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A B S T R A C T

Published research often address aspects related to “statistical significance” but fail to address the clinical and
practical importance and meaning of results. Our main objectives in this article are to investigate the merit of
common measures of Effect Size in statistical research and to highlight the importance of the simple Relative
Risk ratio. In this article we present data where we consider two widely utilized effect size measures (Cohen's d
and Pearson's r) in relations to relative risk. We conclude that probability analyses of risk surpass the most
commonly used statistical approach used in clinical trials today and should thus be the preferred compared to
the misuse and misunderstanding of reporting for instance p-values alone.

1. Introduction

Research literature evaluating effects of treatment should guide
clinical practice. It is then key that the summarization of data from
treatment studies is presented in a manner that can be readily appre-
ciated by doctors, clinicians and practitioners (Cook and Sackett, 1995).
Due to a higher availability of research today than before, health con-
sumers are now readers of evaluative science such as research reports
(Eysenbach, 2000). Thus, it is as important as ever that research is
presented in a clear and concise fashion and that inferences are in line
with what the results of the study actually indicate. However, practi-
cing and preaching are not always synonymous, and the misuse of the p-
value continues to distort inferences in almost any discipline including
psychiatry.

The objective of this article is three-fold: First to address the long-

standing, still ongoing discussion regarding the p-value; second, to
discuss the relative merits of two of the most widely utilized measures
of Effect Size (ES) in bio-behavioral research; and third, to highlight the
importance of the simple Relative Risk ratio (RR).

The most frequently used statistical approach in clinical trials is
“Null Hypothesis Significance Testing” (NHST) and the highly debated
p-value. When undertaking a significance test, the researcher selects a
significance level called alpha. The significance level is typically chosen
from a consensus in that particular field of research (e.g.,
alpha=0.05). The p-value, under a specified statistical model, re-
presents the probability that an observed alpha value or one more ex-
treme has occurred. The usage of p-values continues to be debated, and
has been so since well before the Second World War. In an attempt to
clarify and elucidate the problems with NHST and the p-value, the
American Statistical Association (ASA) issued a statement on its use in
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research in which it was highlighted that the p-value “does not provide
a good measure of evidence regarding a model or hypothesis”
(Wasserstein and Lazar, 2016). Further, the statement underscored that
statistical significance does not measure size of effects or importance of
results. We adhere to the ASA statement when arguing that the use of p-
values alone is simply not enough when drawing inferences about, for
instance, effects of treatment trials and must be supplemented, or re-
placed by other approaches. There are several approaches available
other than p-value statistics and although these approaches typically
rely on more assumptions, they address sizes of effect more directly or
whether a hypothesis indeed is warranted, both aspects of which are
not addressed by Null Hypothesis Significance Testing.

Enhancing the knowledge of evidence based practices (EBP) has
been a key endeavor within the field of medicine and psychology for
quite some time (Cicchetti, 2011; Cutspec, 2004). However, the sta-
tistics used to evaluate and interpret results from randomized clinical
trials (RCT) should be chosen on the basis of which best inform clinical
practice. Exaggeration of what can be inferred from p-values through
NHST remains an issue (Borenstein, 1998; Cohen, 1995; Stern, 2016).
Even though the p-value and its usage have been heavily questioned
since first introduced by Ronald Fisher in the 1920 s, it is, as noted, still
the most common statistical method used to address treatment effects
(Nuijten et al., 2016). A main critique from the opponents of statistical
significance testing is that the p-value can be viewed as a fallacy or a
“conceptual error that has profoundly influenced how we think about
the process of science and the nature of scientific truth”
(Goodman, 1999). Others have addressed similar concerns (Burton
et al., 1998; Kraemer et al., 2011). Simmons and colleagues note that
the costliest error relates to the incorrect rejection of the null hypoth-
esis (Simmons et al., 2011). This error concerns false positive findings, or
falsely claiming the reliability or accuracy of an evaluative method.
Such erroneous findings die hard as possible replications with null
findings can be difficult to publish (Simmons et al., 2011). Readers of
journals may misinterpret results reported as statistically significant to
be “positive” evidence for treatment efficacy. In fact, approvals of new
drugs by regulatory authorities are typically based on such positive
results indicating little else than slight group differences (Ocana and
Tannock, 2010). Borenstein (1998) goes further, citing an example of
several studies all showing positive results for a particular drug. How-
ever, some of the studies produced statistically significant results while
others did not. A more careful scrutiny of the data indicated that the
studies producing statistically significant results derived from much
larger sample sizes than those that failed to reach statistical sig-
nificance. Rather than recognizing this as a small N phenomenon re-
quiring further investigation with a larger sample size, the drug was not
considered further (Borenstein, 1998).

Due to the role that the p-value has attained during its history, it
continues to confuse. This then goes on to impact the practical field as
readers misinterpret the actual inferences that can be drawn from stu-
dies. These issues obscure actual effects, or the lack thereof, in inter-
vention trials that fail to go beyond merely testing whether the groups
were different or not. Therefore, there is a need for research reporting
not only statistical significance but also estimates of whether change
following the intervention was clinically significant and meaningful.
The ultimate value of a test of a treatment trial should not rest on
statistical significance, but rather be based on results that are both
statistically and clinically meaningful (Cicchetti et al., 2011), while also
remaining easy to interpret for clinicians with sparse statistical
knowledge.

1.1. What constitutes change/meaningful change/clinical significance?

Some of the reasons for the continuing misinterpretations of p-va-
lues are due to the mere coining of the term "significance", which im-
plies that something is of a magnitude or of importance. Consistent with
this fallacious reasoning is the all too frequent idea that a p-value of

0.01 is more clinically meaningful than one of 0.05 (Borenstein, 1998).
This is a bona fide example of a too prevalent confusion of statistical
significance with clinical or substantive significance. Nevertheless, the
only feature of significant magnitude in many studies, despite
“reaching” statistical significance, is the sample size. This echoes the
criticism that under normal assumptions, any consistent difference be-
tween means can be made statistically significant at p= 0.05 with a
large enough sample size (Bakan, 1966; Cicchetti et al., 2011) and
underscores the arbitrariness of the norm value of 0.05 which was
elegantly reflected upon by Rosnow and Rosenthal (1989), when stating
that “surely, God loves the 0.06 nearly as much as the 0.05″. There is of
course the chance she or he does not love any of them. A p-value below
the 0.05 threshold does not establish that a hypothesis is true just as a p-
value not reaching the same threshold proves the null hypothesis.
Further, as noted by Cohen (1995) and Borenstein (1998), at the end of
the day it is not whether the effect of a treatment is zero or not that is
important, the answer one gets from a significance test, but the mag-
nitude of the effect and thus including the element of interest, namely
clinical significance (Borenstein, 1997).

The use of the term clinical significance may be interpreted in dif-
ferent ways, and may depend on the condition at hand. For instance, a
clinically significant change for a once fractured hand can be the re-
gaining of full functionality. Although many psychiatric diagnoses are
not necessarily life-long, many are. Thus, if the term clinical sig-
nificance is to be used, it should also be operationalized as something
other than a dichotomous diagnosis versus recovery divide. We now
turn to some alternatives that in addition to providing statistical esti-
mates of effect are more intuitive measures of effect.

1.2. Clinical significance in treatment trials

The concept of clinical significance is closely intertwined with effect
size estimation, which in turn led to power analysis estimation
(Cohen, 1977). A definition of effect size is provided by Kelley and
Preacher stating that an effect size is “a quantitative reflection of the
magnitude of some phenomenon that is used for the purpose of ad-
dressing a question of interest” (2012, p. 140). Making power analysis
possible was the core intent for Cohen, and when he presented the cut-
offs considering what constitutes small, medium and large effect sizes
(ES) he strongly cautioned the many dangers of using such rules of
thumb (Cohen, 1977). Following reports on p-values many researchers
rely on the use of effect sizes such as Cohen's d or correlation coeffi-
cients (r) and statistics of this genre are also at the heart of the sum-
marization of results in meta-analyses (McGrath and Meyer, 2006).

1.3. Two widely applied measures of ES in bio-behavioral research: r and d

Because r and d appear, arguably, to be the two most widely applied
measures of ES, it will be instructive to briefly define each and then
compare them across a wide range of values. d refers to the percentage
of overlap between two mean values, with a range of 2.3 to 100%; r is
the familiar Pearson Product Moment Correlation Coefficient (PPMC).
As noted by Cohen (1988), d is defined as:

=
−d m m

SD
A B

(1)

where:mA= the first of two Mean or Average valuesmB=the second of
the two Mean values andSD= the standard deviation of the difference
between the pair of Means

The formula for converting d to r is given by Cohen (1988) as:

= +
+r d d n n

n n
/ ( ( ) )2 1 2

2

1 2 (2)

where:d is defined as in Formula [1] and n1 and n2 are the population
sizes of groups 1 and 2, respectively. For n1= n2 the above reduces to:

A. Nordahl-Hansen et al. Psychiatry Research 270 (2018) 801–806

802



= +r d d/ ( 4)2 (3)

We note that PPMC and correlation coefficients in general are ty-
pically used to assess the strength of bivariate relationships between
random variables (Kraemer et al., 1999), and as such the use of PPMC in
the context of group difference effect sizes is a special case
(Cohen, 1988).

The aforementioned comparison of d and r is given in Table 1 below.
The ES values for both statistics are given in the Footnote below the
Table.

The data in Table 1, derive from two sources: Cohen (1988), and
Zakzanis (2001), as combined into a single Table.

Since d and r are valid measures of ES, a question is which one
should the clinical research scientist apply? McGrath and Meyer (2006)
address this important issue in an article appropriately entitled “When
effect sizes disagree: The case of r and d.” In making the comparison,
the two authors recommend reporting both measures of ES:

“Doing so has several benefits, including simplicity and the fact that
it does not require adjusting interpretive benchmarks. An additional
benefit is that when base rates diverge, reporting both r and d will
juxtapose the seemingly discrepant inferences about magnitude of ef-
fect and will highlight the importance known for some time of deciding
whether the natural base rates should be given credence or be dis-
counted” (McGrath and Meyer, 2006).

1.4. Assessing inter-examiner agreement and correlations for binary data
deriving from a 2 × 2 table

The concept of association is pertinent in the context of both ex-
aminer agreement and correlation. One recently published report as-
sessed the reliability of various measures of agreement for bio-beha-
vioral disorders in general, with a specific investigation of the reliability
of the presence or absence of personality disorders. The results in-
dicated that from both a probabilistic and clinical perspective, Cohen's
kappa coefficient (Cohen, 1960) is to be preferred over competitors,
such as Gwet's 2002 and 2008 AC1-coefficient (Cicchetti et al., 2017;
Gwet, 2002; Gwet, 2008).

One example of correlations from binary data is the association
between aspirin therapy (yes/no) compared to the probability of a heart
attack or myocardial infarct, also defined as yes or no (Hennekens,
1988; Rosenthal et al., 1994). When analyzed using the familiar binary
version of the standard correlation coefficient, phi, the result was a
paltry 0.03, a trivial result by the criteria developed by Cohen (1988).
However, when the Relative Risk (RR) statistic was applied to the same
data, this resulted in a value of 1.82 favoring the aspirin therapy group.
This translates to mean that the risk of suffering a heart attack was
almost twice as high in the group not taking aspirin. One is forced to
conclude that this is hardly a trivial result. In words, the RR can be
defined as the ratio of two probabilities, each based upon a binary
variable and is defined as “the probability of an event in the active
treatment group divided by the probability of an event in the control
group” (Cook and Sackett, 1995). In the aforementioned study, 189
persons of 11,034 not on aspirin therapy suffered a heart attack, as
compared to 104 of the 11,037 who received aspirin therapy
(Hennekens, 1988). Here the RR becomes:

= ÷ =RR (189/11034) (104/11037) 1.82

The aspirin therapy study introduces a very subtle additional pro-
blem, namely, the need to select an appropriate statistic to correctly
evaluate treatment effects. While the standard correlation coefficient is
a very valuable and even venerable statistic, it was not appropriate for
assessing the effects of aspirin therapy, while RR was ideal.

1.5. From the odds ratio to relative risk (RR): a brief historical perspective

The Odds ratio (OR) as a measure of effect size, provides informa-
tion about the power of an association and an outcome. The OR can be
calculated using the ratio between two odds, and provides information
about the odds that a specific outcome will occur when a specific ex-
posure is present compared to the odds when the specific outcome is
not present. Hence, the OR can be viewed as what are the odds that a
group of interest will have a disease, relative to a comparison group: for
example, is it a 50–50 bet or might it be 3 to 1 favoring the group of
clinical interest. OR is the most widely used statistic in epidemiological
research and is also often presented in treatment trials (Bland and
Altman, 2000).

Cornfield (1951) developed the Odds Ratio. However, Fleiss et al.,
(2003) note that for Cornfield the OR was mainly a step along the way
as it “provided a good approximation to another measure he proposed,
the relative risk, also called the rate ratio.” Fleiss and colleagues go on to
mention “Because of its great advantages over other measures of binary
association, Edwards (1963) recommended that the odds ratio or derivatives
of it such as the relative risk (RR) be used as the preferred statistic” (Paik
et al., 2003). Others have also noted the difficulties of using and re-
porting OR for clinical decision-making, favoring instead Relative Risk
(Ferguson, 2009) and Numbers Needed to Treat (Kraemer and
Blasey, 2015). In addition, OR and relative risk are similar only in
specific circumstances, e.g. when the frequencies of outcomes are small
in cohort studies (Viera, 2008). Notwithstanding, the Relative risk or
Risk Ratio (RR either way) is often confused with OR, thus the im-
portance of the distinction between the two is shortly addressed. In

Table 1
Cohen's criteria for d, r and % overlap.

da Percent overlapc rb

0.0 100 0.000
0.1 92.3 0.050
0.2 85.3 0.100
0.3 78.7 0.148
0.4 72.6 0.196
0.5 66.6 0.243
0.6 61.8 0.287
0.7 57.0 0.330
0.8 52.6 0.371
0.9 48.4 0.410
1.0 44.6 0.447
1.1 41.1 0.482
1.2 37.8 0.514
1.3 34.7 0.545
1.4 31.9 0.573
1.5 29.3 0.600
1.6 26.9 0.625
1.7 24.6 0.648
1.8 22.6 0.669
1.9 20.6 0.689
2.0 18.9 0.707
2.2 15.7 0.740
2.4 13.0 0.768
2.6 10.7 0.793
2.8 8.8 0.814
3.0 7.2 0.832
3.2 5.8 0.848
3.4 4.7 0.862
3.6 3.7 0.874
3.8 3.0 0.885
4.0 2.3 0.894

a The Cohen (1988) criteria for d are:< 0.2=No Effect; 0.2= Small;
0.5= Large; and≥ 0.8= Large.

b The Cohen (1988) for r are: < 0.10=Trivial; 0.10–0.29= Small;
0.30–0.49=Medium; and≥ .50= Large. These were revised to read
as: < 0.10=Trivia l; 0.10–0.29= Small; 0.30–0.49=Medium;
0.50–0.69=Large; and≥ 0.70=Very Large (Cicchetti, 2008).

c Percent overlap is the extent to which two populations of research interest
are “superimposed” upon each other (Cohen, 1988); Suppose the Boston
Naming Test was administered to patients with Parkinson's Disease (PD) and
healthy controls; a d of 3 would mean that only about 7% of the PD patients
would obtain scores obtained by healthy controls (Zakzanis, 2001).

A. Nordahl-Hansen et al. Psychiatry Research 270 (2018) 801–806

803



research, mistakes frequently occur when OR is reported as RR. While
the OR is the ratio of two odds, the RR is the ratio of two probabilities
or risks. Hence, RR is the risk of an event happening in one group
compared to the risk of that same event happening in another group.
From a clinical vantage point deploying RR asks the question of how a
group of interest compare to a comparison group in terms of their re-
lative risks of a particular disease. Being an index using the under-
standing of ratios RR is readily intuitive for clinicians and practitioners.

2. Method and results

In the next section, we shall make a direct comparison between
values of the three measures we have just discussed, namely: Kappa, the
Phi Coefficient and the RR coefficient when each is applied to a theo-
retical data set. The method to be defined is Hypothetics. It will be
recalled that the Phi Coefficient is the conceptual equivalent of the
standard correlation coefficient.

2.1. How the three measures Kappa, phi and RR inter-correlate

Hypothetics, before it was defined formally, was first applied in an
earlier study by one of the authors (Cicchetti, 1988). Confirmatory
follow-up studies were published two years later. That earlier in-
vestigation (Cicchetti, 1988) and two later studies (Cicchetti and
Feinstein, 1990; Feinstein and Cicchetti, 1990) explained and resolved
the seeming paradoxes that occur when the level of observed agreement
is high (say, 80% or higher), but Kappa is low and unacceptable [i.e.,
below 0.40 by the criteria of Cicchetti, (1994) and Cicchetti and
Sparrow (1981)].

The concept of Hypothetics can be defined as the study of the hy-
pothetical results that would occur if a scientific researcher were able to
vary or hold constant a number of critical binary variables. With respect
to the examiner reliability case, the authors could vary the following:
The total number of cases diagnosed as positive and negative by each of
the two examiners [e.g., 50:50 for examiner 1 and 45:55 for Examiner 2
(these are also designated as the Rater Marginals); the range of agree-
ment levels on positive cases (say 40% to 80%)] ; the agreement levels
on the number of negative cases (say, 10 to 20); the numbers of cases
for which the first examiner diagnosed positive, while the second di-
agnosed the same cases as negative; the reverse phenomenon, whereby
the first examiner defined 10 cases as, say, negative that the second
examiner diagnosed as positive; the resulting values of the RR, Kappa
and Phi coefficient; and, say the probability levels of each hypothetical
case.

Following this line of reasoning, the following hypothetical Table
was devised:

Table 2

2.2. Correlates of RR

The correlation between Kappa and RR is 0.62; and the correlation
between Phi and RR is 0.59; these represent Large Effect Sizes (ES) by
the criteria of Cohen (1988) and by the expanded criteria of
Cicchetti (2008). The Cohen (1988) ES criteria are:< 0.10=Trivia l;
0.10= S mall; 0.30=Medium; and 0.50= Large; the expanded cri-
teria are:< 0.10=Trivia l; 0.10–0.29= Small; 0.30–0.49=Medium;
0.50–0.69= Large; and≥ 0.70=Very Large. Applying the clinical
criteria suggested by Cicchetti (1994) and earlier by Cicchetti and
Sparrow (1981), Kappa values below 0.40 can be considered Poor; 0.40
to 0.59 is Fair; 0.60–0.74 represents Good; and Kappa's of≥ 0.75 can
be considered Excellent. It is also of interest that RR values below 1.50
are not statistically significant while those of 1.5 and higher are sta-
tistically significant at or beyond the time-honored probability (p) level
of 0.05. It is probably fair to consider an RR of≥ 1.5 to be clinically
significant. With respect to the Kappa values, every value that is
clinically significant is also statistically significant; the reverse is not

true; thus, there are three Kappa's that are well below the desideratum
of 0.40 (specifically 0.218, 0.289 and 0.375). This is a welcome result
and mirrors the findings published recently by two of the authors and a
third colleague (Cicchetti et al., 2017).

3. Discussion

The American Statistical Association (2016) and other biostatisti-
cians (see e.g. Borenstein, 1998; Cohen, 1995; Kraemer 2017) highlight
the problem of using erroneous inferential statistics in medical re-
search, and in particular statistical significance testing. Although the
peer review system decreases the chance of statistical errors, statistical
significance testing with p-values has become a systemic error where
reviewers may even demand the introduction of statistical errors
(Kraemer, 2017). Some have suggested that a solution to the p-value
problem could be to use an even higher threshold (e.g. p<01. or to
0.005). However, as noted by Kraemer (2017) and Ioannidis (2018) this
does not address the clinical significance nor add strength to the in-
ferences of the study, but rather address aspects related to the design
and execution of the study (e.g., sample size and the reliability of the
measures used).

In this paper, we have highlighted the issue of faulty inferences due
to misinterpretations of p-value statistics and propose a solution that is
a) more correct to use in most instances, and gives the information one
typically wants, and b) appears more intuitively easy to understand.
Presentation of results is not necessarily an easy task as there are de-
grees of uncertainty in addressing effects of treatment; and wording
such as probability, risk and chance are subject to misinterpretation
(Kong et al., 1986). However, probability analyses of risk surpass the
most commonly used statistical approach used in clinical trials today
and should thus be preferred compared to p-values alone. We note that
there exist multiple alternate formulations, for example one could
consider as effect sizes area under the curve AUC=P(T1>T2)+½P
(T1=T2), success rate differences (2 AUC −1), or number needed to
treat (1/(2AUC-1), all of which (,6see Kraemer and Frank, 2010,
Kraemer and Kupfer, 2006). These formulations, while reflecting dif-
ferent intuitive perspectives, are often highly (even perfectly) corre-
lated with one another. More generally, one could consider tradeoffs
regarding the clinical importance of weight of false positives and ne-
gatives on a case-by-case basis.

Yet, the use of p-values remains as the most frequent choice for
many researchers. However, there is a general trend in the broader field
of psychiatry that Bayesian statistics are rising in popularity (van de
Schoot et al., 2017). Although there are various approaches within
Bayesian statistics, and disagreement on what types of models are best
in different circumstances, the above-mentioned trend is welcoming.
Nevertheless, the need for sober inferences is as important when using
Bayesian statistics as well as the need for communicating the results to
the broad community of readers of research today. The development of
statistical computer software (e.g., R and JASP) allow for running
analyses using both a classical- (frequentist) as well as Bayesian fra-
meworks. Due to its intuitive nature, Relative Risk statistics pose as a
viable candidate for use in clinical trials within the field of psychiatry.
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