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� Addition of micro-encapsulated phase change materials to concrete reduce the adverse effect of freeze-thaw cycles.
� Geopolymer concrete maintains the compressive strength better after freeze-thaw cycles than Portland cement concrete.
� The setting times of geopolymer paste becomes much faster when the temperature is decreased from 20 to 0 �C.
� Microcracks is observed in the concrete structure after the freeze-thaw cycles.
a r t i c l e i n f o

Article history:
Received 6 August 2018
Received in revised form 2 December 2018
Accepted 12 December 2018

Keywords:
Geopolymer concrete
Portland cement concrete
Micro-encapsulated phase change materials
Freeze-thaw cycles
Compressive strength
Setting times
Microstructure
a b s t r a c t

The effect of frost conditions on the physical and mechanical properties of geopolymer concrete (GPC)
and Portland cement concrete (PCC) containing two different micro-encapsulated phase change materials
(MPCM) was examined. Microstructural studies revealed that the freeze-thaw induced concrete deterio-
ration can be contributed to microcracks appearing at the weak interfacial transition zones between
paste/aggregate and paste/MPCM. The addition of MPCM provided an excellent resistance against
freeze-thaw cycles with minor reduction of the compressive strength, unlike the samples without
MPCM where a stronger reduction was observed. When the temperature was reduced to 0 �C, the initial
setting time of Portland cement pastes became longer due to the low temperature and the high viscosity.
For geopolymer pastes, the initial setting time became shorter due to phase separation of the alkaline
solution at low temperatures. Increasing the MPCM concentration reduced the final setting time for both
Portland cement and geopolymer pastes.
� 2018 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recycling waste materials into new building materials helps
conserve the environment and natural resources. Geopolymers
are an interesting alternative to ordinary Portland cement, and
noticeably diminish greenhouse gas emission and reduces the high
energy consumption compared to Portland cement [1–3]. Geopoly-
mers can be prepared from industrial waste materials that are rich
in aluminosilicate or kaolinite combined with an alkaline solution
[4,5]. In addition, geopolymer compositions exhibit excellent
mechanical performance and shorter setting times in comparison
to cementitious materials [6–8].

In cold climates such as the Scandinavian countries, buildings
are exposed to freezing weather during winter. This is one of the
main causes of mortar and concrete degradation [9,10]. Phase
change materials (PCM) can result in the structure being exposed
to fewer freeze-thaw cycles, and can help maintaining a comfort-
able indoor temperature [11,12]. When the temperature is
higher than the melting point of PCM, extra heat is absorbed by
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Table 1
Analysis of FA and GGBFS by X-ray fluorescence.

Constituents FA (wt%) GGBFS (wt%)

Al2O3 23.15 10.3
SiO2 50.83 34.51
CaO 6.87 42.84
Fe2O3 6.82 0.6
MgO 1.7 7.41
K2O 2.14 0.52
TiO2 1.01 0.66
Na2O 1.29 0.39
P2O5 1.14 0.02
SO3 1.24 1.95
SrO 0.19 0.05
CO2 3.07 0.3
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the melting of the PCM, which has a high latent heat. When the
temperature decreases, the PCM releases the excess heat by solid-
ification [13,14]. Encapsulating the PCM into microcapsules pre-
vents interactions between the PCM and the surrounding
materials. In addition, microcapsules provide a large heat transfer
surface area, and increase the structural stability [15,16]. Better
thermal comfort can be achieved by using mortar and concrete
containing micro-encapsulated phase change materials (MPCM).
However, the MPCM has a negative effect on the mechanical prop-
erties of construction materials [17–22].

The effect of freeze-thaw cycles on the mechanical properties of
cementitious and geopolymer compositions have been examined
previously [23–27]. However, as far as we know the effect of
MPCM addition on the freeze-thaw induced changes of compres-
sive strength, mass loss and microstructure of geopolymer con-
crete and Portland cement concrete have not been previously
reported.

The objective of this study is to investigate how MPCM integra-
tion affects the mechanical properties of both geopolymer concrete
(GPC) and Portland cement concrete (PCC) after exposure to freeze-
thaw cycles. In addition, the effect of MPCM at frost conditions on
the early-age properties of GPC and PCC has been investigated.
2. Materials and methods

2.1. Materials

Two different MPCMs with hydrophobic shells (to minimize the
amount of water adsorbed onto the shell of the microcapsules)
were utilized. PE-EVA-PCM, has a shell that is a copolymer of
50 wt% low density polyethylene (LDPE) and 50 wt% ethylvinylac-
etate (EVA) [28]. St-DVB-PCM, has a shell consisting of a copolymer
of 50 wt% styrene (St) and 50 wt% divinylbenzene (DVB) [29]. A
paraffin wax (Rubitherm�RT27) is used as the core of both micro-
capsules. Fig. 1 shows SEM images the utilized microcapsules. It
should be noted that PE-EVA-PCM exhibits a non-spherical geom-
etry and contains high amounts of agglomerates while St-DVB-
PCM have a spherical shape [18,22].

In order to prepare geopolymer concrete, an alkaline activator
solution, class F fly ash (FA), ground granulated blast furnace slag
(GGBFS), sand, and gravel were used. Sodium hydroxide pellets
and sodium silicate solution (35 wt% solid) used for preparing
the alkaline solution were purchased from VWR, Norway.

The FA and GGBFS were provided from Norcem and Cemex, Ger-
many, respectively. Table 1 shows chemical compositions deter-
mined by X-ray fluorescence (XRF) of GGBFS and class F fly ash.
Fig. 1. Morphology of the microcapsules capture
In order to obtain a better workability without adding high
amounts of water, a superplasticizer (FLUBE OS 39 from Bozzetto
Group, Italy) was utilized.

Portland cement II mixed with FA (Blaine fineness of 4500 cm2/
g), was obtained from Norcem, Norway. A superplasticizer (Dyna-
mon SR-N fromMAPEI, Norway) was utilized to gain a better work-
ability without adding more water.

The gravel and sand (Gunnar Holth and Skolt Pukkverk AS) uti-
lized for both geopolymer concrete and Portland cement concrete
originated from Råde and Mysen, Norway, respectively. The size
distributions of the components displayed in Fig. 2 was determined
by mechanical sieving (EN 933-1) for gravel and sand, and by low
angle laser light scattering (Malvern Mastersizer 2000) for MPCM,
GGBFS, and FA.
2.2. Mixing, casting and curing methods

For all geopolymer mixtures, an alkaline solution with a ratio
between the sodium silicate solution and the sodium hydroxide
solution (14 M) of 1.5 and a total SiO2 to Na2O ratio of 0.7 was
selected. The details of the alkaline solution preparation is
explained in Pilehvar et al. [30]. Since the paste does not contain
sand, the microcapsules were added as an extra additive. For the
concrete mixtures, the microcapsules replaced a corresponding
volume of sand [22].

For geopolymer paste, an alkaline solution to geopolymer bin-
der (Fly ash + GGBFS) ratio of 0.4 was selected to reach the stan-
dard consistency described in EN 196-3. The geopolymer binder
and alkaline solution were mixed together for 90 s; after which
the microcapsules were added and mixed for 90 s to achieve a
d by SEM (a) PE-EVA-PCM (b) St-DVB-PCM.
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Fig. 2. Particle size distributions of (a) slag, fly ash, and microcapsules, and (b) sand and gravel.

Table 3
Mixture design of Portland paste and concrete. The concrete recipe gives 1 m3 of
mixture.

Materials Paste (kg) Concrete (kg)

MPCM 0% MPCM 20% MPCM 0% MPCM 20%

Cement 471.2 471.2 471.2 471.2
Water 165 165 235.6 235.6
Sand – – 957 765.6
Gravel – – 705 705
Superplasticizer – – 4.8 4.8
MPCMs 0 28.3 0 64.3
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homogenous paste. For Portland cement paste, water and cement
with a water to cement ratio of 0.35 was mixed for 90 s to achieve
the same consistency as the geopolymer paste. After adding MPCM,
the mixing was continued for an additional 90 s. For both geopoly-
mer and Portland cement pastes, the MPCM was added as an addi-
tional 20 vol% of powder materials.

In order to have comparable data for GPC and PCC, the total
amount of liquid (alkaline solution + extra water) to the geopoly-
mer binder and the water to cement ratio for the Portland cement
were kept constant at 0.5. In addition, the combined amount of
gravel and sand for the concretes without microcapsules was
nearly the same for geopolymer concrete and Portland cement con-
crete. The details of GPC and PCC preparations are described previ-
ously [22,30].

To reduce potential damage to the microcapsules due to the
mixing process, they were the last component added to the mix-
tures [31]. The compositions of geopolymer and Portland cement
pastes and concretes are given in Table 2 and Table 3, respectively.
For concrete, the percentages of microcapsules correspond to the
volume of sand replaced by MPCM.

The GPC and PCC samples where 0 and 20% of the sand was
replaced by St-DVB-PCM or PE-EVA-PCM, were cast as described
in Pilehvar et al. [22] at 20 �C. Due to the short setting time of
GPC, a vibration machine was used to remove air trapped inside
the specimens whereas for the PCC samples, a steel pestle was used
to compact the molds. After casting GPC and PCC into
10 � 10 � 10 cm molds, they were pre-cured for 24 h (ambient
temperature; relative humidity of 90%), after which the samples
were demolded. The demolded samples were cured in tap water
for 28 days at 20 �C. Before starting the freeze-thaw cycles, the
cured samples were kept in open air for 1 h (to help remove surface
water) and weighed. For each freeze-thaw cycle, the samples were
first immersed in tap water located in a cooling room at a temper-
ature of 3 ± 1 �C for 6 h. Afterward, the samples were left in a free-
Table 2
Mix design of geopolymer paste and concrete. The concrete recipe gives 1 m3 of
mixture.

Materials Paste (kg) Concrete (kg)

MPCM 0% MPCM 20% MPCM 0% MPCM 20%

Alkaline solution 188.5 188.5 189.8 189.8
Fly ash 280.2 280.2 280.2 280.2
GGBFS 191 191 191 191
Sand – – 828.1 662.5
Gravel – – 809.6 809.6
Extra water – – 47 47
Superplasticizer – – 4.8 4.8
MPCMs 0 35 0 55.8
zer at a temperature of �20 ± 1 �C for 18 h. The samples were
subjected to 0, 7, 14, and 28 freeze-thaw cycles. After the freeze
thaw cycles, the samples were gently dried at room temperature
before further testing.
2.3. Testing methods

The mineralogical characterization study of GPC and PCC con-
taining 0 and 20% of the microcapsules after 0 and 28 freeze-
thaw cycles, was carried out using a Hitachi S3500N scanning elec-
tron microscope (SEM) utilizing an accelerating voltage of 15 kV. A
back-scattered electrons (BSE) detector was applied for imaging.
Unpolished samples were coated with platinum in a sputter coater
Polaron SC7640 before measurements.

The internal microstructure of PCC and GPC containing 0 and
20% microcapsules after 0 and 28 freeze-thaw cycles was exam-
ined by X-ray tomographic scans, utilizing a Skyscan 1172 CT scan-
ner (Bruker) with 85 kV incident radiation, 800 ms exposure time
per frame and a rotation step of 0.3�. The final sets of vertically
stacked slices (voxel size of 6 lm) were reconstructed using the
Feldkam algorithm [32]. The measurements were performed on
cylindrical specimens (1 cm diameter and 1 cm height) drilled
from the samples utilizing a Skyscan 1172 (Bruker, Billerica, US).

The percentage of mass loss was calculated to examine the
influence of freeze-thaw cycles on the concrete degradation and
MPCM loss:

Percentage mass loss ¼ h0 � hcycle
h0

� 100

where h0 and hcycle are the mass of the sample before and after the
freeze-thaw cycles, respectively. In addition to the standard freeze-
thaw cycles, GPC and PCC containing 0% and 20% microcapsules,
were stored outdoors for three months (November to January,
Fredrikstad, Norway) to examine the effect of exposure to real
weather conditions. After outdoor exposure, the mass loss was mea-
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sured in the same way as for the freeze-thaw cycles. The reported
values are the average of the three cubes.

The compressive strength tests after 0, 7, 14, and 28 freeze-
thaw cycles were performed at 20 �C in accordance with EN
12390-3, using a digital compressive strength test machine
(Form + Test Machine) with a force at a loading rate of 0.8 kN/s.
Before the measurements, three cubes were left at ambient condi-
tions for 1 h (to help remove surface water and ice), after which
they were weighed and measured. Additionally, the compressive
strength of GPC and PCC containing 0% and 20% microcapsules,
after three months outdoor exposure was measured. The reported
values are the average of the three cubes.

The setting times of Portland cement and geopolymer pastes
without microcapsules and with 20% microcapsules were carried
out at 0 �C and 20 �C with a computer controlled Vicat needle
instrument (ToniSET One, Model 7301). To conduct the measure-
ments at 0 �C, the instrument basin was filled with an ice/water
mixture. The setting time was calculated from the initial mixing
of the raw materials, and measured with an interval of 10 min
for Portland cement paste and 2 min for geopolymer paste. The ini-
tial setting time is the time when the needle penetration is less
than 39.5 mm whereas the final setting time is the moment when
the needle penetrates the sample to a depth of 0.5 mm.
3. Results and discussion

3.1. Freeze-thaw cycles

3.1.1. Microstructural study
Microscopical structure chracterization of GPC and PCC contain-

ing St-DVB-PCM and PE-EVA-PCM after 0 and 28 freeze-thaw
cycles were performed by SEM and X-ray tomography imaging.
SEM images of the samples after 28 freeze-thaw cycles are shown
in Fig. 3. In Fig. 4, the samples containing microcapsules are dis-
Fig. 3. SEM images of the fracture surface of (a) PCC 0% – 28 cycles (the arrows show cry
(the arrows show microcracks in the matrix), (c) PCC 20% St-DVB-PCM – 28 cycles (the
microcracks in the matrix), (e) GPC 20% PE-EVA-PCM (the arrows showmicrocracks in the
microcracks in the matrix).
played at a higher maginfication. The transition zone between
the MPCM and the concrete matrix depends on the microcapsule
shell [22], and hydrophobic materials usually exhibit poor adhe-
sion to a cementitious matrix [33]. This causes visible gaps
between the microcapsules and the concrete matrix for both PCC
and GPC (Fig. 3b, c, e, f, Fig. 4), illustrating that the bonds between
the concrete and MPCM are poor. This might affect the concrete
mass loss and the strength reduction after repeated freeze-thaw
cycles.

From Fig. 3a it is evident that crystals are formed in PCC as one
of the hydration products during the freeze-thaw cycles (similar
crystals are not observed before the freeze thaw cycles). Fig. 4a
and c shows that in the presence of microcapsules, crystalls form
in the gap between the microcapsules and the concrete matirx.
Crystal formation is expected to reduce the compressive strength
of PCC by expansion and an increase of solid volume [34,35].

For GPC, microcracks are formed after the freeze thaw cycles
(Fig. 3d). In addition, microcrackes are present after the freeze
thaw cycles of all samples (both GPC and PCC) containing PCM
(see Fig. 3b, c, e, f). Microcracks are not visible in the SEM-image
of PCC without microcapsules (Fig. 3a). This might be due to the
extensive crystal formation (Fig. 3a), whichmight hide microcracks
formed underneath the crystalls. Formation of microcracks is
expected to contribute to the concrete deterioration.

2D X-ray micro-tomography cross-sectional slices of GPC and
PCC without MPCMs are shown in Fig. 5. In these images, bright
colors are associated with components with high X-ray attenuation
such as sand and gravel, whereas components with low or no X-ray
attenuation (air voids and MPCM) are displayed in dark colors. The
field of view is approximately 1 cm. Fig. 5A, a, D and d show the
microstructural changes of PCC and GPC without MPCMs before
and after exposure to freeze-thaw cycles. After the freeze-thaw
cycles, microcracks are evident in the PCC matrix (Fig. 5a) and at
the interfacial transition zone between geopolymer paste and the
stal formation) the rounded particle is fly ash, (b) PCC 20% PE-EVA-PCM – 28 cycles
arrows show microcracks in the matrix), (d) GPC 0% – 28 cycles (the arrows show
matrix), and (f) GPC 20% St-DVB-PCM after 28 freeze-thaw cycles (the arrows show



Fig. 4. SEM images of (a) the PCC matrix and PE-EVA-PCM, the arrow shows crystalized structures located in the gap between matrix and MPCM. (b) The GPC matrix and PE-
EVA-PCM, the weak interfacial transition zone is visible. (c) The PCC matrix and St-DVB-PCM, the arrow shows crystalized products located in the gap between matrix and
MPCM. (d) The GPC matrix and St-DVB-PCM, the arrow shows the trace of microcapsule shell on the gap between the microcapsules and the concrete matrix.
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gravel (Fig. 5d, e, f). This indicates that the generated microcracks
provoked by freeze-thaw cycles are contributing to the damage
and deterioration of PCC and GPC. Interestingly, microcracks are
not observed between the PCC paste and the aggregates in the
presence of the MPCM after the freeze-thaw cycles (Fig. 5b, c). This
illustrates that stronger bonds are formed between the PCC paste
and the aggregates than for GPC where microcracks are evident
(Fig. 5d, e, f). As can be seen from the images, the inclusion of
MPCM’s led to a substantial increase of porosity, thus reducing
the mechanical performance of the materials.
3.1.2. Mass loss
Freeze-thaw cycles can erode the concrete. It is, therefore, inter-

esting to examine the mass loss for GPC and PCC with and without
MPCM. Fig. 6 illustrates that when the percentage of MPCM
increases, the mass loss after 28 cycles becomes higher for both
GPC and PCC. This might be due to the soft nature of the microcap-
sules and their poor connection to the concrete matrix (as is evi-
dent from the gaps between the concrete and MPCM in Fig. 3).
This can cause the MPCM to be easily eroded from the surface. In
addition, MPCM can weaken the concrete structure, which might
render it less resistant to freeze-thaw erosion. Despite the MPCM
erosion and visible microcracks on the surfaces of samples, there
is not any sign of concrete spalling. For PCC without MPCM, the
mass loss is negative (i.e., the samples gain weight). This is proba-
bly due to water being adsorbed within pores and microcracks
[36,37]. The weight gain of PCC without MPCM during the freeze
thaw cycles illustrates that determination of mass loss is not a suit-
able method for concrete durability evaluation. Earlier studies also
found that the mass loss is not an accurate measure of the concrete
degradation [38].
To evaluate the effect of real weather conditions, GPC and PCC
with and without microcapsules were left outdoors from the
16th of October 2017 until the 16th of January 2018 in Fredrikstad,
Norway. The mass loss of PCC are less than for the samples exposed
to freeze-thaw cycles (Fig. 7a, Fig. 6a). This is probably due to less
severe outdoor conditions compared to the freeze-thaw test. As
can be seen from Fig. 7b, the temperature fluctuations during this
time period were moderate compared to the freeze thaw cycles.
Interestingly, the PCC samples gain weight (negative weight loss).
This might be due to adsorption of water in microcracks [36,37]. As
can be seen in the insets of Fig. 8a, the samples were submerged in
snow for parts of the period.
3.1.3. Compressive strength
Fig. 8 shows the compressive strength and the compressive

strength reduction of PCC and GPC with incorporated microcap-
sules after 0, 7, 14, and 28 freeze-thaw cycles. As observed previ-
ously, GPC exhibits better compressive strength than PCC and
incorporation of MPCM cause a decrease of the compressive
strength [22]. The freeze-thaw induced changes in compressive
strength of GPC is less than 5% at all conditions, showing that the
strength of GPC from this recipe is stable against freeze thaw cycles
both with and without added microcapsules. However, PCC with-
out MPCM exhibit a pronounced strength reduction as a result of
the freeze thaw cycles. The most important reason for the deterio-
ration is expansion of water in the permeable concrete when it
freezes. The volume of water increases by about 9% when it freezes
[39], which generates a hydraulic pressure within the sample. Air
voids within the sample provides space the ice can expand into.
However, when the available free space is filled up the freezing
ice exerts a pressure on the surrounding concrete matrix. When



Fig. 5. 2D X-ray-tomography images of samples (A) PCC 0% – 0 cycles, (a) PCC 0% – 28 cycles, (B) PCC 20% PE-EVA-PCM – 0 cycles, (b) PCC 20% PE-EVA-PCM – 28 cycles, (C)
PCC 20% St-DVB-PCM – 0 cycles (c) PCC 20% St-DVB-PCM – 28 cycles, (D) GPC 0% – 0 cycles, (d) GPC 0% – 28 cycles, (E) GPC 20% PE-EVA-PCM – 0 cycles, (e) GPC 20% PE-EVA-
PCM, (F) GPC 20% St-DVB-PCM – 0 cycles, and (f) GPC 20% St-DVB-PCM after 28 freeze-thaw cycles. The arrows show the gap in interfacial transition zone and microcracks in
the concrete matrix.
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the force overcomes the tensile stress of concrete, microcracks are
created and cause concrete degradation (Fig. 3) [25,40,41]. This is
expected to reduce the compressive strength [25,41–43]. Since
the initial compressive strength of GPC is higher than for PCC, it
can withstand higher pressures from the freezing water before
microcracks are formed. In the absence of microcapsules, the
strength reduction of GPC is therefore less than for PCC.

Interestingly, the compressive strength of the samples contain-
ing MPCM are not significantly affected by the freeze-thaw cycles.
MPCM addition increases the concrete porosity by causing more air
voids to form in the concrete matrix [20,44]. In addition, the air
gaps betweenMPCM and the concrete matrix (Fig. 3, Fig. 4) provide
available space within the concrete structure [22,45]. These air
voids can improve the frost resistance of concrete by acting as
expansion reservoirs for the freezing water and thereby reduce
frost induced stress [46].

As for the freeze thaw cycles, there is little effect on the com-
pressive strength of GPC after three months exposure to outdoor
conditions (Fig. 9a). Interestingly, for PCC the compressive strength
after three months exposure to outdoor conditions is actually
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higher than before exposure to the environment (Fig. 9b). Since
the outdoor conditions are less severe than the freeze-thaw cycles
(Fig. 7b), the degradation of the concrete strength is probably mod-
erate. The increased compressive strength suggest that the hydra-
tion reaction is continuing during the time the samples are stored
outside, thereby contributing to an increased compressive strength
[47–49].

3.2. Setting times

Fig. 10 shows the effect of temperature and microcapsules on
the setting times of Portland cement and geopolymer pastes. It is
clear from Fig. 10 that the geopolymer reaction is much faster than
the hydration of Portland cement (note the differences in the scal-
ing of the y-axis). As expected, decreasing temperature slows down
the hydration of Portland cement paste [50], resulting in longer
setting times. Interestingly, the setting times for geopolymer
pastes are much faster at low temperatures.

When MPCM is added to cement paste, water is adsorbed on the
surface of the microcapsules, thereby reducing the amount of
available water in the paste [30,51]. Although a reduction of avail-
able water is expected to speed up the cement hydration during
the initial stage of the hydration process [52–54], the initial setting
time becomes longer when microcapsules are added to the sam-
ples. This is probably caused by a higher viscosity, which can slow
down the initial stage of the cement reaction [30, 55–57]. PE-EVA-
PCM exhibits a more pronounced effect on the initial setting time
since it adsorbs muchmore water and has lower slump (higher vis-
cosity) than St-DVB-PCM [30]. After the initial setting time, the vis-
cosities are high for all samples. At this stage, the faster cement
hydration due to the reduced amount of available water becomes
the dominant process. Accordingly, the solidification of the sam-
ples is faster and the final setting time becomes shorter for the
samples containing microcapsules [30].

For geopolymer paste at ambient temperature, a similar behav-
ior has been observed previously [30]. However, at 0 �C, the setting
times are very fast without a significant effect of microcapsule
addition. The solubility of NaOH in water decreases from 1110 g/
L (27.8 M) at 20 �C to 418 g/L (10.5 M) at 0 �C. In addition, the sol-
ubility of sodium silicate also becomes lower when the tempera-
ture is reduced. The exact values depend on the sodium silicate
composition, and the solubilities will probably also be affected
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by the presence of the other compounds. The 14 M NaOH solution
is mixed with the sodium silicate solution with a solid content of
35%, and then with dry powders (which will adsorb water on the
surface of the particles). When the resulting mixture (geopolymer
paste) is cooled down to 0 �C at the start of the setting time mea-
surements, it is reasonable to assume that both the NaOH and
sodium silicate concentrations are higher than the solubilities of
these components at 0 �C. Accordingly, the alkaline solution starts
to precipitate. The solid particles formed from precipitation of the
alkaline solution might act as nucleation sites for the geopolymer-
ization process, thereby speeding up the reaction rate. In addition,
the precipitation increases the solid content of the samples, which
might contribute to shorter setting times.
4. Conclusion

The effect of freeze-thaw cycles on the physical and mechanical
properties of GPC and PCC incorporated with two different types of
MPCM was investigated. Microstructural studies illustrated that
for both GPC and PCC microcracks appear in the interface between
the paste and aggregates due to the expansion of capillary water
during freeze-thaw cycles. These microcracks can contribute to
the concrete deterioration. Crystals are formed in the PCC after
exposure to freeze-thaw cycles.

The mass loss after 28 freeze-thaw cycles was less than 1% for
all samples. The compressive strength of both GPC and PCC
decrease after exposure to 28 freeze-thaw cycles. However, GPC
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exhibits a much better resistance against freeze-thaw cycles than
PCC. Interestingly, after the addition of MPCM, the decrease in
compressive strength after the freeze-thaw cycles was reduced to
less than 2.5% after 28 days for all samples. This illustrates that
the MPCM provides an excellent resistance against freeze-thaw
cycles. Air voids and gaps between the microcapsules and the sur-
rounding concrete provide free expansion space for water when it
freezes, thereby reducing the frost induced stress.

The initial setting time became longer while the final setting
time decreased with the addition of microcapsules. Water
adsorbed onto the microcapsules is probably contributing to this
effect. As expected, decreasing the temperature slowed down the
reaction rate for Portland cement, causing longer setting times.
Interestingly, the setting times for geopolymer pastes are much
faster at low temperatures. This might be caused by precipitation
of the alkaline solution at low temperatures.
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