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Abstract 

A widely accepted relationship in optimal speed theory is that speeds of vessels respond 

positively to changes in freight rates and negatively to changes in bunkers. In this thesis we 

analyse how this hypothesis corresponds to what is actually practiced by market participants. 

In addition, an important contribution of this thesis is to examine how vessel specific and 

operational specific variables affect speed in practice. The analysis is based on the 

theoretical speed optimization models of Ronen (1982), and utilizes a comprehensive panel 

dataset with observed average daily speed of 607 VLCCs1 in the period from Jan 2013 to 

Feb 2015. By applying a random effects panel data model, we are not only able to explain 

the variations within one vessel over time, but also variations between vessels. The empirical 

analysis shows considerable differences in how speed responds to changes in explanatory 

variables for the laden and the ballast leg. For the ballast leg, we find significant 

relationships between freight, bunkers and speed, in line with theory, but less in magnitude 

than theoretical models suggest. Conversely, for the laden leg we find no evidence for any 

relationship between speed and macro variables. Our analysis suggests that financing costs 

and the cost distribution among charterers and owners create split-incentive problems for VC 

contracts, leading to the discrepancies between theory and practice. The findings can also be 

caused by a larger share of the fleet sailing on TC contracts than first anticipated. Further, we 

find only slight evidence that vessel specific factors may have an influence on the speed 

decision. Cargo owners with operational control of the vessels are shown to have other speed 

incentives than traditional shipowners, with more emphasis on cargo value and the sourcing 

of cargo. Our findings substantiate that before introducing market-based measures to reduce 

emissions, regulating authorities should fully understand the true speed incentives of the 

market participants.  

 

                                                

1 Very large crude carrier 
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1. Introduction 

1.1 Background 

In booming shipping markets the general view among market participants is that vessels 

should steam at as high speeds as possible. This can explain why the interest for optimal 

speed among researchers and market participants has seemingly been closely related to 

market conditions. The depressed shipping markets of late 1970’s and early 1980’s gave life 

to the first theories about how vessel owners could use speed optimization, and slow 

steaming in particular, as a profit enhancing measure. The poor market conditions in the 

wake of the 2008 financial crisis led to a resurgence where slow steaming again were the 

centre of attention.  While slow steaming were relevant only for economical reasons in the 

first cycle of optimal speed theory, the environmental consequences of greenhouse gas 

emissions from burning ultra heavy fuel oil has lead to increased focus on speed also from 

organizations and authorities not directly involved in maritime transport. By introducing an 

environmental factor to the optimal speed equation, governing authorities such as the IMO 

have joined the discussion and made speed management more relevant than ever. The centre 

of focus is especially to eliminate uneconomically high speeds caused by ineffective speed 

decision systems or lack of up-to-date information on optimal speed theory. This paper is 

written in a time where the price of crude oil has dipped to levels not seen since 2008. In 

addition, freight rates surged in the end of 2014 and firmed at relatively high levels going 

into 2015. This has led to a boom in the crude tanker market and, at least in theory, 

incentives to speed up for shipowners.  

1.2 Objectives 

Environmental  
The relation between vessel speed and emissions of CO2, the main greenhouse gas (GHG) 

emitted through fuel burning, is well known. As highlighted in UNCTADs Review of 

Maritime Transport 2014, the International Maritime Organization (IMO) identifies speed 

management as a key-contributing measure in reducing the GHG emissions of the shipping 
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industry. As market based measures remain controversial, regulations within the shipping 

industry has until date been kept within the scope of increasing fuel efficiency2 and reducing 

the air pollution of SOx3 and NOx4 among vessels. Further knowledge about what truly 

matters in the speed decision will be valuable to market regulating authorities in the 

discussion of future potential speed reduction measures.  

Economical 
Measures to reduce the operational and voyage related expenditures are of great significance 

to profit maximizing shipowners and operators, especially in times of a through in freight 

rates. Since bunkers is the main cost of a voyage and fuel consumption is widely assumed to 

increase with speed through a cubic relationship, speed management is one way to stand out 

from the rest of the pack. Or looking at it from a different perspective: uneven distribution of 

information regarding optimal speed among speed determining parties may cause 

disadvantages for the less knowledgeable players paying less attention to speed management. 

Hence, an empirical study of the effects of various variables on speed can reveal relations 

that not only are beneficial to regulators, but also contribute to bridging the information gap 

between market participants. When looking at the VLCC fleet as a whole, the average speed 

of vessels will also be a contributing factor in the total vessel supply in the market. This may 

have effects for third parties such as ship builders, making the speed decision of operators 

relevant for all market participants. 

1.3 Contribution 

The aim of this thesis is to contribute to the empirical optimal speed literature by analysing 

the effects of vessel specific-, macro- and operational variables on the observed speed. In our 

study we employ a panel data set including average daily speed, move5 draught and other 

voyage data for the complete VLCC fleet in the period from 1 January 2013 to 22 February 

2015, comprising 305,106 average speed observations for 624 vessels.  

                                                

2 IMO, 2011, annex 19: Adopted in 2012, introducing EEDI for new ships and the Ship Energy Efficiency Management 
Plan for all ships (UNCTAD, 2014) 
3 MARPOL annex VI: from 1 January 2015, ships operating in certain control areas will be required to burn fuel with no 
more than 0.1 per cent sulphur. Alternatively, ships must fit an exhaust gas cleaning system, or use any other technological 
method to limit SOx (Adland, 2013) emissions (UNCTAD, 2014) 
4 MARPOL annex VI: New tier III standards regarding NOx emissions to be applied to marine diesel engines installed on 
ships constructed on or after 1 January 2016 and which operates in certain control areas (UNCTAD, 2014) 
5 “Move” is generally referring to a dynamic measurement of a variable in the dataset at a single point in time 
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Data 
Previous studies comparing optimal speed theory with observed data from the tanker market 

(see Assmann, 2015; Assmann, 2012) use AIS port data to estimate the average speed for 

each voyage. The fact that we utilize daily speed data on a per vessel basis allows us to 

perform a more detailed analysis of the dynamic relationship between explanatory variables 

and the speed of a vessel. A similar micro-level analysis has until date never been conducted 

for the tanker market. In addition, the inclusion of daily move draught makes it possible to 

analyse the differences between the laden leg and the ballast leg. A split between laden and 

ballast has previously been done in an empirical study of the dry bulk market in Adland 

(2013), and there are reasons to believe that the same externalities6 affecting the speed 

choice for different loading conditions will be present in the tanker segment. The dataset also 

provides longitude- and latitude coordinates accompanying each speed observation, allowing 

us to identify vessels that shuttle between two destinations or are located in certain areas 

where cyclones and tropical storms are common for large parts of the year. 

Variables 
While previous empirical studies are based on the assumption that the vessel fleet is 

homogenous, differences between vessels regarding engine specifications, hull design, size 

and age will make the optimal speed vary among vessels. There are reasons to believe that 

knowledgeable and profit maximizing market participants take into account the 

characterization of a vessel when determining the speed, but to date there has been no work 

to quantify the effects. In order to capture the effects of vessel specifications on speed, we 

generate vessel specific explanatory variables by utilizing a comprehensive database with 

specifications for the complete VLCC fleet. The vessel specific explanatory variables come 

in addition to other variables related to macro, operations and cyclones. 

Approach 
Most literature on optimal speed has been written in times where low freight rates and high 

cost of bunkers has caused squeezed margins for shipowners and a need for speed reductions 

(slow steaming) to conserve fuel. By including the period from autumn 2014 until spring 

2015 we captures a period of sharp decline in crude oil prices. Additionally, freight rates saw 

a rebound from late 2014 continuing into 2015. We are therefore able to test if theoretical 

                                                

6 Such as speed clauses in the laden leg 
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optimal speed models composed in times with poor market fundamentals are applicable to 

cases of positive shocks in the crude oil price7 (lower fuel prices) and high earnings (Figure 

1).  

 
Figure 1: Freight rate (TD3), Bunkers (380cst) and Brent Crude prices for the period of relevance to 
this thesis 
Source: Clarkson’s (2015)   

                                                

7 For the VLCC market, mostly trading out of the Middle East Gulf, Dubai (and Oman) Crude is the most relevant crude as 
this is used as benchmarks for Asian crude types. Throughout this thesis, however, Brent crude oil is used when unrefined 
oil is included as a part of the analysis. The reason is the availability of both daily and future crude oil prices.  Brent and 
Dubai (Oman) use the same pricing formulas and the correlation is high (Koyama, 2011). For the purpose of this thesis, 
where crude oil is used for analytical discussions and not used directly in the calculation of theoretical optimal speed nor 
included as a variable (due to high correlation with bunkers) (Rehmatulla, Smith, & Wrobel, 2013), Brent crude is a 
reasonable proxy for the value of the cargo for VLCCs. 
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1.4 Structure 

The remainder of this thesis is organized as following: In Chapter 2 – Literature Review and 

Theory we discuss which parties are involved in the speed decision and how the speed 

decision affects not only market participants, but also the environment. This is followed by 

an introduction to previous literature written on theoretical optimal speed and studies that 

compare the theoretical optimal speed with the actual observed speed of vessels. The chapter 

is concluded with a discussion on why vessel specific variables matter in the speed 

determining decision. In Chapter 3 – The Model we introduce a theoretical optimal speed 

model, in which we split between a profit-maximizing model for the laden leg and a cost-

minimizing model for the ballast leg. We also introduce an alternative model for the laden 

leg for vessels operated by the cargo owner. We continue by deriving an empirical model 

from the theoretical optimal speed models, on logarithmic form. The empirical model is 

extended by adding explanatory variables related to vessel characteristics, operational 

strategy, the market and weather. In this part we describe why the variables are added and 

the expected functional relationships with speed. In Chapter 4 – Data we perform a nine-step 

cleaning process of the dataset to make it more suitable for analysis. We continue by 

describing how data for the explanatory variables are collected and calculated. In Chapter 5 

– Analysis & Discussion, we present the main findings of our two empirical models and the 

statistical tests conducted, before we analyse and discuss the results. The chapter closes with 

limitations of our study and suggested topics for further research. The final chapter, Chapter 

6, concludes on the thesis. 
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2. Literature Review and Theory 

2.1 Optimal Speed – Optimal for Whom?  

In the tanker market there are two main contracts (charterparties) for carriage of goods, 

voyage charter (VC) and time charter (TC) (Rehmatulla, Smith, & Wrobel, 2013). There are 

other hybrid contract forms such as contracts of affreightment (COA) and trip charters, but 

these can be reclassified to either TC or VC due to the similar cost allocation (Wilson, 2010; 

Stopford, 2009). Bareboat is another chartering form, but this is merely a leasing contract 

and not a contract for carrying goods (Rehmatulla, Smith, & Wrobel, 2013). 

For a VC the shipowner is in control of the operations of the ship, while a TC is the hiring of 

a vessel for a given period of time where the charterers have commercial control. This 

implies that the voyage cost, in which bunkers constitutes a major proportion (Pokuka, 

2006), has to be covered by the shipowner in a VC, but is for the charterers account in a TC 

(Table 1). 

 
Table 1: Cost distribution between charterer and vessel owner  
Source: Drewry Shipping Consultants Ltd.      

As to be elaborated in section 2.2, the theoretical optimal speed of a vessel is often analysed 

from the view of a shipowner. For a VC the shipowner is the actual legally registered 

owner8, while the charterer can be viewed as the disponent owner9 for a TC. All “owners” 

will according to the theory of Devanney (2009) respond similar to changes in freight rate 

and bunkers in their speed decision. Since vessels can be chartered and re-let at current spot 
                                                

8 The name of the company that appears on the ship's registration documents (IHS Fairplay, 2015) 
9 The disponent owner is the effective owner with the legal responsibilities of the registered owner (Shipinspection, 2015)  

Cost Main Components Bareboat Charter Time Charter Voyage Charter & COA
Deposit
Repayment of loan principal
interest
Manning
Insurance
Repairs & Maintenance
Stores, spares and supplies
Administration & Management
Bunkers
Port disbursements
Canal & seaway transit costs

Cost for charterers account

Cost for owners account

Voyage

Capital

Operating
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market rates all vessels are effectively in the spot market, regardless of the vessel being on 

VC or TC (Devanney, 2009). 

While Devanney’s theory suggests that speed incentives of owners should be independent of 

contract type, the cost distribution relative to the charterer’s control of the vessel could lead 

to split-incentive problems10. This could cause market failures and barriers to energy 

efficiency in form of efficiency and usage problems (Rehmatulla, Smith, & Wrobel, 2013). 

The efficiency problem is related to TC contracts. Since the shipowner decides the 

specifications determining the energy efficiency of the vessel but the charterer is the party 

that bears the cost of bunkers, there are barriers for the shipowner to induce energy efficient 

measures for the vessel (Rehmatulla, Smith, & Wrobel, 2013). Even though difficult to 

measure, this barrier to energy efficiency might affect the speed choice. 

The usage problem is related to VC contracts for the laden leg. As the charterer for a VC 

neither selects the energy efficiency technology of a vessel nor bears the cost of fuel 

consumption, the shipowner is not able to make the charterer internalize bunkers cost (IEA, 

2007). The usage problem suggests that there might be market failures in the cost structure 

of the shipping industry (Rehmatulla, Smith, & Wrobel, 2013), potentially affecting the 

speed decision for VCs. 

Even though considered a relatively environmental friendly transportation method in terms 

of grams of CO2 emissions per tonne-km11, the seaborne trade of crude oil through VLCCs 

entails substantial amounts of greenhouse gas (GHG) emissions12 in which there has been a 

growing concern about13. As GHG emissions increase proportionally with fuel consumption, 

steaming at as low speeds as possible are generally considered to be the most environmental 

friendly. Some would argue against this by stating that lower speeds cause higher emissions 

in form of more vessels needed for supply to keep up with demand. A study by Transport 

and Environment from 2012, however, disregards this argument by showing that reductions 

                                                

10 A form of principal agent problem (Rehmatulla, Smith, & Wrobel, 2013) 
11 VLCCs (+200,000 dwt) with 2.9 g/tonne-km compared to trucks at 80 g/tonnne-km and planes at 435 g/tonnne-km (IMO, 
2009) 
12 International Shipping accounted for more 2.7% of global C02 emissions in 2007 and Crude oil amounts to about 30% of 
world seaborne trade (IMO, 2009) 
13 IMO (2009) addressed this concern by presenting ways to reduce GHG emissions for the shipping industry, and 
Rehmatulla et al. (2013) builds on this discussion by further addressing increased energy efficiency as a strategy towards 
lower carbon emissions. 
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in speed cause a significant decrease in CO2 emissions, even after the inclusion of additional 

ships needed to keep supply constant (Faber, Nelissen, Hon, Haifeng, & Tsimplis, 2012). 

2.2 Optimal Speed Theory 

Literature written on speed in the shipping market can broadly be divided into three main 

groups based on the optimization criterion of the models presented: profit, cost and fuel 

consumption. Perakis and Papadakis (1989) and Lindstad et al. (2011) are two identifiable 

exceptions with respectively time- and pareto analysis as optimization criterions. While there 

are a considerable number of papers written with the aim of cost minimization in shipping 

transportation, only a handful of published papers analyse theoretical optimal speed as a 

derivative of profit maximization where both fuel price and freight rates are considered 

explicit input variables (Table 2). The common basis of these publications is that rational 

shipowners operating in competitive markets with vessels on VC freight contracts want to 

maximize profits through speed optimization, taking into account the trade-off between fuel 

consumption and income generation (Assmann, Andersson, & Eskeland, 2015; Psaraftis & 

Kontovas, 2013). It is worth to notice that the constraints and models vary between the 

segments. 

 
Table 2: Papers containing optimal speed models with profit as optimization criteria  
Source: Based on Psaraftis and Kontovas (2013) 

As mentioned in 1.1, literature written on the relation between freight rates, bunker price and 

the economically optimal speed of vessels has typically been analysed in times of poor 

market fundamental (Ronen, 2011). 

In the late 1970’s, soaring bunkers prices, falling demand for tonnage and overcapacity in 

the oil tanker market lead to high operational costs, depressed freight rates and squeezed 

margins for shipowners (Stopford, 2009). Through the empirical studies of (Manning, 1956) 

it was already then well recognized in the market that that fuel consumption of a motor ship 

is directly related to the third power of the speed, and the relation between bunker price and 

speed had previously been addressed through Artz Jr. (1975) and Avi-Itzhak (1974) (Later 

Devanney (2010) has further analysed the relation between bunker prices and VLCC spot 

Publication Decision Maker Segment Fuel Price Input Freight rate input Various Legs
Alderdon (1981) Shipowner General X X X
Ronen (1982) Shipowner Tramp X X X
Corbett et al. (2010) Shipowner Container X X Round trip
Gkonis and Psaraftis (2012) Shipowner Tanker, LNG, LPG X X X
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rates). Shipowners were slowing down to conserve fuel, but this was an observation rather 

than explained by explicit theory (Artz Jr., 1975). In a depressed shipping market where 

optimal speed still was determined by trial and error rather than analytical models (Ronen, 

1982; Zannatos, 1959), theoretical models for how speed could be optimized in relation to 

freight rates and bunkers costs started to become relevant. 

Theoretical optimal speed in shipping was first implicitly covered as a subject through 

transport supply capacity models and the effect of increased bunker prices on freight rates in 

Norman and Wergeland (1979), where the optimal speed is given by the equality between 

the extra income gained from speeding up and the corresponding extra fuel cost (Assmann, 

2012). However, Alderton (1981) and Ronen (1982) were the first to formulate explicit 

theories for optimal speed based on profit optimization with freight rates and fuel cost as 

input variables.  

Alderton (1981) argued that optimal speed could only be achieved by considering two 
factors: 

1. Potential speed: Determined by ship specific variables and weather 

2. Preferred speed: The preferred speed when taking into account revenues, costs and 

schedules 

 
Ronen (1982) followed with a paper further highlighting the trade-off between lower fuel 

cost when slow steaming and lower income generation in the determination of theoretical 

optimal speed. In particular, the paper analyses the effect of oil price14 on theoretical optimal 

speed and introduces three mathematical models for the determination of theoretical optimal 

speed: an income generating leg (laden), a position leg with no income (ballast) and a mixed 

leg with some degree of income generation.  

The market tone in shipping stayed depressed until the late 1980’s, when demand growth 

started to pick up. However, an expanding fleet led to a competitive tanker market in the 

decade to come. From the late 1990’s the demand growth accelerated and a shortage of 

supply led to a boom in the tanker market (Stopford, 2009). This lasted until the 2007/2008 

financial crisis rocked the shipping markets, causing the freight rates to plummet. The poor 

                                                

14 Through bunker fuel prices 
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market fundamentals for shipowners led to a new wave of interest for cost reductions 

through slow steaming and optimization of speed.  

Ronen (2011) followed up his 1982 paper by including service frequency to his previous 

models. This is relevant for the container market when modelling the trade-off between the 

cost of adding more vessels to the fleet in order to maintain the fixed service frequency when 

slow steaming, and the fuel cost savings from slow steaming. As discussed in section 2.1, a 

similar argument has been used for other shipping segments when analysing the 

environmental gains of slow steaming.  

Common for both Ronen (1982) and Alderton (1981) is the focus on optimal speed for 

various legs. This view is shared by Gkonis and Psaraftis (2012), where optimal speed is 

determined for laden and ballast as a function of fuel price, freight rate and additional 

parameters such as inventory costs. The model also allows for including more than one 

vessel and considers the emissions for the tanker fleet segment based on the output of the 

optimization.  

By viewing voyages as round trips instead of individual legs, Corbett et al. (2009) takes a 

different starting point in the determination of theoretical optimal speed. The theory states 

that since there is only one income generating leg, shipowners should optimize the speed by 

distributing these revenues to both legs.  

Most recently Psaraftis and Kontovas (2013) and Psaraftis and Kontovas (2014) have 

reviewed the fundamental parameters of previously published models where speed is one of 

the decision variables and analysed the concepts and combined speed-routing scenarios.  

When modelling the effect of freight rates on speeds it is important to note the presence of 

the simultaneity problem (Adland, 2013; Norman & Wergeland, 1979; Strandenes, 1999). 

While an individual shipowner act as a price taker in the market, the collective speed 

decision of all shipowners will affect the supply and demand balance of the market. This will 

move freight rates, which again would affect the theoretical optimal speed. For 

simplification, most research is therefore based on the assumption that all shipowners are 

price takers (Adland, 2013). 
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2.3 Theoretical Optimal Speed vs. Practice 

The basis of theoretical optimal speed models is that speeds vary positively with freight rates 

and negatively with fuel prices. This hypothesis was apparently first tested in empirical 

studies by Jonkeren et al. (2012)15, analysing the observed speeds of carriers in North-West 

Europe using micro panel data in the period from 2003 to 2007. Jonkeren et al. (2012) 

confirmed the optimal speed theory hypothesis, finding that freight rates have positive 

impact on speed16, while bunkers have negative impact17. The empirical studies of 

Notteblom and Vernimmen (2009) show that operators of container vessels slow down and 

increase fleet size in cases of high bunker prices. However, the service frequency element of 

liners, as described by Ronen (2011) and empirically proven by Notteblon and Vernimmen 

(2009), leads to a different speed optimization problem for liner ship operators than for other 

segments such as bulk and tankers (Adland, 2013). 

Adland (2013) analysed some 18,000 voyages in the dry bulk sector, investigating 

differences in speed across loading condition (laden and ballast) and main trading routes. 

The survey finds evidence of speed reductions during depressed markets, but speeds showed 

much lower volatility than what optimal speed theory suggests. The micro-level panel data 

did also unveil that vessels steams at consistently higher speeds in the ballast leg, compared 

to the laden leg.     

Assmann (2012) tested the theoretical log-linear relationship between speed and the 

freight/bunkers ratio for laden VLCC voyages between Middle East Gulf (MEG) and Japan 

(TD3), employing time series data with voyage duration and distance. However, no 

significant relation between speed and the explanatory variables was found.  Later Assmann 

(2015) employed actual AIS18 port data for all VLCCs leaving from MEG to Far East19 and 

found support for the theory. In this analysis, average speed was computed on a voyage basis 

using endpoint data. As previously found in the bulk market survey of Adland (2013), 

Assmann (2015) found the elasticities for both bunkers and freight rate to be of smaller 

                                                

15 The first empirical study of the tanker market was apparantly performed by Beenstock & Vergottis (1989). The study 
estimated an aggregate econometric model based on Beenstock (1985), testing the interdependence of the freight market 
and the market of tankers using annual dynamically determined freight rates and tanker prices drawn from 1956 to 1986. 
16 Found the freight price elasticity of speed to be 0.17. Jonkeren et al. (2012) use the water level in the Rhine river as an 
instrument variable for freight rate as freight rate itself being endogenous (due to the simultaneity problem) 
17 Found the fuel price elasticity of speed to be -0.11 
18 Automated Identification System 
19 Japan, South Korea, China 
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magnitude than expected. Another finding of Assmann (2015) is that the observed speed of 

the ballast leg is considerably more in line with optimal speed theory than for the laden leg 

and that vessels assumed to shuttle MEG-Japan are almost completely insensitive to changes 

in freight rate.  

2.4 Potential Speed Differs Among Vessels - Shouldn’t 
Preferred Too? 

As described by Alderton (1981), to estimate the theoretical optimal speed of a vessel, both 

potential vessel speed and preferred speed have to be considered. Previous literature 

comparing theoretical optimal speed and observed speed data (Assmann, 2012; Assmann, 

Andersson, & Eskeland, 2015; Adland, 2013; Jonkeren, Ommeren, & Rietveld, 2012) are 

written with the assumption that the vessel fleet is homogenous in terms of vessel 

specifications. Hence the empirical studies do not analyse the differences in potential speed 

and preferred speed among vessels and how this affects the optimal speed and thus the 

observed speeds.  

The potential speed of a vessel is a function of two factors (MAN Diesel & Turbo, 2013a): 

1. Potential effective brake power  

2. Hull resistance and weight 

 
The factors determining the potential speed of a vessel will also have an impact on the fuel 

consumption for a given speed and thus the fuel efficiency. This is summarized in Table 3 

where weight is implicitly included as a variable through the wetted area of the hull, varying 

with the loading condition of the vessel.   

 
Table 3: Vessels specific fuel consumption determinants at a given speed 
Source: Own table based on Man Diesel & Turbo (2013) and Harleyc.com (2015) 

Main determinants Sub determinants Description
Frictional resistance Dependent on the size of wetted area of the hull (varies with the 

loading condition and weight of the ship) and a frictional coefficient 
dependent on hull design and fouling. Represents 70-90% of a 
VLCCs total resistance.

Residual resistance Wave resistance and loss caused by flow seperation (eddy 
resistance). 8-25% of total resistance

Air resistance Represents about 2% of the total resistance of a VLCC
Engine speed Measured in revolutions per minute (RPM)
Mean effective pressure The average pressure being exerted on the top of the piston during 

the power stroke that would result in the measured power output of 
an engine

Constant Engine specific

Hull resistance

Effective brake power
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Hence, according to the theoretical models where fuel consumption is regarded an input 

variable, vessel specific factors such as Effective brake power, hull resistance and weight 

should affect both potential speed and the preferred speed of a vessel. The paper at hand is 

the first of its kind to employ dynamic daily speed data on a per vessel basis in combination 

with detailed vessel information. This allows us to analyse if market participants consider the 

potential speed of a vessel when determining speed, or if assumptions made in previous 

literature on the homogeneity of the fleet is justified.    
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3. The Model  

3.1 Theoretical Optimal Speed Model 

In order to establish an empirical model we need a theoretical optimal speed model to 

determine which variables to include and decide on the functional relationships. There are 

two common ways to interpret the VLCC market. The first orientation is based on the view 

that the laden and the ballast leg should be seen as a round-trip since the vessels typically 

return to the same loading port after discharge. According to this theory the income should 

be distributed over the entire trip, not only the laden leg. Alternatively one can argue that the 

economic nature of the laden and the ballast legs are different, and hence the speed choice 

differs as well. 

We are of the opinion that operators after discharge have a more forward-looking view with 

primary focus on fuel costs and the next fixture. Hence, we will argue that it is beneficial to 

analyse the speed choice for two legs separately and therefore split into two separate models. 

This view is in line with what is practiced by market participants such as Euronav (2015), 

which use the ballast leg as a position leg for the next fixture and therefore treats it 

separately to the laden leg. The trade-off in the ballast leg is between bidding on an earlier 

contract at the expense of increased fuel costs or slow steam to save fuel and bid for a later 

contract. Slow steaming increases the time before a new income generating leg can be 

undertaken, but the incentives to slow down could also be fuelled by a belief in an uptick in 

the market. Thus, for the ballast leg we choose to use a cost-minimizing approach, as 

outlined in section 3.1.2.  

Our models are based on Ronen (1982) and Assmann (2012), assuming that the vessels are 

sailing spot, i.e. on a voyage charter (VC). The models estimate the theoretical optimal 

vessel speed from the perspective of shipowners, which for VC contracts are both receivers 

of freight rates and bears the cost of bunkers. While the models require assumptions 

regarding the contract type, according to Devanney (2009) the identical speed incentives of 

any disponent owner leads to optimal speed being independent of whether a vessel is on VC, 

TC or is operated by the owner of the cargo (see section 2.1). For the laden leg we will 

challenge Devanney’s statement by introducing an alternative model for vessels operated by 

cargo owners in section 3.1.3. 
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Further, it is assumed perfect competition in the shipping market and that market actors 

behave rationally, with no ability to affect the total supply and rates. Hence, the shipowners 

are price takers in the spot market setting speed to optimize profits for each single trip. 

3.1.1 Profit Maximizing Model – Laden Leg 

For the laden leg a simple profit-maximizing model from the view of a shipowner chartering 

out his vessel on VC contract is taken. The owner charters out his vessel in the spot market 

for a dollar/tonne rate of R, on a given route from A to B. The distance for the route is given 

by D, and the size of the cargo transported in tonnes is W. The freight rate is assumed 

independent of speed, but the speed has to be set between Vmin, the minimum speed for 

manoeuvrability, and the maximum speed Vmax, limited by the engines maximum 

performance.  

As previously described in Table 1, costs are usually split into three categories. The first two 

categories are capital and operating costs that accrue regardless of employment of the 

vessel. These costs are not relevant for the speed decisions since they are neither voyage nor 

speed dependent. The second category are the costs related to a voyage, or the voyage 

variable costs, such as fuel costs, port costs, canal fees, towage and pilotage. While all these 

costs are relevant on a voyage basis, bunkers is the only cost dependent on speed and thus 

the only one included in the model. Payments (fees) for being early (late) specified in the 

charter clause20 are relatively small and ignored for the purpose of establishing a theoretical 

optimal speed model, even though it might be of relevance to the shipowner. Finally, it is 

assumed that the shipowner does not own the cargo and hence any depreciation of the value 

of the cargo is not included.  

R – Spot freight rate in dollar/tonne on a leg 

W – Weight of the cargo transported, tonnes 

L – Leg distance 

d – days it takes for the vessel to complete the leg 

V – Vessel speed 

Vd – Design speed 

Vmin – Minimum vessel speed 

                                                

20 Commonly refered to as demurrage and despatch fees 
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Vmax – Maximum vessel speed 

F – Daily fuel consumption (tpd – tonnes per day) 

Fd – Fuel consumption at design speed (Vd) 

PB – Price of bunker fuel, dollars/tonne 

∇ – Displacement21 of a ship 

∇! – Displacement at design draught 

D – Draught of a ship (depth measure) 

Dd – Design draught of a ship (depth measure) 

We start off with a simple profit function per day22 for the shipowner (Ronen, 1982): 

 𝜋
𝑑 =

𝑅𝑊
𝐿
24𝑉

− 𝐹𝑃!  (1) 

The daily fuel consumption needs to be determined, and in literature a well-known approach 

is the cubic rule (MAN Diesel & Turbo, 2013a), which is explained thoroughly in Appendix 

A 

 
𝐹 =

𝑉
𝑉!

!

𝐹!
∇
∇!

!
!
 (2) 

According to MAN Diesel & Turbo (2013a) the displacement ratio can alternatively be 

replaced by the draught ratio (D/Dd) as an approximation23. We will use this proxy in the 

remainder of this thesis due to information available for the draught ratio, but not for the 

displacement ratio. This gives us 

 
𝐹 =

𝑉
𝑉!

!

𝐹!
D
D!

!
!
 (3) 

And leaves us with the following profit formula 

                                                

21 Displacement is the weight of the vessel herself and the cargo, crew etc., that is the lightweight plus the deadweight. It is 
the weight of the water a ship displaces when it is floating 
22 !
!"!

 gives the trip length in number of days 
23 To be exact it should be scaled by the block coefficient relative to the design block coefficient 
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 𝜋
𝑑 =

𝑅𝑊
𝐿
24𝑉

−
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𝐹!
D
D!

!
!
𝑃!  (4) 

Hence, the operator should only slow down if the reduction in fuel costs offsets the lost daily 

freight income resulting from increased number of voyage days. To find the speed that 

maximize revenue, the daily profit function is optimized with respect to the speed chosen: 

 𝜕 𝜋𝑑
𝜕𝑉 =

24𝑅𝑊
𝐿 − 𝜀𝐹!𝑃!

D
D!

!
! 𝑉
𝑉!

!!!
1
𝑉!
= 0 (5) 

Subject to Vmin ≤ VL ≤ Vmax 

 

𝑉!∗ =
24𝑅𝑊𝑉!!

𝜀𝑃!𝐿𝐹!
D
D!

!
!

!
!!!

 (6) 

From this theoretical formula for the optimal speed choice, there can be drawn certain 

conclusions. Firstly, the speed is increasing with freight rate R, design speed Vd and the 

cargo transported W. On the other hand, optimal speed is decreasing with the price of bunker 

fuel oil PB, the trip distance L, fuel consumption at design speed Fd and draught ratio D/Dd. 

Thus, one should pay attention to the fact that increasing cargo have two conflicting effects, 

increasing freight income while at the same time increasing resistance thus fuel 

consumption.  

3.1.2 A Cost-Minimizing Model – The Ballast Leg 

For the ballast leg, the empty positioning leg, we use the cost-minimizing model of Ronen 

(1982) with the modified consumption formula presented in Appendix A. This leg does not 

generate any income for the shipowner and the objectives are therefore to minimize the costs 

and position the vessel for future freight contracts. For each day the trip is extended due to 

slower steaming, a cost equal to the alternative daily value Ca of the vessel is incurred. 

Hence, the cost function consists of the alternative daily value of the vessel and the fuel 

costs: 
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The trade off is whether it is beneficial to go faster in order to get an earlier fixture at the 

expense of burning more fuel. The cost-function is minimized with respect to speed in order 

to find a theoretical optimal speed 

 𝜕𝐶
𝜕𝑉 = −

1
𝑉!

𝐿𝐶!
24 + 𝜀 − 1 𝑉!!! 𝐹!
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   = 0 (8) 

Subject to Vmin ≤ VB ≤ Vmax 
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𝐶!
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D
D!
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!
!

 (9) 

From the optimal speed formula the speed is increasing with design speed Vd and the 

alternative income generation of the vessel Ca. It is decreasing with bunker fuel price PB, 

fuel consumption at design speed Fd and draught ratio (D/Dd).  

3.1.3 An Alternative Optimal Speed Model For a Cargo Owning 
Operator – Laden Leg 

Despite Devanney (2009) claiming that the incentives for an operator who owns the cargo 

and an owner chartering out his vessel in the spot market are coinciding, his reasoning do not 

account for the alternative value of the cargo, or more specifically, the financing cost of the 

cargo. Therefore we will present a model including this factor to check if such an approach 

is more in line with reality. With starting point in the presented cost minimizing model of 

Ronen (1982) we can formulate a model by using the alternative value of cargo instead of 

the alternative cost of the vessel (Assmann, 2012). The cargo owner needs to weigh the fuel 

savings from going slower with the financing cost of the cargo. Thus, we introduce the price 

of the cargo P0, and the alternative value of the cargo per day r. The latter could either be 

seen as what the owner alternatively could earn on the cargo per day, or as we assume; the 

financing cost reflecting the capital bound in the cargo. If the vessel is on a TC, the TC rate 
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does not need to be included, as it does not depend on speed. Assuming that the cargo owner 

moves an amount equal to the maximum cargo capacity of the ship, the cost-minimizing 

problem for the laden leg can be written as: 
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Minimizing the cost with respect to speed gives 
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Subject to Vmin ≤ VL ≤ Vmax and ε	
  =	
  3	
  (see	
  section	
  3.2	
  for	
  discussion	
  on	
  parameter)	
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Solving this for V to get an equation for optimal speed is a complex mathematical exercise, 

beyond the scope of this thesis, but at least this minimization problem gives us insight on 

which factors that will increase and reduce costs. The first term being negative indicates that 

increasing speed reduces costs related to the alternative value of the cargo. The second part 

of the equation indicates that reducing the speed reduce fuel costs. Hence, it is evident that 

the price of crude oil pulls optimal speed in two opposite directions. A higher crude oil price 

will increase the value of the cargo (boosting the speed incentives of cargo owners), but at 

the same time come simultaneously as higher bunkers prices24 (incentives to slow down). 

Which effect is the largest depends on the relative size of the different parameters in the 

equation. Due to high multicollinearity between crude and bunkers, it is hard to perform a 

statistical analysis of these two effects separately. Consequently, one must omit one of the 

two. As a result, the crude price measure kept in the equation will capture both the effect of 

cargo value decrease and bunkers costs increase. The key takeaway is that we are uncertain 

about the sign of the crude price coefficient for vessels operated by cargo owners. 

                                                

24 Assuming that that there exists a close correlation between bunker fuel oil and cargo price 
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An issue with the alternative theoretical model addressed by Assmann, Andersson, & 

Eskeland (2015) is that if the value of cargo is included as a speed-increasing variable, the 

storage situation for crude oil at destination should be accounted for.  If the cargo cannot be 

sold or used immediately and the storage costs are high, it might be beneficial to sail slower 

for the cargo owner. As data on storage costs are hard to obtain, it is not accounted for in our 

analysis. However, it should be kept in mind when interpreting the results. 

3.2 From Theory to an Empirical Model  

In order to be able to analyse how the speed choice is influenced by different factors, we 

need to formulate an empirical model. With basis in the theoretical model for the laden leg 

presented in the section 3.1.1, we can formulate a statistical model that can give us a good 

impression of the functional relationship between speed and its main determinants.  

Our expectations arising from the theoretical optimal speed model are based solely on a 

simplistic model of economic theory. In practice there will be unobservable factors such as 

currents and weather conditions that will affect the speed. We might also experience 

measurement errors, leading to untrue observations. In order to allow for variations between 

the observed speeds and the theoretical optimal relationship we need to add a stochastic 

element. Therefore we multiply an error term ω,	
  where	
  ω	
  = ev, to the optimal speed formula: 

 

𝑉!∗ =
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By taking the natural logarithm of this equation we can model the relationship between 

speed and the main determinants as a linear relationship. Linearity, being a key assumption, 

allows us to apply the panel data models discussed in the following through a log-linear 

relationship (Wooldridge, 2010): 

 lnV!∗ = 𝛽! + 𝛽!𝑙𝑛𝑅 − 𝛽!𝑙𝑛𝑃! + 𝛽!𝑙𝑛𝑊 + 𝛽!𝑙𝑛𝑉! − 𝛽!𝑙𝑛𝐿 − 𝛽!𝑙𝑛𝐹! − 𝛽!(D D!) + 𝑣 (14) 

This regression model, which is derived from the theoretical optimal speed formula, tells us 

the expected signs of the coefficients. Determining the speed-consumption power coefficient 
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ε allows us to get insight on the expected size of the coefficients for the explanatory 

variables. The speed-consumption power coefficient is dependent on vessel type, and for 

VLCCs generally assumed by the industry to be between 2.6 and 3.2 (Assmann, Andersson, 

& Eskeland, 2015; MAN Diesel & Turbo, 2013a). If we use a coefficient of 3, we would 

expect the following optimal speed relationship 
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Since the dataset do not enable us to categorize observations into individual trips and routes, 

the variable distance is dropped from the equation.  

As we have a panel data, with data varying both across time and vessels, the error term v is 

composed of two elements (Wooldridge, 2012) 

 𝑣!" = 𝛼! + 𝑢!" (16) 

Here the uit is the idiosyncratic error term that change over time for each vessel, while the αi 

is the unobservable vessel specific effect that varies across vessels but not over time.  Our 

model to be estimated would at this point be 

 lnV! = 𝛽! + 𝛽!𝑙𝑛𝑅 + 𝛽!𝑙𝑛𝑃! + 𝛽!𝑙𝑛𝑊 + 𝛽!𝑙𝑛𝑉! + 𝛽!𝑙𝑛𝐹! + 𝛽!ln  (𝐷 𝐷!) + 𝛼! + 𝑢!" (17) 

A similar exercise can be done for the ballast leg model, giving us the following expected 

relationship25 
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The model to be estimated is 

 lnV! = 𝛽! + 𝛽!𝑙𝑛𝐶! + 𝛽!𝑙𝑛𝑃! + 𝛽!𝑙𝑛𝑉! + 𝛽!𝑙𝑛𝐹! + 𝛽!ln  (𝐷 𝐷!) + 𝛼𝑖 + 𝑢𝑖𝑡 (19) 

We now have two equations to be estimated based on the theoretical optimal speed formulas, 

one for the laden leg (17) and another for the ballast leg (19). Nevertheless, in order to fully 
                                                

25 Given a consumption coefficient equal to 3 
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utilize the fact that we have a panel data we need to include variables that tells us something 

about the variation between different vessels, not only variations over time. This is a key 

contribution of our thesis to the existing research on optimal speed in the VLCC market. The 

inclusion of vessel specific variables will also contribute in reducing the unobservable vessel 

specific error term αi, improving the performance of the model and reducing a potential 

omitted variable bias (Bell & Jones, 2015). 

3.3 Building the Model  

Having a panel data implies that we have two dimensions; a cross sectional dimension and a 

time-series dimension. In our case the cross section is the total VLCC fleet, which we 

observe over the time period from January 2013 to February 2015. The irregular nature of 

the utilization of VLCCs, e.g. vessels at anchorage or in port/yards, means that we do not 

observe average daily speeds for each vessel for every date. Hence, our panel data is 

unbalanced. 

There are two main models for statistical analysis of panel data; the fixed effects (FE) model 

and the random effects (RE) model. The main difference between these two is how they treat 

the unobservable individual specific effects, αi. If the unobservable effect is correlated with 

the independent variables in the regression, it will bias the estimates26. Hence, the two 

models use two different approaches to deal with this issue (Wooldridge, 2012). 

In order to get rid of the omitted variable bias problem27 the fixed effects model control for 

unobservable effects by removing them. In the process of doing this, the model eliminates all 

time-invariant variables, which makes us unable to exploit vessel specific variables. 

Employing the random effects model allows us to not only utilize the within variation (i.e. 

the changes over time), but also the variation between the vessels. Since a key contributory 

factor of our thesis is to analyse the particular effect of vessels specific variables on speed, 

the properties of RE makes it the preferred model of choice. The major challenge of RE is 

the assumption that the unobserved individual specific effects αi are uncorrelated with the 

explanatory variables in all time periods. However, a correct specification of the model will 

                                                

26 Correlation between xit and αi violates the conditional mean zero given X condition E(α|X)=0, biasing our estimates 
27 First differencing (FD) and within group (WG) estimators removes the unobservable effects entirely from the equation, 
while least squares dummy variable approach (LSDV) remove the unobservable effects from the error term through 
inclusion of dummies (Wooldridge, 2012) 
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eliminate this issue. Hence, both for the sake of the value of our analysis and the statistical 

inference of the model it is crucial to include the individual specific factors that can explain 

variation between vessels (Bell & Jones, 2015).  

 
Table 4: Independent variable overview 

In Table 4 we have summarized our variables and their expected coefficients. The remainder 

of this chapter will be devoted to discussing why we add the variables not already included 

through the theoretical models, and their expected relationship with speed. In chapter 4-Data 

we will explain how all the variables are estimated and how we have collected data. The 

variables are split into four groups. The first group is (i) macro variables, of which the 

reasoning to include them and their expected coefficients are already discussed. The second 

group is (ii) vessel specific variables, of which cargo weight, design speed and fuel 

consumption at design speed already are included. The last two groups are (iii) operational 

variables and (iv) other variables. The variables are only relevant for the leg where an 

expected coefficient sign is listed. 

Laden Ballast
Macro Variables
lFreight $/tonne + + Log of freight rate for voyage charter
lFFA $/tonne + + Log of forward freight agreement
TCE $/day + Time charter equivalent (ballast only)
lBunkers $/tonne - - Price of bunker fuel oil
lFreight/Bunkers + + Log of ratio between freight and bunkers

Vessel Specific Variables
lDraughtRatio - - Log of draught ratio, not to be combined with lCargoFloating
lCargoConstant + Log of deadweight*0.95
lCargoFloating +(?*) Log of the weight of cargo transported (laden only)
ldSpeed knots + + Log of vessel design speed
lFuelCons tpd - - Log of fuel consumption at design speed
lConsumptionDSpeed tpd/knots - - Log measure of fuel efficiency at design speed
BlockCoefficient - - Hull shape: Deadweight divided by width*length*max draught
Length/Beam + + Hull shape: Length of the vessel divided by width (beam)
Beam/Draught - - Hull shape: Width (beam) divided by max draught
Built2000_D + + Dummy for vessels built before 2000
EVDI - - Rightships Existing Vessel Design Index
Drydock_D - - Dummy for vessels likely having a high degree of fouling
ECO_D - - Dummy for vessels with extra fuel efficient engines

Operational Specific Variables
Japan_D + + Dummy for vessels with main activity to/from Japan
LogChain_D + + Dummy for vessels part of a larger internal logistical chain
LpOw_D - - Dummy for vessels operated by large pool or owner

Other Variables
Cyclone_D - - Dummy for vessels located in an area with a cyclone
Contango_D - Dummy for period of contango in crude price (laden only)

* Uncertain whether the increased cargo effect or -hull resistance effect is the larger

Exp. Sign
DescriptionUnitIndependent variable



 32 

3.3.1 Adding Vessel Specific Variables (ii)  

Hull design 
The hull design and the size of the wetted area affect the resistance and thus how much 

power needed to move a vessel. This again affects the fuel consumption at a given speed (see 

Table 3). Presumably some of these effects should be reflected through “design speed” and 

“fuel consumption at design speed”28, but due to severe uncertainty in the measurement and 

viability of these factors we introduce a set of alternative variables as proxies for the 

resistance29: 

• Block coefficient 𝐶! =
∇

(!!"∗!!"∗!)
 – This factor gives us the ratio between 

displacement volume ∇ and the volume of a box (LWL*BWL*D). WL refers to 

measures at the waterline. A higher ratio implies that the vessel design is squarer. 

Hence, the smaller the ratio the less resistance of the vessel, resulting in possibility of 

achieving higher speeds. We will thus expect a negative coefficient (MAN Diesel & 

Turbo, 2013a) 

• Length / Beam – Increasing this ratio tends to reduce wave-making resistance, all 

other dimensions held constant. Thus we would expect to see that longer and 

narrower vessels steam at higher speeds (ABS, 2013) 

• Beam / Draught – Reducing this coefficient reduces wetted surface and thus 

frictional resistance. Consequently, we expect to observe a negative coefficient 

(ABS, 2013) 

In addition to the above-mentioned effects of hull design there are two further remarks that 

we should address. First, having a more efficient hull can give the additional benefit of using 

a larger propeller, amplifying the fuel saving effect (ABS, 2013). Secondly, since hull shape 

is likely to be optimized around the design draft (laden), we should pay attention to whether 

these factors influence the laden- and the ballast leg differently. 

                                                

28 In theory, the design speed and the fuel consumption at design speed should take into account the specifications of the 
vessels 
29 We will be observant to potential multicollinearity between the hull efficiency variables and the design speed and fuel 
consumption in our analysis 
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Fuel efficiency  
The IMO MEPC30 introduced the Energy Efficiency Design Index (EEDI) a measure for 

CO2 emissions for new vessels built after 1 January 2013 (IMO). The EEDI index is a 

measure of grams of CO2 per tonne nautical mile, calculated using characteristics of the ship 

at build, incorporating factors such as engine power, ship capacity and fuel consumption. As 

this index only applies to new vessels RightShip introduced the Existing Vessel Design 

Index (EVDI) to address the existing fleet. Since CO2 emissions are highly correlated with a 

vessel’s fuel consumption we will test this index as a proxy for fuel efficiency for the 

individual vessels. The EVDI index is supposedly capturing the effects of a wide range of 

vessel specific variables. In order to avoid multicollinearity problems, we should therefore 

be careful to combine this index with other factors assumed to affect fuel-efficiency.  

In addition to the EVDI index, we will add a dummy for ECO-vessels. Since the initial 

incentive for ECO-vessels is to offer low fuel consumption when slow steaming (Mitsubishi, 

2014), we expect ECO vessels to steam slower.  

Lastly, we introduce a dummy for vessels built before 2000. As they were built before 

sliding fuel-valves were introduced, a feature substantially improving the low-load/slow 

steaming performance (MAN Diesel & Turbo, 2013b), we expect these vessels to operate at 

higher speeds on average. 

Biological fouling – Dry-docking 
The potential speed of a vessel is dependent on its hull resistance, in which frictional 

resistance accounts for a major proportion (see Table 3). For a VLCC newbuild, or a vessel 

fresh out of dry-docking, the design hull specifications are the determinant of hull friction. 

However, from the time the vessel is launched, the wetted surfaces of the hull start 

accumulating microorganisms, algae, sea grass, barnacles and other biological particles 

(MAN Diesel & Turbo, 2013a). This biological fouling increases the friction, and the 

deterioration process continues until the hull is cleaned at dry-docking every five years31. For 

a given engine output the increased resistance from biological fouling will lead to lower 

speeds, and previous analysis’ show an average speed loss of about 5.9%32 during the five 

                                                

30 International Maritime Organization’s (IMO) Marine Environment Protection Committee (MEPC) 
31 SOLAS regulations require dry-docking every 5 years 
32 Analysis conducted by researchers, suppliers of measurement equipment and Jotun for various shipping segments 
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year period from one dry-docking to another (Kjølberg, 2015). Hence, we would expect that 

vessels with more biological fouling go slower on average. 

3.3.2 Adding Operational Variables (iii) 

Japan 
According to EIA33 (2015) Japan is both the third largest consumer (petroleum products) and 

importer of crude oil, relying almost entirely on crude import through the use of VLCCs to 

meet its needs. Several patterns suggest that the general spot assumption applied to 

traditional theoretical speed models do not hold for the Japanese VLCC trade. Firstly, the 

government maintain control over oil stocks to hedge against supply interruptions, and as of 

October 2014 they held 73% of the nations strategic crude oil stocks. Secondly, the 

government have agreements with oil producing countries in the Middle East such as Saudi 

Arabia and UAE, giving Japan priority of purchasing oil in events of serious supply 

disruptions through leasing of crude oil storage34 (EIA, 2015). Thirdly, Japan has a tradition 

of large conglomerates where cross-ownership between refineries and shipping companies 

must be considered likely, with tankers being part of the logistical chain.  

The sum of these characteristics makes it reasonable to assume that a major portion of 

vessels going to Japan operate on a shuttle basis. In addition, Assmann (2015) presents facts 

that suggest that most VLCC trade to Japan are likely to be operated through oil majors and 

time charter agreements. To analyse this potential effect we include a variable for vessels 

that we assume to operate on a time-chartered shuttle basis between MEG and Japan. Since 

there are reasons to believe that the vessels have more emphasis on scheduling than the costs 

of transportation, we expect to see them go faster with less respond to changes in 

fundamentals.  

Part of a larger internal logistical chain 
The schematic nature of crude transportation for vessels being part of a larger logistical 

chain could potentially affect the incentives and thus the speed decision. This dummy 

variable, hereafter referred to as “logistical chain” or “LogChain”, includes three categories 

we believe are likely to operate more as a shuttle, due to the focus of the owner. The first 

                                                

33 U.S. Energy Information Administration 
34 They have an agreement to store 6.3 million barrels for each of the producers 
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group consists of vessels (i) part of an internal logistics chain, with the main purpose to 

source crude for internal use. The second group is (ii) state oil company owned vessels. The 

last group comprises vessels owned by (iii) private oil companies and refineries. For 

privately and state owned Oil-companies and refineries, the long term crude sourcing 

strategy may alter the priorities in favour of security of supply at the expense of short term 

profit maximization for each vessel. 

Part of a large operational fleet 
There are reasons to believe that being a part of a large pool35 or operated by an owner with 

a large fleet could affect the observed speed of vessels. First of all, a large fleet introduces 

more flexibility when determining on which contracts to bid on. Operators with many 

vessels can make bids on the most favourable contracts and assign the ship located in the 

most beneficial position relative to the relevant port, with regards to bunker costs and 

laycan36. Further, the bidding for the movement of a cargo is organized as an auction 

controlled by the cargo owner. Consequently, shipowners are at information disadvantage 

(Euronav, 2015). Being a large owner or part of a large pool can increase the market 

visibility through better information on which vessels are available in the market for the next 

cargo movements, and what cargoes that need to be moved. Since operators with fewer 

vessels have less flexibility in regards to which vessels to assign to beneficial contracts and 

less information on future cargo moves, they might be likely to secure fixtures earlier in the 

ballast leg resulting in higher speeds in order to reach the laycan.  

Secondly, when operating a larger fleet you could get more bargaining power over 

charterers. Hence, it is reasonable to assume that large operators can have more power to 

embed the trip specific optimal speed in the “minimum speed” requirement in the charter 

clause.  

Based on our reasoning, we expect vessels managed by large owners or pools to steam 

slower in both the laden and ballast leg.  

                                                

35 This is an operational collaboration between different shipowners to benefit from large scale operation (Euronav, 2015) 
36 Laycan is short for layday and cancelling, stating at which time a ship must be presented to the charterer 



 36 

3.3.3 Adding Other Variables (iv) 

Contango  
Following the plunge in the crude oil price the last quarter of 2014, the forward curve 

changed from backwardation to contango37. This implies that the price for crude oil with 

delivery in the future is trading at a premium to that in the spot market. Contango is driven 

by expectations of the crude market going forward and the fact that investors may be 

interested in paying a premium to have the crude delivered on a later date, instead of 

purchasing the crude spot and pay for the cost of carry38. Periods of contango are often 

evident in times with oversupply of crude oil, high inventories and a weakening crude price, 

leading to increasing storage costs. If storage capacity runs out, the “cost-of-carry” 

relationship can break down and lead to a “supercontango” (Adland, 2014). In such a 

scenario the contango curve can get steep enough for it to be profitable to buy crude oil with 

immediate delivery, store, and sell off with future delivery. For this to be profitable the crude 

oil price premium needs to exceed the storage cost, i.e. VLCC TC rates in the case where 

floating storage is used as storing facility, and financing cost of the cargo value.  

In late February 2015 Euronav said on a DNB Conference that around 20 vessels had been 

booked for storage by oil traders. Due to our minimum speed requirements in the data 

cleaning, VLCC vessels that are anchoring would not be included in our analysis (see section 

4.1.2). However, as the owners of the cargo (charterer for a VC) could have incentives to 

slow down to take advantage of a steep forward curve, we expect that operators steam 

somewhat slower than implied by freight rates and bunkers prices in times of supercontango.  

Cyclone 
While macro economic variables have intricate effects on the daily speed of VLCCs, the 

relationship between rough weather and average daily speed is more straightforward. Higher 

waves, currents and windy conditions lead to higher air and residual resistance, which again 

could force vessels to steam at slower speeds than what is optimal at design conditions. Even 

though the relationship is easily comprehendible, it is not possible with today’s data 

                                                

37 If the forward curve is downward sloping the crude price is in backwardation, while an upward sloping curve is defined 
as contango 
38 Includes financial cost and storage cost 
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collection technology to link the local weather conditions39 for each day to each vessel. 

Hence, observable weather conditions have to be allocated to each vessel in retrospect using 

longitude and latitude data. One such observable variable is the seasonal climate changes in 

the tropical wet equatorial regions surrounding the Indian Ocean. As the Indian Ocean is 

used as passage for all voyages going out of MEG40 a significant portion of all VLCCs 

operate in waters where heavy wind, tropical storms and cyclones are factors to be 

considered by vessel owners and operators in large parts of the year.  

The empirical model  
The variables of choice described in this section leave us with the final empirical model for 

the laden leg and the ballast leg: 

Where V is the observed speed per vessel i at time t. Mtj is the set of j macro-variables, Vik is 

the set of k vessel specific variables, Oil is the set of l operational variables and Qim is the set 

of m other variables41, listed in Table 4 above. Before proceeding to the empirical results we 

will present our dataset and describe the data we have used for each variable. 

                                                

39 Wave size, currents & local wind conditions 
40 Northern Indian Ocean to East Asia and Southeast Asia, South-West Indian Ocean to U.S Gulf 
41 Of which the contango variable only varies across time, while cyclone varies across vessels and time 
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4. Data 

In this chapter we will firstly describe our dataset and the cleaning process we have 

conducted in order to arrive on our final dataset of speed observations. Secondly, we will 

describe the data we have used for each of the explanatory variables and the data collecting 

process. In the data summary section we will argue why we use average weekly speed data 

instead of daily speed data, before summarizing the numerical data. 

4.1 The Dataset 

4.1.1 Original State 

Being a part of the GREENSHIPRISK project, we were given access to a panel dataset 

consisting of daily data on the complete fleet of VLCCs from 31.12.2012 to 22.02.2015. The 

original dataset was collected and structured by Genscape Vesseltracker and Marinetraffic. 

In its original state the dataset was divided into three parts based on the daily loading 

condition of each vessel: laden, ballast and unknown. All three parts were structured equally, 

providing daily data points on move42 draught, max draught, latitude, longitude, move speed 

and average daily speed for vessels identified through Vessel ID, as well as MMSI number, 

IMO number and vessel name. 

4.1.2 The Cleaning Process 

Data points on average daily speed that could potentially lead to biased results and 

conclusions should be kept out of the regressions. In order to remove unwanted data points 

we have followed a 9-step cleaning process. See Appendix B for detailed information and 

excel calculations on the cleaning process. 

1) Allocation of unknown to ballast and laden 
First, we determined which data points in the unknown dataset we could allocate to the laden 

and ballast datasets, and hence put to use in our analysis. We removed data points with move 

draught registered as zero and with undefined max draught, before allocating the remaining 
                                                

42 “Move” is generally referring to a dynamic measurement of a variable in the dataset at a single point in time 
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data to ballast and laden using a ratio of move draught over maximum draught43 (draught 

ratio). The draught ratio limit for ballast was set to <66%, in line with the definitions of the 

loading conditions for the original datasets..   

2) Removal of extraordinary low average speeds at start and end of 
data series 
Structuring the average daily speed data in a matrix with vessels and dates in the axis’s 

allowed us to identify data points presumably being part of one voyage44. It became evident 

that average daily speeds that were assumed to be in the beginning and end of each voyage 

were often considerably lower than for the rest of the voyage. This can be explained by the 

fact that vessels reduce speeds going in/out of ports, or that the vessels are very close to the 

shore. Because these observations are of no relevance to the optimal speed analysis they 

were be removed from the dataset.  

3) Removal of lone values 
Data points with no other data point within a +/- seven days range were removed from the 

dataset.  

4) Removal of double counts 
Throughout the dataset (both laden and ballast), average daily speed values were sometimes 

registered more than once a day. No robust explanation was to be found and as seen in 

Figure 2, particularly two dates were prone to double counts. The first data point registered 

for a given vessel at a given day was kept, the rest were removed.  

 
Figure 2: Number of observed double counts by date 

                                                

43 Maximum draught specified in the original data set   
44 This method did, however, not allow us to identify voyages correctly through a formula because of the many blank fields   
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5) Removal of vessels only registered with either laden or ballast data 
15 vessels were only registered with either ballast or laden data45. With data on only one leg, 

it is not known if the vessels were used actively for carrying crude in the period. Hence, the 

average speed could potentially be driven by other factors than for the active VLCC fleet in 

the dataset. All these vessels and the corresponding speed data were removed.  

6) Defining new laden and ballast data points based on Draught Ratio 
The distribution in Figure 3 shows that 93% of the data is registered either with a ratio in the 

46%-56% range or 84%-100% range, implying little variation in loading conditions.   

 
Figure 3: Draught ratio by number of observations for the complete dataset 

In order to mitigate the risk of mixing laden and ballast data, new definitions were set for 

laden and ballast (Table 5), and data points not included in the reviewed defined range were 

removed. 

 
Table 5: Reviewed ballast and laden definitions 

Ballast water is essential to un-laden VLCCs as it provides balance and stability to the 

vessels, reduces stress on the hull, and improves propulsion and manoeuvrability (IMO). 

Minimum draught ratio was set to 25% to reflect that data points with ratios below this are 

                                                

45 11 vessels with only Ballast data, 2 vessels with only Laden data, 2 vessels with 1 registered data point 
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either miscalculated or the vessel was about to go into dry dock at that time46.  Data points 

where the reported move draught was higher than the max draught (more than 100% Draught 

Ratio) were also removed.  

7) Removal of data points with lower average speed than minimum 
speed 
The absolute minimum speed of a vessel depends on its ability to manoeuvre and navigate at 

low speeds, which again is dependent on hull design and engine specifications. However, 

IMO provide guidance criteria’s for the manoeuvrability of vessels and operates with an 

approximate minimum speed of 8 knots (IMO, 2011), a minimum speed supported by Gray 

et al. (2001) for direct-drive diesel ships. This implies that if a data point is registered with 

an average daily speed below 8 knots it should be removed from the dataset because it alters 

the fact that no vessel would operate at speeds lower than their minimum speed. However, 

by studying the dataset it becomes evident that several observed vessels steam at lower 

speeds in some periods. In fact, 7528 data points or about 2.5% or the initial dataset are 

observed with average speed between 7 and 8 knots. Lower speeds than 7 knots are observed 

less frequently and setting the minimum speed to 7 knots reduces the amount of removed 

data points to 815. This suggests that shipowners allow their vessels to steam at speeds lower 

than what IMO characterizes as minimum speed, but not much lower than 7 knots.  

8) Removal of data points with higher average speed than maximum 
speed 
While the maximum speed of VLCCs differs depending on factors mentioned in Table 3, the 

highest maximum speed described in reliable sources are 18 knots (Ligtertingen & Velsink, 

2012). 18 data points with recorded speeds higher than 18 knots were removed.  

9) Removal of data points with no vessel data in Clarksons 
One vessel was not included in the Clarksons database. Since no vessel specific information 

was available, the vessel and the 439 corresponding data points were excluded from the 

dataset.  

                                                

46 When dry docking the vessels are emptied for ballast water and can be observed steaming with draught ratios less than 
25%.  
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4.1.3 Cleaning Summary 

The cleaning process, summarized in Figure 4, reduced the initial dataset with 7%, removing 

in total 21,549 data points. Total vessels were reduced from 624 to 607. 

 
Figure 4: Cleaning process showing number of deleted data points for each step 
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4.3 Data Collection – Explanatory Variables 

4.3.1 Macro Variables Data (i) 

Freight rates  

 
Table 6: VLCC routes in the Baltic Dirty Tanker Index (BDTI) 
Source: Baltic Exchange (2015) and Kavussanos & Visvikis (2006) 

Out of the five VLCC routes in the BDTI presented in Table 6, the Tanker Dirty 3 (TD3) 

route from Ras Tanura, Saudi Arabia, to Chiba, Japan, is the most commonly traded (Kiesel, 

Scherer, & Zagst, 2010). 

 
Table 7: Correlation in freight rates for different routes over relevant time period 
Source: Own calculations based on Clarkson’s SIN (2015) 

Given the high correlation between the routes, as seen in Table 7, daily Worldscale47 rates 

for TD3, converted to $/tonnes, is used as a proxy for freight rates for all routes. As we do 

not know the contracted route for each data point in our dataset, this simplification allows us 

to still analyse the broad effects of freight rates on speed.  

To check if expected future spot rates can have more impact on the speed choice than the 

spot rate, or the lagged spot rate, we have also collected data for forward freight agreement 

(FFA) for TD3.  

Opportunity cost – Ballast leg  
To find a proxy for the opportunity cost of a vessel we will use a time-charter equivalent 

(TCE) for a trip from Middle East Gulf to Japan. In our view this is a good proxy for what a 

                                                

47 Worldscale is a method to measure spot freight rates relative to an index, the flat rate, which for a defined standard vessel 
gives the TCE of 12,000$/day on any global tanker route. The worldscale is quoted as a percentage of this flat rate, such 
that WS50 is flat rate*0.5 for that route 

Region Country Location Country Location
BDTI TD1 Middle East Gulf Saudi Arabia Ras Tanura USA LOOP
BDTI TD2 Middle East Gulf Saudi Arabia Ras Tanura Singapore Singapore
BDTI TD3 Middle East Gulf Saudi Arabia Ras Tanura Japan Chiba
BDTI TD4 West Africa Nigeria Offshore Bonny USA LOOP
BDTI TD15 West Africa Nigeria/Equatorial Guinea Offshore Bonny / Serpentina China Ningpo

Routes Loading Discharge

TD1 TD2 TD3 TD4 TD15 Sum
TD1 1.00 0.92 0.92 0.86 0.90 4.59
TD2 0.92 1.00 1.00 0.92 0.98 4.82
TD3 0.92 1.00 1.00 0.92 0.98 4.82
TD4 0.86 0.92 0.92 1.00 0.96 4.66
TD15 0.90 0.98 0.98 0.96 1.00 4.82
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vessel alternatively can generate in profit if they speed up, under our assumption that all 

vessels are operating in the spot market. 

In some periods the TCE can be negative. This is often a result of the TCE being calculated 

based on a fixed speed for the different legs, not accounting for the fact that vessels will slow 

steam in poor market conditions. However, if the TCE is truly negative or at least very low, 

owners should consider laying up their vessel. In any case a negative TCE should reduce the 

speed, so we have not taken the possibility to lay up into the consideration. The TCE for 

BDTI TD3 is extracted from Clarksons Shipping Intelligence Network (SIN) (2015) 

database on a weekly basis. As some values are negative we are not able to do a log 

transformation and thus keep it as it is.  

Bunkers 
Since we were unable with our data to estimate routes we have used the prices for Fujairah 

380cst as the cost of bunker fuel oil, extracted from Clarksons SIN (2015). We believe this is 

a good proxy for the bunkers cost, as it is both from the Arabian Gulf and also the cheapest 

alternative in the area in the relevant period (Clarksons Shipping Intelligence Network, 

2015).  

For the laden leg it is reasonable to assume that the vessels bunker up in the Arabian Gulf 

before the beginning of each trip. Given that sailing time one way is around 4 weeks we find 

it sensible to use two-week lagging bunkers. For the ballast leg the question is a bit less 

straightforward. A ship could choose to carry smaller amounts of bunker fuel in exchange 

for more space for cargo, in cases where the constraint is cargo weight and not the volume of 

cargo (Ronen, 1982). Hence, it might be beneficial to refill in the discharge port. For the 

sake of our analysis we have ignored this possible issue, as the effect of this increased cargo 

is marginal, dependent on the operators refuelling policy, and neither does it always exist. 

Further, our approach is supported by the fact that the 380cst fuel oil price in Japan in the 

relevant period had a correlation of 0.99 with the Fujairah, and traded at an average premium 

of 8.1%. Hence, it is likely that it is more beneficial to bunker up for the whole round-trip in 

the Arabian Gulf. Given the sailing time one way of around 4 weeks and assuming 

bunkering in the Arabian Gulf, a vessel has bunkered fuel between 4 and 8 weeks ago 

depending on where in the ballast leg it is, thus we find it most reasonable to use a 6-week 

lagging bunkers for the ballast leg. 
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4.3.2 Vessel Specific Variables Data (ii) 

Design speed 
The Clarksons World Fleet Register (2015) has been used as a starting point to find design 

speed for the individual vessels. The database had missing values for 88 of the vessels and in 

addition some values registered were clear outliers. To estimate the missing values and 

replace the outliers we have used a three-step approach, described in detail in Appendix C.   

Fuel consumption at design speed 
The Clarksons World Fleet Register (2015) includes a fuel consumption variable48 measured 

in tonnes per day (tpd), but it lacks data on 277 vessels. In addition, among the vessels where 

tpd is given, there are large variations in fuel consumption that is seemingly unrelated to 

engine and hull specifications. This questions the credibility of the Clarksons tpd database 

and makes it necessary to compute our own proxy’s for fuel consumption at design speed in 

order to analyse the effects on average daily speed.  

To form a tpd measure of fuel consumption at design speed we create a relationship between 

the specified maximum continous rate (SMCR) and total generated power (TGP), both 

variables reported in the Clarksons database on a per vessel basis. SMCR is the maximum 

RPM rating required by the yard or owner for continuous operation of the engine (MAN). 

TGP is measured in kilowatt (kW) and is the corresponding power output of the engine when 

running at SMCR. We are hereby not trying to establish a fuel consumption regression 

applicable to all speed levels, but rather form a relationship between engine speeds (RPM), 

mean effective pressure (kW) and fuel consumption at design speed at design conditions. 

See Appendix D for a comprehensive process on how fuel consumption at design speed is 

estimated. 

We acknowledge that the method used has its pro’s and con’s.  

Pros 
• Captures that large engines in terms of total power output consumes more fuel at 

design speed than smaller engines 

• Small total difference to reported Clarksons data 

                                                

48 Assumed to be at Clarksons defined design speed 
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• Captures general differences in engine tuning  

Cons 

• Does not capture the technological differences between engines from different 

manufacturers 

• Does not account for other engine specific factors affecting fuel consumption than 

RPM and total power output 

• The engine allocation follows simple principles regarding SMCR and the engines 

may not be accurately allocated to the three Wartsila engine performance charts. 

However, the differences between the fuel multiplication factors are not major so this 

problem should not distort the results to a large extent.	
  	
  

• Assumes that all variables related to hull resistance are captured in the design speed.   

Draught ratio and cargo weight 
The draught ratio is measured as weekly average move draught49 over max draught, where 

we have used the data from the original dataset. This is used as a measure of resistance in the 

ballast leg. For the laden leg we have used two different approaches: 

1. Combining draught ratio with a fixed cargo weight. The latter is estimated as 

DWT*0.95 with intention to pick up speed differences between vessels due to 

persistent differences in carrying capacity. The draught ratio will pick up resistance 

and the variation in cargo within a vessel over time. 

2. Floating cargo weight – measured as draught ratio * DWT as a measure of both 

differences in carrying capacity, loading degree and resistance 

Hull shape 

• Block coefficient – since we do not have all the exact data, we must approximate the 

coefficient after best effort. All data are extracted from Clarksons World Fleet 

Register (2015). 

a. Displacement volume – since we lack data on light displacement, we can use 

the MAN Diesel & Turbo (2013a) suggestion of a displacement/DWT ratio of 

1.17 for tankers. To convert from tonne to volume we divide by 1.025 t/m3, 

which is the normal mass density of seawater. 
                                                

49 Calculated as weekly average given the loading condition (laden and ballast) 
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b. Length at waterline (LWL) – what we have is length between perpendiculars50 

(LPP), which often is used instead of LWL. Only difference is that LPP is a bit 

smaller, so the coefficient is somewhat larger. 

c. Beam – we use regular beam, as we do not have the waterline beam 

d. Depth – we use max draught from the original dataset. Based on the laden 

draught ratio of 93.5% on average it seems to coincide pretty well with what 

we would expect from design draught. Relative differences in max draught 

should anyhow be approximately the same as differences in design draught.  

à Gives us the coefficient: 𝐶! =
!"#∗!.!"/!.!"#

(!!!∗!∗!)
 

• Length / Beam – we use LPP and regular beam 

• Beam / Draught – also here we will use max draught 

Fuel efficiency 
Based on engine data from Clarksons we identified seven vessels with a main engine 

specified as ECO from the manufacturer MAN B. & W. The EVDI index was provided by 

RightShip. 

Biological fouling – Dry-docking 
We include a dummy variable for vessels that are assumed to be in their fourth year out of 

dry-docking and zero for the ones that are assumed to be in their first year. The assumption 

behind the variables is that the vessels are dry-docked every five years, starting five years 

after year built.  

 
Table 8: Method for adding dry-dock dummy 

The count formula in Table 8 is based on years after dry-dock. This means that every fifth 

year a vessel is assumed to dry-dock, resetting the count. If the vessel is dry-docked 

sometime during year 5, the year before (4) is the best proxy we have for when the hull of a 

vessel is heavily affected by fouling. Year 1 should be the best proxy for the cleanest hull. 

All other data points from years other than +1 and +4 after dry-dock are removed from the 

                                                

50  The distance between rudder shaft and the point where bow stem enters water, at design draft  
 

Year built 1 2 3 4 Dry-docking
Count Formula 0 1 2 3 4 0
Dummy variables - 0 - - 1 -
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dataset, enabling us to single out the fouling effect. This comes at the expense of reducing 

the number of data points considerably. We acknowledge that market conditions might result 

in off-cycle dry-docking, but as such data are hard to obtain our approach is the best 

approximation to account for fouling of the hull. 

4.3.3 Operational Variables Data (iii) 

From a statistical point of view vessels should only be included in one of the three 

ownership categories to not cause problems in the model. Since we would expect the speed 

effect of shuttling to Japan to be present regardless of the vessel being part of a larger 

internal logistical chain or part of a large operational fleet, Japan have first priority out of the 

operational variables. In the same way, being part of a larger internal logistical chain is 

arguably more important for the speed incentives than being part of a large operational fleet. 

Japan 
We have estimated which vessels that are most likely to shuttle MEG-Japan (Td3) by 

looking at the share of observations (days) in Japanese waters (Appendix E)51. In Table 9, 

three routes from Saudi Arabia to Japan are presented, with Port of Kagoshima being the 

closest to Ras Tanura. Chiba is the port located in the middle, while Tomakomai represents 

the longest sailing distance for VLCCs. In Table 9 we have presented the expected minimum 

days in Japanese waters for different round trips, and the corresponding share of total days in 

the round trip. 

 
Table 9: Routes from Ras Tanura to three different ports in Japan based on distance 
Source: Own analysis based on route descriptions from Ports.com 

From the table it is evident that vessels shuttling MEG-Japan should at least have 4% of all 

observations in Japanese waters. However, on the basis that Ras Tanura to Chiba is the main 

discharging port in Japan we have set the limit for inclusion in the Japan variable at 8%. 

                                                

51 This is not territorial Japanese waters, but defined by several longitude and latitude squares to capture areas close to the 
Japanese shore. This is to exclude the effects of vessels going to South Korea. See Appendix E for detailed definition of 
longitude/latitude for Japan.  

Route Nautical Miles Days at sea @ 
12 knots

Minimum days in 
Japanese waters 
(Excl. Port time)

% of total 
route

Ras Tanura - Kagoshima - Ras Tanura 14600 51 2 4%
Ras Tanura - Chiba - Ras Tanura 16006 56 6 11%
Ras Tanura - Tomakomai - Ras Tanura 16914 59 9 15%
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Hence, a Japan Dummy is added to all vessels with 8% or more observations in Japanese 

waters. This totals 62 vessels, or about 10% of all vessels included in the analysis.  

Part of a larger internal logistical chain 
We have removed two vessels that fell under the category “Japan” manually. The 

identification of vessels part of a larger internal logistical chain is based on a manual review 

of the owner companies and their web sites. A vessel is assigned a dummy if it falls into one 

of the three categories defining this variable, specified in section 3.3.2. 

Part of a large operational fleet 
To estimate a dummy variable for vessels that we define as operated by a large pool or 

owner, we have used input from Clarksons World Fleet Register (2015) and company web 

sites. Firstly, we define and count vessels that are in a pool. Secondly, vessels not part of a 

pool is grouped and counted based on the manager, which can either be a shipowner or a 

pure ship manager with no ownership. Then we select those vessels that are operated by a 

pool or a manager/owner with more than a total of 15 VLCCs. In accordance with our 

previous discussion and as seen from Table 10, we have excluded vessels that are in the 

category “Japan” and the vessels from NIOC, being a state owned oil company. In the table 

underneath we observe 8 different operational fleets making up a total of 180 vessels or 29% 

of the total fleet.  

 
Table 10: Operational fleets including pools, managers and owners 

Pool/Owner Count Dummy Description
Japan 55 0 TC)to)Japan),)excluded
Tankers)Intl 37 1 Pool

NIOC 33 0 State)OilCo)owned),)excluded
Bahri 31 1 Owner

Angelicoussis)Group 22 1 Owner

VL8)Pool 21 1 Pool

V.)Ships 19 1 Manager

SK)Shipmngt. 18 1 Owner

Assoc.)M/time)(H.K.) 16 1 Manager)and)owner

Mitsui)O.S.K.)Lines 16 1 Owner

Count4included4vessels 180
Market4share 29%
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4.3.4 Other Variables Data (iv) 

Cyclone  
To estimate a dummy variable for cyclones we have identified all data points registered in 

the North Indian Ocean throughout the period (see Appendix F), totalling 25.6% of all data 

points. Depressions, tropical storms and tropical cyclones52 in the North Indian Ocean, 

potentially affecting crude trade53, for the period from Jan 2013 to Feb 2015 are summarised 

in Figure 5.  

 
Figure 5: Depressions, tropical storms and tropical cyclones observed in the North Indian Ocean (except Bay of 
Bengal, an area with little vessel traffic) 
Source: Various warnings and reports from India Metrological Department (IMD) and Joint Typhoon Warning Center (JTWC) 

As weekly average speed is used for the regression analysis, dummies are only applied to 

weeks with four or more days of recorded bad weather54. In this way we are able to analyse 

if the fact that vessels are located in the North Indian Ocean in times of especially bad 

weather affect the average weekly speed.  

Contango 
To determine the contango dummy we have extracted historical futures curves for ICE Brent 

on a weekly basis from Bloomberg. In order to compare the steepness, curves are indexed 

and normalized with regards to months to delivery. We have also made a qualitative 

assessment bearing in mind that at the middle of the month, first delivery will switch to the 

subsequent month. Hence, in contango the short-term futures curve should be steepest the 

16th and the least steep at the 15th in a month. As it is hard to determine an absolute cut-off 

point for where the contango trading pattern applies, as discussed in section 3.3.3, we choose 

a conservative approach and choose only January and the first two weeks of February for our 

                                                

52 India Meteorological Department (IMD) operates with 6 weather categories, From Tropical Depression (51km/h-62km/h) 
to Very Intense Tropical Cyclone (>212km/h)  
53 Depressions in the northern parts of the Bay of Bengal are excluded from the analysis.  
54 A specific vessel is only assigned a cyclone dummy for a week in which the vessel finds itself in a specific cyclone, for 
more than 50% of the registered data points within that week 
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dummy variable. As illustrated in Figure 6, these are the weeks with the steepest futures 

curves. We acknowledge that the steepness of the futures curves alone is not enough to 

analyse the profitability of a contango trade. However, the weeks included by choosing the 

ones with the steepest curves correspond to the fact that various articles in specialized press 

addressed the contango play in this period.  

 

 
Figure 6: ICE Brent future contracts for different dates by delivery month and % premium  
Source: Bloomberg (2015) 

4.4 Summarizing Data 

When conducting the analysis we have used the average speed per vessel per week instead of 

average daily speeds per vessel. This is done for the following reasons:  

1. We observe that daily speeds vary quite considerably from day to day for a vessel. A 

large part of this variation is likely to be caused by unobservable noise such as wind, 

waves and currents. This noise can be reduce by averaging over weeks 

2. In our opinion it is not likely that the speed decision is micro-managed on a daily 

basis, a view supported Euronav (2015). If this is true, the daily movements in freight 

rates and bunkers cannot explain the daily speed variations, and it makes more sense 

to use weekly data to capture the broader fluctuations in fundamentals. 

3. We only have weekly data for bunkers, and based on the previous argument we use 

weekly freight as well. Consequently, it would not be meaningful to let speed vary 

per day while the explanatory variables vary over weeks.	
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When averaging over weeks we use only one observation per week for a vessel. The 

alternative would be to use the weekly averages on a daily level. However, the latter would 

result in the standard errors of the estimators being artificially small55. We acknowledge that 

one issue with the chosen approach is that a week with only one observation is weighted just 

as much as a week with seven observations. Ideally, we would weigh our regression with 

number of observations the weekly average is based on, but such an operation is not allowed 

for panel data (StataCorp, 2015a). This approach increases the importance of cleaning the 

dataset for observations not representative of the true speed decision of operators. We will 

check the robustness of our approach by performing the empirical analysis when removing 

weeks with less than X number of observations, as outlined in section 5.1.4.  

Our approach results in that averages and standard deviations of dependent and independent 

variables will deviate somewhat from what can be found if we had used daily data. We end 

up with a dataset of 33,147 weekly speed observations for the laden leg and 28,713 for the 

ballast leg, spread on 607 vessels. In Table 11 we have presented the descriptive statistics for 

our variables by leg. A more comprehensive descriptive statistics with standard deviations, 

min- and max observations both within and between vessels are presented in Appendix G. 

                                                

55 Stata would calculate the estimators as if the dependent variable varied much less than what it actually does 
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Table 11: Descriptive data summary 

First of all we should emphasize that much of the variation between the two legs are a result 

of the differing distribution of observations over the time period and across vessels for the 

two legs. An interesting observation is that vessels on average seem to sail faster in the laden 

leg than in the ballast leg, and that there are larger variations in speed for the ballast leg both 

across vessels and per vessel (Appendix G). The average between the fixed and the floating 

cargo weight is quite similar, but not surprisingly the floating cargo has a larger standard 

deviation, as it varies over time in addition to vary across vessels. We also observe that 

vessels in a large pool or part of a large fleet are relatively overrepresented in the dataset, 

especially in the laden leg, as they only constitutes 29% of the fleet but 44.0% and 38.7% of 

the observations. Japan is slightly overrepresented with vessels constituting 9.1% of the 

fleet, and LogChain is slightly underrepresented, as these vessels make up 10.9%56 of the 

fleet. 

                                                

56 There are 66 vessels in the category LogChain, and 55 vessels operating to Japan 

Average Std. Dev. Min Max No.obs Average Std. Dev. Min Max No.obs
Independent Variable

Speed 12.08 1.41 7.00 17.29 33 147 11.83 1.95 7.00 17.80 28 713
Macro Variables

TCE 22 350 23 422 -7 108 90 140 28 713
FFA+1M 12.63 2.16 9.63 17.68 33 147 12.57 2.16 9.63 17.68 28 713
Freight 13.02 3.28 9.07 21.10 33 147 12.96 3.28 9.07 21.10 28 713
Bunkers* 569.4 93.1 282.5 663.0 33 147 586.1 71.4 282.5 663.0 28 713
FreightBunkers* 0.025 0.013 0.014 0.071 33 147 0.023 0.010 0.014 0.060 28 713
FFA1M/Bunkers 0.024 0.010 0.015 0.061 33 147

Vessel Specific Variables
DraughtRatio 0.935 0.039 0.795 1.005 33 147 0.511 0.034 0.253 0.645 28 713
CargoConstant 291 869 9 671 246 999 420 347 33 147
CargoFloating 287 125 12 911 206 817 391 423 33 147
dSpeed 15.77 0.52 13.50 17.40 33 147 15.74 0.50 13.50 17.40 28 713
FuelCons 100.4 11.5 56.0 130.4 33 147 99.8 11.2 56.0 130.4 28 713
Consumption/dSpeed 6.37 0.70 3.59 8.23 33 147 6.34 0.68 3.59 8.23 28 713
BlockCoefficient 0.84 0.02 0.78 0.93 32 902 0.84 0.02 0.78 0.98 28 448
Length/Beam 5.58 0.11 4.76 6.09 32 962 5.58 0.11 4.76 6.09 28 505
Beam/Draught 2.73 0.13 2.49 3.68 32 962 2.74 0.13 2.49 3.68 28 505
Built2000_D 14.4% 33 147 17.0% 28 713
EVDI 2.48 0.15 1.99 2.95 33 147 2.47 0.15 1.99 2.95 28 713
Drydock_D 50.2% 13 397 51.9% 11 589
ECO_D 0.6% 33 147 0.6% 28 713

Operational Specific Variables
Japan_D 10.6% 33 147 10.3% 28 713
LogChain_D 8.7% 33 147 9.7% 28 713
LpOw_D 44.0% 33 147 38.7% 28 713

Other Variables
Contango_D 4.6% 33 147
Cyclone_D 1.8% 33 147 2.3% 28 713

* For the laden leg we use spot bunkers, and for the ballast leg we use 6-week lagging bunkers

Laden Leg Ballast Leg
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5. Analysis & Discussion 

In this chapter we will first present the statistical tests we have performed during our 

analysis, before presenting the empirical results for the laden leg and ballast leg. We will 

follow up with a critical discussion of main findings, before presenting suggestions for 

further research on this topic. 

5.1 Tests 

5.1.1 Hausman Test for Model Choice 

We perform the Hausman test for each model specification in Table 12 and Table 13. This 

test indicates whether the random effects model is acceptable. It tests the null hypothesis that 

the individual unobservable effects are uncorrelated with the time-varying regressors57, the 

key assumption of the RE model. So if we do not reject the null, we can apply the RE-model. 

If the p-value from the Hausman test is less than 5% we reject the null and either we must 

use the FE-model, or we need to improve the model specification in order to make the RE-

model acceptable. For the models where the main focus is on the time-varying variables, we 

apply the FE-model if the Hausman test dictates so. In the model specifications where the 

inclusion of time-constant variables is of importance, we keep the model as a RE-model and 

rather try to improve the model specification. This is done because the FE-model will omit 

the important time-constant variables. For the laden leg, the RE-model was not acceptable 

for model specification (4), (5), (6), (11) and (12). We applied the FE-model for 

specification (4), and tried to improve the model for the remaining. For the ballast leg, the 

only model specification not feasible with the RE-model was (12), which is re-estimated 

with the FE-model in specification (13). 

5.1.2 Obtaining Robust Standard Errors 

One potential issue in our dataset is heteroscedasticity, which implies that the variance is 

dependent on some of the regressors, thus not constant as we assume. This would not cause 

biased estimators, but it would cause our standard errors to be wrong (Wooldridge, 2010).  
                                                

57 Mathematically this implies that Cov(xit , αi)=0. Under this assumption both RE and FE are consistent, but only RE is 
efficient. 
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To deal with this potential issue we use cluster-robust standard errors to make the standard 

errors robust against serial correlation, heteroscedasticity, non-normality and/or outliers. 

This is the same as specifying the Huber/White sandwich estimator58. Firstly, it relaxes the 

assumption that standard errors need to be identically distributed; hence they are robust 

against heteroscedasticity. Secondly, the standard errors are clustered on panels, relaxing the 

assumption of independence of the observations. Consequently, observations only need to be 

independent across the clusters (vessels), while allowing for serial correlation within panels. 

The coefficient estimates will be the same but standard errors and t-stats will change. The 

Huber/White sandwich estimator produces “correct” standard errors, even if the observations 

are correlated and not identically distributed, in the sense that we can make valid statistical 

inference about the coefficients (StataCorp, 2015b). 

One advantage for us is that we have a large panel, and increasing the number of panel’s 

increases the likelihood of fulfilling the assumptions behind the model. It also reduces the 

time-series properties of the regression (Wooldridge, 2012). 

5.1.3 Dealing with Multicollinearity 

There are no applicable formal multicollinearity tests in Stata for the random effects model. 

Therefore we have made piece-wise checks between variables to check for multicollinearity 

between these, and let this affect which variables we include in the same model 

specifications (StataCorp, 2015a). Throughout the analysis we have commented on present 

and potential multicollinearity problems where relevant. 

5.1.4 Robustness Check 

As previously discussed a weekly data point could be based on the average of 7 daily 

observations or on one daily observation. As we are not able to weigh the observations, there 

will be more uncertainty for weekly observations that are averaged from fewer daily 

observations. To check that our results are robust to this issue we will perform the empirical 

estimation of the model after removing weekly observations that are calculated from less or 

equal to 1, 2 and 3 daily observations, respectively. An important reason to do this is because 

there is no guarantee that we have been able to remove all observations that are not 

                                                

58 In Stata this can be done by specifying either ”robust”, ”vce(robust)” or ”vce(cluster panelvar)”, using vessels as panel 
variable, always being the case in random-effects models 
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representative. Some weeks with few observations might be biased by entry and exits into 

ports, unusual weather and so on. The results are presented in Appendix H and will be 

commented in the following section. 

5.2 Empirical Results 

In Table 12 and Table 13 in the following sections, we have presented the results of the 

estimation of various model specifications for respectively the laden leg and the ballast leg. 

The models are specified with the natural logarithm of weekly average speeds as the 

dependent variable. Similar models for both legs were tested with a level model for speed 

and macro variables, and with daily speed data, but they showed less efficient results. 

Variables starting with “l” are on logarithmic form, and those ending with “_D” are dummy 

variables. 

The “R2 overall” tells us how much of the variation in observed speeds that our model are 

able to explain. The “R2 within” is the models ability to explain changes in speeds over time, 

for a given vessel. “R2 between” tells how much of the speed variations across vessels the 

model is able to explain. Numbers in parenthesis is the p-value of the estimates.We use a 

significance level of 5% and p-values above this is marked in red. The variables coefficient 

is red if excluded from the model. 

5.2.1 Laden Leg 

In the following table we have presented the results of the empirical analysis for the laden 

leg. For space reasons we have left out a few tests and variables from the table, which we 

will comment on in the text. With regards to our a priori expectations based on theoretical 

models, the results correspond badly. 
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From model specification (1) to (4)59 the macro variables either do not have any explanatory 

power on the speed choice, or their interpretation is counter-intuitive. We have tested 

multiple combinations for freight and bunkers, with varying lagging length as well as 

moving averages, all showing disappointing results. For freight and bunkers we only find a 

significant positive relationship for freight when we combined a two-week lagging freight 

and bunkers cost. However, the explanatory power was negligible only explaining 0,03% of 

the within variation and 0.01% overall. With virtually no sensible relationships to be found 

with speed, freight and bunkers, we keep the spot rate for both. For freight rate it can both be 
                                                

59 Model specification (4) is estimated with the fixed effects (FE) model, as suggested by the Hausman test 

(1) (2) (3) (4)-FE* (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) Reason dropped
Macro Variables

lFFA+1M -0.0273 Counter-intuitive
(0.000)

lFreight 0.0038 0.0041 0.0041 0.0041 0.0041 0.0035 0.0030 0.0029 0.0030 0.0032 0.0162 0.0033 0.0032 Kept
(0.333) (0.309) (0.307) (0.309) (0.309) (0.379) (0.454) (0.465) (0.458) (0.416) (0.010) (0.414) (0.416)

lBunkers 0.0070 -0.0091 0.0070 0.0069 0.0070 0.0069 0.0105 0.0057 0.0057 0.0057 0.0064 0.0096 0.0061 0.0039 Kept
(0.183) (0.073) (0.186) (0.187) (0.180) (0.186) (0.130) (0.282) (0.281) (0.283) (0.225) (0.282) (0.248) (0.465)

lFreightBunkers -0.0010
(0.670)

lFFA1MBunkers -0.0072 Counter-intuitive
(0.000)

Vessel Specific Variables
lDraughtRatio 0.0753 Better alternative

(0.006)
lCargoConstant 0.1438 Insignificant

(0.108)
lCargoFloating 0.0776 0.0741 0.0756 0.0767 0.0678 0.0728 0.0751 0.0730 0.0501 0.0767 0.0771 Kept

(0.005) (0.007) (0.006) (0.005) (0.014) (0.008) (0.006) (0.008) (0.225) (0.005) (0.005)
ldSpeed 0.2128 0.2533 0.2805 0.2220 0.2287 0.1213 0.1389 0.136 0.1356 Kept

(0.006) (0.001) (0.000) (0.004) (0.002) (0.122) (0.105) (0.032) (0.033)
lFuelCons 0.0408

(0.108)
lConsumptionDSpeed 0.0403 Insignificant

(0.115)
BlockCoefficient 0.6244 Counter-intuitive

(0.000)
Length/Beam -0.0320 Counter-intuitive

(0.142)
Beam/Draught 0.0862 Counter-intuitive

(0.000)
Built2000_D -0.0150 Multicollinearity

(0.026)
EVDI 0.0827 0.0764 0.0538 0.0540 Kept

(0.000) (0.000) (0.000) (0.000)
Drydock_D -0.0118

(0.047)
ECO_D 0.0904

(0.000)
Operational Specific Variables

Japan_D 0.1017 Kept
(0.000)

LogChain_D 0.0461 Kept
(0.000)

lbunkers:Japan_D 0.0161 Kept
(0.000)

lbunkers:LogChain_D 0.0072 Kept
(0.000)

LpOw_D 0.0215 0.0215 Kept
(0.000) (0.000)

Other Variables
Contango_D 0.0056 Insignificant

(0.268)
Cyclone_D 0.0112 0.0102 0.0106 0.0106 0.0110 0.0077 0.0108 0.0108 Kept

(0.008) (0.015) (0.011) (0.012) (0.009) (0.186) (0.010) (0.010)
Constant 2.4253 2.6055 2.4755 2.4571 0.6205 1.4501 0.7199 1.4008 0.7411 0.2836 1.0879 0.6261 0.9757 1.1858 0.9379 0.9477

(0.000) (0.000) (0.000) (0.000) (0.581) (0.000) (0.067) (0.000) (0.059) (0.487) (0.013) (0.117) (0.015) (0.032) (0.012) (0.011)
R2 Overall 0.0001 0.0008 0.0000 0.0004 0.0050 0.0050 0.0102 0.0054 0.0090 0.0202 0.0082 0.0163 0.0210 0.0186 0.1003 0.1003

R2 Within 0.0001 0.0013 0.0000 0.0005 0.0006 0.0006 0.0006 0.0006 0.0009 0.0007 0.0007 0.0007 0.0008 0.0017 0.0008 0.0009
R2 Between 0.0065 0.0037 0.0080 0.0092 0.0099 0.0163 0.0278 0.0140 0.0239 0.0459 0.0273 0.0540 0.0783 0.0455 0.3228 0.3226

Hausman test (p-value) 0.1543 0.1053 0.0855 0.0335 0.0246 0.0325 0.2912 0.0848 0.0520 0.2500 0.0477 0.0251 0.2769 0.1108 0.0671 0.1810
No of observations 33 147  33 147  33 147  33 147  33 147  33 147  33 147  33 147  33 147  32 902  32 962  32 962  33 147  13 397  33 147  33 147  

* Estimated using the fixed effects (FE) model

Too small sample

Insignificant and 
multicollinear

Insignificant and 
counter-intuitive

Table 12: Empirical results laden leg 



 58 

argued that the relevant rate is future spot rates and the actual rate obtained for a voyage. We 

are under the opinion that spot is the most appropriate. For bunkers costs we argued for 

using a two-week lagging bunkers, but as we will discuss, the results indicates that the speed 

might be affected by the value of cargo, not only fuel costs. Due to the very high correlation 

between crude price and bunkers price it is hard to split these two effects, but the spot 

bunkers price should pick up both. Further, since we wanted to test interaction dummies for 

Japan and Logistics Chain in model (16) it is more meaningful to use spot bunkers, as this 

variable to a larger extent probably reflect value of cargo for these vessels. 

In specification (5) to (13) we have included vessel specific and other variables. Firstly, in 

model (5) and (6) we examine which of the two approaches for measuring cargo weight and 

draught that is best. There are no significant speed differences between vessels with different 

carrying capacity, while higher draught ratio results in faster sailing speeds, as can be seen 

from model (5). Using floating cargo weight (6) is a better measure, being able to explain 

one percent of the speed differences between vessels. This indicates that more cargo 

generates more income, resulting in higher speeds. This implies that the increased income 

from more cargo outweighs the effect of increased resistance. Beyond saying that speed 

increases with cargo carried, it is hard to interpret the magnitude of this coefficient as it 

absorbs both variations within and between vessels.  

When including design speed and fuel consumption at design speed (7), the latter is not 

significant. We should however be careful to interpret these variables on a stand-alone basis 

because vessels with high design speed often also will have high fuel consumption at design 

speed. This is backed by the strong correlation between consumption and design speed of 

27.39%, which causes multicollinearity problems in the model. To deal with this issue we 

include the ratio between these two, measuring consumption per unit of design speed. This is 

a proxy for fuel efficiency, but it still showed insignificant (8). This is not that surprising, 

bearing in mind that the ratio is based on a static relationship not changing with speed. 

Anyhow, design speed is significant and included in our model. A one percent increase in 

design speed results in approximately 0.29%60 faster sailing speeds on average. From model 

to model we should be somewhat careful of the interpretation as the design speed is 

correlated with a few other variables, evident from the changing coefficient. We have also 

                                                

60 The exact coefficients are calculated in the following way throughout this analysis: !"
!"#$%%"

= 𝑒!.!"## − 1 = 0.2883 
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tested RightShips design speed database, showing negative and not sensible coefficients. 

This questions the quality of the RightShips design speed data. 

When including contango and cyclones in model (9), we find no support of our hypothesis 

that vessels steam slower in times with a substantial forward premium in the crude price. 

One explanation might be that the period of contango was in a period with a spike in the 

freight rates from late 2014. A falling crude price stimulating transportation demand, 

combined with vessels withdrawn from the market to be used for floating storage, 

contributed to pushing up freight rates, and with that speed incentives for shipowners. This 

speed increase should be reflected through the freight rate variable, but as the freight 

variable showed insignificant in our regression, the contango variable is possibly picking up 

some of this effect contributing to the positive effect on average speed61.  

Conversely to our a priori belief, if a vessel finds itself in a cyclone it sails on average 1.1% 

faster, not slower. This questions the accuracy of the variable and/or suggests that vessels 

sometimes speed up in order to not get caught in a cyclone as well.  

In model specification (10)-(12) hull efficiency variables are included, all being counter-

intuitive. An interesting observation is that the counter-intuitive speed relationships of the 

block coefficient and the beam-draught ratio both have significant explanatory power. As 

DWT is a part of both floating cargo and the block coefficient, the correlation of 26% causes 

multicollinearity problems in model (10). However, excluding floating cargo weight only 

increases the positive magnitude of the block coefficient, thus not being source to the 

puzzling relationship with speed. What we know is that the larger these two hull efficiency 

measures are, the more the hull is shaped like a box. It might suggest that the increased 

income from having a hull with a design more focused on efficiency in terms of carrying 

capacity, as opposed to hull resistance, have a larger effect on speed. However, as the 

floating cargo weight should pick up differences in carrying capacity and as the freight rates 

do not show a significant effect on speeds, these findings are puzzling and hard to explain. 

When adding the EVDI-index and dummies for ECO-vessels and ships built before 2000 in 

model (13) the explanatory power of our model increases substantially, but at the same time, 

design speed gets insignificant as a result of multicollinearity. Vessels built before 2000 
                                                

61 Interestingly, we did not find any more promising results when we added an interaction dummy for contango and freight 
rates 
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seem to go somewhat slower (1.5%), rather than faster. However, the coefficient might 

reflect other factors already accounted for in the model, such as having less carrying capacity 

and a lower design speed62. As this variable contributes to less explanatory power (0.18%) 

than what is the case for floating cargo and design speed (0.86%), we exclude this dummy63. 

The EEDI/EVDI index contributes with more than 1% of the overall R2, explaining 3% of 

the difference between vessels. What is surprising is that the sign of the coefficient is 

positive. This indicates that a vessel steams faster the lower the fuel efficiency, which is 

counter-intuitive from an economical point of view. One possible explanation is that vessels 

designed for higher speeds also have higher emissions, resulting in both higher emissions 

and observed speeds. This is supported by a correlation of 23.5% between EVDI and design 

speed. Despite that EVDI and design speed have some multicollinearity issues we keep both 

as they contribute to the overall explanatory power. We should, however, keep this in mind 

when interpreting the coefficients. The ECO-vessels surprisingly showed a positive 

coefficient, but due to very limited data (only 7 vessels) this can be coincidental with other 

factors, and thus we exclude this variable64. 

Model specification (14) should be considered separately as our construction of the dry-dock 

dummy results in that we only keep 40% of the observations in the laden dataset (see section 

4.3.2). In line with our expectations, vessels that are subject to fouling sail slower (1.2%) on 

average. What is interesting is that freight rate becomes significant when accounting for hull 

fouling, even though the magnitude of the response is small. Regardless, this can suggest 

that fouling creates noise in the analysis making freight rates insignificant, when this is not 

accounted for. 

The factors that contribute the most to the explanatory power of the model are the 

operational specific variables. By including these three, the overall explanatory power 

increases from 1.8%65 to 10%, with the model explaining 32% of the variation between 

vessels. From model (15) we see that vessels operating to Japan sail nearly 11% faster, 

equivalent to 1.3 knots. Vessels that are part of a larger internal supply chain sail 4.7% 

faster, or 0.57 knots.  

                                                

62 This is evident from a negative correlation of 25% and 22% for design speed and floating cargo weight respectively 
63 This is based on a model with only macroeconomic factors and the respective variables included 
64 We have checked for whether these vessels fell within the operational variables. Only one of them were part of the 
logistical chain variable, which can contribute somewhat to the positive coefficient 
65 When using model specification (13) and omitting vessels built before 2000 and ECO-vessels 
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To examine this finding further we included interaction dummies for “Japan” and 

“LogChain”, testing different combinations with freight, bunkers as well as a level dummy. 

Model specification (16) shows the results from the best combination, where the interaction 

dummy with freight is removed as it was insignificant. From this model specification we 

find evidence that the changes in bunkers price is actually what is fuelling the higher speeds 

for these vessels. We will discuss this thoroughly in the critical discussion. Lastly, we 

observe that vessels being part of a large pool or operated by a large owner goes faster, 

rather than slower, contradicting our a priori expectations. 

As mentioned in the Tests section (5.1) we have performed a robustness check of our 

analysis, presented in Appendix H. As we remove the weeks with averages based on only 1, 

2 and 3 daily observations we observe that certain variables turn insignificant. When we only 

include weeks with two or more daily observations design speed turns insignificant on a 5% 

significance level66, and floating cargo turns highly insignificant. This casts doubt to whether 

these variables truly have an effect on speed, and we need to be careful with our conclusion 

and interpretation of these coefficients. Further, the cyclone dummy is only positive when all 

weeks are included. Consequently, there is very limited evidence that vessels sail faster 

when located in a cyclone. Surprisingly, bunkers turn positive when we only include weeks 

with four or more observations. This observation supports the hypothesis that cargo value 

plays a role in the speed decision. The remaining coefficients are largely unaffected while 

the models R2 increases slightly. 

5.2.2 Ballast Leg  

For space reasons we have left out a few tests and variables from the results, which we will 

comment on in the text. For the bunker fuel costs we have also tested spot price and two 

week lagging, but in line with our expectations we found that 6 weeks lagged bunkers gave 

the best estimates. This is supportive of our assumption that vessels do bunker up fuel for 

both legs in the Arabian Gulf. As for the laden leg, design speed data supplied from 

RightShip was also tested, without showing more promising results than the data from 

Clarksons. 

                                                

66 Still significant on a 10% level 
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The results somewhat corresponds to our a priori expectations. Regarding the macro 

variables (model specification (1) to (4)) we observe that freight rate was the most 

meaningful measure of income/opportunity cost of the vessel. As the bunkers price is a part 

of the calculated TCE the two are highly correlated, making bunkers less significant. The 

FFA+1M did not show significant at 5 percent level. From the results we observe that speed 

are increasing with freight rates and decreasing with bunkers prices, in line with our 

expectations. However, based on the theoretical optimal speed model for the ballast leg 

(Equation 18) we would expect coefficients of around -0.33 for bunkers and 0.33 for the 

opportunity cost, while we only observe coefficients of -0.049 for bunker prices and 0.046 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) - FE* (14) (15) Reason dropped
Macro Variables

TCE 4.7E-07 Better alternative
(0.000)

lFFA+1M 0.0203 Better alternative
(0.019)

lFreight 0.0459 0.0454 0.0459 0.0464 0.0463 0.0463 0.0459 0.0459 0.0510 0.0520 0.0458 0.0542 Kept
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

l6wBunkers -0.0393 -0.0771 -0.0489 -0.0494 -0.0489 -0.0499 -0.0500 -0.0500 -0.0488 -0.0489 -0.0296 0.0064 -0.0491 -0.0575 Kept
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.077) (0.715) (0.000) (0.000)

lFreight6wBunkers 0.0470 Better alternative
(0.000)

Vessel Specific Variables
lDraughtRatio 0.0719 Counter-intuitive

(0.000)
ldSpeed 0.1791 Insignificant

(0.212)
lFuelCons 0.0294 Insignificant

(0.473)
lConsumptionDSpeed 0.0248 Insignificant

(0.545)
BlockCoefficient 1.3263 Counter-intuitive

(0.000)
Length/Beam -0.1015 Counter-intuitive

(0.005)
Beam/Draught 0.2261 Counter-intuitive

(0.000)
Built2000_D -0.0160 Insignificant

(0.170)
EVDI 0.0999 0.0685 (omitted) 0.0492 0.0493 Kept

(0.000) (0.027) (0.047) (0.041)
Drydock_D -0.0085 -0.0279

(0.366) (0.013)
ECO_D 0.1413

(0.000)
Operational Specific Variables

Japan_D 0.1895 Kept
(0.000)

lfreight:Japan_D -0.0387 Kept
(0.000)

l6wBunkers:Japan_D 0.0452 Kept
(0.000)

LogChain_D 0.1254 Kept
(0.000)

lfreight:LogChain_D -0.0440 Kept
(0.001)

l6wBunkers:LogChain_D 0.0373 Kept
(0.000)

LpOw_D 0.0304 0.0304 Kept
(0.000) (0.000)

Other Variables
Cyclone_D 0.0042 Insignificant

(0.394)
Constant 2.6933 2.8937 2.6490 2.6339 2.0733 2.6034 1.5349 3.2199 2.0359 2.6502 2.4017 2.5137 2.3007 2.4850 2.5169

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R2 Overall 0.0091 0.0070 0.0097 0.0097 0.0135 0.0098 0.0304 0.0151 0.0473 0.0156 0.0187 0.0179 0.0068 0.1730 0.1744

R2 Within 0.0150 0.0115 0.0164 0.0164 0.0175 0.0164 0.0169 0.0168 0.0168 0.0164 0.0164 0.0124 0.0128 0.0164 0.0185
R2 Between 0.0036 0.0040 0.0027 0.0026 0.0108 0.0032 0.0412 0.0120 0.0668 0.0178 0.0208 0.0469 0.0072 0.3609 0.3613

Hausman test (p-value) 0.3117 0.4550 0.4695 0.5903 0.1747 0.4666 0.4083 0.4935 0.5698 0.6895 0.4220 0.0002 FE-model 0.2786 0.7144
No of observations 28 713  28 713  28 713  28 713  28 713  28 713  28 448  28 505  28 505  28 713  28 713  11 589   11 589   28 713  28 713  

* Estimated using the fixed effects (FE) model

Too small sample

Table 13: Empirical results ballast leg 
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for freight rate. Still, a smaller coefficient for freight rate might be reasonable. The reason is 

that the coefficient in the theoretical model is based on the alternative value of the vessel, 

which is a profit element (freight minus voyage costs), while freight rate is an income 

element. Furthermore, we see that the macro factors have low explanatory power explaining 

1.56% of the variations over time. Even though macro factors are explaining less of the 

variations in speed than what we would expect, it is encouraging that we find meaningful 

functional relationships with speed for these variables, as opposed to what is the case for the 

laden leg.  

We clearly observe from model specification (5) to (13) that the explanatory power of the 

vessel specific variables fell short of our expectations. Both design speed and fuel 

consumption at design speed show insignificant, and so did the consumption-speed ratio. It 

is puzzling that design speed is significant for the laden leg, but not for the ballast leg.  

As opposed to in the laden condition, whether a vessel has been in a cyclone does not seem 

to affect the speed (5). This can be consistent with the theory that vessels might speed up in 

order not to get caught in a cyclone. It can also be sensible that the coefficient is less positive 

in the ballast leg. Since vessels have more contractual obligations to maintain a certain speed 

in the laden leg, they could have higher incentives to speed up to not get caught in a cyclone. 

In model specification (7) to (10) we find that the variables supposed to explain differences 

in the efficiency of the hull design were counter-intuitive for the ballast leg as well. We 

argued for the laden model that higher speeds for a vessel with a more square hull might be 

driven by higher carrying capacity. This explanation is difficult to support for a leg without 

any cargo. One could argue that higher cargo capacity increases the alternative value of the 

vessel also for the empty positioning leg. However, it is reasonable to believe that the hull 

efficiency in terms of resistance plays a more important role. That carrying capacity is not 

important is supported by the fact that DWT did not show significant when we included it in 

the model. Thus, we do not have any good explanations for these puzzling findings. 

Whether a vessel was built before year 2000 did not have a significant effect on the speed 

chosen. The EEDI/EVDI index shows significant results and contributes to the overall R2 

with 0.9%, explaining 1.8% of the differences between vessels. Our argument that higher 

emission is correlated with higher design speed resulting in the positive relationship between 

speed and EVDI is weakened, as the design speed is insignificant in the ballast model. 



 64 

Lastly, we observe that more fouling on the hull leads to ships steaming almost 3% slower, 

when applying the FE-model as proposed by the Hausman test. 

As for the laden leg, the operational specific variables are the ones that contribute the most 

to the explanatory power of the model. Including these three increases the R2 considerably to 

17%, with the model being able to explain 36% of the variations between vessels. The 

vessels that are operating to Japan seems to steam approximately 21% faster, while vessels 

being part of a larger internal logistical chain sail on average 13% faster. In a level model 

this corresponds to approximately 2.3 and 1.5 knots. The variable for vessels being a part of 

a large pool or operated by a large owner shows a counter-intuitive coefficient, consistent 

with the findings for the laden leg.  

Including interaction dummies combining the two macro variables with Japan and LogChain 

shows that the speed seems to be inversely related with freight rates and bunkers costs. 

However, we feel less confident about these interaction dummies than for the laden leg as 

they contradict the correlation coefficients between speed, bunkers and freight shown in 

Table 14. It is also puzzling why operators would respond negative to changes in freight 

rates, even though showing a positive correlation in Table 14. We can be certain that vessels 

being part of these two categories steam faster, but we are somewhat uncertain with regards 

to the interpretation of the interaction dummies, other than not being in line with optimal 

speed theory.  

The robustness check is encouraging with regards to our findings as all coefficients stays 

highly significant and the explanatory power of the model increases. Both the freight and 

bunkers elasticities increase slightly in magnitude, and the same applies for the rest of our 

variables. The within R2 increases from 1.64% to 2.34% both indicating that some noise is 

present in our model, but also ensuring that freight and bunkers do affect speed in a sensible 

manner over time. The robustness check for both legs seem to slightly improve the model, 

suggesting that there is some noise connected to weekly speeds based on few daily 

observations. However, as our conclusions are quite robust, this indicates both that our 

approach is acceptable and that we can be quite confident in our data cleaning process. 
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5.3 Discussion of Main Results  

In order to set the agenda for our discussion we can outline the main findings from the 

empirical results. 

1. In the laden leg, we find no evidence that the relationship between speed, freight and 

bunkers is in line with what theory suggests 

2. For the ballast leg the macro-coefficients are sensible and significant, but less in 

magnitude than expected  

3. Vessel specific factors presumed to affect speed mainly showed insignificant or 

counter-intuitive for both legs. Design speed and floating cargo weight were 

exceptions for the laden leg at first, but turned insignificant in our robustness check 

4. The operational variables plays an important part of the differences in observed 

speeds across vessels, but the large pool or owner is counter-intuitive 

5. We find some evidence that difficult observable variables affect the speed, indicating 

that this is a source to noise in the regression	
  

There are of course several possible explanations for each of these findings. First of all, the 

quality of our input data is of great essence to the viability of our model. So is the 

specification of our model. The automatically registered average speeds of Genscape 

Vesseltracker and Marinetraffic in combination with a nine-step cleaning process makes us 

confident on the quality of the data. However, even though the data quality can be 

considered to be high, there are still unobservable noise and assumptions regarding the 

variables that can influence the performance of the model substantially.  For the sake of this 

discussion we can divide variables that have an affect on speed into three categories; (i) 

observable variables, (ii) difficult/hardly observable variables and (iii) non-/unobservable 

variables. It is especially the two latter groups that can cause substantial noise in our 

regression. Obvious examples of unobservable variables are local weather and currents, but 

we also have more intricate factors such as port congestion, piracy attacks and mini markets 

affecting the local supply and demand balance. As for the hardly observable variables, some 

are included in the regression, but behind the computation of these variables lays 

assumptions that can make them unreliable. Examples here are the cyclone and dry-dock 

dummies. The fact that we cannot be certain that the hardly observable explanatory variables 

captures only the intended effects leads to a vaguer analysis where we are cautious not to 

make bold statements on the causality between the variables and speed. The argument that 
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the hardly observable variable can cause noise in the empirical model is supported by the 

fact that freight rates turns significantly positive for the laden leg when the dry-dock dummy 

is included. This is also evident from the robustness check where both the model and the 

macro variables are improved when we exclude the noisiest and most uncertain data points 

from the regression. 

In the following we will discuss main drivers and structural reasons that can explain our 

findings. The non-observable variables will be included throughout the chapter as a factor 

for why we may see deviations between theoretical- and observed effects of explanatory 

variables on speed. 

5.3.1 Lack of Response to Freight and Bunkers for the Laden Leg 

The lack of speed responsiveness to changes in freight and bunkers for the laden leg is 

supported by the low variance in average speed for this leg, as observed in Figure 7. While 

average monthly speeds for laden shows a negative correlation with freight/bunkers of -0.12, 

the ballast speed is more in line with theory showing a correlation of 0.49.67  

 

 
Figure 7: Average monthly ballast and laden speeds and freight/bunkers 
Source: Based on data from Genscape Vesseltracker, Marinetraffic and Clarksons  

One reason for the low variation in speed for the laden leg can be explained by looking 

further into the usage problem addressed by Rehmatulla et al. (2013), and the way fuel costs 

                                                

67 Removing vessels assumed to shuttle Japan-Meg and vessels owned by oil companies and refineries makes the 
relationship even clearer. Laden with correlation of -0.03 with freight/bunkers, ballast with a correlation of 0.56.  
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are distributed between charterer and shipowner for VC contracts. This was previously 

discussed in section 2.2. The charterer of a vessel is most likely to be the owner of the cargo. 

Hence, the lower the speed of a vessel, the more days at sea and the higher the financing cost 

for the charterer. Shipowners however, would like to steam at speeds that maximize profits 

when taking into account the trade-off between bunkers cost and freight rate. So while cargo 

owners would like to minimize days at sea, shipowners may want to slow steam in order to 

conserve fuel. This can cause split incentives between the charterer and shipowner regarding 

the speed decision. This relation is illustrated in Figure 8 for crude oil prices at 80$/barrel, 

and a 20% lower bunkers price to reflect the historical crude/HFO-spread68. Figure 8 is a 

simplistic exercise based on heavy assumptions regarding the steepness of the fuel 

consumption curve and the financing cost (See Appendix I for details) and should therefore 

only be used for illustration purposes. 

 
Figure 8: Total financing cost in $ for chartering a 305,000 dwt VLCC at 95% utilization from Ras Tanura to 
Chiba (TD3) for different speeds vs. Total bunkers cost 
Source: Own calculations based on Devanney (2011) 

The different speed preferences between charterers and owners create a demand for 

minimum speed clauses from charterers69. This is a contractual agreement between the 

charterer and the shipowner setting the minimum average speed allowed for a voyage. The 

use of minimum speed clauses for VCs can explain why we do not see much variation in the 

average speed in the laden leg. For the ballast leg the charterer has no say in the speed 

decision, making it easier for the shipowner to adapt a speed more in line with theoretical 

optimal speed. The fact that we also observe higher speeds for the laden leg than for the 

                                                

68 Based on own calculations of the spread in the relevant period 
69 See for example BIMCO minimum speed clauses for voyage charters 
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ballast leg could suggest that the bargaining power of the shipowners in the contract 

negotiations is somewhat limited, and that the speed in the laden leg mainly is determined in 

favour of the charterer. This supports the view of Rehmatulla (2013) that split-incentive 

problems related to the specific structure of the shipping market cause vessels to steam at 

speeds that are not only suboptimal for the shipowner, but also for the environment. 

Modelling performed by Rehmatulla (2013) in relation to the efficiency problem of TC 

contracts shows that in those cases where the shipowner gets 100% payback on his 

investment in energy efficient equipment, greater measures are taken. Using the same type of 

argument for VC contracts, the incentives for shipowners and charterers regarding the speed 

decision could be more aligned if the fuel costs to a larger extent were passed back to the 

charterer.  

5.3.2 The True Supply-Demand Balance – A Mini Market Around 
Each Crude Move 

One of the reasons for the discrepancies between theoretical and observed speeds could be 

that the true supply-demand balance of the market is overlooked. The issue is seldom 

addressed in theory and hard to account for through empirical research. On DNB Markets 

annual Oil, Offshore and Shipping conference in Oslo, Paddy Rogers, chief executive in 

Euronav, raised the issue that the analysis of vessel speeds usually is way to generic:  

“…the reality is that we don’t work in a market of statistics. We work in very small micro-

markets around each crude move, so every time a cargo has to move, they make a little 

market around it about the ships in the area, the owners that are acceptable to that move 

and you end up with a little auction process around that crude move” (Tradewinds, 2015) 

In a note to shareholders, Euronav (2015) further elaborates on how this mini auction around 

each crude move makes the volatility in the true freight rates received by owners’ way larger 

than in the average market rates. Thus, despite a market average of say $100,000 per day, 

vessels can be fixed at $200,000 and $7-80,000, because the supply-demand balance varies 

for each crude move. For the laden leg, the important insight is that the true freight rate can 

deviate severely from the average market rate we use. Thus, there may be considerable error 

in the income generating part of the optimal speed equation, creating noise and reducing the 

observed relationship between speed and freight rates in the model. Still, on aggregate we 

must add that it makes sense that vessels should go faster when the overall freight market 
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picks up. Deviations between true and average market rates will also affect the alternative 

value of the vessel, thus the ballast leg. Paddy Rogers elaborates on what is truly of 

relevance in this leg: 

 “If we discharge a cargo in China, our attitude would be on bunker costs management. We 

don’t know what we are going to do next. We go eco-speed to Singapore. On the way, the 

chartering desk is trying to find the next fixture and they can either look at an early window 

date, if there is a good opportunity, but if they see 10 or 15 people bidding in on an early 

cargo that you would reach at 15 knots, then they would say no. Price-wise, it makes more 

sense to do nine knots and come in a later window to cargo where there is less competition” 

(Tradewinds, 2015)  

This suggests that the ballast leg can be divided into two parts with differing speed drivers: 

before and after securing the next fixture. In the positioning part of this leg, what is truly 

relevant for the optimal speed decision is the spot rates resulting from the mini market 

around those crude moves that the vessel realistically can compete on, combined with 

bunkers cost management. Once the owner has secured the next fixture, what makes sense 

from an economical point of view is to make the laycan just in time but with a sufficient 

margin so that the risk of cancellation is adequately reduced. Hence, the objective to make 

the laycan is the main driver in the speed decision. Bunker costs and opportunity cost (spot 

rate) should from this point have very low explanatory power of speed. This can contribute 

in explaining why the observed speed relationship with freight and bunkers are less in 

magnitude than the theoretical model suggests. 

5.3.3 Type of Charter Contract and Operational Strategy Matters in 
Practice 

The results of the empirical analysis, backed by monthly average speed data (Figure 9), 

show that vessels assumed to shuttle between the MEG and Japan steams at significantly 

higher speeds than the rest of the fleet. The same applies for vessels being part of a larger 

internal logistical chain, only less in magnitude. The differences are especially large for the 

ballast leg.  
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Figure 9: Average monthly speeds for different vessel categories, for the laden and the ballast leg 
Source: Based on data from Genscape Vesseltracker and Marinetraffic  

Additionally, when examining interaction effects of these two vessel categories with freight 

and bunkers, the only finding for the laden leg was a positive relation with bunkers. Again, 

the effect was strongest for Japan vessels. For the ballast leg we found inverse relationships 

for both freight and bunkers relative to the suggestions of optimal speed theory. However, as 

we will discuss, we are more uncertain regarding the interpretation of these. Correlation 

coefficients between the average speed of vessels from different categories and freight and 

bunkers are presented in Table 14. 

 
Table 14: Bunkers (380) and freight rates (TD3) correlation with speed for different vessel categories 
Source: Based on data from Genscape Vesseltracker, Marinetraffic and Clarksons 
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We will now argue that the observed results could be explained by financing cost and the 

crude sourcing strategy of the operators in control of the vessels. 

Vessels shuttling to Japan delivering crude oil to Japanese refineries have highly predictable 

sourcing patterns, as previously discussed in section 3.3.2. This makes these vessels more 

likely to be chartered on fixed long-term contracts, with properties more similar to TC than 

VC contracts. In practice there are two key differences between TC and VC contracts that 

could make a difference in the speed decision of the operators. Firstly, the fact that TC rates 

are treated as a periodically fixed cost for a time chartered vessel implies that it is irrelevant 

for the speed decision. Secondly, for TC contracts the operator of the vessel is also usually 

the owner of the cargo. These two characteristics are also present for vessels that are part of 

a larger logistical chain, even though for a slightly different reason. With the owner and 

charterer being part of the same organization, freight rates should be irrelevant in the speed 

decision for these vessels. As for the Japan vessels, it could also be assumed that these 

vessels own the cargo themselves.  

Financing cost of the value of cargo is not accounted for in the theory of Devanney (2009) 

and we regard this as a main explanatory factor for why we observe a positive relationship 

between bunkers and speed for vessels assumed to be operated by cargo owners. As opposed 

to the owners discussed by Devanney (2009) that have no economical interest in the cargo 

value, cargo owners will need to take into account the financing cost in their speed decision. 

When choosing speed, they must weigh the saved fuel costs of slow steaming against the 

increased financing cost of arriving later. As previously discussed, the bunkers cost variable 

will absorb both of these contradicting effects. The positive coefficient implies that the 

positive effect on speed of increased cargo value outweigh the negative effect of increased 

bunkers cost. The findings are opposing to what traditional optimal speed theory suggests, 

but in line with the alternative theoretical model presented in section 3.1.3, which accounts 

for the financing cost effect in the laden leg. For the ballast leg the empirical analysis shows 

positive response to bunkers, but we are uncertain about whether this is due to cargo value. 

This is based on 6-week lagged bunkers, which is not a good proxy for changes in value of 

cargo. Further, when looking at the correlation between speed and spot bunkers in Table 14 

there seems to be no correlation, casting doubt to whether the speed in the ballast leg is 

affected by the cargo value. 
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So far in this section we have argued that lack of exposure to freight rates and the value of 

cargo might explain why we do not see any response in speed for changes in freight rates, 

and the positive relationship between bunkers and speed, for Japan-MEG and LogChain 

vessels. Hereby, it remains to address the observation that both vessel categories steam 

consistently higher than other vessels.  

One could argue that long-term crude sourcing strategies allow the parties to perform 

bunkers hedging in a greater extent than what is feasible for short term VCs and that this 

pushes down the bunkers cost, fuelling incentives to speed up. However, bunkers hedging is 

a speculative risk reducing measure and should not consistently give a lower bunkers price 

than buying bunkers spot. We must therefore assume that the operators of these vessels are 

exposed to the same fuel prices as others. An argument in favour of higher speeds for both 

legs is related to the schematic sourcing plan of Japan and LogChain vessels. In order to 

ensure consistency in supply, it could be beneficial to steam faster with less focus on macro 

variables. 

The last observation is that the speed differences between these two categories and the rest 

of the fleet are larger for the ballast leg than the laden leg. One reason could be that for the 

laden leg, minimum speed clauses present in VC contracts push up the speed above optimal 

for the remaining fleet (shipowners). In the ballast leg however, vessels on VC contracts 

have no contractual obligations and can maintain a larger focus on bunkers costs until the 

next fixture is secured. 

The arguments discussed in this section are relevant to both Japan and LogChain vessels. 

However, the results imply that the effects related to crude sourcing strategy and/or value of 

cargo is even more present for Japan vessels than for vessels part of a logistical chain.  A 

reason for this could be that some of the vessels included in LogChain are re-let and are 

actually trading at VC contracts.  

5.3.4 Conclusive Remarks on Vessel Specific Variables 

As one of the main contributions of this thesis is to analyse how vessel specific variables 

affect speed in practice, we will devote some space to summarize and conclude on our 

findings. The main result from the empirical analysis is that most of these variables prove 

insignificant and/or counter-intuitive for both legs. In this section we will address some 

explanations for why this is the case. 
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The floating cargo variable is at first sight in line with theory, suggesting that more cargo 

results in higher freight income and thus a higher optimal speed. However, it turned 

insignificant in our robustness check. This does not necessarily mean that the variable lacks 

explanatory power, but rather that it could be distorted by three noise factors we have 

identified. Firstly, as previously discussed, the frictional resistance pulls the coefficient in 

two opposite directions. Secondly, in light of our discussion on the importance of value of 

cargo, cargo weight might also partially reflect that a larger cargo volume also implies a 

higher financing cost for the cargo owner, increasing his speed incentives as well. Thirdly, 

this ratio might reflect that loading degree might be lower in bear markets with lower freight 

rates and speeds. This might cause both multicollinearity issues in the model and the speed 

effect might already be picked up by the freight rate variable. However, from the table in 

Appendix J we observe no such sensible relationship, but rather a negative correlation 

between draught ratio and freight rates.  

From the speed and consumption variables we found that design speed were only significant 

for the laden leg and not for the ballast leg. It is hard to find an explanation for this, but one 

possibility is that the design speed is considered when determining the minimum speed 

requirement in the charter clause. However, this is a very speculative inference to draw. As 

for the speed-consumption ratio an issue with the variable is that it only takes into account 

the fuel efficiency when the vessel steam at design speed. Hence, it does not capture that the 

fuel efficiency of a vessel varies depending on the engine’s rate of speed. 

The reason for the counter-intuitive hull efficiency measures could be inaccuracy between 

which effects they are intended to capture and what is truly reflected. One obvious example 

is that a having a square hull does not only capture the intended effect of higher resistance, 

but also a higher carrying capacity. The other reason we can think of is the biological fouling 

on the wetted surface of the vessel. The fact that the empirical results show that fouling 

reduces speed makes us more certain that fouling creates noise for both hull- and fuel 

efficiency measures, causing deviation between theoretical and actual hull resistance. 

It could also be that speed determining market participants do not act according to the 

theoretical model of Ronen (1982), which states that vessels with higher design speed or 

lower fuel consumption at design speed will have a higher optimal speed, ceteris paribus. 

Even though we recognize the limitations of our vessel specific variables, the lack of 

significant and meaningful coefficients could suggest that vessels are treated more 
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homogeneous than theory suggest and that owners can benefit from a larger extent of vessel 

specific speed optimization. The positive relationship between EVDI and speed, even though 

counter-intuitive, might suggest that it is premature to conclude that fuel efficiency has no 

impact on speed. It should be noted that our finding on EVDI is contrary to the findings of 

Rehmatulla (2013) for the dry-bulk market. He finds that vessels with lower EEDI (higher 

fuel efficiency) steams faster than average. 

5.3.5 Other Discussion 

The effect of TC vessels present in the dataset 
As thoroughly discussed, our analysis suggests that vessels on contracts with characteristics 

similar to TC go faster and are not responding to the macro variables in line with our a priori 

beliefs. We have identified vessels that are likely to sail on such contracts through the Japan 

and LogChain variables. Still there are vessels on TC contracts in the dataset that we have 

not been able to identify. From model specification (15) in the ballast leg (Table 13) we 

observe that when taking out Japan and LogChain vessels from the macro variable 

coefficients, by letting them interact with these factors, the magnitude of both freight and 

bunker increases. Hence, this suggests that the speed response to changes in freight and 

bunkers is stronger for vessels on VC than the empirical analysis suggest, implying that the 

true coefficients probably are closer to the coefficients in the theoretical models. Some of the 

same findings could also be applicable to the laden leg. It is evident that the inability to 

identify TC vessels is creating noise when analysing the vessels on VC. 

Large Pool or operator 
We have previously argued for why we would expect a negative coefficient for vessels 

included in this variable. However, the fact is that we observe a slightly positive and 

significant coefficient. We have identified two factors that might contribute to this 

observation. Firstly, having a lot of bargaining power might after closer considerations also 

result in higher achieved freight rates, which might be just as an important focus as reducing 

the minimum speed in the charter clause. This can contribute to the true freight rates being 

higher for this group, increasing the optimal speed. Secondly, the increased visibility and 

information about the upcoming cargo moves might result in that this group is better to 

position the vessels for movements with less supply and better rates. This can result in both 

higher and slower speeds, and not solely slower speed. 
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5.4 Limitations and Suggestions for Further Research 

The main drawback of the dataset used in this thesis is the lack of route descriptions, making 

it infeasible to compare the average speed of one route to another. It also means that we have 

to make assumptions regarding freight rates and where the vessels bunker up, in which we 

have done by using TD3 rates and 380cst Fujairah for all vessels. Since the correlations 

between the different freight rates and between different types of bunkers are high, the 

empirical model analysing changes in speed for changes in explanatory variables would not 

be affected by the assumptions to any large extent. However, even though the strong 

correlation between freight rates justifies the use of TD3 as a proxy for the received freight 

rate for a given day, the rate may not reflect the true freight rate received by shipowners at 

various locations. This may also have implications for the observed speed levels between 

different routes. Future analysis should try to capture if /why some vessels steam 

consistently faster than others due to different sailing routes.   

An additional limitation of this thesis is that we do not take into account the various fuel 

strategies of shipowners, potentially neglecting hedging strategies and other factors with 

effects on the volatility of the speed. However, factors related to mini markets and owner 

specific strategies are hard to overcome and adjust for through any empirical study of the 

shipping market and we must therefore add a portion of uncertainty to the studies.  

Another topic for further research could be examination of whether there are any differences 

in speed in the beginning and the end of the ballast trip, or how freight and bunkers affect the 

speed differently in these two parts. If the speed of a vessel is primarily driven by the laycan 

in the time after a new fixture is agreed upon with the charterer, one would expect to observe 

a weaker relationship between macro factors and speed in the last part of the leg. 

The findings in this thesis suggest that the financing cost has explanatory effects on speed in 

the laden leg. Even though some theoretical models try to account for this factor, it is hard to 

conduct an analysis of this in practice due to the high correlation with bunkers costs. The 

incentive for cargo owners to speed up when the value of cargo is high (being the charterer 

in a VC) puts pressure on shipowners, which may have other speed preferences. Future 

research should further analyse the relationship between the incentives of cargo owners vs. 

shipowners when the value of cargo changes (either by size of vessels or by changes in crude 

oil price). More sophisticated models incorporating finance cost could reveal relationships 
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that in current theoretical optimal speed literature remains unexplained. When analysing the 

effect of cargo value, one should also include storage capacity and costs, as discussed in our 

alternative theoretical speed model. 
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6. Conclusion 

In this thesis we have utilized panel data to analyse how the speed of VLCCs respond to 

changes in explanatory variables and compared the results to what theory suggests. 

Theoretical optimal speed models are generally based on the view that the speed of vessels 

are positively related with freight rates and negatively related with bunkers price. The results 

of the empirical model find support for the theory for the ballast leg, even though to a less 

extent than theoretical models suggest. However, no such relationship could be found for the 

laden leg. In hindsight, the laden results are not that surprising. Behind the theory stating that 

speed should increase with freight rate and decrease with bunkers lies the assumption that 

shipowners are the only party in the speed decision. This means that for changes in the 

bunkers price, traditional theoretical speed models only take into consideration the changes 

in speed incentives for a shipowner. What they fail to recognize is that for a change in 

bunkers price there will be a simultaneous change in the crude oil price, effectively driving 

the value of cargo up or down. For VC contracts the charterers are usually the cargo owners. 

When the speed of a voyage is settled, their incentives to speed up because of the financing 

cost may be conflicting to the optimal speed of a shipowner. Hence, the observed results for 

the laden leg may be explained by split-incentive problems for voyage charters, or that a 

larger share of the observed VLCC fleet is time chartered than originally anticipated. In 

either case the value of cargo is a decisive element in the speed settling decision. Our 

adjusted theoretical model, which takes into account the value of cargo and implicitly the 

speed incentives of cargo owners, supports the results in the laden leg. 

Somewhat surprisingly, the empirical analysis studying the effects of vessels specific 

variables on speed mainly proved to be insignificant or counter-intuitive. The results imply 

that speed determining market participants look past the individual specifications of the 

vessels, treating the fleet more homogenously than we expected. However, the fact that we 

do find a relationship between EVDI and speed, even though contra-intuitive, suggests that it 

may be premature to conclude that vessel specific variables are irrelevant in the speed 

settling decision. The fact that we find some evidence that design speed and cargo size affect 

the speed in a meaningful matter for the laden leg supports the argument that vessel specific 

variables may matter in the speed decision but that the effects are difficult to capture through 

an empirical analysis.  
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The daily longitude and latitude data provided in the dataset allowed us to identify which 

vessels that are most likely to shuttle between MEG and Japan. These vessels, as well as 

vessels part of a larger internal logistical chain, were found to steam at consistently higher 

speeds than the average vessel. One reason might be that these vessels operate on a more 

shuttle-like basis with emphasis on consistency in crude sourcing rather than market 

fundamentals. In addition, these vessels showed no meaningful response to freight rates for 

either leg. The empirical model also revealed that for an increase in fuel prices, these vessels 

tended to speed up, a finding contrary to what theory suggests. Again, introducing the value 

of cargo shed light on the rationality of the observed relationship. As these vessels are more 

likely to be operated by cargo owners, a higher fuel price implies higher value of cargo. This 

drives up the financing cost and thus also the speed incentives.  

We acknowledge that unobservable variables and assumptions regarding the explanatory 

variables can influence the performance of the model substantially. Local weather, port 

congestions, piracy attacks and mini markets affecting the local supply and demand balance 

are all unobservable variables that may affect the speed of a vessel in the short term. When 

including hardly observable variables as hull fouling and cyclones, as well as reducing noise 

through robustness checks, these measures both improve the models as well as the 

magnitude and explanatory power of the macro variables. Hence, these effects should not be 

underestimated and further research should strive to reduce this noise.  

In order to reduce GHG emissions, market regulators may want to enforce reduced speeds in 

the shipping industry. In this thesis we have showed that the cost distribution relative to the 

charterer’s control of the vessel in combination with the financing cost could lead to split-

incentive problems in the speed settling decision for VC contracts. In order not to induce 

unintended effects or an unnecessary burden on the shipping industry, regulating authorities 

should fully understand the intricate relationship between various market participants that 

are part of the speed settling decision before undertaking any market-based measures.  
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8. Appendix 

8.1 Appendix A – Theoretical Fuel Consumption Formula 

According to MAN Diesel & Turbo (2013a) the fuel consumption for a vessel can be 

determined through the admiralty coefficient. This coefficient is constant for a given hull, 

i.e. for a given vessel with a certain design speed, and it gives the approximate relationship 

between propulsion power (P), speed (V) and displacement (∇). Since the coefficient should 

be constant for any speed, propulsion power and displacement, we can write: 

𝐴 =
∇
!
! ∗ 𝑉!

𝑃 =
∇!
!
! ∗ 𝑉!!

𝑃!
 

Where d denotes design characteristics. The power needed to generate a certain speed can be 

given by 

𝑃 =
∇
!
! ∗ 𝑉! ∗ 𝑃!

∇!
!
! ∗ 𝑉!!

=
𝑉
𝑉!

! ∇
∇!

!
!
𝑃! 

We see that the displacement scale the relationship between power and speed. If we further 

assume that relationship between propulsion power and fuel consumption is proportional for 

any given speed, we can in the next step say that fuel consumption is scaled by displacement 

in an equivalent way. Daily fuel consumption can thus be written as a function of constant 

displacement and speed 

𝐹 =
𝑉
𝑉!

! ∇
∇!

!
!
𝐹! 

In accordance with MAN Diesel & Turbo (2013) the draught ratio might be given instead of 

the displacement ratio as an approximation70. The speed-consumption relationship is scaled 

to the power of three in MAN, but since this is vessel specific and not certain we do not 

account for this in our formula. Thus 

𝐹 =
𝑉
𝑉!

! D
D!

!
!
𝐹! 

                                                

70 To be exact it should be scaled by the block coefficient relative to the design block coefficient 
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8.2 Appendix B  - Detailed Data Cleaning 

The laden, ballast and unknown files consisted of respectively 173,552, 130,215 and 6,151 

average daily speed observations, totaling 305,106.  

1) Allocation of Unknown to Ballast and Laden 
Allowed us to ad 1,890 and 2,922 data points to the Ballast and Laden data sets, respectively, 

but reducing the total amount of data points to 303,767.  

2) Removal of extraordinary low average speeds at the start and the 
end of voyages 
Using the same matrix with vessels and dates in the axis’s as basis, the following IF 

statement was run for each vessel, for each day, in order to remove the unwanted start 

values: 

• IF the previous two data points are blank 

• AND the data point is 30% lower than the average daily speed of the next 10 days 

• Then the data point	
  should	
  be	
  removed	
  from	
  the	
  data	
  set.	
  	
  

The same method was used for removing end-values. By following this procedure, 2,740 

data points were removed from the data set with an average speed of 7.6 knots71.  

3) Removal of lone values 
1,213 datapoint were removed using a IF statement: 

• IF no other values registered the next 7 days or previous 7 days for the vessel 

4) Removal of double counts 
On the 18th of September 2014 and 26th of October 2014, 356 and 344 vessels, respectively, 

were registered with double, triple or quadruple counts, with 223 vessels encountering 

double counting both dates. 

 

                                                

71 Laden Start/End delete: 1332 datapoints, average 7.3 knots  
Ballast Start/End delete: 1408 datapoints, average 7.8 knots 
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By keeping only the first data point registered for a given vessel at a given day, 1201 data 

points were removed. 

5) Removal of vessels only registered with either laden or ballast 
In total, 449 data points were removed as a result of removing vessels with only ballast or 

laden data. 

6) Defining new laden and ballast data points based on draught ratio 
For the few vessels where the maximum draught was set to zero or had unrealistic values, 

maximum draught was collected from Clarksons. The reviewed definitions of ballast and 

laden excludes 11,684 data points in total.  

7) Removal of data points with lower average speed than minimum 
speed 
In the final dataset, after all cleaning steps are performed, there are still 5909 data points 

observed with speeds between 7 and 8 knots. This supports our theory that shipowners allow 

vessels to steam at speeds as low as 7 knots, and not that the observations are caused by 

other factors.  
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8.3 Appendix C – Estimation of missing design speed 

A comparison between vessels with the same engine has been conducted based primarily on 

engine power (kW), RPM and DWT. Secondarily we have looked at age of the vessel and 

other determinants of size, such as displacement. To determine the missing values of design 

speed, we have employed the subsequent rules, in the listed order: 

1. If a vessel exactly match another vessels characteristics, employ the same design 

speed 

2. For each engine type we calculate an average design speed. If this average is based 

on more than 5 vessels (values) and the standard deviation in design speed is less 

than 0.5 knots, we employ this average to vessels with missing design speed for that 

engine type 

3. If none of the above are feasible, we manually insert design speed based on the 

specified characteristics after best estimation 

Eight outliers with speed of 12.5 and 21.5 have been set to the adjusted average speed72 for 

that engine type, as they had very similar characteristics as the other vessels with the same 

engines. Lastly, the seven ECO-vessels with missing values have been assigned speeds 

based on speed-consumption curves supplied by DNB Markets for the relevant engines. A 

total of 97 values were added or adjusted, of which 37 were hard typed based on qualitative 

assessment.  

                                                

72 The adjusted average is the average per engine type excluding the outliers 
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8.4 Appendix D – Detailed Calculation of Fuel 
Consumption at Design Speed 

The design speed of a vessel is assumed to capture the effects of variability in hull resistance 

and engine power among vessels when the engine is running at Maximum Continuous 

Rating (MCR). Hence, when design speed is reported, the fuel consumption at design speed 

should only be dependent on the total power output at MCR (effective break power).   

MCR, commonly set to 85% of the SMCR, and the corresponding power generation at this 

rate form the engine’s effective brake power at which the design speed is calculated from. In 

Table 15 RPM, kW, Brake Specific Fuel Consumption (BSFC)73 and fuel consumption in 

tonnes per day are presented for different levels of engine speed for three Wartsila engines at 

standard SMCR tuning.74 

 
Table 15: Engine power output, fuel efficiency and fuel consumption for three main Wartsila engines at standard 
SMCR tuning for different engine speeds (in % of SMCR and RPM) 
Source: Wartsila (2015) 

These three engines are used as basis when calculating fuel consumption at design speed for 

all vessels except for ECO-vessels. Engines are coupled with one of the three engines based 

on reported SMCR and TGP. Hence, we assume that there are no technological differences 

among the various engine manufacturers. 

Engines can be tuned in terms of SMCR, so that the BSFC curve matches the operational 

strategy of the owner or operator (Figure 10)75. In that relation, two otherwise identical 

engines have different fuel consumption at design speed dependent on the RPM tuning. 

                                                

73 Brake specific fuel consumption (BSFC) is a measure of fuel efficiency and is defined as g/kWh) 
74 All data collected from Wartsila engine program, except for tpd, which is own calculations, based BSFC and kW.  
75 An engine can be tuned to be most fuel effective at high or low speeds. In general, a higher SMCR makes the engine 
relatively more fuel effective working at higher RPMs.  

RPM
kW

BSFC
tpd

RPM
kW

BSFC
tpd

RPM
kW

BSFC
tpd

Power (%CMCR) at Design conditions

Flex82C 7 31640 102

RPM @ 
SMCR

kW @ 
SMCR

Wartsila Engine Model Cylinders

Flex84T 7 29400 76

Flex82T-A 7 31640 80

70% 75% 80% MCR 90% SMCR 110%
90.6 92.7 94.7 96.6 98.5 102 105.3

22 148 23 730 25 312 26 894 28 476 31 640 34 804
168.7 168.9 169.4 170.4 171.3 174 175
89.7 96.2 102.9 110.0 117.1 132.1 146.2
71.0 72.7 74.3 75.8 77.2 80.0 82.6

22 148 23 730 25 312 26 894 28 476 31 640 34 804
163.7 163.9 164.4 165.4 166.3 169.0 170.0
87.0 93.3 99.9 106.8 113.7 128.3 142.0
67.5 69.1 70.6 72.0 73.4 76.0 78.5

20 580 22 050 23 520 24 990 26 460 29 400 32 340
168.7 168.9 169.4 170.4 171.3 174.0 175.0
83.3 89.4 95.6 102.2 108.8 122.8 135.8

Power (%CMCR) at Design conditions



 89 

 
Figure 10: SMCR tuning possibilities for three main Wartsila engines 
Source: Wartsila (2015) 

The chosen engine allocation is presented in Figure 11. All engines reported with SMCR 

between 62-76 (except for ECO-vessels) are assumed to have the engine characterization of 

a Wartsila Flex84-T engine. RPM at SMCR in the range 77 to 80 correspond to a Flex82T-

A, while all engines above 80 are allocated to the Flex82C engine performance chart. 

 
Figure 11: Allocation of VLCC engines to the three Wartsila engine characterizations based on Clarkson 
specified SMCR for each vessel 
Source: Wartsila (2015) 

An engine’s power output, for a given SMCR, can be viewed as a linear function of engine 

size (number of cylinders) (Wärstilä)76. Therefore we can normalize the engine data to 

correspond to 1kW and then multiply the tpd data at 85% (MCR) with the reported kW of all 

vessels with reported SMCR of a given RPM. The normalized multipliers for fuel 

consumption at design speed (85% of SMCR) in tpd for each engine, and for different RPM 

tunings, are presented in Table 16.  As we see from the multiplication factors they are very 

similar when looking at a 1kW level, implying that the total kW output of an engine is the 

main driver of fuel consumption77.  

                                                

76 For a Wartsila flex84-T engine with 76 RPM at SMCR, each cylinder is equivalent to a power output of 4200 kW at 
SMCR (29400kW/7 cylinders) 
77 The multiplication factors are computed using data for different SMRC tuning possibilities from Wartsilas online tuning 
program. We acknowledge that in practice there might be differences between the engines, but the low (and none) observed 
differences in tpd per 1kw suggests that wartsila do not emphasize the engine variations to a large extent. 
 

Wartsila Engine Model SMCR Range
Flex84T 61-76
Flex82T-A 68-80
Flex82C 87-102

62 63 65 67 68 70 72 73 74 75 76 77 78 79 80 81 84 91 94 102
Flex84T
Flex82T-A
Flex82C

368
239

14

SMCRWartsila Engine Model
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Table 16: Fuel consumption in tonnes per day (tpd) equivalent to 1kW engine output for MCR (85% of SMCR) 
for three main Wartsila engines 
Source: Own calculations based on Wartsila (2015) 

A vessel with reported SMCR of 77 and Total Power of 29,000kW is computed to have fuel 

consumption at design speed of 101 tpd (29,000*0.00347616), while a vessel employing an 

engine with the same reported SMCR, but with a total power output of only 25,000kW 

(implying fever cylinders), only will have tpd of 87 at design speed (25,000*0.00347616). 

As we see, the engine characteristics of Flex82c and Flex84T are the same when looking at 

tpd per 1kW of power output. In practice, however, differences in fuel consumption at 

design speed are seen through the fact that Flex82C usually generate higher kW (as seen 

Table 15).  

Reported 
SMCR

Wartsila 
Engine Model

TPD @ 
1kW @ 
MCR

>80 Flex82C 0.003476
80 Flex82T-A 0.003374
79 Flex82T-A 0.003384
78 Flex82T-A 0.003395
77 Flex82T-A 0.003405
<77 Flex84T 0.003476
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8.5 Appendix E – Definition of Japanese Waters 

To approximate when a vessel was entering Japanese waters we had to utilize the daily 

longitude/latitude data provided in the panel data set. When defining an area using long/lat it 

needs to be square. Therefore, the following squares is defined to capture all vessels that 

steam in Japanese waters: 

 
Table 17: Longitude and latitude definitions of Japanese waters 
Source: Own estimations based on Globalenergyobservatory.org 

To generate the Japan data, we used an IF statement. IF a vessel was located within one of 

the above-mentioned squares on a particular day, Japan was returned. If not, “blank” was 

returned.  

Country Region LAT/BASE LON/BASE +/7/LAT +/7/LON Max Min Max Min
Japan 1 32 130.5 2 3 34.00 30.00 133.50 127.50
Japan 2 34 136 2 6 36.00 32.00 142.00 130.00
Japan 3 38 139 4 4 42.00 34.00 143.00 135.00
Japan 4 43 143 3 4 46.00 40.00 147.00 139.00

Latitude Longitude
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8.6 Appendix F – Definition of Regions 

We allocate data points to various regions using predefined latitude/longitude squares. To 

generate the region data, we used an IF statement. IF a vessel was located within one of the 

longitude/latitude squares defined in Table 18 on a particular day, a region was returned 

(starting with Persian Gulf, ending with South Pacific Ocean). If not, “blank” was returned.  

 

 

Table 18: Regions defined by latitude/longitude squares 
  

Region LAT*BASE LON*BASE +/2*LAT +/2*LON Max Min Max Min
Persian(Gulf 26 57 9 10 35.00 17.00 67.00 47.00
South(Asia 17 79 15 13 32.00 2.00 92.00 66.00

Southeast(Asia 5 124 16 31 21.00 <11.00 155.00 93.00
East(Asia 42 125 21 30 63.00 21.00 155.00 95.00
Red(Sea 20 40 10 15 30.00 10.00 55.00 25.00

East(Coast(Africa <8 42 18 15 10.00 <26.00 57.00 27.00
South(Coast(Africa <38 27 10 20 <28.00 <48.00 47.00 7.00
West(Coast(Africa 1 <3 31 20 32.00 <30.00 17.00 <23.00

Australasia <30 140 20 40 <10.00 <50.00 180.00 100.00
Mediterrean 38 12 8 25 46.00 30.00 37.00 <13.00

North(Sea 60 <10 10 25 70.00 50.00 15.00 <35.00
Caribbean( 18 <76 4 13 22.00 14.00 <63.00 <89.00
Caribbean( 13 <71 2 13 15.00 11.00 <58.00 <84.00

West(Coast(Middle(America 20 <111 12 13 32.00 8.00 <98.00 <124.00
West(Coast(Middle(America 12 <99 5 10 17.00 7.00 <89.00 <109.00
West(Coast(Middle(America 9 <94 5 10 14.00 4.00 <84.00 <104.00
West(Coast(Middle(America 7 <88 2 10 9.00 5.00 <78.00 <98.00

Gulf(Of(Mexico 28 <91 10 9 38.00 18.00 <82.00 <100.00
U.S(Atlantic(Coast 39 <75 8 10 47.00 31.00 <65.00 <85.00
U.S(West(Coast 38.5 <125 10 12 48.50 28.50 <113.00 <137.00

East(Coast(Canada 57 <70 10 25 67.00 47.00 <45.00 <95.00
West(Coast(Canada 59 <130 10 20 69.00 49.00 <110.00 <150.00

East(Coast(South(America <25 <48 35 20 10.00 <60.00 <28.00 <68.00
West(Coast(South(America <30 <90 35 20 5.00 <65.00 <70.00 <110.00

South(Atlantic(Sea <30 <10 30 40 0.00 <60.00 30.00 <50.00
North(Atlantic(Sea 30 <40 30 44 60.00 0.00 4.00 <84.00

Indian(Ocean <15 84 40 65 25.00 <55.00 149.00 19.00
North(Pacific(Ocean 30 150 30 30 60.00 0.00 180.00 120.00
North(Pacific(Ocean 30 <139 30 41 60.00 0.00 <98.00 <180.00
South(Pacific(Ocean <30 <150 30 80 0.00 <60.00 <70.00 <230.00

Latitude Longitude
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8.7 Appendix G – Descriptive Statistics, Comprehensive 

 
Table 19: Descriptive statistics 

Average Std. Dev. Min Max No.obs Average Std. Dev. Min Max No.obs
Independent Variable
Speed overall 12.08 1.41 7.00 17.29 33 147 11.83 1.95 7.00 17.80 28 713

between 0.78 8.76 14.25 607 1.35 8.98 15.18 607
within 1.19 6.02 16.84 1.42 5.75 18.71

Macro Variables
TCE overall 22 350 23 422 -7 108 90 140 28 713

between 5 119 1 991 48 365 607
within 23 042 -19 091 96 252

FFA+1M overall 12.63 2.16 9.63 17.68 33 147 12.57 2.16 9.63 17.68 28 713
between 0.53 10.17 15.22 607 0.51 10.24 14.53 607
within 2.13 8.27 18.39 2.12 8.71 18.51

Freight overall 13.02 3.28 9.07 21.10 33 147 12.96 3.28 9.07 21.10 28 713
between 0.69 9.95 16.74 607 0.69 10.28 16.62 607
within 3.25 5.50 22.17 3.23 7.22 22.17

Bunkers* overall 569.36 93.11 282.50 663.00 33 147 586.06 71.45 282.50 663.00 28 713
between 23.62 404.15 637.25 607 15.82 477.23 624.90 607
within 91.49 248.75 790.21 70.24 267.87 713.91

FreightBunkers* overall 0.025 0.013 0.014 0.071 33 147 0.023 0.010 0.014 0.060 28 713
between 0.003 0.016 0.048 607 0.002 0.017 0.037 607
within 0.013 -0.009 0.074 0.010 0.007 0.063

FFA1M/Bunkers overall 0.024 0.010 0.015 0.061 33 147
between 0.002 0.016 0.041 607
within 0.010 -0.001 0.063

Vessel Specific Variables
DraughtRatio overall 0.93 0.04 0.80 1.00 33 147 0.51 0.03 0.25 0.64 28 713

between 0.03 0.87 0.99 607 0.02 0.45 0.60 607
within 0.03 0.75 1.04 0.03 0.25 0.67

CargoConstant overall 291 869 9 671 246 999 420 347 33 147
between 11 054 246 999 420 347 607
within 0 291 869 291 869

CargoFloating overall 287 125 12 911 206 817 391 423 33 147
between 9 810 247 581 391 047 607
within 9 382 234 962 319 420

dSpeed overall 15.77 0.52 13.50 17.40 33 147 15.74 0.50 13.50 17.40 28 713
between 0.51 13.50 17.40 607 0.51 13.50 17.40 607
within 0 15.77 15.77 0 15.74 15.74

FuelCons overall 100.40 11.46 56.02 130.35 33 147 99.77 11.21 56.02 130.35 28 713
between 11.51 56.02 130.35 607 11.52 56.02 130.35 607
within 0 100.40 100.40 0 99.77 99.77

Consumption/dSpeed overall 6.37 0.70 3.59 8.23 33 147 6.34 0.68 3.59 8.23 28 713
between 0.70 3.59 8.23 607 0.70 3.59 8.23 607
within 0 6.37 6.37 0 6.34 6.34

BlockCoefficient overall 0.84 0.02 0.78 0.93 32 902 0.84 0.02 0.78 0.98 28 448
between 0.02 0.78 0.93 600 0.02 0.78 0.98 600
within 0 0.87 0.87 0 0.87 0.87

Length/Beam overall 5.58 0.11 4.76 6.09 32 962 5.58 0.11 4.76 6.09 28 505
between 0.11 4.76 6.09 601 0.11 4.76 6.09 601
within 0 5.58 5.58 0 5.58 5.58

Beam/Draught overall 2.73 0.13 2.49 3.68 32 962 2.74 0.13 2.49 3.68 28 505
between 0.13 2.49 3.68 601 0.13 2.49 3.68 601
within 0 2.81 2.81 0 2.83 2.83

Built2000_D overall 14.4% 33 147 17.0% 28 713
between 607 607
within

EVDI overall 2.48 0.15 1.99 2.95 33 147 2.47 0.15 1.99 2.95 28 713
between 0.16 1.99 2.95 607 0.16 1.99 2.95 607
within 0 2.48 2.48 0 2.47 2.47

Drydock_D overall 50.2% 13 397 51.9% 11 589
between 579 582
within

ECO_D overall 0.6% 33 147 0.6% 28 713
between 607 607
within

Operational Specific Variables
Japan_D overall 10.6% 33 147 10.3% 28 713

between 607 607
within

LogChain_D overall 8.7% 33 147 9.7% 28 713
between 607 607
within

LpOw_D overall 44.0% 33 147 38.7% 28 713
between 607 607
within

Other Variables
Contango_D overall 4.6% 33 147

between 607
within

Cyclone_D overall 1.8% 33 147 2.3% 28 713
between 607 607
within

* For the laden leg we use spot bunkers, and for the ballast leg we use 6-week lagging bunkers

Laden Leg Ballast Leg
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8.8 Appendix H – Robustness Check Empirical Analysis 

 
Table 20: Robustness check, laden 
 

 
Table 21: Robustness check, ballast 
  

All >1 daily obs. >2 daily obs. >3 daily obs.
lFreight 0.0033 0.0011 -0.0009 -0.0025

(0.414) (0.782) (0.830) (0.527)
lBunkers 0.0061 0.0090 0.0102 0.0129

(0.248) (0.084) (0.056) (0.013)
lCargoFloating 0.0767 0.0624 0.0283 0.0124

(0.005) (0.024) (0.315) (0.654)
ldSpeed 0.1360 0.1263 0.1074 0.1094

(0.032) (0.042) (0.090) (0.079)
EVDI 0.0538 0.0552 0.0532 0.0584

(0.000) (0.000) (0.000) (0.000)
Japan_D 0.1017 0.0982 0.0959 0.0928

(0.000) (0.000) (0.000) (0.000)
LogChain_D 0.0461 0.0451 0.0454 0.0427

(0.000) (0.000) (0.000) (0.000)
LpOw_D 0.0215 0.0204 0.0206 0.0213

(0.000) (0.000) (0.000) (0.000)
Cyclone_D 0.0108 0.0076 0.0052 0.0069

(0.010) (0.074) (0.226) (0.113)
Constant 0.9379 1.1329 1.6197 1.7911

(0.012) (0.003) (0.000) (0.000)
R2 Overall 0.1003 0.1033 0.1051 0.1060

R2 Within 0.0008 0.0008 0.0007 0.0013
R2 Between 0.3228 0.3115 0.3028 0.3015

Hausman test (p-value) 0.0671 0.0694 0.2816 0.2005
No of observations 33 147 29 595 25 897 22 533

Laden Leg Robustness Check
Include weeks with…Variable

All >1 daily obs. >2 daily obs. >3 daily obs.
lFreight 0.0458 0.0457 0.0490 0.0547

(0.000) (0.000) (0.000) (0.000)
l6wBunkers -0.0491 -0.0511 -0.0515 -0.0501

(0.000) (0.000) (0.000) (0.000)
EVDI 0.0492 0.0566 0.0599 0.0602

(0.047) (0.024) (0.021) (0.027)
Japan_D 0.1895 0.1932 0.1962 0.2012

(0.000) (0.000) (0.000) (0.000)
LogChain_D 0.1254 0.1261 0.1277 0.1310

(0.000) (0.000) (0.000) (0.000)
LpOw_D 0.0304 0.0308 0.0307 0.0316

(0.000) (0.000) (0.000) (0.000)
Constant 2.4850 2.4828 2.4715 2.4491

(0.000) (0.000) (0.000) (0.000)
R2 Overall 0.1730 0.1854 0.1953 0.2054

R2 Within 0.0164 0.0182 0.0201 0.0234
R2 Between 0.3609 0.3556 0.3433 0.3413

Hausman test (p-value) 0.2786 0.3822 0.4005 0.5744
No of observations 28 713 24 930 20 810 17 202

Ballast Leg Robustness Check
Include weeks with…Variable
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8.9 Appendix I – Financing Cost vs. Bunkers 

In order to compare financing cost to bunkers cost we have to make assumptions on both 

sides of the equation. In Table 22 we have estimated the total financing expenses and 

bunkers expenses for a vessels going from Ras Tanura to Chiba, a distance of 8005 nautical 

miles (Ports.com, 2015). The main takeaway from the two tables is that higher speed means 

fewer days on water thus lower financing cost, but higher bunkers cost. For illustration 

purposes we have used a financing rate of 7% for chartering a 305,000 dwt VLCC at 95% 

utilization. Fuel consumption is based on the fuel consumption curves of Devanney (2011). 

The average EVDI of the total vessel fleet was used when choosing the fuel curve.  

 
Table 22: Illustrational example - Financing cost versus bunkers cost  

50 60 70 80 90 100 110
12 $547 291 $656 750 $766 208 $875 666 $985 125 $1 094 583 $1 204 041
13 $505 192 $606 230 $707 269 $808 307 $909 346 $1 010 384 $1 111 423
14 $469 107 $562 928 $656 750 $750 571 $844 392 $938 214 $1 032 035
15 $437 833 $525 400 $612 966 $700 533 $788 100 $875 666 $963 233
16 $410 469 $492 562 $574 656 $656 750 $738 843 $820 937 $903 031

50 60 70 80 90 100 110
12 $454 422 $545 306 $636 191 $727 075 $817 960 $908 844 $999 728
13 $528 565 $634 278 $739 991 $845 705 $951 418 $1 057 131 $1 162 844
14 $604 343 $725 212 $846 081 $966 949 $1 087 818 $1 208 687 $1 329 555
15 $696 509 $835 810 $975 112 $1 114 414 $1 253 716 $1 393 017 $1 532 319
16 $805 427 $966 513 $1 127 598 $1 288 684 $1 449 769 $1 610 855 $1 771 940

Financing cost
Crude Price ($/Barrel)

Speed 
(knots)

Crude Price ($/Barrel)

Speed 
(knots)

Bunkers cost
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8.10 Appendix J – Draught Ratio vs. Freight Bunkers 

 
Figure 12: Draught ratio and freight/bunkers 
Source: Clarkson’s (2015), Genscape Vesseltracker and Marinetraffic (2015) 

The draught ratio is calculated as a daily average of all vessels for the laden leg, using data 

points where draught ratio is above 80%.  
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