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Abstract

Volatility is not directly observable and must be estimated. Estimator based on
daily close data is imprecise. Range-based volatility estimators provide signifi-
cantly more precision, but still remain noisy volatility estimates, something that
is sometimes forgotten when these estimators are used in further calculations.

First, we analyze properties of these estimators and find that the best esti-
mator is the Garman-Klass (1980) estimator. Second, we correct some mistakes
in existing literature. Third, the use of the Garman-Klass estimator allows us to
obtain an interesting result: returns normalized by their standard deviations are
approximately normally distributed. This result, which is in line with results
obtained from high frequency data, but has never previously been recognized in
low frequency (daily) data, is important for building simpler and more precise
volatility models.
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1. Introduction

Asset volatility, a measure of risk, plays a crucial role in many areas of
finance and economics. Therefore, volatility modelling and forecasting become
one of the most developed parts of financial econometrics. However, since the
volatility is not directly observable, the first problem which must be dealt with
before modelling or forecasting is always a volatility measurement (or, more
precisely, estimation).

Consider stock price over several days. From a statistician’s point of view,
daily relative changes of stock price (stock returns) are almost random. More-
over, even though daily stock returns are typically of a magnitude of 1% or
2%, they are approximately equally often positive and negative, making aver-
age daily return very close to zero. The most natural measure for huw much
stock price changes is the variance of the stock returns. Variance can be easily
calculated and it is a natural measure of the volatility. However, this way we
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can get only an average volatility over an investigated time period. This might
not be sufficient, because volatility changes from one day to another. When
we have daily closing prices and we need to estimate volatility on a daily basis,
the only estimate we have is squared (demeaned) daily return. This estimate
is very noisy, but since it is very often the only one we have, it is commonly
used. In fact, we can look at most of the volatility models (e.g. GARCH class
of models or stochastic volatility models) in such a way that daily volatility is
first estimated as squared returns and consequently processed by applying time
series techniques.

When not only daily closing prices, but intraday high frequency data are
available too, we can estimate daily volatility more precisely. However, high
frequency data are in many cases not available at all or available only over
a shorter time horizon and costly to obtain and work with. Moreover, due to
market microstructure effects the volatility estimation from high frequency data
is rather a complex issue (see Dacorogna et al. 2001).

However, closing prices are not the only easily available daily data. For the
most of financial assets, daily open, high and low prices are available too. Range,
the difference between high and low prices is a natural candidate for the volatility
estimation. The assumption that the stock return follows a Brownian motion
with zero drift during the day allows Parkinson (1980) to formalize this intuition
and derive a volatility estimator for the diffusion parameter of the Brownian
motion. This estimator based on the range (the difference between high and
low prices) is much less noisy than squared returns. Garman and Klass (1980)
subsequently introduce estimator based on open, high, low and close prices,
which is even less noisy. Even though these estimators have existed for more
than 30 years, they have been rarely used in the past by both academics and
practitioners. However, recently the literature using the range-based volatility
estimators started to grow (e.g. Alizadeh, Brandt and Diebold (2002), Brandt
and Diebold (2006), Brandt and Jones (2006), Chou (2005), Chou (2006), Chou,
Liu (2010)). For an overview see Chou and Liu (2010).

Despite increased interest in the range-based estimators, their properties are
sometimes somewhat imprecisely understood. One particular problem is that
despite the increased accuracy of these estimators in comparison to squared re-
turns, these estimators still only provide a noisy estimate of volatility. However,
in some manipulations (e.g. division) people treat these estimators as if they
were exact values of the volatility. This can in turns lead to flawed conclusions,
as we show later in the paper. Therefore we study these properties.

Our contributions are the following. First, when the underlying assumptions
of the range-based estimators hold, all of them are unbiased. However, taking
the square root of these estimators leads to biased estimators of standard de-
viation. We study this bias. Second, for a given true variance, distribution of
the estimated variance depends on the particular estimator. We study these
distributions. Third, we show how the range-based volatility estimators should
be modified in the presence of opening jumps (stock price at the beginning of
the day typically differs from the closing stock price from the previous day).

Fourth, the property we focus on is the distribution of returns standardized
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by standard deviations. A question of interest is how this is affected when the
standard deviations are estimated from range-based volatility estimators. The
question whether the returns divided by their standard deviations are normally
distributed has important implications for many fields in finance. Normality of
returns standardized by their standard deviations holds promise for simple-to-
implement and yet precise models in financial risk management. Using volatility
estimated from high frequency data, Andersen, Bollerslev, Diebold and Labys
(2000), Andersen, Bollerslev, Diebold, Ebens (2001), Forsberg and Bollerslev
(2002) and Thamakos and Wang (2003) show that standardized returns are in-
deed Gaussian. Contrary, returns scaled by standard deviations estimated from
GARCH type of models (which are based on daily returns) are not Gaussian,
they have heavy tails. This well-known fact is the reason why heavy-tailed
distributions (e.g. t-distribution) were introduced into the GARCH models.
We show that when properly used, range-based volatility estimators are precise
enough to replicate basically the same results as those of Andersen et al. (2001)
obtained from high frequency data. To our best knowledge, this has not been
previously recognized in the daily data. Therefore volatility models built upon
high and low data might provide accuracy similar to models based upon high
frequency data and still keep the benefits of the models based on low frequency
data (much smaller data requirements and simplicity).

The rest of the paper is organized in the following way. In Section 2, we
describe existing range-based volatility estimators. In Section 3, we analyze
properties of range-based volatility estimators, mention some caveats related
to them and correct some mistakes in the existing literature. In Section 4
we empirically study the distribution of returns normalized by their standard
deviations (estimated from range-based volatility estimators) on 30 stock, the
components of the Dow Jones Industrial Average. Section 5 concludes.

2. Overview

Assume that price P follows a geometric Brownian motion such that log-
price p = ln(P ) follows a Brownian motion with zero drift and diffusion σ.

dpt = σdBt (1)

Diffusion parameter σ is assumed to be constant during one particular day, but
can change from one day to another. We use one day as a unit of time. This
normalization means that the diffusion parameter in (1) coincides with the daily
standard deviation of returns and we do not need to distinguish between these
two quantities. Denote the price at the beginning of the day (i.e. at the time
t = 0) O (open), the price in the end of the day (i.e. at the time t = 1) C
(close), the highest price of the day H, and the lowest price of the day L. Then
we can calculate open-to-close, open-to-high and open-to-low returns as

c = ln(C)− ln(O) (2)

h = ln(H)− ln(O) (3)
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l = ln(L)− ln(O) (4)

Daily return c is obviously a random variable drawn from a normal distribution
with zero mean and variance (volatility) σ2

c ∼ N(0, σ2) (5)

Our goal is to estimate (unobservable) volatility σ2 from observed variables c,
h and l. Since we know that c2 is an unbiased estimator of σ2,

E
(
c2
)

= σ2 (6)

we have the first volatility estimator (subscript s stands for ”simple”)

σ̂2
s = c2 (7)

Since this simple estimator is very noisy, it is desirable to have a better one. It
is intuitively clear that the difference between high and low prices tells us much
more about volatility than close price. High and low prices provide additional
information about volatility. The distribution of the range d ≡ h − l (the
difference between the highest and the lowest value) of Brownian motion is
known (Feller (1951)). Define P (x) to be the probability that d ≤ x during the
day. Then

P (x) =

∞∑
n=1

(−1)
n+1

n

{
Erfc

(
(n+ 1)x√

2σ

)
− 2Erfc

(
nx√
2σ

)
+ Erfc

(
(n− 1)x√

2σ

)}
(8)

where
Erfc(x) = 1− Erf(x) (9)

and Erf(x) is the error function. Using this distribution Parkinson (1980)
calculates (for p ≥ 1)

E (dp) =
4√
π

Γ

(
p+ 1

2

)(
1− 4

2p

)
ζ (p− 1)

(
2σ2
)

(10)

where Γ (x) is the gamma function and ζ (x) is the Riemann zeta function.
Particularly for p = 1

E (d) =
√

8πσ (11)

and for p = 2
E
(
d2
)

= 4 ln (2)σ2 (12)

Based on formula (12), he proposes a new volatility estimator:

σ̂2
P =

(h− l)2

4 ln 2
(13)

Garman and Klass (1980) realize that this estimator is based solely on quan-
tity h−l and therefore an estimator which utilizes all the available information c,
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h and l will be necessarily more precise. Since search for the minimum variance
estimator based on c, h and l is an infinite dimensional problem, they restrict
this problem to analytica estimators, i.e. estimators which can be expressed
as an analytical function of c, h and l. They find that the minimum variance
analytical estimator is given by the formula

̂σ2
GKprecise = 0.511 (h− l)2 − 0.019 (c(h+ l)− 2hl)− 0.383c2 (14)

The second term (cross-products) is very small and therefore they recommend
neglecting it and using more practical estimator:

σ̂2
GK = 0.5 (h− l)2 − (2 ln 2− 1) c2 (15)

We follow their advice and further on when we talk about Garman-Klass volatil-
ity estimator (GK), we refer to (15). This estimator has additional advantage
over (14) - it can be simply explained as an optimal (smallest variance) combi-
nation of simple and Parkinson volatility estimator.

Meilijson (2009) derives another estimator, outside the class of analytical
estimators, which has even smaller variance than GK. This estimator is con-
structed as follows.

σ̂2
M = 0.274σ2

1 + 0.16σ2
s + 0.365σ2

3 + 0.2σ2
4 (16)

where
σ2
1 = 2

[
(h′ − c′)2 + l′

]
(17)

σ2
3 = 2 (h′ − c′ − l′) c′ (18)

σ2
4 = − (h′ − c′) l′

2 ln 2− 5/4
(19)

where c′ = c, h′ = h, l′ = l if c > 0 and c′ = −c, h′ = −l, l′ = −h if c < 0.2

Rogers and Satchell (1991) derive an estimator which allows for arbitrary
drift.

σ̂2
RS = h(h− c) + l(l − c) (20)

There are two other estimators which we should mention. Kunitomo (1992)
derives a drift-independent estimator, which is more precise than all the pre-
viously mentioned estimators. However ”high” and ”low” prices used in his
estimator are not the highest and lowest price of the day. The ”high” and ”low”
used in this estimator are the highest and the lowest price relative to the trend
line given by open and high prices. These ”high and ”low” prices are unknown
unless we have tick-by-tick data and therefore the use of this estimator is very
limited.

2This estimator is not analytical, because it uses different formula for days when c > 0
than for days when c < 0.
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Yang and Zhang (2000) derive another drift-independent estimator. How-
ever, their estimator can be used only for estimation of average volatility over
multiple days and therefore we do not study it in our paper.

Efficiency of a volatility estimator σ̂2 is defined as

Eff(σ̂2) ≡
var

(
σ2
s

)
var

(
σ̂2
) (21)

Simple volatility estimator has by definition efficiency 1, Parkinson volatility es-
timator has efficiency 4.9, Garman-Klass 7.4 and Meilijson 7.7. Rogers, Satchell
has efficiency 6.0 for the zero drift and larger than 2 for any drift.

Remember that all of the studied estimators except for Rogers, Satchell are
derived under the assumption of zero drift. However, for most of the financial
assets, mean daily return is much smaller than its standard deviation and can
therefore be neglected. Obviously, this is not true for longer time horizons (e.g.
when we use yearly data), but this is a very good approximation for daily data
in basically any practical application.

Further assumptions behind these estimators are continuous sampling, no
bid-ask spread and constant volatility. If prices are observed only infrequently,
then the observed high will be below the true high and observed low will be above
the true low, as was recognized already by Garman and Klass (1980). Bid-ask
spread has the opposite effect: observed high price is likely to happen at ask,
observed low price is likely to happen at the low price and therefore the difference
between high and low contains in addition bid-ask spread. These effects work in
the opposite direction and therefore they will at least partially cancel out. More
importantly, for liquid stocks both these effects are very small. In this paper we
maintain the assumption of constant volatility within the day. This approach
is common even in stochastic volatility literature (e.g. Alizadeh, Brandt and
Diebold 2002) and assessing the effect of departing from this assumption is
beyond the scope of this paper. However, this is an interesting avenue for
further research.

3. Properties of range-based volatility estimators

The previous section provided an overview of range-based volatility estima-
tors including their efficiency. Here we study their other properties. Our main
focus is not their empirical performance, as this question has been studied before
(e.g. Bali and Weinbaum (2005)). We study the performance of these estima-
tors when all the assumptions of these estimators hold perfectly. This is more
important than it seems to be, because this allows us to distinguish between the
case when these estimators do not work (assumptions behind them do not hold)
and the case when these estimators work, but we are misinterpreting the results.
This point can be illustrated in the following example. Imagine that we want to
study the distribution of returns standardized by their standard deviations. We
estimate these standard deviations as a square root of the Parkinson volatility

6



estimator (13) and find that standardized returns are not normally distributed.
Should we conclude that true standardized returns are not normally distributed
or should we conclude that the Parkinson volatility estimator is not appropriate
for this purpose? We answer this and other related questions.

To do so, we ran 500000 simulations, one simulation representing one trading
day. During every trading day log-price p follows a Brownian motion with zero
drift and daily diffusion σ = 1. We approximate continuous Brownian motion
by n = 100000 discrete intraday returns, each drawn from N(0, 1/

√
n).3 We

save high, low and close log-prices h, l, c for every trading day4.

3.1. Bias in σ

All the previously mentioned estimators are unbiased estimators of σ2. There-
fore, square root of any of these estimators will be a biased estimator of σ. This
is direct consequence of well known fact that for a random variable x the quan-
tities E(x2) and E(x)2 are generally different. However, as I document later,

using
√
σ̂2 as σ̂, as an estimator of σ, is not uncommon. Moreover, in many

cases the objects of our interests are standard deviations, not variances. There-

fore, it is important to understand the size of the error introduced by using
√
σ̂2

instead of σ̂ and potentially correct for this bias. Size of this bias depends on
the particular estimator.

As can be easily proved, an unbiased estimator σ̂s of the standard deviation

σ based on

√
σ̂2
s is

σ̂s =

√
σ̂2
s ×

√
π

2
= |c| ×

√
π/2 (22)

Using the results (11) and (13) we can easily find that an estimator of standard
deviation based on range is

σ̂P =
h− l

2
×
√
π

2
=

√
σ̂2
P ×

√
π ln 2

2
(23)

Similarly, when we want to evaluate the bias introduced by using
√
σ̂2 instead

of σ̂ for the rest of volatility estimators, we want to find constants cGK , cM and
cRS such that

σ̂GK =

√
σ̂2
GK × cGK (24)

3Such a high n allows us to have almost perfectly continuous Brownian motion and having
so many trading days allow us to know the distributions of range based volatility estimators
with very high precision. Simulating these data took one months on an ordinary computer
(Intel Core 2 Duo P8600 2.4 GHz, 2 GB RAM).

Note that we do not derive analytical formulas for the distributions of range-based volatility
estimators. Since these formulas would not bring additional insights into the questions we
study, their derivation is behind the scope of this paper.

4Open log-price is normalized to zero.
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σ̂M =

√
σ̂2
M × cM (25)

σ̂RS =

√
σ̂2
RS × cRS (26)

From simulated high, low and close log-prices h, l, c we estimate volatility
according to (7), (13), (15), (16), (20) and calculate mean of the square root
of these volatility estimates. We find that cs = 1.253, cP = 1.043 (what is in
accordance with theoretical values

√
π/2 = 1.253 and

√
π ln 2/2 = 1.043) and

cGK = 1.034, cM = 1.033 and cRS = 1.043. We see that the square root of the
simple volatility estimator is a severely biased estimator of standard deviation
(bias is 25%), whereas bias in the square root of range-based volatility estimators
is rather small (3% - 4%).

Even though it seems obvious that
√
σ̂2 is not an unbiased estimator of σ,

it is quite common even among researchers to use
√
σ̂2 as an estimator of σ. I

document this in two examples.
Bali and Weinbaum (2005) empirically compare range-based volatility esti-

mators. The criteria they use are: mean squared error

MSE (σestimated) = E
[
(σestimated − σtrue)2

]
(27)

mean absolute deviation

MAD (σestimated) = E [|σestimated − σtrue|] (28)

and proportional bias

Prop.Bias (σestimated) = E [(σestimated − σtrue)/σtrue] (29)

For daily returns they find:

”The traditional estimator [(7) in our paper] is significantly bi-
ased in all four data sets. [...] it was found that squared returns do
not provide unbiased estimates of the ex post realized volatility. Of
particular interest, across the four data sets, extreme-value volatil-
ity estimators are almost always significantly less biased than the
traditional estimator.”

This conclusion sounds surprising only until we realize that in their calcula-

tions σestimated ≡
√
σ̂2, which, as just shown, is not an unbiased estimator of σ.

Actually, it is severely biased for a simple volatility estimator. Generally, if our
interest is unbiased estimate of the standard deviation, we should use formulas
(22)-(26).

A similar problem is in Bollen, Inder (2002). In testing for the bias in the

estimators of σ, they correctly adjust

√
σ̂2
s using formula (22), but they do not

adjust

√
σ̂2
P and

√
σ̂2
GK by constants cP and cGK .

8



3.2. Distributional properties of range-based estimators

Daily volatility estimates are typically further used in volatility models. Ease
of the estimation of these models depends not only on the efficiency of the used
volatility estimator, but on its distributional properties too (Broto, Ruiz (2004)).
When the estimates of relevant volatility measure (whether it is σ2, σ or lnσ2)
have approximately normal distribution, the volatility models can be estimated

more easily.5 We study the distributions of σ̂2,
√
σ̂2 and ln σ̂2, because these are

the quantities modelled by volatility models. Most of the GARCH models try
to capture time evolution of σ2, EGARCH and stochastic volatility models are
based on time evolution of lnσ2 and some GARCH models model time evolution
of σ.

Under the assumption of Brownian motion, the distribution of absolute value
of return and the distribution of range are known (Karatzas and Shreve (1991),
Feller (1951)). Using their result, Alizadeh, Brandt, Diebold (2002) derive the

distribution of log absolute return and log range. Distribution of σ̂2,
√
σ̂2 and

ln σ̂2 is unknown for the rest of the range-based volatility estimators. Therefore
we study these distributions. To do this, we use numerical evaluation of h, l
and c data, which are simulated according to the process (1) (.6

First we study the distribution of σ̂2 for different estimators. These distribu-
tions are plotted in Figure 1. Since all these estimators are unbiased estimators
of σ2, all have the same mean (in our case one). Variance of these estimators is
given by their efficiency. From the inspection of Figure 1, we can observe that the

density function of σ̂2 is approximately lognormal for range-based estimators.
On the other hand, distribution of squared returns, which is χ2 distribution
with one degree of freedom, is very dispersed and reaches maximum at zero.
Therefore, for most of the purposes, distributional properties of range-based
estimators are more appropriate for further use than the squared returns. For
the range, this was already noted by Alizadeh, Brandt, Diebold (2002). How-
ever, this is true for all the range-based volatility estimators. The differences in
distributions among different range-based estimators are actually rather small.

The distributions of
√
σ̂2 are plotted in Figure 2. These distributions have

less weight on the tails than the distributions of σ̂2. This is not surprising,
since the square root function transforms small values (values smaller then one)
into larger values (values closer towards one) and it transforms large values
(values larger than one) into smaller values (values closer to one). Again, the

distributions of
√
σ̂2 for range range-based estimators have better properties

5E.g. Gaussian quasi-maximum likelihood estimation, which plays an important role in
estimation of stochastic volatility models, depends crucially on the near-normality of log-
volatility.

6The fact that we do not search for analytical formula is not limiting at all. The analytical
form of density function for the simplest range-based volatility estimator, range itself, is so
complicated (it is an infinite series) that in the end even skewness and kurtosis must be
calculated numerically.
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Figure 1: Distribution of variances estimated as squared returns and from Parkinson, Garman-
Klass, Meilijson and Rogers-Satchell formulas.

than the distribution of the absolute returns. To distinguish the difference
between different range-based volatility estimators, we calculate the summary
statistics and present them in Table 1.

Table 1: The summary statistics for the square root of the volatility estimated as absolute
returns and as a square root of the Parkinson, Garman-Klass, Meilijson and Rogers-Satchell
formulas.

mean std skewness kurtosis
|r| 0.80 0.60 1.00 3.87√
σ̂2
P 0.96 0.29 0.97 4.24√

σ̂2
GK 0.97 0.24 0.60 3.40√
σ̂2
M 0.97 0.24 0.54 3.28√

σ̂2
RS 0.96 0.28 0.46 3.44

No matter whether we rank these distributions according to their mean
(which should be preferably close to 1) or according to their standard deviations
(which should be the smallest possible), ranking is the same as in the previous
case: the best is Meilijson volatility estimator, then Garman-Klass, next Roger-
Satchell, next Parkinson and the last is the absolute returns.
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Figure 2: Distribution of square root of volatility estimated as squared returns and from
Parkinson, Garman-Klass, Meilijson and Rogers-Satchell formulas.

In many practical applications, the mean squared error (MSE) of an estima-

tor θ̂
MSE

(
θ̂
)

= E
[
(θ̂ − θ)2

]
(30)

is the most important criterion for the evaluation of the estimators, since MSE
quantifies the difference between values implied by an estimator and the true
values of the quantity being estimated. The MSE is equal to the sum of the
variance and the squared bias of the estimator

MSE
(
θ̂
)

= V ar
(
θ̂
)

+
(
Bias(θ̂, θ)

)2
(31)

and therefore in our case (when estimator with smallest variance has smallest
bias) is the ranking according to MSE identical with the ranking according to
bias or variance.

In the end, we investigate the distribution of ln σ̂2 (see Figure 3). As we
can see, the logarithm of the squared returns is highly nonnormally distributed,
but the logarithms of the range-based volatility estimators have distributions
similar to the normal distribution. To see the difference among various range-
based estimators, we again calculate their summary statistics (see Table 2).

Note that the true volatility is normalized to one. Normality of the estimator
is desirable for practical reasons and therefore the ideal estimator should have
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Figure 3: Distribution of the logarithm of volatility estimated as squared returns and from
the Parkinson, Garman-Klass, Meilijson and Rogers-Satchell formulas.

Table 2: Summary statistics for logarithm of volatility estimated as a logarithm of squared re-
turns and as a logarithm of Parkinson, Garman-Klass, Meilijson and Rogers- Satchell volatility
estimators.

mean std skewness kurtosis

ln
(
r2
)

−1.27 2.22 −1.53 6.98

ln
(
σ̂2
P

)
−0.17 0.57 0.17 2.77

ln
(
σ̂2
GK

)
−0.13 0.51 −0.09 2.86

ln
(
σ̂2
M

)
−0.13 0.50 −0.14 2.86

ln
(
σ̂2
RS

)
−0.17 0.61 −0.71 5.41

12



mean and skewness equal to zero, kurtosis close to three and standard deviation
as small as possible. We see that from the five studied estimators the Garman-
Klass and Meilijson volatility estimators, in addition to being most efficient,
have best distributional properties.

3.3. Normality of normalized returns

As was empirically shown by Andersen, Bollerslev, Diebold, Labys (2000),
Andersen, Bollerslev, Diebold, Ebens (2001), Forsberg and Bollerslev (2002) and
Thamakos and Wang (2003) on different data sets, standardized returns (returns
divided by their standard deviations) are approximately normally distributed.
In other words, daily returns can be written as

ri = σizi (32)

where zi ∼ N (0, 1). This finding has important practical implications too. If
returns (conditional on the true volatility) are indeed Gaussian and heavy tails
in their distributions are caused simply by changing volatility, then what we need
the most is a thorough understanding of the time evolution of volatility, possibly
including the factors which influence it. Even though the volatility models are
used primarily to capture time evolution of volatility, we can expect that the
better our volatility models, the less heavy-tailed distribution will be needed
for modelling of the stock returns. This insight can contribute to improved
understanding of volatility models, which is in turn crucial for risk management,
derivative pricing, portfolio management etc.

Intuitively, normality of the standardized returns follows from the Central
Limit Theorem: since daily returns are just a sum of high-frequency returns,
daily returns will be drawn from normal distribution.7

Since both this intuition and the empirical evidence of the normality of re-
turns standardized by their standard deviations is convincing, it is appealing to
require that one of the properties of a ”good” volatility estimator should be that
returns standardized by standard deviations obtained from this estimator will
be normally distributed (see e.g. Bollen and Inder (2002)). However, this intu-
ition is not correct. As I now show, returns standardized by some estimate of the
true volatility do not need to, and generally will not, have the same properties
as returns standardized by the true volatility. Therefore we need to understand
whether the range-based volatility estimators are suitable for standardization of
the returns. There are two problems associated with these volatility estimators:
they are noisy and their estimates might be (and typically are) correlated with
returns. These two problems might cause returns standardized by the estimated
standard deviations not to be normal, even when the returns standardized by
their true standard deviations are normally distributed.

7given the limited time-dependence and some conditions on existence of moments.
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3.3.1. Noise in volatility estimators

We want to know the effect of noise in volatility estimates σ̂i on the distribu-
tion of returns normalized by these estimates (ẑi = ri/σ̂i) when true normalized
returns zi = ri/σi are normally distributed. Without loss of generality, we set
σi = 1 and generate one million observations of ri, i ∈ {1, ..., 1000000}, all of
them are iid N(0,1). Next we generate σ̂i,n in such a way that σ̂ is unbiased
estimator of σ, i.e. E (σ̂i,n) = 1 and n represents the level of noise in σ̂i,n.
There is no noise for n = 0 and therefore σ̂i,0 = σi = 1. To generate σ̂i,n for
i > 0 we must decide upon distribution of σ̂i,n. Since we know from the previ-
ous section that range-based volatility estimates are approximately lognormally
distributed, we draw estimates of the standard deviations from lognormal dis-
tributions. We set the parameters µ and s2 of lognormal distribution in such
a way that E (σ̂i,n) = 1 and Var(σ̂i,n) = n, particularly µ = − 1

2 ln (1 + n),
s2 = ln (1 + n). For every n, we generate one million observations of σ̂i,n. Next
we calculate normalized returns ẑi,n = ri/σ̂i,n. Their summary statistics is in
the Table 3.

Table 3: Summary statistics for a random variable obtained as ratio of normal random variable
with zero mean and variance one and lognormal random variable with constant mean equal
to one and variance increasing from 0 to 0.8.

n = V ar (σ̂i) mean(ẑi,n) std(ẑi,n) skewness(ẑi,n) kurtosis(ẑi,n)
0.0 0.0001 1.00 0.00 3.00
0.2 0.0003 1.32 0.02 6.22
0.4 0.0013 1.66 −0.01 11.80
0.6 −0.0007 2.03 0.03 19.76
0.8 0.0025 2.43 0.01 34.60

Obviously, ẑi,0, which is by definition equal to ri, has zero mean, standard
deviation equal to 1, skewness equal to 0 and kurtosis equal to 3. We see that
normalization by σ̂, a noisy estimate of σ, does not change E(ẑ) and skewness of
ẑ. This is natural, because ri is distributed symmetrically around zero. On the
other hand, adding noise increases standard deviation and kurtosis of ẑ. When
we divide normally distributed random variable ri by random variable σ̂i, we are
effectively adding noise to ri, making its distribution flatter and more dispersed
with more extreme observations. Therefore, standard deviation increases. Since
kurtosis is influenced mostly by extreme observations, it increases too.

3.3.2. Bias introduced by normalization of range-based volatility estimators

Previous analysis suggests that the more noisy volatility estimator we use
for the normalization of the returns, the higher the kurtosis of the normalized
returns will be. Therefore we could expect to find the highest kurtosis when
using the Parkinson volatility estimator (13). As we will see later, this is not
the case. Returns and estimated standard deviations were independent in the
previous section, but this is not the case when we use range-based estimators.

Let us denote σPARK ≡
√
σ̂2
PARK , σGK ≡

√
σ̂2
RS , σM ≡

√
σ̂2
M and σRS,t ≡
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Figure 4: Distribution of normalized returns. ”true” is the distribution of the stock re-
turns normalized by the true standard deviations. This distribution is by assumption N(0,1).
PARK, GK, M and RS refer to distributions of the same returns after normalization by volatil-
ity estimated using the Parkinson, Garman-Klass, Meilijson and Rogers-Sanchell volatility
estimators.

√
σ̂2
RS . We study the distributions of ẑPARK,i ≡ ri/σPARK,i, ẑGK,i ≡ ri/σGK,i,

ẑM,i ≡ ri/σM,i, ẑRS,t ≡ ri/σRS,i. Histograms for these distributions are shown
in Figure 4 and corresponding summary statistics are in Table 4.

Table 4: Summary statistics for returns nomalized by different volatility estimates: ẑPARK,i ≡
ri/σPARK,i, ẑGK,i ≡ ri/σGK,i, ẑM,i ≡ ri/σM,i, ẑRS,t ≡ ri/σRS,i.

mean std skewness kurtosis
ztrue,i 0.00 1.00 0.00 3.00
ẑP,i 0.00 0.88 −0.00 1.79
ẑGK,i 0.00 1.01 0.00 2.61
ẑM,i 0.00 1.02 0.00 2.36
ẑRS,i 0.01 1.35 1.62 123.96

The true mean and skewness of these distributions are zero, because returns
are symmetrically distributed around zero, triplets (h, l, c) and (−l,−h,−c)
are equally likely and all the studied estimators are symmetric in the sense
that they produce the same estimates for the log price following the Brown-
ian motion B(t) and for the log price following Brownian motion −B(t), par-
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ticularly σ̂PARK (h, l, c) = σ̂PARK (−l,−h, c), σ̂GK (h, l, c) = σ̂GK (−l,−h, c),
σ̂M (h, l, c) = σ̂M (−l,−h, c) and σ̂RD (h, l, c) = σ̂RS (−l,−h, c).

However, it seems from Table 4 that distribution of ẑRS,i is skewed. There
is another surprising fact about ẑRS,i. It has very heavy tails. The reason for
this is that the formula (20) is derived without the assumption of zero drift.
Therefore, when stock price performs one-way movement, this is attributed to
the drift term and volatility is estimated to be zero. (If movement is mostly in
one direction, estimated volatility will be nonzero, but very small). Moreover,
this is exactly the situation when stock returns are unusually high. Dividing
the largest returns by the smallest estimated standard deviations causes a lot
of extreme observations and therefore very heavy tails. Due to these extreme
observations the skewness of the simulated sample is different from the skew-
ness of the population, which is zero. This illustrates that the generality (drift
independence) of the Rogers and Satchell (1991) volatility estimator actually
works against this estimator in cases when the drift is zero.

When we use the Parkinson volatility estimator for the standardization of
the stock returns, we get exactly the opposite result. Kurtosis is now much
smaller than for the normal distribution. This is in line with empirical finding
of Bollen and Inder (2002). However, this result should not be interpreted that
this estimator is not working properly. Remember that we got the result of
the kurtosis being significantly smaller than 3 under ideal conditions, when the
Parkinson estimator works perfectly (in the sense that it works exactly as it is
supposed to work). Remember that this estimator is based on the range. Even
though the range, which is based on high and low prices, seems to be independent
of return, which is based on the open and close prices, the opposite is the case.
Always when return is high, range will be relatively high too, because range is
always at least as large as absolute value of the return. |r| /σPARK will never
be larger than

√
4 ln 2, because

|r|
σPARK

=
|r|
h−l√
4 ln 2

=
√

4 ln 2
|r|
h− l

≤
√

4 ln 2 (33)

The correlation between |r| and σPARK is 0.79, what supports our argument.
Another problem is that the distribution of ẑP,i is bimodal.

As we can see from the histogram, distribution of ẑM,i does not have any tails
either. This is because the Meilijson volatility estimator suffers from the same
type of problem as the Parkinson volatility estimator, just to a much smaller
extent.

The Garman-Klass volatility estimator combines the Parkinson volatility es-
timator with simple squared return. Even though both, the Parkinson estimator
and squared return are highly correlated with size of the return, the overall effect
partially cancels out, because these two quantities are subtracted. Correlation
between |r| and σGK is indeed only 0.36. ẑGK,i has approximately normal dis-
tribution, as the effect of noise and the effect of correlation with returns to large
extent cancels out.

We conclude this subsection with the appeal that we should be aware of the
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assumptions behind the formulas we use. As range-based volatility estimators
were derived to be as precise volatility estimators as possible, they work well for
this purpose. However, there is no reason why all of these estimators should work
properly when used for the standardization of the returns. We conclude that
from the studied estimators the only estimator appropriate for standardization
of returns is the Garman-Klass volatility estimator. We use this estimator later
in the empirical part.

3.4. Jump component

So far in this paper, returns and volatilities were related to the trading day,
i.e. the period from the open to the close of the market. However, most of
the assets are not traded continuously for 24 hours a day. Therefore, opening
price is not necessarily equal to the closing price from the previous day. We are
interested in daily returns

ri = ln(Ci)− ln(Ci−1) (34)

simply because for the purposes of risk management we need to know the total
risk over the whole day, not just the risk of the trading part of the day. If we do
not adjust range-based estimators for the presence of opening jumps, they will
of course underestimate the true volatility. The Parkinson volatility estimator
adjusted for the presence of opening jumps is

σ̂2
P =

(h− l)2

4 ln 2
+ j2 (35)

where ji = ln(Oi)− ln(Ci−1) is the opening jump. The jump-adjusted Garman-
Klass volatility estimator is:

σ̂2
GK = 0.5 (h− l)2 − (2 ln 2− 1) c2 + j2 (36)

Other estimators should be adjusted in the same way. Unfortunately, including
opening jump will increase variance of the estimator when opening jumps are
significant part of daily returns.8 However, this is the only way how to get
unbiased estimator without imposing some additional assumptions. If we knew
what part of the overall daily volatility opening jumps account for, we could find
optimal weights for the jump volatility component and for the volatility within
the trading day to minimize the overall variance of the composite estimator.
This is done in Hansen and Lunde (2005), who study how to combine opening
jump and realized volatility estimated from high frequency data into the most
efficient estimator of the whole day volatility. However, the relation of opening
jump and the trading day volatility can be obtained only from data. Moreover,
there is no obvious reason why the relationship from the past should hold in the

8Jump volatility is estimated with smaller precision than volatility within trading day.
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future. Simply adding jump component makes range-based estimators unbiased
without imposing any additional assumption.9

Adjustment for an opening jump is not as obvious as it seems to be and even
researchers quite often make mistakes when dealing with this issue. The most
common mistake is that the range-based volatility estimators are not adjusted
for the presence of opening jumps at all (see e.g. Parkinson volatility estimator
in Bollen, Inder (2002)). A less common mistake, but with worse consequences
is an incorrect adjustment for the opening jumps. E.g. Bollen and Inder (2002)
and Fiess and MacDonald (2002) refer to the following formula

σ2
GKwrong,i = 0.5 (lnHi − lnLi)

2 − (2 ln 2− 1) (lnCi − lnCi−1)
2

(37)

as Garman-Klass formula. This ”Garman-Klass volatility estimator” will on
average be even smaller than a Garman-Klass estimator not adjusted for jumps.
Moreover, it sometimes produces negative estimates for volatility (variance σ2).

4. Normalized returns - empirics

Andersen, Bollerslev, Diebold, and Ebens (2001) find that ”although the un-
conditional daily return distributions are leptokurtic, the daily returns normal-
ized by the realized standard deviations are close to normal.” Their conclusion
is based on standard deviations obtained these from high frequency data. We
study whether (and to what extend) this result is obtainable when standard
deviations are estimated from daily data only.

We study stocks which were the components of the Dow Jow Industrial
Average on January 1, 2009, namely AA, AXP, BA, BAC, C, CAT, CVX,
DD, DIS, GE, GM, HD, HPQ, IBM, INTC, JNJ, JPM, CAG10, KO, MCD,
MMM, MRK, SFT, PFE, PG, T, UTX, VZ and WMT. We use daily open,
high, low and close prices. The data covers years 1992 to 2008. Stock prices are
adjusted for stock splits and similar events. We have 4171 daily observations
for every stock. These data were obtained from the CRSP database. We study
DJI components to make our results as highly comparable as possible with the
results of Andersen, Bollerslev, Diebold, and Ebens (2001).

For brevity, we study only two estimators: the Garman-Klass estimator (15)
and the Parkinson estimator (13). We use the Garman-Klass volatility estimator
because our previous analysis shows that it is the most appropriate one. We
use the Parkinson volatility estimator to demonstrate that even though this
estimator is the most commonly used range-based estimator, it should not be
used for normalization of returns. Moreover, we study the effect of including or
excluding a jump component into range-based volatility estimators.

9These assumptions could be based on past data, but they would still be just assumptions.
10Since historical data for KFT (component of DJI) are not available for the complete

period, we use its biggest competitor CAG instead.
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First of all, we need to distinguish the daily returns and the trading day
returns. By the daily returns we mean close-to-close returns, calculated ac-
cording to formula (34). By the trading day returns we mean returns during
the trading hours, i.e. open-to-close returns, calculated according to formula
(2). We estimate volatilities accordingly: volatility of the trading day returns
from (13) and (15) and the volatility of the daily returns using (35) and (36).
Next we calculate standardized returns. We calculate standardized returns in
three different ways: trading day returns standardized by trading day standard
deviations (square root of trading day volatility), daily returns standardized by
daily standard deviation and daily returns standardized by trading day stan-
dard deviation. Why do we investigate daily returns standardized by trading day
standard deviations too? Theoretically, this does not make much sense because
the return and the standard deviations are related to different time intervals.
However, it is still quite common (see e.g. Andersen, Bollerslev, Diebold, and
Ebens (2001)), because people are typically interested in daily returns, but the
daily volatility cannot be estimated as precisely as trading day volatility. The
volatility of the trading part of the day can be estimated very precisely from
the high frequency data, whereas estimation of the daily volatility is always
less precise because of the necessity of including the opening jump component.
Therefore, trading day volatility is commonly used as a proxy for daily volatil-
ity. This approximation is satisfactory as long as the opening jump is small in
comparison to trading day volatility, which is typically the case.

Now we calculate summary statistics for the different standardized returns
as well as returns themselves. Results for the standard deviations are presented
in Table 5 and results for the kurtosis are presented in Table 6. We do not put
similar tables for mean and kurtosis into this paper, because these results are
less interesting and can be summarized in one sentance: Mean returns are always
very close to zero, independent of which standardization we used. Skewness is
always very close to zero too.

The results for standard deviations and kurtosis are generally in line with the
predictions from our simulations too. First let us discuss the standard deviations
of the standardized returns. As Table 5 documents, normalization by standard
deviations obtained from the Parkinson volatility estimator results in standard
deviation smaller than one, approximately around 0.9 whereas normalization by
standard deviation obtained from the Garman-Klass volatility estimator results
in standard deviations larger than one, around 1.05. Normalization by standard
deviations estimated from GARCH model is approximately 1.1. This is expected
as well, because division by a noisy random variable increases the standard
deviation.

Results for the kurtosis of standardized returns (see Table 6) are in line
with the predictions from our simulations too. Return distributions have heavy
tails (kurtosis significantly larger than 3). Second, the daily returns normalized
by the standard deviations calculated from Garman-Klass formula are close
to normal (kurtosis is close to 3). Third, the daily returns normalized by the
standard deviations calculated from Parkinson formula have no tails (kurtosis is
significantly smaller than 3). Fourth, normalization of daily returns by standard
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Table 5: Standard deviations of the stock returns. rtd is an open-to-close return, rd is a close-
to-close return. σ̂GK,td (σ̂P,td) is square root of Garman-Klass (Parkinson) volatility estimate
without opening jump component. σ̂GK,d (σ̂P,d) is square root of Garman-Klass (Parkinson)
volatility estimate including opening jump component. σ̂garch is standard deviation estimated
from GARCH(1,1) model based on daily returns.

trading day returns daily returns
rtd

rtd
σ̂GK,td

rtd
σ̂P,td

rd
rd

σ̂GK,d

rd
σ̂P,d

rd
σ̂GK,td

rd
σ̂P,td

rd
σ̂garch

AA 0.02 1.14 0.94 0.02 1.11 0.96 1.00 1.28 1.12
AXP 0.02 1.11 0.92 0.02 1.07 0.94 1.00 1.26 1.11
BA 0.02 1.04 0.89 0.02 1.02 0.92 1.00 1.20 1.10

BAC 0.02 1.12 0.93 0.02 1.08 0.94 1.00 1.26 1.12
C 0.02 1.11 0.91 0.03 1.05 0.92 1.01 1.26 1.12

CAT 0.02 1.10 0.92 0.02 1.08 0.95 1.00 1.28 1.13
CVX 0.01 1.11 0.92 0.02 1.08 0.95 1.00 1.25 1.09
DD 0.02 1.07 0.90 0.02 1.02 0.91 1.00 1.18 1.06
DIS 0.02 1.03 0.88 0.02 0.99 0.90 1.00 1.18 1.09
GE 0.02 1.07 0.91 0.02 1.03 0.93 1.00 1.20 1.09
GM 0.02 1.10 0.92 0.03 1.08 0.95 1.00 1.27 1.13
HD 0.02 1.06 0.90 0.02 1.02 0.92 1.00 1.20 1.10

HPQ 0.02 1.08 0.91 0.03 1.04 0.92 1.00 1.23 1.11
IBM 0.02 1.07 0.91 0.02 1.04 0.93 1.00 1.25 1.13

INTC 0.02 1.08 0.92 0.03 1.06 0.95 1.00 1.31 1.19
JNJ 0.01 1.06 0.89 0.02 1.00 0.90 1.00 1.17 1.06
JPM 0.02 1.06 0.90 0.02 1.03 0.92 1.00 1.22 1.10
CAG 0.01 1.09 0.89 0.02 0.98 0.87 1.00 1.15 1.01
KO 0.01 1.03 0.88 0.02 0.99 0.89 1.00 1.15 1.04

MCD 0.02 1.04 0.89 0.02 0.99 0.89 1.00 1.15 1.05
MMM 0.01 1.05 0.89 0.02 1.02 0.90 1.00 1.16 1.04
MRK 0.02 1.05 0.89 0.02 1.01 0.91 1.00 1.20 1.09
MSFT 0.02 1.04 0.90 0.02 1.03 0.93 1.00 1.24 1.14
PFE 0.02 1.08 0.91 0.02 1.04 0.92 1.00 1.22 1.10
PG 0.01 1.07 0.90 0.02 1.01 0.90 1.00 1.17 1.05
T 0.02 1.09 0.91 0.02 1.05 0.92 1.00 1.20 1.06

UTX 0.02 1.08 0.91 0.02 1.05 0.93 1.00 1.22 1.09
VZ 0.02 1.08 0.91 0.02 1.04 0.92 1.00 1.21 1.08

WMT 0.02 1.04 0.88 0.02 1.01 0.90 1.00 1.20 1.08
XOM 0.01 1.08 0.91 0.02 1.06 0.94 1.00 1.22 1.08

mean 0.02 1.07 0.90 0.02 1.04 0.92 1.00 1.22 1.09
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Table 6: Kurtosis of the stock returns. rtd is an open-to-close return, rd is a close-to-close
return. σ̂GK,td (σ̂P,td) is square root of Garman-Klass (Parkinson) volatility estimate without
opening jump component. σ̂GK,d (σ̂P,d) is square root of Garman-Klass (Parkinson) volatility
estimate including opening jump component. σ̂garch is standard deviation estimated from
GARCH(1,1) model based on daily returns.

trading day returns daily returns
rtd

rtd
σ̂GK,td

rtd
σ̂P,td

rd
rd

σ̂GK,d

rd
σ̂P,d

rd
σ̂GK,td

rd
σ̂P,td

rd
σ̂garch

AA 9.63 2.84 1.76 11.63 2.73 1.87 3.48 2.56 4.62
AXP 8.46 3.03 1.81 9.62 2.84 1.91 4.10 2.70 5.00
BA 6.42 2.99 1.81 10.76 2.75 1.91 3.12 2.62 6.82

BAC 19.47 2.87 1.78 26.81 2.78 1.91 3.50 2.85 8.69
C 34.05 3.12 1.82 38.79 2.95 1.96 3.62 2.70 6.70

CAT 5.71 2.93 1.80 7.31 2.78 1.90 3.88 2.78 6.97
CVX 11.28 2.99 1.80 13.44 2.80 1.90 3.89 2.43 3.77
DD 7.07 2.98 1.81 7.53 2.84 1.95 3.54 2.63 5.23
DIS 6.75 2.93 1.81 11.04 2.76 1.94 4.23 3.78 9.88
GE 10.29 2.80 1.77 10.07 2.71 1.93 3.20 2.68 4.95
GM 43.27 2.93 1.82 26.30 2.74 1.89 3.73 2.80 7.41
HD 6.43 2.93 1.80 19.21 2.70 1.90 3.23 2.73 10.84

HPQ 7.63 2.92 1.80 9.29 2.77 1.93 3.30 2.81 9.73
IBM 6.87 2.82 1.78 9.44 2.75 1.91 3.74 3.90 8.17

INTC 6.45 2.62 1.76 8.59 2.57 1.87 3.89 4.56 6.86
JNJ 5.70 3.02 1.83 10.56 2.88 1.97 3.17 2.63 4.98
JPM 14.60 3.00 1.83 12.05 2.80 1.96 3.46 2.79 4.89
CAG 8.64 3.54 1.93 16.43 3.37 2.08 4.42 2.78 10.33
KO 7.81 3.12 1.86 8.56 2.94 1.98 3.41 2.57 6.66

MCD 8.56 3.05 1.84 7.48 2.84 1.95 3.14 2.48 5.26
MMM 6.86 3.08 1.84 7.60 3.01 1.99 3.59 2.68 8.72
MRK 6.64 2.96 1.82 24.22 2.78 1.92 4.35 4.83 42.92
MSFT 5.22 2.63 1.78 8.61 2.55 1.91 5.81 9.43 9.24
PFE 5.36 2.83 1.78 6.17 2.74 1.90 3.40 2.86 6.57
PG 8.22 2.96 1.83 75.61 2.89 1.97 3.46 3.11 17.85
T 6.23 3.00 1.81 7.40 2.90 1.96 3.32 2.42 4.29

UTX 9.11 3.01 1.79 32.55 2.81 1.91 3.83 3.01 28.66
VZ 6.89 2.98 1.79 7.80 2.88 1.93 4.67 2.61 4.52

WMT 6.59 3.19 1.86 5.98 2.99 1.97 3.72 3.19 4.41
XOM 11.30 2.91 1.77 12.62 2.81 1.91 3.21 2.44 4.11

mean 10.25 2.97 1.81 15.45 2.82 1.93 3.71 3.15 8.97
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deviation estimated for trading day only, will cause upward bias in kurtosis.
This is a consequence of the standardization by an incorrect standard deviation
- sometimes (particularly in a situation when the opening jump is large), returns
are divided by too small standard deviation, which will cause too many large
observations for normalized returns.

The last column of Table 6 reports kurtosis of returns normalized by stan-
dard deviations estimated from GARCH(1,1) model with mean return fixed to
zero. As we can see, these normalized returns are not Gaussian, they have
fat tails. This is consistent with the fact that GARCH models with fat-tailed
conditional distribution of returns fit data better than GARCH models with
conditionally normally distributed returns. However, as is clear from this pa-
per, this is the case simply because GARCH models always condition return
distribution on the estimated volatility, which is only a noisy proxy of the true
volatility. Therefore, even when distribution of returns conditional on the true
volatility is Gaussian, distribution of returns conditional on estimated volatility
will have heavy tails. This result has an important implication for volatility
modelling: the more precisely we can estimate the volatility, the closer will be
the conditional distribution of returns to the normal distribution.

5. Conclusion

Range-based volatility estimators provide significant increase in accuracy
compared to simple squared returns. Even though efficiency of these estimators
is known, there is some confusion about other properties of these estimators. We
study these properties. Our main focus is the properties of returns standardized
by their standard deviations.

First, we correct some mistakes in existing literature. Second, we study
different properties of range-based volatility estimators and find that for most
purposes, the best volatility estimators is the Garman-Klass volatility estimator.
The Meilijson volatility estimator improves its efficiency slightly, but it is based
on a significantly more complicated formula. However, performance of all the
range-based volatility estimators is similar in most cases except for the case
when we want to use them for standardization of the returns.

Returns standardized by their standard deviations are known to be normally
distributed. This fact is important for the volatility modelling. This result was
possible to obtain only when the standard deviations were estimated from the
high frequency data. When the standard deviations were obtained from volatil-
ity models based on daily data, returns standardized by these standard devia-
tions are not Gaussian anymore, they have heavy tails. Using simulations we
show that even when returns themselves are normally distributed, returns stan-
dardized by (imprecisely) estimated volatility are not normally distributed; their
distribution has heavy tails. In other words: the fact that standard volatility
models show that even conditional distribution of returns has heavy tails does
not mean that returns are not normally distributed. It means that these mod-
els cannot estimate volatility precisely enough and the noise in the volatility
estimates causes the heavy tails.
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It is not obvious whether range-based volatility estimators can be used for the
standardization of the returns. Using simulations we find that for the purpose of
returns standardization there are large differences between these estimators and
we find that the Garman-Klass volatility estimator is the only one appropriate
for this purpose. Putting all the results together, we rate the Garman-Klass
volatility estimator as the best volatility estimator based on daily (open, high,
low and close) data. We test this estimator empirically and we find that we can
indeed obtain basically the same results from daily data as Andersen, Bollerslev,
Diebold, and Ebens (2001) obtained from high-frequency (transaction) data.
This is important, because the high-frequency data are very often not available
or available only for a shorter time period and their processing is complicated.
Since returns scaled by standard deviations estimated from GARCH type of
models (based on daily returns) are not Gaussian (they have fat tails), our
results show that the GARCH type of models cannot capture the volatility
precisely enough. Therefore, in the absence of high-frequency data, further
development of volatility models based on open, high, low and close prices is
recommended.
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