Monthly with pre-estimated residuals 1.000 -0.995

Quarterly (1970-2014) 0.675 -0.179

US monthly (1970-2014) 0.588 -0.163
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From Table 9 we note that all estimated models for stock market returns in this paper has a 

negative skewness, except for the daily model for 1972-1993 used for evaluating NIG as a model 

out of sample in chapter 4. We do however, see that the degree of asymmetry seem to be lower, 

and maybe even negligible, for our models of daily return than for monthly and quarterly returns. 

Another general observation is that all our return models exhibit more steepness than the normal 

distribution. Daily returns exhibit more steepness than monthly and quarterly data, which means 

that it has more weight in its center and its tails relative to its shoulders compared to lower 

frequency data. With one exception the steepness parameter in all models lies in the 

neighborhood 0.5-0.8 indicating substantial non-normality. These levels are consistent with 

previous findings for financial return data (Bølviken & Benth, 2000; Venter & de Jongh, 2002). 

The model where we have fitted the residuals squared to an IG distribution and used our 

estimates to find an implied NIG distribution, is an extreme case where the distribution is as 

asymmetric and steep as possible in this framework. We also note that the US return model is 

slightly more asymmetric and steep than the Norwegian monthly return model, thus further away 

from a Gaussian model, according to these measures.  

 

Figure 16: NIG-triangle with all estimated univariate models. 
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3.6 Parameter uncertainty in our NIG-fit – parametric bootstrapping 

In this section, we evaluate the parameter uncertainty in the monthly return model of section 3.2. 

The method applied in this section can be used in other models as well, and even on different 

measures such as for instance the asymmetry and steepness parameters of section 3.5. 

The approach we use in this section is a parametric bootstrap method as presented by Efron and 

Tibshirani (1993). We consider the model in Table 5 estimated on our original monthly return 

dataset to be the data generating process of monthly returns. The bootstrap then uses this model 

to generate 𝑘 new datasets (each with identical size to the original dataset) of randomly drawn 

observations. For each newly generated dataset the maximum likelihood estimation is performed 

again. This gives us 𝑘 estimates for each parameter in the model, which we in turn can use to 

calculate descriptive statistics, such as standard errors, for these parameters. 

To illustrate the results that a bootstrap approach yields, we have provided a histogram of the 

different estimates of alpha from a bootstrapping taking 𝑘 = 1000, in Figure 17. It is evident 

from Figure 17 that we have some observations in the right tail where alpha is extremely large. In 

these cases, the model is close to normal, as we pointed out in section 3.1. The observations with 

extremely high alphas in Figure 17 are bootstrap samples where extreme tail-observations do not 

occur among the randomly simulated NIG-variates.  

 

Figure 17: Distribution of alpha in parametric bootstrapping. 
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In Table 11, we provide the original parameter estimates, the standard error of the estimated 

parameters (calculated using expression (18)) and its minimum and maximum value. The 

uncertainty about the parameters is quite substantial. An important point made by Aase and 

Lillestøl (2015) is that the estimated parameters in Table 11 can be correlated. This correlation is 

not reflected in the bootstrap results in Table 11. In Table 10, we provide a correlation matrix of 

how the parameter estimates correlates over the 1000 randomly generated bootstrap samples. We 

note from Table 10 that 𝛼 and 𝛽 for instance are almost perfectly negatively correlated in the 

estimations. This implies that the bootstrap estimates with high 𝛼 in Table 11 is corresponding to 

low values of 𝛽, possibly making the standard errors of the two biased upwards.
28

  

 

Table 10: Correlation matrix for parameter estimates. 

 

Table 11: Results of bootstrap on NIG model for monthly returns. 

Standard error = √
1

540
∑(𝑋𝑖 − 𝑋̅)2

541

𝑖=1

, (18)  

where X = α, δ, β, μ. 

                                                           
28

 One approach to avoid unnecessarily high standard errors of two parameters that are almost perfectly correlated 

would be simply to fix one of the parameters at a reasonable level, and then estimate the remaining parameters.  

α δ β μ

α 1 0.66 -0.99 0.91

δ 0.66 1 -0.57 0.75

β -0.99 -0.57 1 -0.88

μ 0.91 0.75 -0.88 1

Original NIG-estimate 

(Table 5)

Standard error of 

bootstrap estimates

Minimum of bootstrap 

estimates

Maximum of 

bootstrap estimates

α 23.239 10.334 12.304 167.08

δ 0.1070 6.8205 0.0710 179.34

β -5.7292 24.032 -600.79 55.656

μ 0.0359 0.0381 -0.0026 0.9162
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Now that we have an impression about the uncertainty around each parameter of our baseline 

model – the NIG model directly estimated on monthly returns in section 3.2 – it would be 

interesting to compare the different models we have estimated. The NIG fit with IG-estimated 

variance in Table 7 have parameter estimates that somewhat differs from what we got in our 

baseline model in Table 5. When we consider the uncertainty of our parameter estimates, 

however, we see that this model is well within a 95% confidence band. The modelling approach 

where we model residuals squared as IG however, provides by comparison an α and δ lower than 

even our minimum bootstrap estimate of the two, and outside these two parameters’ confidence 

band
29

. This suggests that modelling variance (from (7)) rather than residuals squared (from (8)) 

as inverse Gaussian is more reasonable
30

. This conclusion is also consistent with the AIC values 

of the different models provided in Table 8 of section 3.4
31

. 

4. Risk measures and NIG 

In this part of the paper, we will turn to a practical application of the NIG distribution in risk 

measurement. The focus of our analysis will be on two common risk metrics: value at risk (VaR) 

and expected shortfall (ES). All the analysis will be performed on daily ex dividend returns, as 

opposed to the previous chapter, which mainly focused on monthly cum dividend return data. 

The risk measures are based on a long position in the underlying stock index. It is important to 

clarify the position of the investor because of the skewness in our return distribution. VaR and ES 

would be less extreme in a short position than in the long position due to the negative skewness. 

4.1 Value at risk and expected shortfall – a short introduction 

Value at risk is defined as the loss that is exceeded over a given time interval with p percent 

probability. Typically p is chosen between 0.1% and 5% and the time interval is usually 

somewhere between 1 and 14 days (Duffie & Pan, 1997). More formally, VaR is implicitly given 

by the following expression 

Prob(𝑋 ≤ 𝑥) = 𝑝,    where 𝑥 ∶= VaR. (19)  

                                                           
29

 In the model where residuals squared are fitted as IG we get α = 0.17, δ = 0.04, β = -0.17 and μ = 0.01. 
30

 Variance and residuals as defined by (7) and (8), respectively. 
31

 The comparison here only being dependent on 𝐿 in (14) since both models have the same number of parameters, 𝑘. 



44 
 

One of the main issues with VaR is that it says nothing about how bad the losses get, conditional 

on times being bad. Expected shortfall is one approach to deal with this issue. It is defined as the 

expected loss conditional on the loss being greater than VaR. Mathematically, ES is given by 

ES ∶= 𝐸[𝑋|𝑋 ≤ 𝑥]. (20)  

Both VaR and ES are in other words looking at the left tail of the return distribution, which we 

have discussed in chapter 3 to be quite sensitive to distributional assumptions. The distributional 

assumptions will be our focus in this thesis. Other issues with VaR and ES, such as incentives for 

diversification and fire sales during bad times, will be pursued elsewhere. For instance, Duffie 

and Pan (1997) provide a nice overview of VaR. 

4.2 Estimated value at risk and expected shortfall 

We present value at risk and expected shortfall for daily returns from 1972 to 2015. Sample VaR 

is calculated using type 1 by Hyndman and Fan (1996)
32

. From Table 12 we see that the NIG 

distribution fits the sample distribution nicely in terms of VaR, with perhaps the exception of the 

0.1 percent level where the sample VaR is more than 1.6 percentage points lower than our NIG 

model suggests. For all values of p, the NIG distribution performs better than the normal 

distribution. For all values of p lower than 2.5 percent, the normal distribution underestimates 

VaR, whereas it overestimates it at a 5 percent level, compared to the sample.  

In Table 13, we have reported the values for daily ES. The sample ES is calculated by taking the 

average of the return beyond VaR at different levels of p
33

. We see that NIG performs better than 

the normal distribution, and that the normal distribution consistently underestimates ES, for all 

reported levels of p. It is also worth noting that even the NIG distribution fails to capture the 

severity of the worst outcomes (represented by ES at the lowest values of p).  

                                                           
32

 It is calculated using the stats package in R (R Core Team, 2014). 
33

 The VaR and ES for the two models are calculated by using the ghyp package by Luethi and Breymann (2013). 
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Table 12: Value at risk for daily models and data. 

 

Table 13: Expected shortfall for daily models and data. 

4.3 Out of sample estimates 

In this section, we will try to get a feel for how the NIG distribution performs compared to the 

normal distribution as a model of returns out of sample. As mentioned in section 3.1, the NIG 

distribution has four free parameters, and the normal distribution obtains as a limiting case. This 

of course implies that we can never do worse, in the sense of fit, within sample with a NIG 

distribution than a normal distribution. This is the reason why we needed to punish the inclusion 

of new parameters in order to evaluate the models against each other in chapter 3.  

In many practical applications, we are not so much concerned about in-sample fit, but rather how 

well a model can predict future return distributions. This is particularly the case when it comes to 

risk management and measurement. In this section, we split the data set into two subsets of 

exactly equal size – one estimation set (pre 1993) which we use to estimate the NIG and normal 

distribution and one testing set (post 1993) which is used to test the two models out of sample. 

Levels of p Sample VaR NIG model VaR Normal model VaR

0.1% -0.0879 -0.0714 -0.0455

0.5% -0.0518 -0.0498 -0.0379

1% -0.0423 -0.0411 -0.0342

2.5% -0.0294 -0.0303 -0.0287

5% -0.0220 -0.0227 -0.0241

Levels of p Sample ES NIG model ES Normal model ES

0.1% -0.1112 -0.0858 -0.0496

0.5% -0.0732 -0.0633 -0.0425

1% -0.0597 -0.0541 -0.0392

2.5% -0.0446 -0.0426 -0.0343

5% -0.0349 -0.0343 -0.0303
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This approach allows us to get a feel for whether the results we got in the previous section is 

sensitive to the data sampling, which could be an issue in many practical applications of a 

model
34

. Testing the models out of sample also allows us to see whether we are over-fitting
35

 the 

data using our models. 

Figure 18 is a graphical representation of our results out of sample. It seems to be the case that 

the out-of-sample NIG distribution match the sample distribution closely, at least when compared 

to the out-of-sample Gaussian distribution. From Table 15 we see that the first two moments are 

quite similar for the normal and the NIG distribution while the third and fourth differ. The 

skewness is slightly positive for the out of sample NIG, whereas the sample skewness for post 

1993 is negative. The positive skewness before 1993 is related to the positive correlation between 

volatility and returns observed before 1984, as we pointed out in chapter 2.  

Tables 16 and 17 give us the out-of-sample estimates of VaR and ES respectively. Note that the 

NIG distribution performs better than the normal distribution for all reported significance levels. 

This is somewhat surprising, considering the positive skewness in the NIG model, but is 

explained by the NIG model capturing the high kurtosis in the data.  

We have also calculated the AIC for the out-of-sample NIG model
36

 using (14), which turns out 

to be lower than the AIC for the Gaussian in-sample model
37

. This suggests that not only does the 

out-of-sample NIG model of returns outperform the out-of-sample Gaussian model; it also 

outperforms the in-sample Gaussian model, according to the AIC. This conclusion is further 

confirmed by a likelihood ratio test
38

 as explained in section 3.2. As we already noted, any model 

that aims to be useful in risk measurement should be robust to judgement calls about data sample, 

                                                           
34

 Consider the calculation of risk metrics such as VaR and ES – the pros of including extra observations further back 

in time in the data set has to be weighed against the diminishing relevance of the data set as a whole. This implies 

that a risk manager/compliance officer in 2007 (just before the financial crisis) would have to make some judgement 

calls whether the observations from the great banking and housing crisis in the late 80s beginning of the 90s are still 

relevant. One would ideally use a model that gives results that are robust to such judgement calls, i.e., where the 

results of the model is in the proximity to the “true” metrics whether the judgement goes one way or another. 
35

 By over-fitting we mean modelling a property of a sample which is specific to that sample and not a population 

property. 
36

 AIC(NIG out of sample) = 2 ∗ 4 − 15688.63 ∗ 2 = −31369.3.  
37

 AIC(Gaussian in sample) = 2 ∗ 2 − 2 ∗ 15159.87 = −30315.7. 
38

 We get the following test statistic in this case, 

λLR = 2 ∗ [15688.63 − 15159.87]  = 1057.52. 
This yields an extremely low P-value and we can conclude that NIG out of sample outperform Gaussian in sample. 
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which means that a model that can fit all sorts of special features of the sample period, e.g. 

positive skewness, might not be a good model for risk measurement purposes. It is therefore 

particularly interesting (and promising for NIG modelling in risk measurement) that the out-of-

sample NIG model actually over-fitted the sample moments pre 1993 in the sense that it predicts 

a positive skewness, but it still outperformed the Gaussian distribution.  

 

Figure 18: Out of sample for estimated models of daily returns. 

 

Table 14: Parameter estimates of NIG out of sample. 

NIG model (1972-1993)

α 55.662

δ 0.0117

β 2.3776

μ -0.00021

γ=(α^2-β^2)^0.5 55.612
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Table 15: Moments for out of sample evaluation of models on daily returns. 

 

Table 16: Out of sample value at risk for daily data. 

 

Table 17: Out of sample expected shortfall for daily data. 

5. Equity premium puzzle and multivariate NIG modelling 

This chapter will analyze and model quarterly consumption growth and real returns from the 

second quarter of 1978 to the fourth quarter of 2014 for Norway. The first two sections will 

present stylized facts and more in-depth analysis of the data. Section 5.3 will present two 

NIG moments (1972-1993) Normal moments (1972-1993) Sample moments (1993-2015)

Expected value 0.000293 0.000294 0.0002490757

Variance 0.000212 0.000221 0.0002176176

Skewness 0.1585 0 -0.5133

Kurtosis 7.625 3 9.838

Levels of p Sample VaR (1993-2015) NIG model VaR (1972-1993) Normal model VaR (1972-1993)

0.1% -0.0909 -0.0677 -0.0456

0.5% -0.0570 -0.0475 -0.0380

1% -0.0448 -0.0394 -0.0343

2.5% -0.0304 -0.0292 -0.0288

5% -0.0228 -0.0221 -0.0242

Levels of p Sample ES (1993-2015) NIG model ES (1972-1993) Normal model ES (1972-1993)

0.1% -0.1135 -0.0812 -0.0497

0.5% -0.0795 -0.0602 -0.0427

1% -0.0633 -0.0516 -0.0393

2.5% -0.0461 -0.0407 -0.0345

5% -0.0361 -0.0330 -0.0304
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theoretical models for the equity premium and the risk-free rate in a continuous time version of 

the Lucas (1978) exchange economy. Firstly, we model the dividend and consumption growth 

processes with continuous sample paths, which will be our baseline model. Secondly, we instead 

model the dividend and consumption growth processes as pure jump processes, like Aase and 

Lillestøl (2015). Section 5.4 fits the theoretical expressions developed in 5.3 to the data and 

presents the implied risk-aversion parameter and impatience rate in three different cases: our 

baseline model, a Gaussian jump model and a NIG jump model. Section 5.5 explores the driving 

forces behind our results and suggests other explanations.   

5.1 Stylized facts about quarterly consumption growth 

In Table 18, we present the same type of descriptive statistics as in Table 1 for seasonally 

adjusted continuously compounded quarterly consumption growth per capita in Norway 

(henceforth simply consumption growth). The data set for per capita quarterly consumption 

growth is calculated by subtracting the continuously compounded population growth from the 

quarterly aggregated consumption growth. Per capita consumption growth is hence given by 

𝑐𝑡̇ ∶= log (
𝐶𝑡+1

𝐶𝑡
) − log (

𝑁𝑡+1

𝑁𝑡
),  (21)  

where 𝐶𝑡 and 𝑁𝑡 is Norwegian aggregate consumption and population, respectively, at time t. 

Ideally, the population growth should be calculated using the time intervals matching the 

aggregate consumption growth. This is the approach used for the period from 1998 to 2014. 

However, due to lack of quarterly population data for the period before 1998, we calculate 

consumption growth per capita as consumption growth less one fourth of annual population 

growth. Mathematically, consumption growth per capita pre 1998 is calculated as 

𝑐̂𝑡̇ ∶= log (
𝐶𝑡+1

𝐶𝑡
) −

1

4
log (

𝑁𝑡+𝑖

𝑁𝑡−(4−𝑖)
),  (22)  

where 𝑖 ∈ [1,4] is the number of quarters remaining in the year. 

We observe that the quarterly consumption growth vary between a growth of about negative three 

and a half percent to a positive four and a quarter percent. The average consumption growth in 

our data set has been 0.54% on a quarterly basis. Consumption growth has a lower coefficient of 

variation than the returns in the stock market, reflecting that the consumption growth process in 

the economy is less volatile than the stock market. Furthermore, the consumption growth is 
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slightly negatively skewed and has a positive excess kurtosis. Applying the Shapiro and Wilk 

(1965) normality test on consumption growth, we get a P-value of 0.348, which implies that we 

cannot reject normality. Figure 19 also confirms this conclusion – the data points seem to be 

located on a straight line
39

. We can therefore conclude that the negative skewness and the excess 

kurtosis are not statistically significant different from what normality suggests. 

In addition to addressing normality we have investigated whether there are significant 

autocorrelations in the quarterly consumption growth or residuals squared of quarterly 

consumption growth (calculated as in equation (8)). The conclusion of these analyses is that there 

are no significant autocorrelations in either consumption growth or its residuals. The conclusion 

of this section is hence that an i.i.d. Gaussian process could be a good model for Norwegian 

consumption growth. 

 

Table 18: Descriptive statistics and moments for quarterly consumption growth data. 

                                                           
39

 We also fitted a univariate NIG and a univariate Gaussian model to the consumption growth data and found that 

the AIC of the Gaussian model in fact were lower than in the NIG model (-875.4 and -873.3 for Gaussian and NIG, 

respectively). A likelihood ratio test, as explained in section 3.2, yields a P-value= 0.3704, and we cannot conclude 

that the two models differ in performance. These results suggest that the Gaussian model is a better choice than the 

NIG model for univariate modelling of consumption growth. 

Quarterly consumption growth per capita

Min -0.03548

Max 0.04252

Mean 0.00538

Variance 0.00015

Coefficient of variation (CV) 2.27

Skewness -0.0924

Kurtosis 3.611

N 147

P-value in normality test 0.3482
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Figure 19: Normal Q-Q plot for quarterly consumption growth data. 

5.2 Empirical analysis of multivariate data 

In Table 19, we have provided sample cross central moments of consumption growth and returns. 

The first of these – correlation – is defined as 

𝑆𝑟𝑐̇ =
𝐸[(𝑟 − 𝜇𝑟)(𝑐̇ − 𝜇𝑐̇)]

𝜎𝑟𝜎𝑐̇
, 

where 𝜇𝑋 is the expected value of X, 𝑟 is real return, 𝑐̇ is consumption growth and 𝜎𝑋 is the 

(sample) standard deviation of X. 

The two non-trivial coskewness measures defined by Miller (2014) are given by 

𝑆𝑟𝑐̇𝑐̇ =
𝐸[(𝑟 − 𝜇𝑟)(𝑐̇ − 𝜇𝑐̇)

2]

𝜎𝑟𝜎𝑐̇
2 , 

and 

𝑆𝑟𝑟𝑐̇ =
𝐸[(𝑟 − 𝜇𝑟)2(𝑐̇ − 𝜇𝑐̇)]

𝜎𝑟
2𝜎𝑐̇

, 

Miller (2014) defines the three non-trivial cokurtosis statistics in the following way 

𝑆𝑟𝑟𝑟𝑐̇ =
𝐸[(𝑟 − 𝜇𝑟)3(𝑐̇ − 𝜇𝑐̇)]

𝜎𝑟
3𝜎𝑐̇

, 
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𝑆𝑟𝑟𝑐̇𝑐̇ =
𝐸[(𝑟 − 𝜇𝑟)2(𝑐̇ − 𝜇𝑐̇)

2]

𝜎𝑟
2𝜎𝑐̇

2 , 

and 

𝑆𝑟𝑐̇𝑐̇𝑐̇ =
𝐸[(𝑟 − 𝜇𝑟)(𝑐̇ − 𝜇𝑐̇)

3]

𝜎𝑟𝜎𝑐̇
3 , 

In Table 19, we see that correlation is positive and equal to about 0.27. This means that if return 

on the stock exchange during a quarter is high (low), then consumption growth is likely to be 

high (low) as well. We also note that both coskewness measures are negative. A negative 

coskewness suggests that the variability in one variable tends to be high when the expected 

realization of the other is low. For our purpose, this means that volatility in real returns is high 

when consumption growth is low and volatility of consumption growth is high when real returns 

are low
40

. An implication of this is that crises where both consumption growth and return is 

extremely low are more likely than their equivalent extreme positive outcomes. 

From Table 19, we see that all three cokurtosis measures are positive. The interpretation of a 

positive cokurtosis is that extreme outcomes in one variable (negative or positive) tend to be 

occurring together with extreme outcomes in the other variable (negative or positive) (Ranaldo & 

Favre, 2005). Another way of saying this is that the correlation of the instantaneous variance of 

the two variables is positive. In our case, this implies that periods with high volatility in 

consumption growth is connected with high-volatility in the stock market. 

                                                           
40

 Another observation is that coskewness 𝑆𝑟𝑐̇𝑐̇ is smaller in absolute value than 𝑆𝑟𝑟𝑐̇, suggesting that the effect of 

high volatility of returns when consumption is low is greater than the opposite effect of high volatility of 

consumption when the stock market performs poorly. 
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Table 19: Sample standardized cross central moments for quarterly real returns and 

consumption growth. 

We also provide a contour plot and a three-dimensional density plot for consumption growth and 

returns in Figure 20 and Figure 21, respectively (using the R-package MVN by Korkmaz, 

Goksuluk and Zararsiz (2015)). The two plots indicate that extreme negative outcomes in the two 

variables tend to occur simultaneously, which is supportive of our previous findings. To see this, 

one should notice that the density is higher for the outcomes where both variables are extremely 

negative than for outcomes where both variables are extremely positive. From the contour plot in 

Figure 20, for instance, one can see the bump in the south-west region where consumption 

growth is at its lowest and the stock market is substantially negative as well. 
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Figure 20: Contour plot of bivariate data consisting of quarterly real return and consumption 

growth. 

 

Figure 21: Perspective plot of bivariate data consisting of quarterly real return and consumption 

growth. 
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We have also tested whether consumption growth and real returns are bivariate normally 

distributed, using the test by Rizzo and Szekely (2005) in the R-package energy (Rizzo & 

Szekely, 2014). The null-hypothesis of the test is that consumption growth and real returns are 

bivariate normal. This multivariate normality test uses a bootstrap framework (similar to the 

bootstrap approach applied in section 3.6), which involves resampling the data randomly (Rizzo 

& Szekely, 2005). This approach to testing bivariate normality provides a different P-value each 

time we run the test. We always get low P-values however, which enables us to reject the null 

hypothesis of bivariate normality at even a 0.01% significance level. We obtain similar results 

applying other tests as well
41

. The conclusion of non-normality in this bivariate distribution 

makes it worthwhile to consider opening up for non-normality in this chapter. 

5.3 Utility maximization problem – a theoretical model 

We consider an endowment economy where Arrow-Debreu securities for all states and dates up 

to T are trading at time 0. Suppose there exists a representative consumer
42

 and that her 

optimization problem is to choose a non-negative consumption plan in order to maximize a von 

Neumann-Morgenstern (expected
43

) utility function. Furthermore, suppose the felicity index 

belongs to the constant relative risk aversion
44

 (CRRA) class of utility functions. The 

consumption plan has to belong to the set of feasible consumption plans, i.e. the present value of 

consumption cannot exceed the present value of the endowment process. The representative 

consumer’s problem is 

sup
𝑐∈𝐿+

𝑈(𝑐) = 𝐸 [∫ 𝑒−𝜌𝑡
𝑐𝑡

1−𝜃

1 − 𝜃
𝑑𝑡

𝑇

0

]     s. t.  Π(𝑐) ≤ Π(𝑒)  where 𝜃 > 0 and 𝜃 ≠ 1. (23)  

                                                           
41

 The other multivariate normality tests all reject bivariate normality with P-values of no more than 0.0007. The 

other tests we applied are the ones by Royston (1983), Henze and Zirkler (1990), and Mardia (1974). 
42

 Gorman form is necessary and sufficient. In short, Gorman form requires the expenditure function of each 

consumer to be an affine function with respect to utility: 𝑒𝑖 (𝒑, 𝑢𝑖(𝑐)) = 𝑓𝑖(𝒑) + 𝑢𝑖(𝑐)𝑔(𝒑), where 𝑒𝑖 is the 

expenditure needed for consumer 𝑖 to reach utility 𝑢𝑖. Both 𝑓𝑖(𝒑) and 𝑔(𝒑) are homogenous of degree one in the 

price vector 𝒑. 
43

 Note that expected utility does not have an axiomatic foundation in a multiperiod setting; the reason is that the 

substitution axiom breaks down, see e.g. Mossin (1969). 

44
 The relative risk aversion is defined as 𝑅(𝑐) ∶= −

𝑢′′(𝑐)

𝑢′(𝑐)
𝑐. In the case of felicity index 𝑢(𝑐) =

𝑐1−𝜃−1

1−𝜃
, which 

becomes log(c) by LHôpital’s rule when θ=1, 𝑅(𝑐) = 𝜃. 
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Here ρ is a utility discount factor or impatience rate, θ is the parameter of relative risk aversion
45

 

and 𝑐𝑡 is the consumption per capita at period t. 𝐿+ is the set of non-negative consumption 

processes that satisfies 𝐸 [∫ 𝑐𝑡
2𝑑𝑡

𝑇

0
] < ∞ and Π(∙) is a pricing functional with the Riesz 

representation 

Π(𝑥) = 𝐸 [∫ 𝜋𝑡𝑥𝑡𝑑𝑡

𝑇

0

], (24)  

where π is the state price deflator. The Lagrangian for this problem is   

ℒ(𝑐, 𝜂) = 𝐸 [∫ (𝑒−𝜌𝑡
𝑐𝑡

1−𝜃

1 − 𝜃
+ 𝜂𝜋𝑡(𝑒𝑡 − 𝑐𝑡)) 𝑑𝑡

𝑇

0

]. (25)  

The first order condition for this problem is found by setting the directional derivative to zero, see 

e.g. Aase and Lillestøl (2015). In our case, the first order condition will be both necessary and 

sufficient for optimality, the latter coming from the concavity of the utility function and 

convexity of the feasible consumption set. Optimal consumption is given by 

𝑐𝑡 = 𝑒𝑡 = (𝜂𝑒𝜌𝑡𝜋𝑡)−
1
𝜃. (26)  

We can, without loss of generality, normalize η to 1. Note that this implies an inverse relationship 

between consumption and the state price deflator – whenever consumption is low the state price 

deflator is high, and vice versa. The intuition for this is that whenever consumption is scarce, 

marginal utility of consumption is high, thus the price of consumption is driven up. This price 

mechanism is needed in a decentralized economy to induce consumers to act in a way consistent 

with equilibrium. The degree to which consumers responds to price changes depends on 𝜃 – a 

high value implies a lower willingness to reduce consumption in states or dates where 

consumption is expensive. 

Since Arrow-Debreu securities do not trade, we introduce a securities market of the type 

discussed by Aase and Lillestøl (2015) as a means of financing the consumer’s consumption 

plans. In this market, N+1 securities are traded ex dividend at competitive prices S and have 

accumulated dividend processes D,  

                                                           
45

 𝜃 also has a connection to the intertemporal elasticity of substitution (IES), more specifically  
1

𝜃
= IES. 
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𝑆(𝑡) = (𝑆0(𝑡), 𝑆1(𝑡), … , 𝑆𝑁(𝑡)) 

and 

(27)  

𝐷(𝑡) = (𝐷0(𝑡), 𝐷1(𝑡), … , 𝐷𝑁(𝑡)), 

 

(28)  

where 𝑡 ∈ [0, 𝑇]. We let the zeroth security be the riskless asset by convention. The real price 

process of the riskless asset is 𝑆0(𝑡) = 𝑒∫ 𝑟𝑢𝑑𝑢
𝑡

0 , where r is a bounded short rate process. Let a 

gains process be given by 𝐺(𝑡) = 𝑆(𝑡) + 𝐷(𝑡). In the framework of Aase and Lillestøl (2015), 

the gains process is an Ito-jump-diffusion process in ℝ𝑁+1.  

Let 𝜑 ∈ 𝜘2(𝐺), where 𝜘2(𝐺)  is the set of square integrable trading strategies. We impose this 

restriction on the trading strategies in order to avoid arbitrage in continuous time. One may 

loosely think of this restriction as limiting the number of trades in a given time interval, thus 

avoiding arbitrage arising from doubling strategies
46

. Let 𝑝 be the spot price of consumption. The 

trading strategy is said to finance the household’s consumption plan if 

𝜑𝑡𝑆𝑡 = ∫ 𝜑𝑠𝑑𝐺𝑠 − ∫ 𝑝𝑠𝑐𝑠𝑑𝑠

𝑡

0

𝑡

0

 (29)  

and 𝜑𝑇𝑆𝑇 = 0 (Aase & Lillestøl, 2015). To see why the boundary condition makes sense, 

consider the no-Ponzi game restriction – the household must have a non-negative terminal 

wealth. Noting that our utility function is strictly increasing, it will never be optimal to leave a 

bequest. In this setting, the household has to choose an optimal portfolio and consumption in each 

period. The optimization problem thus becomes 

sup
(𝑐,𝜑)

𝑈(𝑐)   where (𝑐, 𝜑) ∈ 𝐿+ × 𝜘2(𝐺)   and  𝜑 finances (𝑐 − 𝑒) (30)  

The dynamics of the consumption and dividend process is of the same jump-diffusion type as 

discussed by Aase and Lillestøl (2015) 

                                                           
46

 Doubling strategies like the Martingale betting system where a gambler (for example) participates in a fair coin 

toss and double her bet each time the coin toss is lost, providing a sure win (arbitrage) if unlimited amount of trades 

is possible and there is no credit constraints. 
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𝑑𝑐(𝑡)

𝑐(𝑡−)
= 𝜇𝑐(𝑡)𝑑𝑡 + 𝜎𝑐(𝑡)𝑑𝐵(𝑡) + ∫𝛾𝑐(𝑡, 𝑧)𝑁̃(𝑑𝑧, 𝑑𝑡)

𝑍

 

 

(31)  

𝑑𝐷𝑖(𝑡) = 𝜇𝐷
𝑖 (𝑡)𝑑𝑡 + 𝜎𝐷

𝑖 (𝑡)𝑑𝐵(𝑡) + ∫𝛾𝐷
𝑖 (𝑡, 𝑧)𝑁̃(𝑑𝑧, 𝑑𝑡)

𝑍

, 𝑖 = 0,1, … , 𝑁 
(32)  

where 𝑁̃(𝑑𝑧, 𝑑𝑡) is a 2-dimensional compensated Poisson measure
47

, 𝐵(𝑡) is a d-dimensional 

Brownian motion and 𝜎𝑐(𝑡) and 𝜎𝐷
𝑖 (𝑡) are vectors of appropriate dimension scaling the Brownian 

motion. In the continuous version of the processes in (31) and (32), |𝜎𝑋(𝑡)| is the instantaneous 

volatility of X. 𝛾𝑐 and 𝛾𝐷
𝑖  are the stochastic jump-sizes, and 𝜇𝑐(𝑡) and 𝜇𝐷

𝑖 (𝑡) are the deterministic 

growth rates of the consumption and dividend processes, respectively (Aase & Lillestøl, 2015). 

To get a feeling for what the correct price of a risky asset in this economy should be, we begin by 

considering the discrete time version of the Lucas (1978) pure exchange economy. He finds that 

the equilibrium price of any risky asset, i, assuming zero end-value, should be 

𝑆𝑡
𝑖 =

1

𝑢′(𝑐𝑡)
𝐸𝑡 [∑

∆𝐷𝑠+1
𝑖 𝑢′(𝑐𝑠+1)

(1 + 𝜌𝑑)𝑠+1−𝑡

𝑇

𝑠=𝑡

]. (33)  

Here 𝑢(∙) ∶=
𝑐1−𝜃

1−𝜃
  is a CRRA

48
 felicity function and ∆𝐷𝑠+1

𝑖 ∶= 𝐷𝑠+1
𝑖 − 𝐷𝑠

𝑖 is the dividend paid out 

in the beginning of period 𝑠 + 1. 𝜌𝑑 is a discrete time version of the utility discount rate. It is 

important to note that the price of the asset and the dividends are both in terms of units of the 

consumption good in the corresponding time period. To interpret the meaning of (33), we 

multiply both sides by the marginal utility of consumption at time t 

𝑆𝑡
𝑖𝑢′(𝑐𝑡) = 𝐸𝑡 [∑

∆𝐷𝑠+1
𝑖 𝑢′(𝑐𝑠+1)

(1 + 𝜌𝑑)𝑠+1−𝑡

𝑇

𝑠=𝑡

]. (34)  

We now see that the left-hand side of (34) gives us the product of 𝑆𝑡
𝑖 units of the consumption 

good and the (marginal) utility per unit of the consumption good. One may loosely think of this 

as the utility value of the security at time t. Similarly, the right-hand side gives us the (sum of) 

expected utility value of the dividends paid out by the security, discounted by the utility discount 

rate. If the equality in (34) does not hold, the representative consumer could either buy or sell 

                                                           
47

 Ñ(𝑑𝑧, 𝑑𝑡) = 𝑁(𝑑𝑧, 𝑑𝑡) − 𝜐(𝑑𝑧)𝑑𝑡, where 𝑁(𝑑𝑧, 𝑑𝑡) is a counting process for the jumps and 𝜐(𝑑𝑧) is a Levy-

measure. 
48

 Note that Lucas (1978) did not assume CRRA, so (33) is more general than what we consider here. 
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(depending on which way the inequality goes) the asset and increase her expected lifetime utility. 

Seeing as the representative consumer is a stand-in for the entire economy, this mechanism would 

tend to cause the price to revert back to its equilibrium value as given by (33). 

Note that (34) is closely related to the Euler equation for optimal intertemporal consumption. To 

see this, we recognize that (34) can be re-written as 

𝑆𝑡
𝑖𝑢′(𝑐𝑡) = 𝐸𝑡 [

(∆𝐷𝑡+1
𝑖 + 𝑆𝑡+1

𝑖 )𝑢′(𝑐𝑡+1)

(1 + 𝜌𝑑)
]. (35)  

Divide both sides of (35) by 𝑆𝑡+1
𝑖  to obtain the (stochastic) Euler equation 

𝑢′(𝑐𝑡) = 𝐸𝑡 [
(1 + 𝑟𝑑,𝑡+1

𝑖 )

(1 + 𝜌𝑑)
𝑢′(𝑐𝑡+1)], (36)  

where 𝑟𝑑,𝑡+1
𝑖 ∶=

∆𝐷𝑡+1
𝑖 +𝑆𝑡+1

𝑖

𝑆𝑡
𝑖 − 1 is the discrete time cum-dividend rate of return.  

Let 𝜋𝑡 ∶= 𝑒−𝜌𝑡𝑢′(𝑐𝑡), where 𝜌 ∶= log(1 + 𝜌𝑑) is the continuously compounded utility discount 

rate. 𝜋𝑡 is then the state price deflator. To see what happens in a continuous time version of (33), 

rewrite it in terms of the state price deflator and let the number of trading times between t and T 

go to infinity
49

, following Aase (2008), 

 

𝑆𝑡
𝑖 =

1

𝜋𝑡
lim

𝑛→∞
𝐸𝑡 [ ∑ ∆𝐷𝑗+1

𝑛

𝑖 𝜋𝑗+1
𝑛

𝑇𝑛

𝑗=𝑡𝑛

] = 

1

𝜋𝑡
lim

𝑛→∞
𝐸𝑡 [ ∑ ((𝐷𝑗+1

𝑛

𝑖 − 𝐷𝑗
𝑛

𝑖 ) (𝜋𝑗+1
𝑛

− 𝜋𝑗
𝑛

) + (𝐷𝑗+1
𝑛

𝑖 − 𝐷𝑗
𝑛

𝑖 ) 𝜋𝑖+1
𝑛

)

𝑇𝑛

𝑗=𝑡𝑛

] = 

 

1

𝜋𝑡
𝐸𝑡 [∫ (𝑑𝐷𝑠

𝑖𝑑𝜋𝑠 + 𝑑𝐷𝑠
𝑖𝜋𝑠)

𝑇

𝑡

]. (37)  

We note that (37) is similar to (33), but that the continuous time version contains an additional 

covariance term – the covariance between the dividends and the state price deflator. The 

                                                           
49

 One can think of n as the number of trading times in the original time unit, e.g. if time originally was measured in 

months, n could be the number of seconds in a month. Of course, as n approaches infinity, the length of a time 

interval goes to zero, i.e. it becomes infinitesimal. We know this limit exists because both the consumption process 

and cumulative dividend process are right continuous with left limits (this is a property of all Itô-processes), i.e. the 

left limit 𝑋𝑡− ∶= lim𝑠↑𝑡 𝑋𝑠 and the right limit 𝑋𝑡 ∶= lim𝑠↓𝑡 𝑋𝑠 both exist for all 𝑡 ∈ [0, 𝑇]. 
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covariance term is shown to be of particular importance when jumps are introduced in the 

dividend and consumption processes, for further elaboration on this see Aase (2015). 

In our baseline model, the continuous time version of the Lucas (1978) model without jumps, i.e. 

the only source of uncertainty in (31) and (32) is the standard Brownian motion, we get the 

familiar expressions for the equilibrium equity premium on a stock market index and interest rate 

(Aase, 2002), as shown in Appendix B, 

𝜇𝑟𝑀
(𝑡) − 𝑟𝑓(𝑡) = 𝜃𝜎𝑟𝑀

′ (𝑡)𝜎𝑐(𝑡) 

and 

(38)  

𝑟𝑓(𝑡) = 𝜌 + 𝜃𝜇𝑐(𝑡) −
1

2
𝜃(1 + 𝜃)𝜎𝑐

′(𝑡)𝜎𝑐(𝑡). (39)  

Here 𝜇𝑟𝑀
(𝑡) is the expectation of cum dividend return on the stock market index conditional on 

all information available up to time t, and 𝑟𝑓(𝑡) is the risk free interest rate. |𝜎𝑟𝑀
(𝑡)| is the 

instantaneous volatility of total return on the stock market index. 𝜎𝑟𝑀
′ (𝑡)𝜎𝑐(𝑡) is the instantaneous 

covariance between the return on the index and the consumption growth process. Similarly, 

𝜎𝑐
′(𝑡)𝜎𝑐(𝑡) is the instantaneous variance of the consumption growth process. When we estimate 

this model in the next section, we will take both the covariance and variance mentioned here as 

constant in time. 

Notice that both (38) and (39) has nice, intuitive interpretations. Firstly, (38) tells us that the 

investors only requires compensation for the “systematic risk”, i.e. the covariance between 

consumption and the asset return (as opposed to the variance of the asset), associated with 

holding risky assets. The size of this compensation is determined by the risk aversion – a high 

risk aversion implies a high risk-premium. Secondly, (39) tells us that the interest rate is 

increasing in the impatience rate rho and in the expected consumption growth and decreasing in 

the variance of consumption growth. A higher rho, all else equal, implies that the consumers wish 

to borrow against future income to consume more today. Similarly, if expected future 

consumption rises, consumers would wish to bring some of that consumption to today when the 

marginal utility of that consumption is higher. The size of this effect is determined by the 

intertemporal elasticity of substitution (IES),  
1

𝜃
 – a high IES means that the marginal utility of 

consumption is less responsive to changes in consumption levels; thereby making consumers 
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more willing to accept variation in consumption. The final term in (39) is related to precautionary 

savings – risk averse consumers wish to save more in the face of uncertainty. The precautionary 

savings is increasing in the risk aversion of the consumer. Since a single step-in agent can 

represent all consumers, moving consumption in time (by either borrowing or saving) would be 

impossible and any attempts of doing so would cause interest rates to rise in order to clear the 

markets.  

Aase and Lillestøl (2015) finds the equilibrium interest rate and equity premium expressed by 

moment generating functions in the two cases when the dividend and consumption growth 

processes in (31) and (32) are pure jump processes
50

 and the jump-sizes are either normally or 

NIG distributed, 

𝜇𝑟𝑀
(𝑡) − 𝑟𝑓(𝑡) = −𝜆[𝑀(−𝜃, 1) − 𝑀(−𝜃, 0) − 𝑀(0,1) + 1] 

and 

(40)  

𝑟𝑓(𝑡) = 𝜌 + 𝜃𝜇𝑐(𝑡) − 𝜆[𝜃(𝑀(1,0) − 1) + 𝑀(−𝜃, 0) − 1]. (41)  

Here 𝜇𝑐 is the expected consumption growth, estimated as the average consumption growth in the 

data set. 𝑀(𝑢𝑐, 𝑢𝑟) is the moment generating function and λ is the expected jump frequency. 

Note that the expressions in (38) and (39) are only dependent on the first two moments of the 

multivariate distribution. By introducing jumps into this framework, the equity premium and risk 

free rate will depend on moments of all orders, as seen in (40) and (41).  

The moment generating function of a joint normal distribution is given by (Aase & Lillestøl, 

2015) 

𝑀𝑁(𝑢𝑐, 𝑢𝑟) = 𝑒𝑥𝑝 {𝜇̂𝑐𝑢𝑐 + 𝜇̂𝑟𝑢𝑟 +
1

2
(𝑢𝑐

2𝜎̂𝑐
2 + 2𝑢𝑐𝑢𝑟𝜌̂𝑛𝜎̂𝑐𝜎̂𝑟 + 𝑢𝑟

2𝜎̂𝑟
2)}, (42)  

where 𝜌̂𝑛 is the correlation coefficient between consumption growth and the return on the risky 

asset and the 𝜇̂s and 𝜎̂s are parameters of the bivariate normal jump model. We use the notation 

𝑋̂ to distinguish the parameters of our bivariate normal and NIG distribution from the parameters 

in (31) and (32). 

The moment generating function for the NIG distribution is given by (Aase & Lillestøl, 2015) 

                                                           
50

 In other words, we are ignoring the uncertainty arising from the Brownian motion in (31) and (32). 



62 
 

𝑀𝑁𝐼𝐺(𝒖) = 𝑒𝑥𝑝 {𝒖′𝝁 + 𝛿 [√𝛼2 − 𝜷′𝚫𝜷 − √𝛼2 − (𝜷 + 𝒖)′𝚫(𝜷 + 𝒖)]}, (43)  

where 𝛿 and  𝛼 are scalars related to scale and peakedness of the joint NIG distribution. 𝝁 and 𝜷 

are two-dimensional vectors related to location and skewness and 𝚫 is a 2x2-matrix related to, 

although in a complicated manner, the covariation of consumption growth and the return on the 

risky asset (Lillestøl, 1998). 

5.4 Model estimation and calibration of impatience and risk aversion 

5.4.1 Multivariate model estimates 

In this sub-section, we have estimated two bivariate models of real return and consumption 

growth. One of the models we have estimated is a bivariate Gaussian model and the other one is a 

bivariate NIG model. As we did in section 3.2, we compare the bivariate Gaussian model with the 

bivariate NIG model using the AIC (Akaike, 1974) as defined by (14). The AIC of our two 

models are provided in Table 20. According to the AIC the bivariate NIG model outperforms the 

bivariate Gaussian model
51

. This implies that our multivariate NIG model fits the density in 

Figure 20 and Figure 21 better than the multivariate Gaussian model even to a degree where it 

also compensates the punishment that occurs when introducing more parameters to the model. 

We also perform a likelihood ratio test, as explained in section 3.2, between our two candidate 

models and we conclude that the bivariate NIG model significantly
52

 outperforms the bivariate 

Gaussian model. 

We have also provided the parameter estimates in our two models in Table 20. The two models 

have similar expectations, variances and covariance values but differ in other aspects of the 

bivariate distributions. Corresponding to the findings in the empirical analysis in section 5.1 and 

5.2, both consumption growth and real returns have positive expectations and the returns have a 

substantially higher variance. Furthermore, we notice that the covariance between the 

consumption growth and the real returns are positive in both models, which is as expected 

considering the positive sample correlation found in section 5.2. Both models are estimated using 

the maximum likelihood approach (like in the univariate case in section 3.2) for multivariate 

datasets given in the R-package ghyp by Luethi and Breymann (2013). 

                                                           
51

 This is not all that surprising considering the clear rejection of the null hypothesis of bivariate normality in the data 

in section 5.2. 
52

 The likelihood ratio test yields a P-value= 2.88 ∗ 10−6. 
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Table 20: Parameters for the estimated multivariate models of quarterly consumption growth and 

real stock return. 

5.4.2 Estimates of risk aversion and impatience – the equity premium puzzle 

In this sub-section, we will investigate the equity premium puzzle for Norway using three 

approaches. Firstly, we consider a continuous process for cumulative dividends and consumption 

and calculate the implied risk aversion and impatience. Secondly, we will use the bivariate 

Gaussian jump model to describe the dynamics of the underlying processes. Thirdly, we allow for 

non-normality in the jump-sizes by using the bivariate NIG-jump model of sub-section 5.4.1. 

As pointed out earlier we use quarterly data when addressing the equity premium puzzle, like for 

instance Lettau (2002). This is opposed to Mehra and Prescott (1985) who use annual data. The 

reason why we make this decision is the larger dataset available for quarterly return and 

consumption growth. One issue with quarterly data that needs to be addressed, however, is 

seasonality. When calibrating the models we are using seasonally adjusted consumption growth. 

This makes sense because optimizing households would not systematically plan to consume more 

in certain parts of the year unless their marginal utility of consumption is higher during these 

periods for a given consumption level. Our fix for this seasonal effect is therefore to adjust the 

Multivariate Gaussian Multivariate NIG

     AIC -1043.603 -1063.114

(0.0054    0.0208) (0.0054    0.0208)

     α 40.343

     δ 0.0526

     (βc     βr) (-11.033    -5.5648)

(0.0086     0.1060)

0.1030 0.1861
0.1861 10.045

0.00016 0.00042
0.00042 0.01862

0.00015 0.00047
0.00047 0.01949

(μ̂𝑐       μ̂𝑟)

(𝜇𝑐̇       𝜇𝑟)
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units of consumption
53

. To investigate how our choice of quarterly frequency affects our results, 

we will discuss our findings in this section in relations to annual descriptive statistics as well. 

The continuous process model delivers a relative risk aversion parameter of 30.64 and a utility 

discount factor of –35.2%, as shown in Table 21. Notice that the utility discount factor is 

provided at an annual basis. A significantly negative utility discount factor is a puzzle in itself, 

because it implies that people prefer consumption in the future over consumption today, all else 

equal
54

. Additionally, the relative risk aversion parameter is way too high compared to what is 

considered reasonable. 

Equations (40) and (41) in section 5.3 give us the relative risk aversion, θ, and the utility discount 

factor, ρ, as implicit functions of our parameter estimates, equity premium and risk-free rate in 

the case of pure jump-processes (also see Appendix C for how they are calculated). Notice that 

for our purposes, we can normalize the expected jump frequency (𝜆 in equations (40) and (41)) 

per quarter to one. The multivariate Gaussian jump process yields a risk aversion parameter of 

26.09 and a utility discount factor of -30.4%. Introducing jumps hence seem to move the 

parameter estimates in the right direction, but quantitatively the effect is rather small. 

By moving from the multivariate Gaussian jump process to the multivariate NIG jump process, 

we investigate what the effect is of allowing for non-normality in the bivariate model of 

consumption growth and real returns. In Table 21, we see that the relative risk aversion parameter 

becomes 25.25 and that the utility discount factor is -28.4%. The result of opening up for non-

normality is that both parameters moves further in the right direction, but quantitatively the effect 

is still small. In addition to being unreasonable, a relative risk aversion above 20 is clearly 

contradicting with the extensive study of Aarbu and Schroyen (2014), also for Norway, who find 

an average relative risk aversion of 3.7 in their survey with thought (simple) lotteries. 

                                                           
53

 Seasonality of consumption is a result of planned consumption shifting (happens every year). For instance, people 

most likely choose to consume more during Christmas times because their marginal utility of consumption (for a 

given level of consumption) is higher this time of year. There are two ways of handling this. One is to increase the 

complexity of the utility function. The other is to say that one unit of consumption during Christmas time is more 

than one unit of consumption during the rest of the year, which is done here. 
54

 Our estimate implies that the representative consumer would rather consume 100 of a consumption good in one 

year than consuming 130 of the consumption good today. 
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Table 21: Results from our analysis on the equity premium puzzle, given on an annual basis. 

Aase and Lillestøl (2015) use the dataset of Mehra and Prescott (1985) to estimate these models 

for the US. In Table 21 we also provide the results by Aase and Lillestøl (2015) for their 

multivariate NIG jump process. They get estimates for the risk aversion parameter of the same 

order of magnitude as we get here, which implies an equity premium puzzle. Their utility 

discount factor is, however, in the proximity of zero on a yearly basis. Qualitatively, they also get 

slightly more realistic parameter estimates by introducing jumps and then allowing for non-

normality, but also in their case the effect is quantitatively small. 

In Table 22, we provide descriptive statistics on an annual basis from our dataset, all related to 

our resulting equity premium puzzle. We provide similar statistics for the US in parentheses 

(Aase & Lillestøl, 2015). Notice that the implied impatience rate is affected in two different ways 

in our data set compared to Aase and Lillestøl (2015). Firstly, the consumption growth has been 

more than 20 percent higher per capita in Norway
55

 while the variance of consumption growth in 

Norway is about 40 percent of what it is in the US, both of which cause a lower implied 

impatience rate. Secondly, with the opposite effect, the real interest rate has been more than two 

percentage points higher in our dataset (on a yearly basis), which cause a higher implied 

impatience rate. The total effect depends on theta – a high theta (as is the case here) means that 

the effect of consumption growth and variance dwarfs the effect of higher real interest rate.
56

   

                                                           
55

 A high consumption growth in Norway in the period 1978-2014 can partly be explained by the development of the 

petroleum sector in Norway during this period. 
56

 To illustrate each effect, consider a theta of 25. The difference in consumption growth is 0.4 percentage points, 

which reduces the implied impatience rate in the baseline model by 25 × 0.4 = 10 percentage points. The 

difference in consumption variance is -0.077 percentage points, causing the implied impatience rate to fall by 
1

2
× 25 × (25 + 1) × 0.077 = 25 percentage points. These two effects sum up to -35 percentage points, which is 

much greater than the positive effect of the interest rate of 2 percentage points.  

Multivariate Gaussian 

continuous process 

(Norway)

Multivariate Gaussian 

jump process 

(Norway)

Multivariate NIG 

jump process 

(Norway)

Multivariate NIG jump 

process (US) (Aase 

and Lillestøl, 2015)

θ 30.64 26.09 25.25 22.20

ρ -0.352 -0.304 -0.284 0.008
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Another observation to be made from Table 22 is that the covariance between consumption 

growth and return is higher in the US, possibly explained by S&P500 being a better proxy for the 

theoretical market portfolio. The higher covariance, in combination with lower equity premium in 

the US, explains why we get a somewhat higher estimated relative risk aversion for the 

Norwegian representative consumer.  

 

Table 22: Descriptive statistics for Norway (1979-2014) on an annual basis. The corresponding 

results of Aase and Lillestøl (2015) for the US (1889-1978) are given in parentheses. 

To illustrate what we mean by an equity premium puzzle, consider a lottery that either doubles an 

investor’s initial wealth, or leaves initial wealth unchanged. The two outcomes are equally 

probable. The certainty equivalent of this lottery is implicitly given by the following expression 

𝑢(𝑊0 + 𝐶𝐸) = 𝐸[𝑢(𝑋𝑊0)], 

where 

𝑋 = {
2 with probability 0.5
1 with probability 0.5.

 

A risk neutral investor would be willing to pay the expected payoff of the lottery, i.e. half her 

initial wealth. Typically, a value around two is seen as reasonable for the relative risk aversion, 

theta. In this case, the certainty equivalent is two thirds of the expected payoff of the lottery. In 

the case of a relative risk aversion parameter of 30.64, however, she would only be willing to pay 

around two percent of her wealth to participate in the lottery. The relative risk aversion decreases 

slightly when we use the Gaussian jump model, hence increasing the certainty equivalence 

slightly. In our NIG jump process of consumption and real return, her valuation of the gamble is 

2.9% of her wealth. This implies that she would rather have 103 percent of initial wealth (𝑊0 +

Expectation Standard deviation    Covariances

Consumption growth 2.15% (1.75%) 2.22% (3.55%)

Real stock market return (r ) 8.30% (5.53%) 32.27% (15.84%)

Real risk-free rate  2.66% (0.64%) 2.83% (5.74%)

Equity premium 5.64% (4.89%) 32.39% (15.95%)

(𝑟𝑓)

cov 𝑟, 𝑟𝑓 = 0.00002 (0.00148)

cov 𝑐̇,𝑟𝑓 = -0.00002 (-0.00015)

𝑐̇ cov 𝑟,𝑐̇ = 0.00155 (0.00227)
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0.03𝑊0) for sure than participating in a lottery where she ends up with twice her wealth (2𝑊0) or 

initial wealth (𝑊0) with equal probability. Thus, the equity premium puzzle is neither solved by 

introducing jumps, nor by allowing for non-normality in return and consumption growth. 

 

Table 23: Implications of our risk aversion estimates for certainty equivalence. 

5.5 The equity premium – why is it a puzzle? 

The baseline model of the previous two sections – a continuous time version of the rational 

expectations model by Lucas (1978) – has three main underlying assumptions. Firstly, both the 

consumption growth process and cumulative dividend process are continuous and normally 

distributed. Secondly, a representative consumer maximizes a time-separable and additive utility 

function, i.e. expected utility, in a multiperiod context. Thirdly, there are no market frictions. In 

this paper, we have loosened the first assumption, using the same approach as Aase and Lillestøl 

(2015). A second approach is to increase the complexity of the consumer preferences, e.g. by 

introducing recursive utility. The latter approach will indeed help explain this puzzle, as 

commented by Aase and Lillestøl (2015). Mehra and Prescott (1985) suggested in their original 

paper that introducing market frictions, e.g. some form of credit constraint, could help explain the 

puzzle. 

As noted in section 2.3 and section 5.2 – both the stock market returns and the joint distribution 

of stock market returns and consumption growth exhibit fatter tails than the normal distribution. 

Tail-events tend to occur simultaneously (as measured by the cokurtosis) and extreme negative 

tail-events are more likely than extreme positive tail-events (as measured by the negative 

coskewness). Even in the absence of negative coskewness, the presence of a positive cokurtosis 

increases the required equity premium as long as the utility function is concave, i.e. risk-averse 

Relative risk aversion Certainty equivalent

θ = 0 0.5000W0

θ = 2 0.3333W0

θ = 25.25 0.0290W0

θ = 26.09 0.0280W0

θ = 30.64 0.0237W0
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consumers. The intuition is that an increase in cokurtosis increases the probability of 

consumption and returns being either extremely low or extremely high at the same time. These 

two extreme outcomes are however, weighted differently – extreme low outcomes have very high 

marginal utilities, whereas extremely high outcomes have very low marginal utilities. Similarly, 

the presence of negative coskewness places more mass of the distribution on outcomes of 

moderately higher consumption and returns, which are weighted with moderately lower marginal 

utilities, but at the same time a negative coskewness place more mass in the very negative end of 

the distribution, which in turn is weighted with a very high marginal utility.  

We saw in chapter 3 and chapter 4 that the univariate NIG distribution is able to capture the 

skewness and kurtosis of the univariate return distribution quite well. In chapter 4, we in 

particular note that the NIG distribution came close to matching the empirical tail-mass, which 

was substantially higher than what one assumes in a Gaussian model. This is anecdotal evidence 

that the bivariate NIG distribution can be the right extension of a model that tries to explain the 

equity premium puzzle. As the results in the previous section showed, NIG does indeed take us 

qualitatively in the right direction, but the quantitative effect is almost (economically) 

insignificant. 

The second approach, namely loosening up the assumptions about the representative consumer’s 

utility function, is likely to yield better results. To see why the utility assumptions of the baseline 

model are problematic, we have to look at the meaning of the parameter theta. This parameter is 

related to two properties of the model: the risk aversion is equal to theta, and in addition the IES 

is equal to one over theta. This of course implies that a value for theta determines both the degree 

to which the representative consumer wishes to smooth consumption across states of the world, 

and across time. There are however, no economic reasons to why these two properties of the 

model should be the same. In fact, as noted by Mossin (1969), the expected utility representation 

has no axiomatic foundations in a multi-period setting. One natural extension is therefore to allow 

the risk aversion and IES to be determined separately by two different parameters, which is in 

fact what recursive utility introduces (see for instance Aase (2015)). 
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6. Conclusions  

This thesis shows that there are significant deviations from normality in Norwegian stock returns. 

More specifically, returns are shown to be significantly both leptokurtic and negatively skewed. 

These observations invalidate “mean-variance” analysis for risk and performance measurement 

of a stock portfolio. In chapter 3, we therefore present a normal inverse Gaussian (NIG) model of 

returns that allows for higher order moment effects. Our modelling approach is not however, able 

to capture the volatility clustering that we observe, but we do provide a rough sketch of how this 

can be accomplished. 

In chapter 2 and 3 we find two additional properties in our stock return data that suggests NIG to 

be a promising candidate for univariate modelling. Firstly, a property of the NIG model is that 

when controlling for the instantaneous variance, we obtain the Gaussian distribution. This 

property of the model is found to be consistent with data. Secondly, the mixed mean-variance 

structure of NIG suggests the instantaneous variance to be IG distributed. We do find in the data 

that the instantaneous variance of returns is non-constant, and the IG distribution is shown to fit 

our calculated variance series well. In our estimated NIG model the parameter 𝛽 implies a 

negative relationship between instantaneous variance and returns, making the distribution of 

returns negatively skewed. We find a similar negative relationship in the data by running 

regressions of return on its squared residuals. 

We find that the NIG model of returns (not surprisingly) clearly, and significantly, outperforms 

the Gaussian model in sample. We argue however that the models should be evaluated out of 

sample when assessing their usefulness in risk management. It turns out that the out-of-sample 

NIG model outperforms even the in-sample Gaussian model, both in terms of risk metrics such as 

value at risk and expected shortfall, and in terms of overall fit measured by AIC. The likelihood 

ratio test confirms that our conclusion is statistically significant. The promising performance of 

NIG out of sample suggests that it is robust to judgement calls about sample period, which is an 

attractive feature for models that are used for risk measurement purposes. However, compared to 

actual observations of daily return in our data sample, even our NIG model underestimates the 

severity of the most extreme outcomes. An interesting extension to our model for risk 

measurement would be to allow for volatility clustering, using e.g. a NIG-GARCH model for the 

returns, suggested by Forsberg and Bollerslev (2002).  
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In chapter 5, we find that quarterly consumption growth in Norway does not deviate significantly 

from normality. We do however, find significant non-normality for the joint consumption growth 

and return distribution. In particular, there is evidence of negative coskewness and excess 

cokurtosis. Using a theoretical model for the equilibrium interest rate and equity premium under 

the expected utility hypothesis suggested by Aase and Lillestøl (2015), we are able to move 

beyond “mean-variance” analysis and allow for higher-order moment effects. As expected, the 

presence of negative coskewness and excess cokurtosis (and possibly even higher-order moment 

effects) reduces the implied risk aversion parameter and increases the impatience rate, moving 

both parameters in the right direction. The effects are however, quantitatively small and we are 

therefore not able to resolve the equity premium puzzle or the risk-free rate puzzle. Given the 

added complexity and relatively small quantitative effects of including higher-order moments, we 

conclude that “mean-variance” analysis might in fact be the right level of abstraction when 

modeling equilibrium interest rates and equity premium.    

Several alternative models have been suggested in order to explain the equity premium and risk 

free rate puzzles. A promising approach is to allow the parameter governing consumption 

smoothing across time (IES) to differ from the parameter governing consumption smoothing 

across states (risk aversion). This can be achieved by modeling consumer preferences with 

recursive utility (thereby leaving the expected utility hypothesis), see e.g. Aase (2015). Another 

approach, suggested by e.g. Mehra and Prescott (1985), is to allow for market imperfections, 

which could cause the covariance, negative coskewness, excess cokurtosis etc. between 

consumption growth and stock returns to be more pronounced on an individual level than at the 

aggregate level.  
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Appendix A – Plots and graphs 

 

Figure A 1: ACF of residuals squared of monthly Norwegian stock returns. 

 

Figure A 2: ACF of absolute values of residuals of monthly Norwegian stock returns. 
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Figure A 3: Normal Q-Q plot for Norwegian daily returns. 

 

Figure A 4: Normal Q-Q plot for Norwegian quarterly returns. 
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Figure A 5: Normal Q-Q plot for US monthly returns. 

 

Figure A 6: Distribution of Norwegian daily price returns with NIG-fit (1972-2015). 
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Figure A 7: Distribution of Norwegian quarterly returns with NIG-fit (1970-2014). 

 

Figure A 8: Distribution of US monthly returns with NIG-fit (1970-2014). 



75 
 

 

Figure A 9: Norwegian quarterly variance of returns and inverse Gaussian fit. 

 

Figure A 10: Norwegian daily variance of returns and inverse Gaussian fit. 
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Appendix B – Equilibrium interest rate and equity premium in our baseline 

model 

In this appendix, following Aase (2002), we derive the equilibrium interest rate and equity 

premium for our baseline model and start out with the equilibrium price of any risky asset in the 

economy, from expression (37), 

𝑆𝑖(𝑡) =
1

𝜋𝑡
𝐸𝑡 [∫ (𝑑𝐷𝑠

𝑖𝑑𝜋𝑠 + 𝑑𝐷𝑠
𝑖𝜋𝑠)

𝑇

𝑡

]. 

 

(B1)  

Let 𝑆̃𝑖(𝑡) ∶= 𝜋𝑡𝑆𝑖(𝑡) and rewrite (B1) as 

𝑆̃𝑖(𝑡) = 𝐸𝑡 [∫ (𝑑𝐷𝑠
𝑖𝑑𝜋𝑠 + 𝑑𝐷𝑠

𝑖𝜋𝑠)
𝜏

𝑡

+ 𝑆̃𝑖(𝜏)] , 𝜏 ∈ [𝑡, 𝑇]. 

 

(B2)  

Since both the dividends and consumption are (continuous sample path) Itô processes, 𝜋 will also 

be an Itô process, assuming 𝑢(∙) is sufficiently smooth, that is: its first three derivatives exist. In 

the CRRA case (as applied in chapter 5), derivatives of all orders exist. We can therefore write 

the dynamics of 𝜋 and 𝑆̃𝑖 as 

𝑑𝜋𝑡 = 𝜇𝜋(𝑡)𝑑𝑡 + 𝜎𝜋(𝑡)𝑑𝐵𝑡  and  𝑑𝑆̃𝑖(𝑡) = 𝜇𝑆̃𝑖(𝑡)𝑑𝑡 + 𝜎𝑆̃𝑖(𝑡)𝑑𝐵𝑡.   

Recall from section 5.3 that the continuous sample path process for the dividends is
57

 

𝑑𝐷𝑖(𝑡) = 𝜇𝐷𝑖(𝑡)𝑑𝑡 + 𝜎𝐷𝑖(𝑡)𝑑𝐵𝑡. 

Then (B2) can be written as 

𝑆̃𝑖(𝑡) = 𝐸𝑡 [∫ (𝜎
𝐷𝑖
′ (𝑠)𝜎𝜋(𝑠) + 𝜇𝐷𝑖(𝑠)𝜋𝑠)

𝜏

𝑡

𝑑𝑠 + ∫ 𝜋𝑠𝜎𝐷𝑖(𝑠)𝑑𝐵𝑠

𝜏

𝑡

+ 𝑆̃𝑖(𝑡)

+ ∫ (𝜇𝑆̃𝑖(𝑠)𝑑𝑠 + 𝜎𝑆̃𝑖(𝑠)𝑑𝐵𝑠)
𝜏

𝑡

] 

⇓ 

                                                           
57

 Ignoring the jump part in expression (32). 
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𝐸𝑡 [∫ (𝜎𝐷𝑖(𝑠)𝜎𝜋(𝑠) + 𝜇𝐷𝑖(𝑠)𝜋𝑠)
𝜏

𝑡

𝑑𝑠 + ∫ 𝜋𝑠𝜎𝐷𝑖(𝑠)𝑑𝐵𝑠

𝜏

𝑡

+ ∫ (𝜇𝑆̃𝑖(𝑠)𝑑𝑠 + 𝜎𝑆̃𝑖(𝑠)𝑑𝐵𝑠)
𝜏

𝑡

] = 0 

⇓ 

𝜇𝑆̃𝑖(𝑠) + 𝜎𝐷𝑖(𝑠)𝜎𝜋(𝑠) + 𝜇𝐷𝑖(𝑠)𝜋𝑠 ≡ 0 

⇕ 

𝜇𝑆̃𝑖(𝑡) = −(𝜎𝐷𝑖(𝑡)𝜎𝜋(𝑡) + 𝜇𝐷𝑖(𝑡)𝜋𝑡) ∀ 𝑡 ∈ [0, 𝑇]. (B3)  

 

By the product rule, we can write the dynamics of 𝑆̃𝑖 as 

𝑑𝑆̃𝑖(𝑡) = 𝑑 (𝜋𝑡𝑆𝑖(𝑡)) = 𝑑𝜋𝑡𝑆𝑖(𝑡) + 𝜋𝑡𝑑𝑆𝑖(𝑡) + 𝑑𝜋𝑡𝑑𝑆𝑖(𝑡) = 

(𝜇𝜋(𝑡)𝑆𝑖(𝑡) + 𝜇𝑆𝑖(𝑡)𝜋𝑡 + 𝜎𝜋
′ (𝑡)𝜎𝑆𝑖(𝑡))𝑑𝑡 + (𝜎𝜋(𝑡)𝑆𝑖(𝑡) + 𝜎𝑆𝑖(𝑡)𝜋𝑡)𝑑𝐵𝑡. 

This implies that 

𝜇𝑆̃𝑖(𝑡) ≡ 𝜇𝜋(𝑡)𝑆𝑖(𝑡) + 𝜇𝑆𝑖(𝑡)𝜋𝑡 + 𝜎𝜋
′ (𝑡)𝜎𝑆𝑖(𝑡)  𝑎𝑛𝑑  𝜎𝑆̃𝑖(𝑡) ≡ 𝜎𝜋(𝑡)𝑆𝑖(𝑡) + 𝜎𝑆𝑖(𝑡)𝜋𝑡. 

Inserting the expression for 𝜇𝑆̃𝑖(𝑡) into (B3) and rearranging yields 

𝜇𝑆𝑖(𝑡) + 𝜇𝐷𝑖(𝑡)

𝑆𝑖(𝑡)
= − (

𝜇𝜋(𝑡)

𝜋𝑡
+

𝜎𝜋
′ (𝑡)

𝜋𝑡

(𝜎𝐷𝑖(𝑡) + 𝜎𝑆𝑖(𝑡))

𝑆𝑖(𝑡)
).  (B4)  

Recall that the continuous sample path process for 𝑐 can be written as 

𝑑𝑐(𝑡) = 𝜇𝑐(𝑡)𝑐(𝑡)𝑑𝑡 + 𝜎𝑐(𝑡)𝑐(𝑡)𝑑𝐵𝑡. 

Recall from section 5.3 that  𝜋𝑡 ∶= 𝑒−𝜌𝑡𝑢′(𝑐𝑡). By Itô’s lemma we can then write the dynamics of 

𝜋 as 

𝑑𝜋𝑡 = (−𝜌𝑒−𝜌𝑡𝑢′(𝑐𝑡) + 𝑒−𝜌𝑡𝑢′′(𝑐𝑡)𝜇𝑐(𝑡)𝑐(𝑡) +
1

2
𝑒−𝜌𝑡𝑢′′′(𝑐𝑡)𝜎𝑐

′(𝑡)𝜎𝑐(𝑡)𝑐(𝑡)2) 𝑑𝑡

+ 𝑒−𝜌𝑡𝑢′′(𝑐𝑡)𝑐(𝑡)𝜎𝑐(𝑡)𝑑𝐵𝑡.  

(B5)  

Using the functional form 𝑢(𝑐𝑡) =
𝑐𝑡

1−𝜃

1−𝜃
 we can rewrite (B5) as 
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𝑑𝜋𝑡 = − (𝜌 + 𝜃𝜇𝑐(𝑡) −
1

2
𝜃(1 + 𝜃)𝜎𝑐

′(𝑡)𝜎𝑐(𝑡)) 𝜋𝑡𝑑𝑡 − 𝜃𝜋𝑡𝜎𝑐(𝑡)𝑑𝐵𝑡.  (B6)  

Matching 𝜇𝜋(𝑡) and 𝜎𝜋(𝑡) in (B4) with the first and second term in (B6) respectively, yields 

𝜇𝑆(𝑡) + 𝜇𝐷(𝑡)

𝑆(𝑡)
= 𝜌 + 𝜃𝜇𝑐(𝑡) −

1

2
𝜃(1 + 𝜃)𝜎𝑐

′(𝑡)𝜎𝑐(𝑡) + 𝜃𝜎𝑐
′(𝑡)

(𝜎𝐷𝑖(𝑡) + 𝜎𝑆𝑖(𝑡))

𝑆𝑖(𝑡)
. 

Let 𝜎𝑟𝑖
(𝑡) ∶=

(𝜎
𝐷𝑖(𝑡)+𝜎

𝑆𝑖(𝑡))

𝑆𝑖(𝑡)
. If there exists a riskless asset, its covariance with the consumption 

process should be zero. The return on the riskless asset can then be written as 

𝑟𝑓(𝑡) = 𝜌 + 𝜃𝜇𝑐(𝑡) −
1

2
𝜃(1 + 𝜃)𝜎𝑐

′(𝑡)𝜎𝑐(𝑡). (B7)  

The risk premium on asset i is then 

𝜇𝑟𝑖
(𝑡) − 𝑟𝑓(𝑡) = 𝜃𝜎𝑐

′(𝑡)𝜎𝑟𝑖
(𝑡) (B8)  

We can write (B8) for the special case, 𝑖 = 𝑀, which is our Norwegian MSCI (2015a) index, 

𝜇𝑟𝑀
(𝑡) − 𝑟𝑓(𝑡) = 𝜃𝜎𝑐

′(𝑡)𝜎𝑟𝑀
(𝑡). (B9)  
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Appendix C – Calculation of impatience rate and risk aversion 

In this appendix, we will express the equity premium and risk-free rate in the case of a pure jump 

model of consumption growth and equity returns, where the jump sizes are NIG distributed, in a 

way that easily lends itself to numerical or graphical solutions using standard software or a 

graphical calculator. 

Recall that the equity premium and risk-free rate can be expressed by moment generating 

functions in the following way (Aase & Lillestøl, 2015) 

𝜇𝑟𝑀
− 𝑟𝑓 = −𝜆[𝑀(−𝜃, 1) − 𝑀(−𝜃, 0) − 𝑀(0,1) + 1] 

and 

(C1)  

𝑟𝑓 = 𝜌 + 𝜃𝜇𝑐 − 𝜆[𝜃(𝑀(1,0) − 1) + 𝑀(−𝜃, 0) − 1]. (C2)  

We have suppressed the time-subscripts as we now treat the equity premium and risk-free rate as 

constants. We will also normalize the expected jump-frequency lambda to one. Note that this is 

reasonable because we only have one observation per quarter, and we are not trying to explain 

how consumption growth or stock returns move between these observations.  

The moment generating function of the bivariate NIG distribution has the following 

representation (Aase & Lillestøl, 2015) 

𝑀𝑁𝐼𝐺(𝒖) = 𝑒𝑥𝑝 {𝒖′𝝁 + 𝛿[√𝛼2 − 𝜷′𝚫𝜷 − √𝛼2 − (𝜷 + 𝒖)′𝚫(𝜷 + 𝒖)]}, (C3)  

where 𝛿 and 𝛼 are scalars, 𝝁′ = (𝜇̂𝑐, 𝜇̂𝑟), 𝜷′ = (𝛽𝑐, 𝛽𝑟) and  𝚫 = (
Δ𝑐𝑐 Δ𝑐𝑟

Δ𝑐𝑟 Δ𝑟𝑟
). 

Notice that for any vector 𝒖′ = (𝑥, 𝑢2), where x is some unknown and 𝑢2 is some constant, we 

can represent (C3) by 

𝑀𝑁𝐼𝐺((𝑥, 𝑢2)′) = 𝑒𝑥𝑝{𝐴𝑥 + 𝐵 − 𝛿√𝐶𝑥2 + 𝐷𝑥 + 𝐸}, (C4)  

where A, B, C, D and E are all some constants. Using (C4), we can rewrite (C1) and (C2) as 



80 
 

1 + 𝑅𝑒 = −𝑒
{𝐴1𝜃+𝐵1−𝛿√𝐶1𝜃2+𝐷1𝜃+𝐸1 } + 𝑒

{𝐴2𝜃+𝐵2−𝛿√𝐶2𝜃2+𝐷2𝜃+𝐸2}

+ 𝑒
{𝐴3𝜃+𝐵3−𝛿√𝐶3𝜃2+𝐷3𝜃+𝐸3}

 

and 

(C5)  

𝑟𝑓 = 1 + 𝜌 + 𝜃𝜇𝑐 + 𝜃 − 𝜃𝑒
{𝐴4𝜃+𝐵4−𝛿√𝐶4𝜃2+𝐷4𝜃+𝐸4}

− 𝑒
{𝐴2𝜃+𝐵2−𝛿√𝐶2𝜃2+𝐷2𝜃+𝐸2}

, (C6)  

where 𝑅𝑒 is the average equity premium in our dataset. 𝜇𝑐 is estimated as the average growth rate 

of consumption and  𝑟𝑓 as the average risk-free rate in our quarterly dataset. All the constants in 

(C5) and (C6) consists solely of estimated parameters of our model: 

𝐴1 = −𝜇̂𝑐 ,      𝐵1 = 𝜇̂𝑟 + 𝛿𝛾,      𝐶1 = −Δ𝑐𝑐 ,   

 𝐷1 = 2((1 + 𝛽𝑟)Δ𝑐𝑟 + 𝛽𝑐Δ𝑐𝑐),   𝐸1 = 𝛾2 − 2(𝛽𝑐Δ𝑐𝑟 + 𝛽𝑟Δ𝑟𝑟) − Δ𝑟𝑟, 

 

𝐴2 = −𝜇̂𝑐 ,      𝐵2 = 𝛿𝛾,      𝐶2 = −Δ𝑐𝑐, 𝐷2 = 2(𝛽𝑟Δ𝑐𝑟 + 𝛽𝑐Δ𝑐𝑐),   𝐸2 = 𝛾2,   

 

𝐴3 = 0,      𝐵3 = 𝜇̂𝑟 + 𝛿𝛾,      𝐶3 = 0,     𝐷3 = 0,     𝐸3 = 𝛾2 − 2(𝛽𝑐Δ𝑐𝑟 + 𝛽𝑟Δ𝑟𝑟) − Δ𝑟𝑟, 

and 

𝐴4 = 0,      𝐵4 = 𝜇̂𝑐 + 𝛿𝛾,      𝐶4 = 0,     𝐷4 = 0,     𝐸4 = 𝛾2 − 2(𝛽𝑐Δ𝑐𝑐 + 𝛽𝑟Δ𝑐𝑟) − Δ𝑐𝑐 . 

Here in the multivariate case of the NIG distribution, 𝛾 ∶= √𝛼2 − 𝜷′𝚫𝜷 (as opposed to 

𝛾 ∶= √𝛼2 − 𝛽2 in the univariate case). 

By first solving for theta in (C5), (C6) is an equation in only one unknown – rho.  
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