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Abstract

The relationship between uncertainty and managerial flexibility is particularly crucial in ad-

dressing capital projects. We consider a firm that can invest in a project in either a single

(lumpy investment) or multiple stages (stepwise investment) under price uncertainty and has

discretion over not only the time of investment but also the size of the project. We confirm

that, if the capacity of a project is fixed, then lumpy investment becomes more valuable than a

stepwise investment strategy under high price uncertainty. By contrast, if a firm has discretion

over capacity, then we show that the stepwise investment strategy always dominates that of

lumpy investment. In addition, we show that the total amount of installed capacity under a

stepwise investment strategy is always greater than that under lumpy investment.
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1 Introduction

In irreversible investment, firms tend to split the projects in distinct phases. We explain this

behavior in a setup where there is uncertainty, discretion over timing, and over the choice of project

scale. According to standard economic literature (Arrow and Fisher, 1974; and Henry, 1974),

investment decisions are influenced by three main factors, namely, uncertainty, irreversibility, and

flexibility. The first refers to the uncertainty in the cash–flows that a project generates, the second

to the inability to recover the investment cost after investment has taken place, and the third to the

discretion over the timing of investment. The latter allows for uncertainty in underlying parameters

to resolve before making an irreversible investment decision. Consequently, the ability to optimise

the investment timing raises the expected value of the investment opportunity, which, in, turn,

implies that investment is delayed relative to the traditional net present value (NPV) approach

due to the opportunity cost of killing the timing option. In fact, this hesitation is prolonged as

uncertainty increases, since the value of waiting increases. Interestingly, however, this result does

not extend analogously to other types of flexibilities, and, in spite of the extensive literature that

challenges the traditional views of how uncertainty and irreversibility explain investment behaviour

(Alvarez and Stenbacka, 2004; Abel and Eberly, 1996), the interaction between uncertainty and

different types of flexibilities has not been thoroughly examined yet. By developing an analytical

framework for investment under uncertainty, we explore how discretion over project scale impacts

a firms incentive to invest in stages.

Indeed, one crucial type of managerial discretion is the flexibility to either invest in an entire

project at a single point in time (lumpy investment) or divide it into smaller, modular projects and

then invest in each one at distinct points in time (stepwise investment). Empirical evidence indicates

that modularity can have crucial implications for the value of a project. For example, Baldwin and

Clark (2002) illustrate how the market value of the computer industry increased from the 1980s

until the 1990s as a result of its transition from a highly concentrated market, in which IBM played

a dominant role, to a large modular cluster of firms. By contrast, at the firm level and within

the context of sequential capacity expansion, Kort et al. (2010) show how uncertainty reduces the

value of modularity. More specifically, they show that, if the modularisation of a project is costly

and the size of each module is fixed, then, high price uncertainty lowers the value of modularity in

favour of lumpy investment. This happens because high levels of uncertainty lower the incentive
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to make costly switches between stages, and, as a result, lumpy investment dominates the stepwise

investment strategy. A limitation of this work is that it studies a particular type of flexibility in

isolation, when, in reality, firms can typically combine different types of managerial flexibilities.

Consequently, how various types of managerial discretion, e.g., discretion over capacity, option to

abandon, etc., interact to affect the value of modularity under increasing uncertainty remains an

open question.

We address this disconnect by analysing how the flexibility to choose between a lumpy and a

stepwise investment strategy interacts with discretion over capacity under price uncertainty. This

situation is relevant to various industries, e.g., renewable energy (RE) power plants. Indeed, in

the case of both on– and off–shore wind farms an area can, and often is, developed in stages.

Additionally, for capital intensive projects, discretion over capacity is particularly crucial, since the

installation of a large project increases a firm’s exposure to downside risk in the case of a potential

downturn, whereas the installation of a small project limits a firm’s upside potential if market

conditions suddenly become favourable. Thus, we contribute to the existing literature by developing

an analytical framework in order to explore how discretion over capacity interacts with the flexibility

to choose between lumpy and stepwise investment under price uncertainty. Additionally, we derive

analytical results regarding the impact of uncertainty on the optimal investment threshold, the

optimal capacity, and the choice of investment strategy.

We proceed in Section 2 by discussing some related literature and introduce assumptions and

notation in Section 3. In Section 4, we formulate the problem and derive analytical expressions for

the value of the option to invest, the optimal investment threshold, and the corresponding optimal

capacity under lumpy and stepwise investment. In addition, we present analytical results regarding

the impact of uncertainty on the choice of investment strategy. We present numerical results in

Section 5 and conclude in Section 6.

2 Related Work

The seminal work of Majd and Pindyck (1987) and Dixit and Pindyck (1994) has spawned a sub-

stantial literature in the area of sequential investment. The former show how traditional valuation

methods understate the value of a project by ignoring the flexibility embedded in the time to build,

while the latter develop a sequential investment framework with infinite investment options assum-
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ing that the project value depreciates exponentially. The value of modularity is emphsasised in

Gollier et al. (2005), who allow for electricity price uncertainty and compare a sequence of small

nuclear power plants with a single nuclear power plant of large capacity. Intriguingly, their results

indicate that the option value of modularity may trigger investment in the initial module at a

level below the now–or–never NPV. In the same line of work, Malchow–Møller and Thorsen (2005)

illustrate how the investment policy resembles the simple NPV rule when investing sequentially in

subsequent upgrades of a technology. They find that the expected value of subsequent upgrades

reduces the value of waiting to invest in the current version significantly, while the investment rule

is less sensitive to changes in uncertainty. The advantages of modularity have also been stressed

within the context of investment in distributed generation capacity. For example, Siddiqui and

Maribu (2009) analyse how sequential investment may reduce the exposure of a microgrid to nat-

ural gas price volatility, and find that a direct (sequential) investment strategy is more preferable

for low (high) levels of volatility. By contrast, Kort et al. (2010) show that, if stepwise investment

is more costly than lumpy investment, then high price uncertainty promotes the latter strategy

by reducing the incentive to make costly switches between stages. Siddiqui and Takashima (2013)

combine strategic interactions with sequential capacity expansion in order to explore how sequential

decision making offsets the effect of competition. They find that the loss in the value of a firm due

to competition is reduced when the firm invests in stages and specify the conditions under which

sequential capacity expansion is more valuable for a duopolist firm than for a monopolist.

From a more empirical standpoint, Rodrigues and Armada (2007) present a real options ap-

proach to the valuation of modular projects, and show that modularisation can increase the value

of a project depending on the relative values, costs, and risk of each modular configuration. Gamba

and Fusari (2009) develop a valuation approach based on real options theory in order to address

the issues that a modularisation process poses in terms of financial valuation for capital budget-

ing. More specifically, they first create a stochastic optimal control framework for the six modular

operators proposed by Baldwin and Clark (2000), and then adopt the least–squares Monte Carlo

method of Longstaff and Schwartz (2001) in order to cope with the dynamic programming feature

of the valuation problems. While the aforementioned literature offers a thorough analytical and

empirical treatment of the value of modularity and of sequential investment under uncertainty,

it ignores the potential implications from allowing for other types of managerial discretion that

firms typically take into account when designing an optimal investment policy, e.g., discretion over
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capacity, suspension and resumption options, etc.

Indeed, apart from discretion over the investment strategy, e.g., lumpy versus stepwise, firms

typically also have discretion over the size of a project, in the form of installed capacity. Dangl

(1999) addresses the problem of a firm that invests in a project with continuously scalable capacity

under demand uncertainty, and shows that, even when demand is high, low uncertainty makes

waiting for further information the optimal strategy. A similar approach is adopted by Bøckman

et al. (2008) for valuing small hydropower projects under electricity price uncertainty, however,

unlike to Dangl (1999), they assume a cost function that is convex in capacity, and, therefore, their

model is more pertinent to the energy sector. Huisman and Kort (2009) introduce game–theoretic

considerations and show how, in a duopolistic competition, a leader can use discretion over capacity

strategically in order to deter a follower’s entry temporarily. A policy–oriented model for investment

and capacity sizing is presented by Boomsma et al. (2012), who analyse the impact of uncertainty

stemming from different types of policy mechanisms on investment and capacity sizing decisions.

The impact of risk aversion on such decisions when a firm has operational flexibility is addressed in

Chronopoulos et al. (2012), who find that higher risk aversion facilitates investment by decreasing

the optimal capacity of a project.

In the area of discrete capacity sizing, Dixit (1993) analyses the choice among mutually ex-

clusive projects of various capacities under uncertainty. The proposed decision rule requires that

the projects are first ranked by capacity and then analysed separately in order to determine the

corresponding investment thresholds. The optimal project is the largest one for which the optimal

threshold is greater than the current price. A limitation in the approach of Dixit (1993) is identified

by Décamps et al. (2006), who determine an intermediate waiting region around the indifference

point between the NPVs of two projects. Consequently, it may be better to select the smaller

project should the price drop sufficiently rather than wait for the price to hit the upper threshold

in order to select the larger project. Additionally, they allow for the option to switch to a larger

capacity after having made an initial investment in the smaller project. Fleten et al. (2007) adopt

the framework of Décamps et al. (2006) in order to model investment in wind turbines taking the

perspective of an investor who must choose among discrete alternatives and has discretion over

both the time of investment and the size of the project.

Apart from analysing the value of discretion over capacity in isolation, a strand of literature

combines it with various types of operational flexibilities. For example, He and Pindyck (1992)
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allow for demand uncertainty and examine the technology and capacity choice problem of a firm

that can install either output–specific or flexible capital, which may be used to produce different

outputs. They formulate the capacity choice problem as a stochastic control problem, and show

that the value of the firm equals the value of its installed capital plus the expected value of its

options to add capacity in the future. Hagspiel et al. (2014) allow for production flexibility and

compare a flexible scenario, in which a firm can adjust production over time with the capacity level

as the upper bound, to the inflexible scenario, in which a firm fixes production at capacity level from

the moment of investment onward. Among other results, they find that the flexible firm invests in

higher capacity than the inflexible firm and that the capacity difference increases with uncertainty.

Considering the choice between two types of technologies, Takashima et al. (2012) find that price

uncertainty induces investors to maximise expected profits by building larger plants, while the

consideration of mutually exclusive projects increases the option value of the entire investment

opportunity.

We extend the existing literature by developing and analytical framework that combines two

important types of managerial discretion, i.e., the flexibility to invest in either a single or multiple

stages with discretion over capacity. Although increasing uncertainty favours a lumpy over a more

flexible, yet more costly, stepwise investment strategy when the capacity of a project is fixed,

the implications from allowing for discretion over capacity are not thoroughly examined yet. For

this reason, we assume that the capacity of the project is continuously scalable, and, in line with

Dangl (1999), the firm has the option to fix the capacity of the project at investment. We first

confirm the results of Kort et al. (2010) and then show that, although the relative value of the two

strategies decreases with greater uncertainty, the stepwise investment strategy always dominates

that of lumpy investment. This seemingly counter–intuitive result happens because the firm can

optimise the size of the project in response to an increase in the cost of the stepwise investment

strategy relative to that of lumpy investment. Intuitively, the extra flexibility to optimise the size of

the project mitigates the loss in project value due to the higher cost associated with the flexibility

to proceed in stages, thereby offsetting the benefit of a lower investment cost via lumpy investment.
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3 Assumptions and Notation

We consider a price–taking firm that holds an option to invest in a project of infinite lifetime

that may be completed in either a single or a sequence of i discrete stages with i ∈ N. Also, the

firm can either exercise an investment option immediately or delay investment in the light of price

uncertainty. We assume that there is no variable production cost and that the output price at time

t, Pt, where t ≥ 0 is continuous and denotes time, follows a geometric Brownian motion (GBM)

that is described in (1)

dPt = μPtdt+ σPtdZt, P0 ≡ P > 0 (1)

where μ is the annual growth rate, σ is the annual volatility, and dZt is the increment of the

standard Brownian motion. Also, ρ > μ is the subjective discount rate. The capacity of the project

is denoted by Kj when the firm has discretion over investment timing and by Kj when the firm

exercises a now–or–never investment opportunity. Additionally, F j(·) is the expected value of the

now–or–never investment opportunity, where j ∈ {�, si} (denoting lumpy and staged investment

respectively), while kj is the corresponding optimal capacity. For example, F
�
(·) denotes the

expected value of the now–or–never investment opportunity under lumpy investment and k
�
is the

corresponding optimal capacity. If the option to defer investment is available, then Fj (·) denotes the
maximised option value, while τj , pj , and kj denote the time of investment, the optimal investment

threshold, and the corresponding optimal capacity, respectively. Note that we use upper–case letters

to denote state variables for capacity and output price and lower–case letter for the corresponding

optimal thresholds. The investment cost, I
(
Kj

)
, is indicated in (2)

I
(
Kj

)
= ajKj + bjK

γ
j

j , aj , bj , and γj > 1 (2)

where γj > 1 implies that this model is more suitable for describing projects that exhibit disec-

onomies of scale. In the energy sector, this is the case with RE power plants, while more general

examples where the use of a convex cost function can be realistic include a monopsonistic environ-

ment in which a firm contemplates investment facing increasing prices due to increasing demand.

As it becomes clear in Section 4, the assumption γj > 1 should be considered as an implication

of the model itself, and, therefore, is not restricting the analytical results. In fact, as we discuss
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in Section 4, the results of the paper are more general as they are expected to hold also under

economies of scale, i.e., γj < 1. For the purpose of comparing a lumpy investment to a strategy

that entails a series of modular investments, we assume that each individual stage of the stepwise

investment strategy is less costly than the entire project. However, in line with Kort et al. (2010),

we assume that the flexibility to proceed in stages is costly, and, therefore, requires the firm to

incur a premium. Consequently, the total investment cost under a stepwise investment strategy is

greater than that under lumpy investment, as indicated in (3).

I
(
Ksi

)
< I (K

�
) ,∀i ∈ N and

∑
i

I
(
Ksi

)
> I (K

�
) (3)

Notice that, although a firm may have the flexibility to respond to low prices by producing at a

level below the installed capacity, in this paper, we assume that a firm does not have production

flexibility. This is often referred to as the clearance assumption and is widely used in the literature

(Chod and Rudi, 2005; Anand and Girotra, 2007). For example, in the energy sector this assump-

tion is relevant to baseload and RE power plants. Additionally, fixed costs, e.g., commitments to

suppliers and production ramp–up, make it too costly to produce below the capacity level (Goyal

and Netessine, 2007). In the car industry, firms often prefer to reduce prices in order to maintain

production at full capacity, instead of producing below capacity (Mackintosh, 2003).

4 Model

The firm’s optimisation objective under each investment strategy, i.e., lumpy and stepwise invest-

ment, is summarised in (4). The outer maximisation corresponds to the general decision on whether

to invest immediately or delay investment. If the firm decides to wait for an infinitesimal time in-

terval dt, then, according to the Bellman principle, the value that the firm holds is the discounted

expected value of the capital appreciation of the option to invest. This is represented by the first

argument of the maximisation on the right–hand side of (4). By contrast, the second argument of

the outer maximisation represents the value that the firm receives if it decides to exercise a now–

or–never investment opportunity. More specifically, the inner maximisation indicates that when

the firm decides to invest it will chose the capacity of the project in such a way that maximises its
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expected NPV.

Fj (P ) = max

{
(1− ρdt)EP

[
Fj (P + dP )

]
,max

K
j

[
F j

(
P,Kj

)]}
, j = �, si and i = 1, 2 (4)

We begin by assuming that the firm adopts a lumpy investment strategy. In this case, the firm

can delay investment until τ
�
, at which point it must fix the capacity of the entire project, K

�
, as

shown in Figure 1. Consequently, K
�
is a function of the output price, P

�
, at time τ

�
.

P
�
,K

�

�
∫ ∞

τ
�

e−ρtPtK�
dt− I (K

�
) · · ·

�

τ
�

0
•

t

Figure 1: Lumpy investment

Initially, we assume that the firm ignores the option to wait for more information and invests in the

project immediately. Hence, we first address the inner maximisation in (4). The expected value of

the now–or–never investment opportunity is indicated in (5).

F
�

(
P,K

�

)
=

PK
�

ρ− μ
− I

(
K

�

)
(5)

Consequently, at investment, the output price, P , is known, and, therefore, the firm needs to

determine only the corresponding optimal capacity, k
�
, by maximising the value of the now–or–

never investment opportunity, as indicated in (6).

max
K

�

F
�

(
P,K

�

) ⇒ k
�
(P ) =

[
1

b
�
γ
�

(
P

ρ− μ
− a

�

)] 1
γ
�
−1

(6)

We proceed by considering the outer maximisation in (4). If the firm can defer investment, then

the value of the option to invest is described in (7), where S denotes the set of stopping times of the

filtration generated by the price process and EP is the expectation operator, which is conditional

on the initial value, P , of the price process.

F
�
(P ) = sup

τ
�
∈S

EP

[∫ ∞

τ
�

e−ρtPtK�
dt− I (K

�
)

]
(7)
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Using the law of iterated expectations and the strong Markov property of the GBM, which states

that price values after time τ
�
are independent of the values before τ

�
and depend only on the value

of the process at τ
�
, we can rewrite (7) as in (8). The stochastic discount factor EP

[
e−ρτ

�

]
=
(

P
P
�

)β1

(Dixit and Pindyck, 1994, p.315), where and β1 > 1, β2 < 0 are the roots of 1
2σ

2β(β−1)+μβ−ρ = 0.

F
�
(P ) = sup

τ
�
∈S

EP

[
e−ρτ

�
]
EP

�

[∫ ∞

0
e−ρtPtK�

dt− I (K
�
)

]
= max

P
�
≥P

(
P

P
�

)β1 [
P

�
K

�

ρ− μ
− I (K

�
)

]
(8)

Solving the unconstrained maximisation problem (8), we can express the maximised option value,

F
�
(P ), as in (9). The endogenous constant, A

�
, the optimal investment threshold, p

�
, and the

corresponding optimal capacity, k
�
, are determined via value–matching and smooth–pasting con-

ditions between the two branches of (9) together with the condition for optimal capacity choice at

investment (6) and are indicated in (A–7), (A–8), and (A–9), respectively for j = � (all proofs can

be found in the appendix).

F
�
(P ) =

⎧⎪⎪⎨
⎪⎪⎩
A

�
P β1 , for P < p

�

Pk
�

ρ−μ − I (k
�
) , for P ≥ p

�

(9)

Next, we assume that the firm adopts a stepwise investment strategy, and, without loss of

generality, we assume that a stepwise investment comprises of two stages, i.e., i ≤ 2. As indicated

in Figure 2, the firm has the option to delay investment in the first stage until τs1
, at which point

it must fix the corresponding capacity, Ks1
. The firm receives the revenues of the first stage until

τs2
, at which point it fixes the capacity of the second stage, Ks2

. After the firm invests in the

second stage, it incurs the corresponding cost and receives the revenues from both stages.

Ps2
,Ks2

Ps1
,Ks1

� · · ·� �
∫ τs2

τs1

e−ρtPtKs1
dt− I

(
Ks1

) ∫ ∞

τs2

e−ρtPt

2∑
i=1

Ksi
dt− I

(
Ks2

)
�

τs1
0

•
τs2

•
t

Figure 2: Stepwise investment

The optimal capacity at each stage of the project when the firm invests immediately is obtained by
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maximising the value of the now–or–never investment opportunity. Following the same approach

as in the case of lumpy investment, the optimal capacity for each stage is indicated in (10). Notice

that the value of the now–or–never investment opportunity is the sum of the maximised NPVs from

each stage, i.e., F s(P ) =
∑

i F si

(
P, ksi

)
.

max
Ksi

F si

(
P,Ksi

)
⇒ ksi

(P ) =

[
1

bsi
γsi

(
P

ρ− μ
− asi

)] 1
γsi

−1

(10)

If the option to delay investment is available, then the optimisation objective is described in (11).

Notice that by completing the first stage, the firm receives the option to proceed to the second. As

a result, the option to invest in the first stage may be seen as a compound option.

Fs(P ) = sup
τs1

∈S
EP

[
sup

τs2
≥τs1

EP

[∫ τs2

τs1

e−ρtPtKs1
dt− I

(
Ks1

)

+

∫ ∞

τs2

e−ρtPt

2∑
i=1

Ksi
dt− I

(
Ks2

)]]
(11)

By decomposing the first integral on the right–hand side of (11), we can express the original problem

as two separate optimal stopping–time problems, as in (12)

Fs(P ) = sup
τs1

∈S
EP

[∫ ∞

τs1

e−ρtPtKs1
dt− I

(
Ks1

)]

+ sup
τs2

≥τs1

EP

[∫ ∞

τs2

e−ρtPtKs2
dt− I

(
Ks2

)]
(12)

and the solution of each of the two optimal stopping–time problems is expressed in (13), where Asi
,

psi
, and ksi

are indicated in (A–7), (A–8), and (A–9), respectively. Notice that the value of the

option to invest is the sum of the respective option values of each stage, i.e., Fs(P ) =
∑

i Fsi
(P ).

Fsi
(P ) =

⎧⎪⎪⎨
⎪⎪⎩
Asi

P
β1 , for P < psi

Pks
i

ρ−μ − I
(
ksi

)
, for P ≥ psi

(13)

Proposition 4.1 The optimal investment threshold and the corresponding optimal capacity under
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lumpy and stepwise investment are:

pj

(
kj

)
=

I
(
kj

)
kj

β1(ρ− μ)

β1 − 1
and kj =

[
aj

bj

1

γj(β1 − 1)− β1

] 1
γ
j
−1

, γj(β1 − 1)− β1 > 0 (14)

Assuming that τs2
≥ τs1

, Proposition 4.2 indicates that the decision to invest in the first

stage is independent of the presence of the second. Intuitively, this result is a consequence of the

optimality of myopic behavior based on which a firm disregards subsequent investment decisions

when evaluating the current one. Within the context of capacity expansion, this property implies

that an investment in new capacity is evaluated assuming that it is the last one in the horizon.

The optimality of myopic behavior is not generally true but holds under certain assumptions. For

example, Bertola (1989) and Pindyck (1988, 1993) show that it holds in case of a monopoly as

considered in this paper. 1

Proposition 4.2 ps1
is independent of ps2

.

In line with the standard real options intuition, Proposition 4.3 indicates that greater uncertainty

raises both the optimal capacity of the project and the optimal investment threshold. This happens

because greater uncertainty increases the opportunity cost of an irreversible investment decision,

thereby raising the value of waiting. Furthermore, from (6) we know that the optimal capacity of

the project is a monotonic function of the output price. Consequently, an increase in the optimal

investment threshold results in the installation of a bigger project.

Proposition 4.3
∂kj
∂σ > 0 and

∂pj
∂σ > 0.

Interestingly, as Proposition 4.4 indicates, if the firm has discretion over capacity, then the

value of the option to proceed in stages is always greater than that under lumpy investment. This

is in contrast to Kort et al. (2010) who show that, under relatively large uncertainty, the single

stage investment is more attractive relative to a more flexible, yet more costly, stepwise investment

strategy. This seemingly counter–intuitive result is based on the endogenous relationship between

the price at investment and the capacity of the project. Notice that, if a firm has discretion over

capacity, then, according to (14), the optimal capacity, kj is non–negative if γj(β1 − 1) − β1 > 0.

However, while greater uncertainty lowers the relative value of the two strategies, it also decreases

1Optimality of myopia also holds within a context of strategic interactions provided that the profit is additively
separable if more that one technology is considered (Baldurson and Karatzas, 1997).
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β1 . According to Proposition 4.4, the relative value of the two strategies does not decrease below one

for non–negative values of kj . Intuitively, although the value of the stepwise investment strategy

is reduced due to the cost that a firm incurs for the flexibility to proceed in stages, the extra

flexibility to scale the capacity of the project allows the firm to offset the reduction in the value

of the stepwise investment strategy completely. Indeed, if the capacity of the project was fixed,

then greater uncertainty would delay investment but the amount of installed capacity would remain

unaffected. In fact, according to Kort et al. (2010), the stepwise investment strategy dominates

under low levels of uncertainty even if it entails the installation of the same capacity size at a

greater cost than lumpy investment. By contrast, discretion over capacity allows a firm to respond

to an increase in the investment cost by optimising the endogenous relationship between the size

of the project and the time of investment.

Proposition 4.4 If a firm has discretion over capacity, then Fs(P ) > F
�
(P ).

Moreover, from (14) we see that the existence of an optimal solution to the investment problem

under each strategy requires that the cost function is strictly convex, i.e., γj (β1 − 1) − β1 > 0 ⇔
γj >

β1
β1−1 > 1. Therefore, the convexity of the cost function is not an assumption, as indicated in

(2), but rather a property implied by the analytical framework itself. More specifically, convexity

ensures that the optimal capacity of the project is finite. Indeed, if γ >
β1

β1−1 , then 0 < kj < ∞,

whereas if γ → β1
β1−1 , then kj → ∞. Consequently, the result of Proposition 4.4 is in line with

the more general intuition that a firm is typically induced to adjust its capital stock more slowly

due to diseconomies of scale associated with more rapid changes in the investment cost. Hence,

a convex investment cost implies that it is more expensive to perform adjustments, e.g., expand

capacity, at a greater than at a lower rate (Jøhansen and Kort, 1993). Additionally, note that

γ > 1 is a consequence of the exogenous price, while the result of Proposition 4.4 depends upon

the endogenous relationship between the price at investment and the capacity of the project, as

this is described in (6). Allowing for the price to depend on the amount of quantity produced via

an inverse demand function will result in a concave cost function (Dangl, 1999), yet the qualitative

relationship between the price and capacity will remain the same. Indeed, Dangl (1999) illustrates

how the optimal capacity increases monotonically with the output price under economies of scale,

i.e., γ < 1. Since the endogenous relationship between the price at investment and the capacity of

the project remains unaffected, Proposition 4.4 should hold under both diseconomies and economies
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of scale, and, therefore, we omit the analysis of the latter case.

Another consequence of the endogenous relationship between the output price at investment

and the size of the project, is that the amount of installed capacity under lumpy investment is

always lower than the total amount of capacity installed under a stepwise investment strategy, as

shown in Proposition 4.5. Indeed, as the investment cost associated with the stepwise investment

strategy increases, it raises both the optimal investment threshold and the amount of installed

capacity. Consequently, the firm compensates for the extra cost it incurs for the flexibility to

proceed in stages by adjusting the size of the project so that it offsets the reduction in the value of

the investment opportunity. As a result, the stepwise investment strategy leads to the installation

of a bigger project than that under lumpy investment. This is in contrast to Kort et al. (2010),

where a firm may delay investment due to an increase in the investment cost, yet it is restricted in

terms of the amount of capacity that it can install.

Proposition 4.5 k
�
<
∑n

i=1 ksi
.

In order to obtain a deeper intuition of the underlying dynamics that determine the optimal

investment policy, we analyse the impact of uncertainty on the marginal benefit (MB) and the

marginal cost (MC) of delaying investment under each investment strategy assuming that the

capacity of the project is either fixed or scalable. Therefore, we first express the firm’s maximised

option value as in (15)

Fj (P ) = AjP
β1 , where Aj =

1

p
β1

j

[
pjkj

ρ− μ
− I

(
kj

)]
(15)

and then describe the optimal investment rule by equating the MB of delaying investment to

the MC, as in (16). The first term on the left–hand side of (16) is positive and represents the

incremental project value created by a marginal increase in the output price. Notice that this

term is a decreasing function of the output price, since waiting longer enables the project to start

at a higher initial price, yet the rate at which this benefit accrues diminishes due to the effect of

discounting. The second term is also positive and represents the reduction in the MC of waiting

to invest due to saved investment cost. Together, these two terms constitute the MB of delaying

investment. The right–hand side of (16) represents the MC of delaying investment. This term is

positive and reflects the opportunity cost of forgone cash flows. As shown in Corollary 4.1, when

the output price is low it is worthwhile to postpone investment since the MB is greater than the
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MC.

MB = MC ⇔ β1I
(
kj

)
pj

+
kj

ρ− μ
=

β1kj

ρ− μ
(16)

Corollary 4.1 The MB is steeper than the MC.

As Proposition 4.6 indicates, if the capacity of the project is fixed, then greater uncertainty decreases

both the MB and the MC of delaying investment, however, the impact of uncertainty on the

MC is more pronounced than that on the MB. By contrast, the opposite is true if the firm has

discretion over capacity. In fact, although in both cases greater uncertainty postpones investment,

the incentive to delay investment is greater when the firm has the flexibility to scale the capacity

of the project.

Proposition 4.6 If kj is fixed, then ∂
∂σMB < 0, ∂

∂σMC < 0, and
∣∣ ∂
∂σMB

∣∣ < ∣∣ ∂
∂σMC

∣∣, whereas if

kj is scalable, then ∂
∂σMB > 0, ∂

∂σMC > 0, and ∂
∂σMB > ∂

∂σMC.

Notice that, if the capacity of the project, kj , is fixed, then from (16) we see that both the MB

and MC of delaying investment decrease with greater uncertainty, since
∂β1
∂σ < 0. In addition, from

(A–12) we have
I(kj )
p
j

<
kj
ρ−μ , and, therefore, greater uncertainty lowers the MC by more than the

MB. As a result, the marginal value of delaying investment increases, thereby raising the incentive

to postpone investment. Intuitively, although the extra benefit from allowing the project to start

at a higher output price is fixed, the extra benefit from saving on the investment cost and the

extra cost of the forgone cash flows decrease due to the effect of discounting. In fact, the latter

becomes more pronounced as both the output price and the volatility increase. By contrast, if the

capacity of the project is scalable, then the increase in the optimal capacity of the project with

greater uncertainty presents an opposing force, which mitigates the reduction in the value of β1 .

As proposition 4.6 indicates, in the latter case both MB and MC of delaying investment increase

with greater uncertainty, and, unlike the case of fixed capacity, the MB increases by more than

the MC, thus increasing the incentive to delay investment. Consequently, discretion over capacity

allows the firm to manage price uncertainty more efficiently by adjusting the size of the project in

response to an increase in the investment cost.
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5 Numerical Examples

For the numerical examples we assume that μ = 0.01, ρ = 0.1, and σ ∈ [0, 0.4]. Also, the cost

parameters for the lumpy investment are a
�
= 30, b

�
= 0.5, and γ

�
= 3, while for the stepwise

investment these are as1
= 15, as2

= 25, bs1 = bs2 = 0.5, and γs1
= γs2

= 3. Under fixed capacity,

the investment cost is I
�
= 1000, Is1 = 500, and Is2 = 900 for lumpy and stepwise investment

respectively, while the corresponding capacity levels are K
�
= 10, Ks1

= 3.4, and Ks2
= 6.6.

Figure 3 illustrates the impact of uncertainty on the optimal investment threshold under scalable

capacity, as well as on the optimal capacity of the project. According to the left panel, ps1
< ps2

,

and, therefore, the numerical assumptions satisfy the condition
I
(
ks1

)

I
(
ks2

) <
ks1
ks2

. Additionally, as the

right panel illustrates, with the flexibility to scale the size of the project the total capacity when

proceeding in stages exceeds that of the lumpy investment, as shown in Proposition 4.5. In fact,

the wedge between ks1
+ks2

and k
�
reflects the extra value that the firm has due its discretion over

capacity. Notice that, since ks1
+ks2

> k
�
and as1

+as2
> a

�
, the condition that stepwise investment

is more costly than lumpy investment, as indicated in (3), is also satisfied. Consequently, apart

from discretion over capacity, the remaining assumptions are the same as the ones underlying the

model of Kort et al. (2010).
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Figure 3: Optimal investment threshold (left) and optimal capacity (right) versus σ

Figure 5 illustrates the impact of uncertainty on the relative value of the two strategies, i.e., Fs(P )
F
�
(P ) ,

under fixed (left panel) and scalable capacity (right panel). In line with Kort et al. (2010), if

the capacity of the project is fixed, then the relative value of the two strategies is greater than
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one for low levels of uncertainty, yet drops below one as uncertainty increases (left panel). Hence,

lumpy investment becomes more attractive than stepwise investment with greater uncertainty.

This happens because greater uncertainty increases inertia and raises the incentive to avoid costly

switches between stages, thereby promoting a lumpy investment strategy. By contrast, if a firm

has discretion over capacity, then the stepwise investment strategy always dominates that of lumpy

investment, as shown in Proposition 4.4. Intuitively, the flexibility to scale the capacity of the

project offsets the reduction in the value of the stepwise investment strategy due to the cost that a

firm must incur for the flexibility to proceed in stages. Additionally, as the right panel illustrates,

the relative value of the two strategies is not only strictly greater than one, but swifts upwards as

the investment cost becomes more convex, i.e., as γj increases. This implies that a more pronounced

increase in the marginal cost of investment creates an extra incentive to adopt a stepwise investment

strategy.
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Figure 4: Relative value of the two investment strategies, i.e., lumpy and stepwise, versus σ under
fixed capacity (left) and scalable capacity (right)

The left panel in Figure 5 illustrates the MB and MC of delaying investment under scalable

capacity for each stage of the project. Notice that for low price levels the MB exceeds the MC,

and, as a result, the firm has an incentive to postpone investment. Furthermore, the MB decreases

as the output price increases due to the effect of discounting, while the MC is constant. The right

panel illustrates the impact of uncertainty on the total MB and MC of delaying investment in

each stage of the project under fixed and scalable capacity. In the former case, the MB and MC
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decrease with greater uncertainty, while, in the latter case, the MB and MC increase, as shown in

Proposition 4.6. Intuitively, the incentive to delay investment is greater when the capacity of the

project is scalable because a modular investment enables flexibility, thereby making it possible to

adapt to uncertain market conditions.
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Figure 5: MB and MC of delaying investment for stages i = 1, 2 and σ = 0.2 under scalable capacity
(left) and total MB and MC under stepwise investment (right)

6 Concluding remarks

Managerial flexibility is crucial for addressing the valuation and tradeoffs involved in capital

projects, that are typically more complex than simple now–or–never investments. In this pa-

per, we extend the results of Kort et al. (2010) by assuming that a firm does not only have the

flexibility to choose the investment strategy, in terms of lumpy versus stepwise investment, but also

has discretion over both the investment timing and the size of the project. Thus, we determine

not only the optimal investment threshold and the corresponding optimal capacity under lumpy

and stepwise investment, but also the impact of price uncertainty on the relative value of the two

investment strategies.

While Kort et al. (2010) show that the flexibility to proceed in stages becomes less valuable

than lumpy investment with greater uncertainty, which is in contrast to the traditional real options

intuition that emphasises on the positive relationship between flexibility and uncertainty, implica-

tions from including different types of managerial flexibilities have not been examined thoroughly
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yet. We confirm the results of Kort et al. (2010), however, in addition we show that, if a firm has

discretion over capacity, then the stepwise investment strategy always dominates that of lumpy in-

vestment. This result emphasises that the relationship between flexibility and uncertainty requires

further investigation. Indeed, not only is the positive relationship between the value of flexibility

and uncertainty case specific, but, more importantly, the impact of uncertainty on an isolated type

of managerial discretion may be completely mitigated if the latter is combined with another type

of flexibility. In this paper, we show that, although the flexibility to proceed in stages becomes

less valuable than lumpy investment with greater uncertainty when a project has a fixed capacity,

allowing for discretion over capacity mitigates this effect completely. More specifically, the reduc-

tion in the value of the stepwise investment strategy due to the cost that a firm incurs in order to

have the flexibility to proceed in stages is completely offset by the extra value from the flexibility

to scale the capacity of the project. Additionally, we show that the amount of installed capacity

under stepwise investment is always greater than that under lumpy investment.

The assumption that investment decisions do not affect future prices can be relaxed by linking

the output price with the amount of installed capacity via an inverse demand function. Although

this in not expected to influence the main result of the paper, it would still be interesting to inves-

tigate any quantitative difference due to the implications of installing a very large project. In order

to obtain further insights on the robustness of the results regarding the relationship between uncer-

tainty and various combinations of different types of flexibilities, we may also allow for production

flexibility in the context of Hagspiel et al. (2014), operational flexibility in the form of options

to suspend and resume operations, or an alternative stochastic process, e.g., arithmetic Brownian

motion or mean–reverting process. Finally, in line with Siddiqui and Takashima (2012), this setup

allows for exploration of game–theoretic considerations, e.g., how the presence of a rival impacts

the decision to invest and the relative value of the two investment strategies under duopolistic

competition.

Acknowledgements The authors would like to express their gratitude to Peter Kort for his

valuable comments that helped improve the paper.
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APPENDIX

Proposition 4.1: The optimal investment threshold and the corresponding optimal capacity under

lumpy and stepwise investment are:

pj

(
kj

)
=

I
(
kj

)
kj

β1(ρ− μ)

β1 − 1
and kj =

[
aj

bj

1

γj (β1 − 1)− β1

] 1
γj−1

, γj (β1 − 1)− β1 > 0 (A–1)

Proof: By maximising the value of the now–or–never investment opportunity, we obtain the ex-

pression for the optimal capacity, kj , corresponding to the current output price P , as indicated in

(A–2) for j = �, si .

max
Kj

F j

(
P,Kj

) ⇒ kj (P ) =

[
1

bjγj

(
P

ρ− μ
− aj

)] 1
γj−1

(A–2)

Next, the value of the option to invest is described in (A–3).

Fj (P ) =

⎧⎪⎪⎨
⎪⎪⎩
(1− ρdt)EP

[
Fj (P + dP )

]
, P < pj

Pkj
ρ−μ − I

(
kj

)
, P ≥ pj

(A–3)

By expanding the first branch on the right–hand side of (A–3) using Itô’s lemma, we obtain the

differential equation (A–4)

1

2
σ

2
P

2
F

′′
j
(P ) + μPF

′
j
(P )− ρFj (P ) = 0 (A–4)

which, for P < pj , has the general solution that is indicated in (A–5).

Fj (P ) = AjP
β1 +BjP

β2 (A–5)

Notice that since β2 < 0 we have P → 0 ⇒ BjP
β2 → ∞. Consequently, we must have Bj = 0, and,

thus, we finally obtain (A–6).

Fj (E) =

⎧⎪⎪⎨
⎪⎪⎩
AjP

β1 , P < pj

Pkj
ρ−μ − I

(
kj

)
, P ≥ pj

(A–6)
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By applying value–matching and smooth–pasting conditions between the two branches of (A–6) we

obtain the expression for the endogenous constant and the optimal investment threshold, that are

indicated in (A–7) and (A–8), respectively.

Aj =
1

p
β1

j

[
pjkj

ρ− μ
− I

(
kj

)]
(A–7)

pj

(
kj

)
=

I
(
kj

)
kj

β1(ρ− μ)

β1 − 1
(A–8)

Finally, by inserting (A–8) into (A–2), we obtain the expression for the optimal capacity.

kj =

[
aj

bj

1

γj(β1 − 1)− β1

] 1
γ
j
−1

, γj (β1 − 1)− β1 > 0 (A–9)

Proposition 4.2: ps1
is independent of ps2

.

Proof: If we assume that τs2
≥ τs1

, then ps1
≤ ps2

and the maximised option value in the case of

staged investment is indicated in (A–10).

Fs(P ) =

(
P

ps1

)β1
⎡
⎣ps1

ks1

ρ− μ
− I

(
ks1

)
+

(
ps1

ps2

)β1 [
ps2

ks2

ρ− μ
− I

(
ks2

)]⎤⎦ (A–10)

Hence, ps1
satisfies that FONC (A–11)

β1

(
− 1

ps1

)[
ps1

ks1

ρ− μ
− I

(
ks1

)]
+

ks1

ρ− μ
= 0 (A–11)

from which we have:

ps1
=

I
(
ks1

)
ks1

β1(ρ− μ)

β1 − 1
(A–12)

Consequently, ps1
is independent of ps2

, i.e., the presence of the second stage does not affect the

decision to invest in the first one. Note that the assumption ps1
< ps2

can be expressed as in
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(A–13).

I
(
ks1

)
I
(
ks2

) <
ks1

ks2

(A–13)

Proposition 4.3:
∂kj
∂σ > 0 and

∂pj
∂σ > 0.

Proof: By differentiating the expression of the optimal capacity in (A–9) we have:

∂kj

∂σ
= kj

[
− ∂

∂σβ1

γj (β1 − 1)− β1

]
, γj (β1 − 1)− β1 > 0 (A–14)

Since ∂
∂σβ1 < 0, we have

∂kj
∂σ > 0. Additionally, the expression of the optimal investment threshold

is:

pj

(
kj

)
=

I
(
kj

)
kj

β1(ρ− μ)

β1 − 1

=
ajkj + bjk

γj

j

kj

β1(ρ− μ)

β1 − 1

=
(
aj + bjk

γ
j
−1

j

) β1(ρ− μ)

β1 − 1
(A–15)

Since ∂
∂σ

β1
β1−1 > 0 and ∂

∂σkj > 0 we have ∂
∂σpj > 0.

Proposition 4.4: If a firm has discretion over capacity, then Fs(P ) > F
�
(P ).

Proof: The relative value of the two strategies is indicated in (A–16).

Fs(P )

F
�
(P )

=
∑
i

Fs
i
(P )

F
�
(P )

(A–16)

In order to show that Fs(P ) > F
�
(P ), we will show that each term on the right–hand side of (A–16)

is greater than one, i.e:

Fsi
(P )

F
�
(P )

=

(
P
psi

)β1 [
psi

ksi
ρ−μ − I

(
ksi

)]
(

P
p
�

)β1 [p
�
k
�

ρ−μ − I (k
�
)
] =

(
ksi

k
�

)β1

I (k
�
)
β1−1

I
(
ks

i

)β1−1
> 1, i = 1, 2 (A–17)
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By manipulating the expression of the relative value in (A–17) we obtain (A–18).

(
ks

i

k
�

)β1

I (k
�
)
β1−1

I
(
ks

i

)β1−1
> 1 ⇔

I(k�)
β1−1

k
β1
�

I
(
ksi

)β1−1

k
β1
s
i

> 1 ⇔
ks

i

k
�

I(k�)
β1−1

k
β1−1

�

I
(
ksi

)β1−1

k
β1−1

si

> 1 (A–18)

Without loss of generality, we assume that γ
�
= γsi

= γ and b
�
= bsi

= b. Consequently, any

difference between the investment cost of each stage i and that of lumpy investment is expressed

through aj . Notice that this maintains the convexity of the investment cost without violating

condition (3). The implication of this assumption is indicated in (A–19).

ksi

k
�

=

(
asi

a
�

) 1
γ−1

(A–19)

By substituting the expression for
ksi
k
�

into (A–18) and by inserting the expression for the optimal

capacity from (A–9) into (A–18), we finally obtain (A–20).

ksi

k
�

I(k�)
β1−1

k
β1−1

�

I
(
ksi

)β1−1

k
β1−1

si

=

(
asi

a
�

) 1
γ−1

(
a
�

asi

)β1−1

=

(
a
�

asi

)β1− γ
γ−1

(A–20)

Notice that (β1 − 1) (γ − 1) > 1 ⇔ β1 > γ
γ−1 , which is the required condition so that kj ∈

R
+
. Additionally, by differentiating (A–17) with respect to σ as in (A–21), we can determine the

relationship between uncertainty and the relative value of the two strategies.

∂

∂σ

Fsi
(P )

F
�
(P )

=
∂

∂σ

(
a
�

asi

)β1− γ
γ−1

=

(
a
�

asi

)β1− γ
γ−1

ln

(
a
�

asi

)
∂β1

∂σ
(A–21)

Notice that if asi
< a

�
, then greater uncertainty decreases the relative value of the stepwise invest-

ment strategy. Consequently, if as
i
< a

�
∀i ∈ N, then σ ↗ ⇒ Fs(P )

F
�
(P ) ↘. In addition, from (A–20)

we conclude that the stepwise investment strategy is always more valuable than lumpy investment.

Fs(P )

F
�
(P )

=
∑
i

Fs
i
(P )

F
�
(P )

=
∑
i

(
a
�

asi

)β1− γ
γ−1

> 0, if asi
< a

�
, ∀i ∈ N (A–22)
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Proposition 4.5: k
�
<
∑n

i=1 ksi
.

Proof: The optimal capacity of the project under lumpy and stepwise investment is described in

(A–23).

kj =

[
aj

bj

1

γj (β1 − 1)− β1

] 1
γj−1

(A–23)

Setting γ
�
= γsi

= γ and b
�
= bsi

= b, the assumption I (k
�
) <

∑
i I
(
ksi

)
is equivalent to (A–24).

a
�

< as1
+ as2

(A–24)

Thus, by setting ξ = 1
b

1
γ(β1−1)−β1

, we obtain from (A–24):

a
�
ξ < as1

ξ + as2
ξ ⇒ k

1
γ−1

�
< k

1
γ−1

s1
+ k

1
γ−1

s2
(A–25)

Since (A–25) is true ∀γ : γ >
β1

β1−1 > 1, it is also true for γ = 2, and, thus, we finally have:

k
�

< ks1
+ ks2

(A–26)

Corollary 4.1: The MB is steeper than the MC.

Proof: The result follows from differentiating the MB and MC of delaying investment with respect

to the output price. Notice that the MC is positive and independent of the output price, while

∂
∂P MB < 0.

Proposition 4.6: If kj is fixed, then ∂
∂σMB < 0, ∂

∂σMC < 0, and
∣∣ ∂
∂σMB

∣∣ < ∣∣ ∂
∂σMC

∣∣, whereas
if kj is scalable, then ∂

∂σMB > 0, ∂
∂σMC > 0, and ∂

∂σMB > ∂
∂σMC.

Proof: The MB and MC of delaying investment is indicated in (A–27).

MB = MC ⇔ β1I
(
kj

)
pj

+
kj

ρ− μ
=

β1kj

ρ− μ
(A–27)
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Notice that if the capacity of the project is fixed, then an increase in σ lowers both the MB and

the MC as indicated in (A–28).

∂MB

∂σ
=

I
(
kj

)
∂
∂σβ1

pj

< 0 and
∂MC

∂σ
=

kj
∂
∂σβ1

ρ− μ
< 0 (A–28)

However, from (A–12) we know that
I(kj )
pj

<
kj
ρ−μ , and, therefore, the MC of delaying investment

decreases by more than the MB.

∣∣∣∣∂MC

∂σ

∣∣∣∣ >
∣∣∣∣∂MB

∂σ

∣∣∣∣ (A–29)

By contrast, if the capacity of the project is scalable, then the MB and MC of delaying invest-

ment increase with greater price uncertainty. Indeed, for P < pj we have:

∂MB

∂σ
=

I
(
kj

)
∂
∂σβ1 + β1

∂
∂σ I

(
kj

)
pj

+
∂
∂σkj

ρ− μ
> 0 (A–30)

The second term on the right–hand side of (A–30) is positive since ∂
∂σkj > 0. Notice also that,

even though ∂
∂σβ1 < 0, β1 is bounded from below since β1 > 1. By contrast, since the capacity of

the project is not bounded and ∂
∂σ I

(
kj

)
> 0, the decrease in β1 is mitigated by the increase in the

investment cost. The impact of σ on the MC is indicated in (A–31).

∂MC

∂σ
=

kj
∂
∂σβ1 + β1

∂
∂σkj

ρ− μ
(A–31)

Notice that reduction in β1 makes the impact of σ on kj less pronounced, and, therefore, the second

term on the right–hand side of (A–30) is greater than right–hand side of (A–31). Since the first

term on the right–hand side of (A–30) is positive, we have:

∂MB

∂σ
>

∂MC

∂σ
(A–32)

Finally, notice that the second term on the left–hand side of (A–27) is constant when the capacity

is fixed and increasing when the capacity is scalable. Similarly, the reduction of first term due

to the decrease in β1 with greater uncertainty is offset by the increase in kj . Consequently, the

impact of σ on the MB of delaying investment is not only reversed when the firm has discretion
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over capacity but it is also more pronounced.
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