
Improving M5 Model Tree by
Evolutionary Algorithm

Master’s Thesis in Computer Science

Hieu Chi Huynh

May 15, 2015
Halden, Norway

www.hiof.no

Abstract

Decision trees are potentially powerful predictors, most well-known for their accuracy and
the ability of explicitly representing the structure of datasets. The first part of this thesis
can be viewed as a brief summary of decision tree methods, which covers all ideas and
approaches employed in both classification and regression trees. Then we particularly
focus on studying M5 model tree and its related models. M5 tree currently is state-of-
the-art model among decision trees for regression task. Besides accuracy, it can take tasks
with very high dimension - up to hundreds of attributes. Based on the understanding of
M5 tree algorithm, our main purpose in this project is to improve M5 tree using Auto-
matic programming and Evolutionary algorithm. We design and conduct experiments to
investigate possibilities of altering pruning and smoothing part in M5 tree by programs
synthesized by ADATE (Automatic Design of Algorithms Through Evolution) system. A
short introduction and analysis of ADATE’s power is also provided.

The experimental results show that we successfully improve M5 tree learners by Evo-
lutionary algorithm. Further more, we overcome overfitting problem and make alternative
programs generalized well to other datasets.

i

Acknowledgments

First and foremost, I would like to deeply thank my supervisor, Associate Professor Roland
Olsson. Along the way of doing this thesis, he always patiently gives me advice and
encouragement. Reports and discussion sessions with him every week have been motivating
me a lot. Experiments in this thesis uses programs generated by ADATE system, which
is invented and developed by Roland.

I am grateful to my family for being supportive to me whatever I do and whenever I
need. Their care and encouragement ease my homesick.

I also would like to thank my best friend, Que Tran. Her countless help in life keeps
me away from the loneliness and sometimes the hunger. She is always willing to discuss
whatever topic I need and most of time I learned from those discussions.

iii

Contents

Preface i

Abstract i

Acknowledgments iii

List of Figures vii

List of Tables ix

Listings xi

1 Introduction 1

1.1 Background and motivation . 1

1.2 Research question and method . 2

1.3 Report Outline . 3

2 Role of Decision Trees in solving Machine Learning problems 5

2.1 Advantages and applications of Decision Trees 5

2.2 Challenges in using Decision Trees . 10

3 An overview on Decision tree models 11

3.1 Traditional approach to construct a decision tree 11

3.2 Classification trees . 18

3.3 Regression trees . 21

3.4 Ensemble of trees as a powerful method . 23

4 M5 Model Trees 25

4.1 M5 model tree . 25

4.2 M5’ model tree . 27

4.3 M5’Rules . 28

4.4 M5 model tree for classification . 30

4.5 Multivariate Linear Regression in M5 model tree 30

5 Introduction of ADATE system 37

5.1 Evolutionary algorithm and Automatic programming 37

5.2 Introduction to ADATE . 40

v

vi CONTENTS

6 ADATE experiments: Design and Implementation 51
6.1 ADATE experiments design . 51
6.2 ADATE experiment implementation . 53

7 ADATE experiments: Results and Discussion 65
7.1 M5 smoothing improvement experiments . 65
7.2 M5 pruning improvement experiments . 68

8 Conclusion and Future Works 75
8.1 Conclusion . 75
8.2 Future works . 76

Bibliography 79

A Linear Regression Library 81
A.1 Matrix - Vector operations . 81
A.2 Solve Matrix operation . 83

B M5 Model Tree Library 85
B.1 Tree Structure . 85
B.2 Splitting Nodes . 85
B.3 Pruning Tree . 90
B.4 Smoothing Tree . 96
B.5 Predicting new values . 97
B.6 Data Operations . 99

C ADATE specification file for Smoothing experiment 103

List of Figures

2.1 Iris decision tree . 6
2.2 Iris decision boundary . 7
2.3 Sin function Decision Tree . 8
2.4 Face Decision Trees . 9

3.1 Overfitting . 14
3.2 Oversearching . 15
3.3 ClassTreeExp . 20

4.1 M5example . 27
4.2 M5Rules . 29
4.3 M5class . 31

5.1 Genetic operators . 39

6.1 buildM5 . 57
6.2 pruneM5 . 59
6.3 smoothingM5 . 61

vii

List of Tables

5.1 Amazon Employee Access description . 47

6.1 Overview description of 30 datasets in ADATE experiments 64
6.2 A comparison of different learners on California House dataset 64

7.1 Results of f1 and f2 programs on 30 datasets 71
7.2 Results of f6 on 30 datasets for 1-fold and 10-fold cross validation 72
7.3 Results of f10 on 30 datasets for 10-fold cross validation 73
7.4 10-folds cross validation results of the best program by ADATE, f6, on 30

datasets . 74

ix

Listings

5.1 Evaluation function of Amazon Access Employee problem 49
6.1 Solve matrix function . 54
6.2 Code defining C functions in MLTON . 55
6.3 fit a Linear model . 55
6.4 Define M5 node and M5 tree structure . 56
6.6 M5 pruning function . 56
6.5 Find best split in an attribute . 58
6.7 f function for smoothing experiments . 61
6.8 f function for pruning experiments . 62
6.9 f function with data loading code . 62
6.10 Avoid overfitting in evaluation function . 63
7.1 Starting program for smoothing experiment 65
7.2 f1 program generated for smoothing experiment on California House 66
7.3 f2 program generated for smoothing experiment on California House 67
7.4 f6 program generated for smoothing experiment on 30 datasets- one fold . . 67
7.5 program f10 generated for smoothing experiment on 30 datasets- five folds 68
7.6 f stating program for pruning experiments 69
7.7 best program for pruning experiment . 69
Code/MatVec.txt . 81
Code/solveMatrix.txt . 83
Code/TreeStr.txt . 85
Code/Splitting.txt . 85
Code/Pruning.txt . 90
Code/Smoothing.txt . 96
Code/Predicting.txt . 97
Code/DataOperating.txt . 99
Code/spec.txt . 103

xi

Chapter 1

Introduction

1.1 Background and motivation

The research topic in this dissertation is Machine Learning. So it is essential to clarify first,
what is Machine Learning? According to Arthur Samuel (1959), Machine Learning is ”a
field of study that gives computers the ability to learn without being explicitly programmed”.
A more formal definition was provided by Tom M. Mitchell [32], that is, ”A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E”. Machine learning discovers the construction and study of algorithms
that can analysis, learn and make predictions on data. It shares several concepts and
is closely related to other fields as computational statistic, mathematical optimization,
pattern recognition and artificial intelligent.

Generally, to solve a specific problem by machine learning, we need to have data
describing that problem and a machine learning model. Data is split into training data and
testing data. Machine learning model is constructed based on training data and expected
to capture as most as possible regularities or patterns existed in data. Performance of
the model is measured on testing data whose part is not used in training. Roughly say,
there are two types of learning, supervised and unsupervised learning. Term supervised
learning refers to problems, or data, that contain input and desired output, the machine
learning model needs to build a mapping to produce outputs from given inputs. On the
other hands, in unsupervised learning, there is no output data and the model needs to
discover relationships between features themselves. This thesis focuses on two well-known
supervised learning algorithms, Decision trees with an emphasis on regression trees and
Evolutionary algorithm.

One branch of supervised learning, empirical learning, is concerned with building or
revising models in the light of large numbers of exemplary cases, taking into account
typical problems such as missing data and noise. Many of these models are constructed as
classifiers which typically try to stick a label on each example in the data set. Decision tree
related algorithms are one of most used ones because of its efficient, robust and relative
simplicity. Nevertheless, there are also other tasks that require learned models to predict
a numeric value associated with a set of given attributes. For instance, one might want to
predict sea level based on weather conditions in a day such as temperature, wind speed,
etc. Some obvious approaches to deal with these kinds of task is to separate numeric
values at the class attribute into categories, e.g 0 − 4, 5 − 10, etc. These attempts often

1

2 Chapter 1. Introduction

fail, partly because algorithms for building decision trees cannot make use of the implicit
ordering of such classes. Instead, there are regression decision trees that are designed
specially to handle these regression tasks. This project particularly investigates on M5
model tree, most well-known for its efficiency and robustness to high dimensional data.

More over, we typically aim to improve M5 model tree algorithm by Evolutionary Al-
gorithm (EA). Inspired by biological natural selection process, EA continuously generates
solution programs and keep ones that are better than current population according to a
pre-determined criteria. Our motivations are that: (i) there are some parts in M5 tree
algorithm not fully explained or reasoned about their goodness, thus it might be possible
to have alternatives that offer higher performance; (ii) improve a well-known Machine
learning model as M5 tree must be an interesting task; (iii) Evolutionary algorithm is
a promising approach to use and there were projects actually successful in improving a
Machine learning model by EA [17]. In our thesis, we employ ADATE (Automatic De-
sign of Algorithms Through Evolution) system [2] as a EA tool to synthesize solutions for
improvements of M5 tree.

1.2 Research question and method

1.2.1 Research question/Problem statement/Objectives

As mentioned, in this project we study decision trees, particularly focus on regression
M5 model tree, and evolutionary algorithm. We intend to have two stages: first we gain
knowledge and get a deeper insight into these topics; then comes to implementation stage,
we apply ADATE system [2] to improve M5. The emphasis of this project will be on
implementation stage where we hope to be able to get impressive results. However there
are also two challenges need to be addressed in implementation stage. ADATE usually has
to evaluate millions of program instances to find the best version, thus M5 tree instances
need to run fast enough on selected datasets. Second, it is known that overfitting seems
to be a problem for programs generated by ADATE and we need to learn how to prevent
it from happening. The most important requirement is that found programs must apply
successfully in other datasets.

Our purpose in this thesis is to find the answer for this research question:

RQ How and to what extend can ADATE system improve M5 model tree?

1.2.2 Method

The research question above could be broken into two sub-questions:

1. How ADATE can generate programs to change M5 algorithm and how much its
performance can be improved?

2. Can the new M5 algorithm be generalized and effective on other datasets?

We approach these questions by studying the idea, theory and implementation behind
related topics, that is, M5 tree in the manner of decision tree and ADATE system. Then
based on knowledge got from first stage, we will attempt to answer these questions by
analyzing and discussing experimental results. Important matters recognized before con-
ducting experiments includes:

1.3. Report Outline 3

• Which part of a M5 tree will be improved?

• Which datasets will be used to train and evaluate programs’ performance?

• Which criteria to determine the best program?

• Statistical methods for analyzing results?

1.3 Report Outline

The report of this thesis is presented into following chapters:

• Chapter 2 presents the importance and the role of decision tree models in Machine
learning field, theoretically and practically.

• Chapter 3 gives an overview about decision tree. We cover sections as how to split
nodes when growing trees, how to avoid overfitting by pruning, the difference between
classification and regression trees, etc.

• Chapter 4 goes further into regression tree area with M5 model tree. We discuss
methods employed in constructing a M5 tree learner and related models as M5’ and
M5Rules.

• Chapter 5 gives a brief presentation to concepts of Evolutionary algorithm in Ma-
chine Learning and Automatic programming. Then the ADATE system will be
introduced as an implementation and founded based on these above concepts.

• Chapter 6 describes experiments in matters of design and implementation. We start
by selecting targets, selecting datasets and dividing datasets into training and testing
sets. Then we explain how we implement the design of experiments.

• Chapter 7 collects, analyzes and discusses the experimental results.

• Chapter 8 presents our conclusion about this project, as well as suggestions for future
works.

Finally, we have Appendix sections with source code in implement stage of experi-
ments.

Chapter 2

Role of Decision Trees in solving
Machine Learning problems

Decision Trees are non-parametric supervised learning methods for classification and re-
gression. The goal of such methods is to create tree-based models to predict values of
target variables by learning simple decision rules from the data features. Generally, a
decision tree can be viewed as a non-cyclic, directed graph where there is one root node, a
set of interior nodes that correspond to one or several of input variables, and a set of leaf
nodes that present numeric values of discrete labels given the values of the input variables
represented by the path from the root to the leaf. At each interior node, decision tree
divides a data set into subsets based on a test in a manner that reduces estimated errors
as much as possible. Decision Trees method has been widely used by Machine learning
community and commonly accepted as a powerful tool which proves ”state of the art” in
a number of Machine learning problems. The process of top-down induction of decision
trees [39] is an example of a greedy algorithm, and it is by far the most common strategy
for learning decision rules from data.

2.1 Advantages and applications of Decision Trees

Decision tree methods offer several advantages over other Machine learning algorithms:

• It is simple to understand and interpret the models. A decision tree can be con-
verted to a collection of learning rules so that people who are not Machine learning
practitioners could understand. Also most of trees can be visualized. Figure 2.1
shows an illustration of visualizing a decision tree learned for the Iris data set [7]. A
decision tree model is also called a white box model, meaning that if a given situa-
tion is observable in a model, the explanation for the condition is easily explained
by boolean logic. By contrast, in a black box model (e.g., in an artificial neural
network), results may be more difficult to interpret.

• These methods do not take many pre-processing steps. Some other techniques, e.g
linear regression, demands normalization, converting from categorized to numerical
variables, or deleting blank values. Moreover, decision tree methods can handle
both numeric and categorical data while other models often specialize in analysing
datasets that have only one type of variable.

5

6 Chapter 2. Role of Decision Trees in solving Machine Learning problems

Figure 2.1: A decision tree built on Iris data set

• The cost of training a tree is low. Usually it is only logarithm of the number of data
points, i.e instances, in dataset. Because of this, decision trees are often considered
first for fast analysing a dataset to observe its nature and properties. The low
training cost is also an advantage when it comes to handle large dataset.

• Decision trees can be used for multiple output problems.

• It is possible to validate a model using statistical test. That makes it possible to
account for the reliability of the model.

The oldest and most popular decision tree algorithm is ID3 (Iterative Dichotomiser
3), developed in 1986 by Ross Quinlann [39]. The algorithm creates a multi-way
tree, finding for each node (i.e. in a greedy manner) the categorical feature that will
yield the largest information gain for categorical targets. Trees are grown to their
maximum size and then a pruning step is usually applied to improve the ability of the
tree to generalise to unseen data. Later generation of decision tree methods are all
based on Quinlan’s approach,i.e growing the tree in a manner of most reducing the
error and then pruning to avoid overfitting, but with modifications or improvements
to increase the performance, e.g by better estimating errors on unseen cases. C4.5 is
the successor to ID3 and removed the restriction that features must be categorical
by dynamically defining a discrete attribute (based on numerical variables) that
partitions the continuous attribute value into a discrete set of intervals. C4.5 converts
the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules.
Furthermore, CART(Classification and Regression Tree) [12] and M5 model Tree

2.1. Advantages and applications of Decision Trees 7

[44] support numerical target variables, their leaves contain linear models instead of
labels as in classification problems.

To illustrate how a decision tree works on a classification task, Figure 2.2 visualizes
decision boundaries made of each pair of features in Iris dataset. Decision boundaries
are drawn by combing simple thresholding rules learned from training samples. A
thresholding rule is usually a first-order comparison between value of a variable and
a constant so edges forming decision boundaries tend to be parallel with axis.

Figure 2.2: Decision surface of a decision tree using paired features on Iris

In terms of learning from a regression task, figure 2.3 presents estimated values of
data points from a regression decision tree after fitting a Sine function and some noise.
As shown in this figure, the decision line includes segments paralleling with two axis and
it learns local linear regressions approximating the sine curve. We also can see that if the
maximum depth of the tree (graph in red) is set too high, the decision trees learn too fine
details of the training data and learn from the noise, i.e. they overfit.

As aforementioned, decision trees can handle multiple-output problems. This is the
kind of problem where there are many target variables to be predicted. If target variables
are independent to each other, a very simple way is to construct n different models, each
for one of variables. However, because it is likely that the output values related to the same
input are themselves correlated, an often better way is to build a single model capable of

8 Chapter 2. Role of Decision Trees in solving Machine Learning problems

Figure 2.3: Decision Tree regression to learn Sine function

2.1. Advantages and applications of Decision Trees 9

predicting simultaneously all n outputs. First, it requires lower training time since only
a single estimator is built. Second, the generalization accuracy of the resulting estimator
may often be increased. In [6], they attempted to exploit this property of decision tree
to build a model for face completion task, that is, to predict the lower half of faces given
their upper faces. The results got from multiple-output decision trees is presented along
with ones from other models for a comparison (figure 2.4).

Figure 2.4: Face completion with a multi-output estimators

Another common use of decision tree is feature selection. At each internal node there is
a feature selected to split the data in the manner that this feature offers the most reduction
in estimated errors, and thus this feature can be considered as the most current informative
feature. It is very often that a decision tree only uses a subset of most informative features
for tree constructing. For datasets with very many attributes, one of method to reduce
number of dimensions is to simply use subset of features exported by a decision tree
model. In C5.0 software [5], after learning from data, it also produces a list of attribute
usages to know how the individual attributes contribute to the classifier. Similarly, the
approach used in[41] describes a Selective Bayesian classifier (SBC) that simply uses only

10 Chapter 2. Role of Decision Trees in solving Machine Learning problems

those features that C4.5 would use in its decision tree when learning a small example
of a training set, a combination of the two different natures of classifiers. Experiments
conducted on ten datasets indicate that SBC performs reliably better than Naive Bayes on
all domains, and SBC outperforms C4.5 on many datasets of which C4.5 outperform NB.
Another illustration for using decision tree to select best features is presented in [15] where
Regularized trees penalize using a variable similar to the variables selected at previous tree
nodes for splitting the current node.

2.2 Challenges in using Decision Trees

Despite the fact that decision trees-based learning algorithm is one of most powerful and
popular machine learning algorithms, there are also some debatable issues involving apply
decision tree in solving practical problems:

• Decision tree might produce over-complex trees that do not generalize data well.
They yield good performances on training data but bad results on unseen data. To
overcome this, pruning process is often applied after nodes splitting stage. Control
the trees depth, the minimum number of samples in each leaf or the minimum number
of each split are also common ways to prevent overfitting.

• Decision trees can be unstable because a small variation added to the data set
can result in a totally different tree being generated. However, we can tackle this
problem for data sets some of whose attributes have pretty much variance by using
an ensemble of trees.

• The problem of learning an optimal decision tree is known to be NP-complete under
several aspects of optimality and even for simple concepts. Consequently, practical
decision-tree learning algorithms are based on heuristic algorithms such as the greedy
algorithm where locally optimal decisions are made at each node. Such algorithms
cannot guarantee to return the globally optimal decision tree. This can be mitigated
by training multiple trees in an ensemble learner, where the features and samples
are randomly sampled with replacement.

• Decision tree learners can create biased trees if some class dominate in the data set.
It is therefore recommended to balance the data prior to fitting a decision tree. There
are number of methods to deal with the unbalanced class problem. Oversampling
is a way that replicas instances with smaller quantity while undersampling, on the
contrary, removes instances belonging to dominating classes. Another common way
is to set different mis-classification for different classes to punish wrong predictions.

Chapter 3

An overview on Decision tree
models

Decision tree models use a very common strategy for learning, that is divide and conquer.
In particular, they split data into separating partitions and then fit a specific learner to
each partition. The data splitting process is repeated recursively from the beginning state
of data set, which makes the root node, to partitions containing a few of instances in leaf
nodes. Its stopping criteria is usually when the variation or the number of instances in
a node exceeds a pre-determined threshold. This top-down induction of decision trees
use hill-climbing approach to search for the best way to split the current data, although
it might end up in a local optima place. Classification trees are designed for response
variables that take a finite number of ordered or discrete values, with the cost measured
by mis-classification rate. Regression trees are for response variables that take numeric or
continuous values, with prediction error typically measured by squared difference between
observed values and predicted values. To make decision tree learner more stable, more
robust and less sensitive to extreme values (outliers) in the data set, an ensemble of tree
learners is utilized, often in a combination with sampling techniques. In this chapter,
we introduce the core of decision tree algorithms for classification and regression tasks,
along with their variations in a variety of optimized algorithms. Then, we mention to the
concept of ensemble of trees and its power in machine learning problems.

3.1 Traditional approach to construct a decision tree

There are three main questions need to be solved when building a decision tree. They are:

• Which feature chosen to split among available features? Which measure should be
employed in splitting process ?

• When the splitting nodes procedure should be stopped? Or in other words, we
determine the stopping criteria of building tree process. It could be when tree depth
reaches a certain number, or when the number of samples in a leaf less than a
specified threshold.

• Given a leaf node in tree, which label is assigned to samples that fall into that
leaf/partition.

11

12 Chapter 3. An overview on Decision tree models

The first published classification tree algorithm is THAID [24]. Employing a impurity
measure based on observed distribution of target variable Y , THAID determines a ex-
haustively search all over features space X to choose a split that minimizes the sum of
relative impurities at children nodes. If a variable Xi takes discrete values, a possible split
might contain two subsets of those values, otherwise it could be an interval between two
ordered values. The process is applied recursively on the data in each child node. Split-
ting stops if the relative decrease in impurity is below a prespecified threshold. Algorithm
below gives the pseudocode for the basic steps.

Algorithm THAID: pseudocode for constructing decision tree by exhaustively
search.

1. Start at root node

2. For each variable X in features space, find the set S that minimizes the
sum of impurities of child nodes and then choose the split that minimizes
that number over X and S.

3. If the stopping criteria meets, terminate the process. Otherwise, apply
step 2 and 3 to every child nodes in turn.

C4.5 [39] and CART [12] are two later classification tree algorithms that follow this
approach. C4.5 uses entropy for its impurity function, whereas CART uses a generalization
of the binomial variance called the Gini index. So, what is an impurity function?

3.1.1 Goodness of fit and Impurity function

Every time we examine features space for choosing a node to split the tree, we want it to
be the best split, meaning that it can most likely reduce the error rate among candidate
nodes. Respect to the manner of measuring quality of such splits, we define function
φ(S, T) to evaluate goodness of fit of each split candidate S in node T . The split that
maximizes the value of the goodness of fit is chosen to be the next node of tree. To
define the goodness of fit function, we need to go through a new concept called impurity
function. The impurity function measures the extent of purity for a region containing
data points from possibly different classes. Suppose the number of classes is k. Then the
impurity function is a function of p1, ... , pk , the probabilities for any data point in the
region belonging to class 1, 2,..., k. There are many ways to define the impurity function,
but minimum requirements need to be satisfied. An impurity function is a function I
that takes k (number of classes) parameters p1, ... , pk, pi ≥ 0,

∑
pi = 1 and has three

following properties:

• I achieves maximum only for the uniform distribution, that is all the pj are equal.

• I achieves minimum only at the points (1, 0, ... , 0), (0, 1, 0, ... , 0), ..., (0, 0, ... ,
0, 1), i.e., when the probability of being in a certain class is 1 and 0 for all the other
classes.

• I is a symmetric function of p1, ... , pk.

So assuming that there are k classes in the data set, an impurity function I(T) at node T
has this form

I(T) = I(p(1|T), p(2|T), ..., p(k|T) (3.1)

3.1. Traditional approach to construct a decision tree 13

where p(j|T) is the estimated posterior probability of class j given a point in node T .
Once we have impurity function for node T as I(T), we can calculate the goodness of fit
denoted by φ(S, T) as following:

φ(S, T) = ∆I(S, T) = I(T)− pLI(TL)− pRI(TR) (3.2)

where ∆I(S, T) defines the difference between the impurity measure of node T and two
child nodes TR, TL according to split S. pL and pR are the probabilities an instance going
to left branch and right branch of T according to split S. There are several impurity
functions used in tree-based model for classification:

• Entropy function:
∑
pjlog

1
pj

. Entropy is used as split criterion in C4.5 algorithm

• Miss-classification rate : 1−maxjpj

• Gini index :
∑N

j=1 pj(1− pj)

In CART classification tree, Gini index is used as a impurity function for splitting nodes.
Another splitting method is the Twoing Rule [12]. This approach does not have anything
to do with the impurity function. The intuition here is that the class distributions in the
two child nodes should be as different as possible and the proportion of data falling into
either of the child node should be balanced. At node t, choose the split s that maximizes:

pLpR
4

[
∑
j

(p(j|tL)− p(j|tR))2] (3.3)

When we break one node to two child nodes, we want the posterior probabilities of the
classes to be as different as possible. If they differ a lot, each tends to be pure. If instead
the proportions of classes in the two child nodes are roughly the same as the parent node,
this indicates the splitting does not make the two child nodes much purer than the parent
node and hence not a successful split. To answer the question number 2 as aforementioned,
an example is that the CART tree is grown until the number of data in each terminal node
is no greater than a certain threshold, say 5, or even 1. For question number 3, each leaf in
CART classification tree produces a label that appears the most among instances coming
to that leaf. Error estimated at each leaf node is the probability of misclassifying training
instances at that leaf, or in other words, r(t) = 1−maxjpj. The misclassification rate at
leaf noder(t) is called resubsitution estimate for node t. So resubsitution estimate for the
whole tree T will be calculated as follows:

R(T) =
∑

t∈Tleaf

r(t)p(t) (3.4)

where p(t) is the number of instances at that leaf divided by the total instances in data set.
In terms of difference between the three splitting criteria Entropy, Gini index and Twoing
in growing trees, Breiman in [13] has revealed some interesting aspects. For example, the
optimum split for the Gini criterion sends all data in the class with the largest pj to left
sub tree and all other classes to the right sub tree. Thus the best Gini splits try to produce
pure nodes. But the optimal split under the entropy criterion breaks the classes up into
two disjoint subsets γ1, γ2 ⊂ {Y1, Y2, . . . Yk} such as γ1 minimizes |

∑
pj − .5| among all

subsets γ ⊂ {Y1, Y2, . . . Yk}. Thus, optimizing the entropy criterion tends to equalize the

14 Chapter 3. An overview on Decision tree models

sample set sizes in left and right children nodes. The twoing criteria also tries to equalizes
the sample size [13]. In problems with a small number of classes, all criteria should produce
similar results. The differences appear in data where number of classes is larger. Here,
high up in the tree, Gini may produce splits that are too unbalanced. On the other hand,
the above results show a disturbing facet of the entropy and twoing criterion, i.e. a lack
of uniqueness [13].

3.1.2 Overfitting in Decision trees

Overfitting is a term used when a model is trained and perform much better on training
data than on testing data, or in other words model doesn’t generalize well on unseen
instances. There are several reasons that lead to overfitting. It could be the lack of
training data and thus model can not be trained to recognize patterns only existed in
testing data. Another possibility comes from data quality, when some noises are added
and models are too sensitive to these noises and loose their generalization ability. In
contrast to overfitting, underfitting happens when the model can not represent well the
complexity of training data. Underfitting causes a poor performance on both training data
and testing data. Figure 3.1 illustrates cases of underfitting and overfitting regarding to
the model complexity. The ideal range for selected model should lie in between.

Figure 3.1: Overfitting and Underfitting regarding to model complexity

Frank (2000) has proposed an interesting perspective on overfitting problem in decision
tree learners. It was well explained in [19] by the difference on sampling variance between
training samples and true population of data. Frank (2000) argued that in classification
tasks, where performance is measured by the number of correct predictions on future data,
assigning the most populous class in the sample to future data will maximize the number

3.1. Traditional approach to construct a decision tree 15

of correct predictions. However, accuracy degrades if the majority class in the sample
differs from the most likely class in the population. Because of sampling variance this is
particularly likely if the sample is very small [19]. Frank has showed that given pi, the
prior proportion of class values in the true population, the estimated error decrease as the
number of samples in leaf nodes increase.

Along with the overcomplex model that causes overfitting as shown in figure 3.1,
oversearching, a term proposed by Quinlan and Cameron-James (1995), is also mentioned
as a possibility. Employing impurity functions as Gini and entropy, tree learners always
tend to search for disjunct spaces that contain pure training clusters, in other words
clusters that only consist of training samples of the same class. And search increases the
likelihood of finding apparent patterns that are caused by sampling variance and do not
reflect the true underlying population proportions.

An experiment has been conducted by authors in [19] to illustrate this finding. Given a
simple sample set with one numeric attribute and one response variable that takes two class
A and B, there was two classifiers trained and then evaluated: one random classifier that
predicts class randomly and one tree learner that has minimum training error. Figure
3.2 shows the average expected error for space of different sizes for both the randomly
generated classifier and the minimum error classifier when 100 training instances are used.
It could be observed that expected errors of the minimum error classifier increases and
surpass that number from the random classifier when the number of samples in partitions
decreases. Only for large disjunct space the discrepancy vanishes.

Figure 3.2: Oversearching causes overfitting for tree learners

We know that potential complex learners combined with intensive search might lead to

16 Chapter 3. An overview on Decision tree models

overfitting. In decision tree learners, complexity and search are often linked because these
classifiers proceed according to a general to specific paradigm: they start with the simplest
possible classifier and iteratively extend it by adding more and more partitions until the
training data is fully explained. To prevent overfitting, a possible way is to control the
complexity of decision trees by setting thresholds for learning parameters, i.e tree depth,
the maximum of samples in leaf nodes, the minimum of samples to split. Doing this way
can also limit the search process and necessarily merge small partitions to bigger ones.
However it is hard to decide optimal values for those parameters without using a grid
search that takes a lot of time for big data sets. Trees pruning provides a way to eliminate
unreliable parts more systematically and more reasonably.

3.1.3 Pruning decision trees

Pruning simplifies decision tree model by merging adjacent space of training samples. It
discards parts of the learner that describe the unnecessary variation of training sample
rather than true mapping regulations between features and response variable. This makes
the model more comprehensible to the users, and potentially more accurate on testing
instances that have not been used in training.

There are two paradigms for pruning in decision trees, pre-pruning and post-pruning.
Pre-pruning procedure does not really ’prune’ the tree, it stops the growth of a branch
if additional structure is expected not improve the accuracy. On the other hand, post-
pruning waits until the tree is fully grown and then it cuts off branches that do not
improve predictive performance. An important step in pruning decision trees is to define
a criterion that is used to determine the optimal pruned tree among candidates. Following
we discuss some published pruning approaches, highlight their target function that needs
to be optimized as well as their properties.

Pessimistic error pruning

Pessimistic error pruning was first introduced by Wild and Weber (1995) [47]. It is based
on the estimated error from training data. More particularly, pessimistic error pruning
adds a constant to the training error of a sub tree by assuming that each leaf automatically
classifies a certain fraction of an instance incorrectly . This fraction is taken to be 1/2
divided by the total number of instances covered by the leaf, and is called a continuity
correction in statistics [47]. The normal distribution is used to closely approximate the
binomial distribution in the small sample case. A branch is pruned if the adjusted er-
ror estimate at that branch node is smaller or equal to the adjusted error of the branch.
However, an assumption needs to be hold that the adjusted error is binomially distributed.

Minimum-error pruning

Minimum-error pruning was first published as works by Niblett and Bratko [34]. It shares
a common strategy from pessimistic-error pruning that it uses class counts derived from
training data. In its initial version by Mingers (1989), there was an adjustment to these
counts to more closely reflex a leaf ’s generalization performance. That is a straightfor-
ward instantiation of the Laplace correction, which simply adds one to the number of
instances of each class when the error rate is computed. Minimum-error pruning proceeds

3.1. Traditional approach to construct a decision tree 17

in a bottom-up manner, replacing a subtree by a leaf if the estimated error of subtree is
no smaller than for the leaf. In order to derive an estimate of the error rate for a subtree,
an average of the error estimates is computed for its branches, weighted according to the
number of instances that reach each of them

Cost-complexity pruning

Cost-complexity pruning was used in CART (Classification And Regression Tree) system
by Breiman et. al. (1984) [12]. CART uses a criterion named error-complexity measure to
estimate grade of nodes for pruning. As presented in the name, this measure is composed
of the resubsitution estimate (or misclasifying rate) and the complexity of subtrees before
and after pruning. Let α be a real number called the complexity parameter, the cost
complexity measure Rα(T) is defined as:

Rα(T) = R(T) + α|Tleaf | (3.5)

where |Tleaf | is the number of leaves of tree T .
The more leaf nodes that the tree contains the higher complexity of the tree is because
we have more flexibility in partitioning the space into smaller pieces, and therefore more
possibilities for fitting the training data. There’s also the issue of how much importance to
put on the size of the tree. The complexity parameter α adjusts that. At the end, the cost
complexity measure comes as a penalized version of the resubstitution error rate. This is
the function to be minimized when pruning the tree. In general, given a pre-selected α ,
we find the subtree T (α) that minimizes Rα(T).

Error-based pruning

The key idea of this pruning method is to estimate error of subtrees on unseen cases
so that the subtree is pruned if not improve the testing performance. The error-based
pruning has been the most widely used approach. However, it depends on whether the
task is classification or regression and the way authors calculate estimated errors to have
variant methods. For example, M5 model tree [45] for regression estimates testing er-
ror as following: training error at each leaf node is multiplied with a heuristic number
(n+ v)/(n− v), where n is the number of instances and v is the number of parameters at
that node, to produce the estimated error at that node.

On the other hand, C5.0 for classification uses statistical learning to estimate errors
for unseen cases at subtrees [5]. In this method, Normal distribution is applied to estimate
the upper limit of error on unseen cases, or true error rate, with a specific confidence ,
based on the sample error rate (which is the training error). In statistic, a succession of
independent events that either succeed or fail is called a Bernoulli process. Result of a test
of an estimator on some instance, say X, could be a success or failure, so we can consider
X as a Bernoulli distributed random variable.

Assume we have N trials consisting of N Bernoulli distributed random variables X.
Out of N trials, if there are F failures the F is a random variable following Binomial
distribution. The question is, how can we estimate the true error rate F/N given a
confidence level and a sample error rate. We call the true error rate p, so the mean and
variance o a single Bernoulli trial with failure rate p and p(1− p), respectively. Out of N
trials taken from a Bernoulli process, the expected error rate f = F

N is a random variable

18 Chapter 3. An overview on Decision tree models

with mean p and variance p(1−p)
N . For large N , the distribution of this random variable

follows Normal distribution. We know that for a Normal distributed random variable with
mean 0 and variance unit, we can find a value of z given a confidence level c:

Pr[x > z] = c (3.6)

After converting f to satisfy having mean 0 and unit variance, we choose a c value (default
c = 0.25) and find confidence limit z such that:

Pr[
f − p√

p(1− p)/N
> z] = c (3.7)

where N is the number of samples, f = F/N is the observed error rate, and p is the true
error rate. This leads to an upper confidence limit for p. This upper confidence limit is
used to estimate the error rate at each node:

e =
f + z2

N + z
√

f
N −

f2

N + z2

4N2

1 + z2

N

(3.8)

This is how C5.0 decision tree estimates error on unseen cases at leaves nodes. Error at an
internal node is a sum of error rate at its leaves nodes multiplying with instances ration
going to a leaf. Pruning decision is made when comparing these two values.

3.2 Classification trees

In a classification problem, we have a training sample with n observations on a response
variable Y that take k different (or discrete) values, i.e Y1, Y2, . . .Yk and p predictor
variables (Xi)

p
i=1. The goal is to find a model for predicting values of Y from new X

values. In theory, a classification decision tree should partition X space into k discrete
sets, A1, A2, . . .Ak such that instances falling in to set Ai are labeled as Yi.

C4.5 [39] and CART [12] are two of most widely known classification trees. The
impurity function for C4.5 and CART are entropy and Gini index, respectively. Although
they employ the same approach of building decision tree with THAID [24] (as in Algorithm
THAID), they first grow an overly large tree and then prune it to a smaller size to minimize
an estimate of the misclassification error. Different from the intensive search over the data
space for pure partitions that lead to overfitting, the exhaustive search strategy to find the
best split also has an undesirable property. Note that an ordered variable with m distinct
values has (m − 1) splits of the form X ≤ c, and an unordered variable with m distinct
unordered values has (2m−1−1) splits of the form X ∈ S. So a variable with more discrete
values have greater possibility to be selected and this becomes a serious problem for the
decision tree induction.

Building on an idea that originated in the FACT algorithm [31], CRUISE [27], GUIDE
[29] and QUEST13 [30] have tackled this problem by using a two-step approach based on
statistical significance tests for splitting nodes process. First, each X variable is tested for
association with target variable Y and the most significant variable is selected. Then, an
exhaustive search over all possible splits of all available features is performed to choose the
best one . Because every X has the same chance to be selected if each is independent of
Y , this approach is effectively free of selection bias. Besides, much computation is saved

3.2. Classification trees 19

as the search for best split is carried out only on the selected X variable. GUIDE and
CRUISE use chi squared tests, and QUEST uses chi squared tests for unordered variables
and analysis of variance (ANOVA) tests for ordered variables. Pseudocode for the GUIDE
algorithm is given in Algorithm below. The CRUISE, GUIDE, and QUEST trees are
pruned the same way as CART.

Algorithm GUIDE: pseudocode for constructing GUIDE decision tree [29]

1. Start at root node

2. If X is an ordered variable (taking numeric values), convert it to an un-
ordered variable X ′ by grouping its values in the node into a small number
of intervals.

3. Perform a chi squared test of independence of each X ′ variable versus Y
on the data in the node and compute its significance probability.

4. Choose the variable X∗ associated with the X ′ that has the smallest sig-
nificance probability.

5. Find the split set X∗ ∈ S∗ that minimizes the sum of Gini indexes and
use it to split the node into two child nodes.

6. If a stopping criterion is reached, exit. Otherwise, apply steps 2–5 to each
child node.

7. Prune the tree with the CART method

In addition to above trees, CHAID [22] follows a different strategy. If a variable X takes
numerical values, it is split into 10 intervals and one child node is assigned to each interval.
Otherwise, one child node is assigned to each discrete value. CHAID uses significance tests
and Bonferroni corrections to try to merge couples of child nodes iteratively. However,
this method is biased toward selecting variables X with fewer distinct values.

While CART and C4.5 split only one variable at a time, CART, QUEST and CRUISE
can allow splits on linear combinations of numerical variables. In terms of proceeding
missing values, CART and CRUISE apply the same approach that use alternate splits
on other variables when needed, C4.5 provides each sample with a missing value in a
split through every branch using a probability weighting scheme, QUEST imputes the
missing values by mean or median, and GUIDE treats missing values as a separating
category. All models accept user-defined misclassification costs. This means the cost
for mis-classifying categories of the target variable might be different. By default, all
algorithms fit a constant model to each node, predicting Y to be the class with the smallest
misclassification cost. CRUISE can optionally fit bivariate linear discriminant models and
GUIDE can fit bivariate kernel density and nearest neighbor models in the nodes. GUIDE
also can produce ensemble models using bagging and random forest techniques [28].

To make a comparison on how classification tree models perform on real dataset,
an experiment was conducted in [28]. The selected dataset is new car data 1993 [1].
There are 93 cars and 25 variables. Response variable takes three values (rear, front,
or fourwheel drive). Three are unordered (manuf, type, and airbag, taking 31, 6, and 3
values, respectively), two binary valued (manual and domestic), and the rest ordered. The
class frequencies are rather unequal: 16 (17.2%) are rear, 67 (72.0%) are front, and 10
(10.8%) are four-wheel drive vehicles. Results are presented in figure 3.3 derived from
[28] (RPART stands for CART tree).

20 Chapter 3. An overview on Decision tree models

Figure 3.3: Classification trees perform on new car 1993 dataset

3.3. Regression trees 21

We can see that CRUISE, QUEST and CART produce less complex tree than C4.5
and GUIDE. Tree by QUEST looks most balanced. When GUIDE does not find a suitable
variable to split a node, it looks for a linear split on a pair of variables. One such split,
on enginsz and rseat, occurs at the node marked with an asterisk (*) in the GUIDE tree.

3.3 Regression trees

A regression tree is similar to a classification tree, except that the Y variable takes ordered
values and a regression model is fitted to each node to give the predicted values of Y . The
first regression tree algorithm published is AID [16]. The AID and CART regression
tree methods follow Algorithm THAID, with the difference that the impurity function is
standard deviations of Y variable of observations. The label value assigned to a leaf node
is the mean of response values of samples that reach that node. This yields piecewise
constant models. Although they are simple to interpret, the prediction accuracy of these
models often lags behind that of models with more smoothness (like M5 Model tree).
However, it can be computationally impracticable to extend this approach to piecewise
linear models, because two linear models (one for each child node) must be fitted for every
candidate split.

M5’ [46] presents an adaptation of a regression tree algorithm by Quinlan, uses a more
computationally efficient strategy to construct piecewise linear models. It first constructs
a piecewise constant tree and then fits a linear regression model to the data in each leaf
node. The regression version of GUIDE utilizes its classification techniques to solve the
regression problem. At each node, it fits a regression model to the data and computes
the residuals. Then a response variable Y ∗ is defined to take values 1 or 2, depending on
whether the sign of the residual is positive or not. Finally, it applies Algorithm GUIDE to
the Y ∗ variable to split the node into two. This approach has three advantages: (1) the
splits are unbiased; (2) only one regression model is fitted at each node; and (3) because
it is based on residuals, the method is neither limited to piecewise constant models nor to
the least squares criterion.

While employing variance or standard deviation of response values is a reasonable
approach for splitting nodes and most of regression decision trees use this approach, there
is quite a diversity in the way they perform the pruning process. The main difference
comes from the target function they would like to optimize. Two of most used functions
are Cost-complexity as in CART [12] and Error-based pruning

3.3.1 Pruning in CART regression tree

Regression CART tree after be built is pruned to avoid overfitting on unseen cases. It
uses a similar approach with classification CART tree, meaning that it aims to minimize
the cost-complexity criterion.

Rα(T) = R(T) + α|Tleaf | (3.9)

where cost function R(T) is no longer misclassification rate but mean square error between
observed target variable and its estimated values. This procedure results in a series of
complexity parameters and corresponding sub trees:

T > T2 > T3 > ... > t

α1 < α2 < ... < αv
(3.10)

22 Chapter 3. An overview on Decision tree models

The question remaining is that how we can choose the best pruned tree from the above
set. Briemann [12] has used cross validation approach to produce the best tree. Assume
we split the dataset into V subsets, L1, L2,..., Lv with as equal as possible number of
instances. We also let the training sample set in each fold be L(v). First, a tree is grown
on the original data set, denoted by Tmax, and we repeat this process on each subset L(v),

denoted by T
(v)
max.

For each complexity parameter αi of Tmax, we will let Tα and T
(v)
α be the cost-

complexity minimal subtree of Tmax and T
(v)
max. Notice that for any k ≥ 1, αk ≤ α < αk+1

, the smallest optimal subtree T(α)(v) = T(αk)
(v) , i.e., is the same as the smallest optimal

subtree for αk.

From here we can calculate the cross validation error for each complexity parameter
α:

R(Tα) =
1

N

V∑
i=1

∑
xj ,yj∈Li

(yj − T (v)
α)2 (3.11)

Breiman and his colleagues have described two alternatives for the final tree selection based
on the obtained error estimates. Either to select the tree with lowest estimated error or
to choose the smallest tree in the sequence, whose error estimate is within the interval
R(Tα)min + S.E(R(Tα)), where R(Tα)min is the lowest error estimate and S.E(R(Tα)) is
the standard deviation error of this estimate. This latter method is usually known as
the 1-SE rule, and it is known to favor simpler trees although possibly leading to lower
predictive accuracy

3.3.2 Error-based pruning for regression trees

The Error-based pruning method tries to estimate the error at each node itself and error
at subtree below on unseen test cases then compare two numbers to give the pruning
decision. However, there is still not any best way that is widely accepted to compute
estimated errors. Following are a few proposed ways in well-known regression tree models.

M5 Model tree

In M5 tree, training error at each leaf node is multiplied with a heuristic number (n +
v)/(n− v), where n is the number of instances and v is the number of parameters at that
node, to produce the estimated error at that node.

m-estimator

This is a Bayesian method to estimate a population parameter using the following combi-
nation between our posterior and prior knowledge:

mEST (θ) =
n

n+m
ζ(θ) +

m

n+m
π(θ) (3.12)

where, ζ(θ) is our posterior estimation of the parameter (based on a size n sample), π(θ)
is our prior estimate of the parameter and m is a parameter of this type of estimators.
Cestnik and Bratko(1991) [14] used this method to estimate class probabilities in the
context of post-pruning classification trees using the N&B pruning algorithm. Karalic and

3.4. Ensemble of trees as a powerful method 23

Cestnik (1991) [26] extended this framework to the case of l east squares (LS) regression
trees. These authors have used m-estimators to obtain reliable tree error estimates during
the pruning phase. Obtaining the error of an LS tree involves calculating the mean squared
error at each leaf node. As a result, we can obtain the m estimate of the mean and MSE
in a leaf l by,

mEst(ymean) =
1

nl +m

nl∑
i=1

yi +
m

nl +m

n∑
i=1

yi

mEst(MSEymean) =
1

nl +m

nl∑
i=1

y2i +
m

nl +m

n∑
i=1

y2i −mEst(ymean)2
(3.13)

Estimates based on Sampling Distribution Properties

For the MSE criterion, the error associated with a leaf can be seen as an estimate of
the variance of the cases within it. Statistical estimation theory tells us that the sampling
distribution of the variance is the χ2 if the original variable follows a normal distribution.
According to the properties of the χ2 distribution, a 100(1 − α%) confidence interval for
the true population variance based on a sample of size n is given by:

(
(n− 1)s2Y
χ2
α
2
,n−1

,
(n− 1)s2Y
χ2
1−α

2
,n−1

) (3.14)

where, s2Y is the sample variance (obtained in a particular tree leaf); and χ2
α,n is the

tabulated value of the χ2 distribution for a given confidence level α and n degrees of
freedom. This formulation is based on an assumption of normality of the distribution
of the variable Y. In most real-world domains we cannot guarantee a priori that this
assumption holds.
The χ2 distribution is not symmetric, meaning that the middle point of the interval defined
by the above equation does not correspond to the sample point estimate of the variance.
In effect, the middle point of this interval is larger than the point estimate. The difference
between these two values decreases as the number of degrees of freedom grows, because
it is known that the chi2 distribution approximates the normal distribution when the
number of degrees of freedom is sufficiently large. This means that as the sample size
(which corresponds to the number of degrees of freedom) grows, the middle point of the
interval given in Equation above will tend to approach the point estimate obtained with
the sample. This is exactly the kind of bias most pruning methods rely on. They ”punish”
estimates obtained in the leaves of large trees (with few data points) when compared to
estimates at higher levels of the trees. Being so, authors in [43] propose using the middle
point of the interval in equation above as a more reliable estimate of the variance of any
node, which leads to the following estimator of the MSE in a node t:

ChiEst(MSE(t)) = MSE(t)× nt − 1

2
× (

1

χ2
α
2
,n−1

,
1

χ2
1−α

2
,n−1

) (3.15)

3.4 Ensemble of trees as a powerful method

Generally, the purpose of ensemble methods is to combine the predictions of several base
estimators constructed with a particular learning algorithm in order to improve generalized

24 Chapter 3. An overview on Decision tree models

ability and robustness over a single estimator. Ensemble of trees is a case in the family
of ensemble methods where base classifiers are decision trees. Follow the distinguished
branches of ensemble methods, we can view ensemble of trees in two typical divisions.

1. In averaging methods, the driving principle is to build several estimators indepen-
dently and then to average their predictions. On average, the combined estimator is
usually better than any of the single base estimator because its variance is reduced.
Examples for this kind of ensemble of trees are Random Forest, Bagging.

2. By contrast, in boosting methods, base estimators are built sequentially and one
tries to reduce the bias of the combined estimator. The motivation is to combine
several weak models to produce a powerful ensemble. Two examples are AdaBoost
(with base estimator being Decision Tree) and Gradient Tree Boosting.

Following we illustrate why ensemble of trees model can perform better than individual
estimator itself in terms of the accuracy and avoiding overfitting. We consider Bagging
representing the first branch and AdaBoost representing second branch.

3.4.1 Bagging

Bagging methods build several instances of a black-box estimator on random subsets of
the original training set and then aggregate their individual predictions to form a final
prediction. More over, bagging introduces randomization into forming procedure and then
making an ensemble out of it. Randomness is embedded in two ways: randomly choose
instances and randomly choose subset of features. This way is proved to be able to reduce
overfitting of a base estimator (decision tree) [23]. We know that strategy divide and
conquer of decision tree might cause over-searching and the difference between distribution
of a data subset between training/testing data leads to overfitting. Subsampling technique
in bagging decreases the possibility of encountering such bad sectors of data thus reduces
overfitting. Ensemble of trees is also expected to reduce the variance.

3.4.2 AdaBoost

The main idea of AdaBoost is to fit a sequence of weak learners (such as small decision
trees) on repeatedly modified versions of the data. The predictions from all of them are
then combined through a weighted majority vote (or sum) to produce the final prediction
[20]. For each training iteration, the sample weights are individually adjusted and the
learning algorithm is reapplied to the data with new set of weights. At a given step,
those training examples that were incorrectly predicted by the boosted model induced
at the previous step have their weights increased, whereas the weights are decreased for
those that were predicted correctly. As iterations proceed, examples that are difficult to
predict receive ever-increasing influence. Each subsequent weak learner is thereby forced
to concentrate on the examples that are missed by the previous ones in the sequence
[20]. That is the reason why AdaBoost yields a much higher performance than individual
decision trees.

It is the fact that ensemble of tree methods methods, like Random Forest, has become
more and more popular due to its efficiency in practical Machine Learning problems.

Chapter 4

M5 Model Trees

4.1 M5 model tree

M5 model tree is a decision tree learner for regression task, meaning that it is used to
predict values of numerical response variable Y . M5 tree was invented by J.R.Quinlan
(1992). While M5 tree employs the same approach with CART tree [12] in choosing mean
squared error as impurity function, it does not assign a constant to the leaf node but
instead it fit a multivariate linear regression model; the model tree is thus analogous to
piecewise linear functions. According to [40], M5 model tree can learn efficiently and can
handle tasks with very high dimensionality - up to hundreds of attributes. This ability
sets M5 apart from regression tree learners at the time (like MARS), whose computational
cost grows very quickly when the number of features increases. Also, the advantage of M5
over CART is that model trees are generally much smaller than regression trees and have
proven more accurate in the tasks investigated [40].

4.1.1 Construct M5 tree

Follow the recursively node-splitting strategy of decision trees as described in Chapter 3,
M5 tree partitions the data into a collection of set T and the set T is either associated
with a leaf, or some test is chosen that splits T into subsets corresponding to the test
outcomes and the same process is applied recursively to the subsets. This process often
produces over-elaborate structures, namely overfitting, that must be pruned.

Information gain in M5 tree is measured by the reduce in standard deviation before
and after the test. First step is to compute the standard deviation of the response values
of cases in T . Unless T contains very few cases or their values vary only slightly, T is split
on the outcomes of a test. Let Ti denote subset of cases corresponding to ith outcome of
a specific test. If we treat deviation sd(Ti) of target values of cases in Ti as a measure of
error, the expected reduction in error can be written as follows

∆error = sd(T)−
∑
i

|Ti|
|T |

sd(Ti) (4.1)

Then M5 tree will choose one that maximizes this expected error reduction. To com-
pare, CART chooses a test to give the greatest expected reduction in either variance or
absolute deviation [12].

25

26 Chapter 4. M5 Model Trees

4.1.2 Pruning M5 tree

Pruning is proceeded in a manner from leaves to root node. At each internal node, M5 tree
compares the estimated error of that node and estimated error of subtree below. Then
the subtree is pruned if it does not improve performance of the tree.

Error-based estimate

M5 model tree uses error-based method for pruning. The key factor of this method is
to estimate the error/accuracy of the model on unseen cases. M5 tree computes this
number by first averaging the absolute difference between response values of observations
and predicted values. This will generally underestimate the error on unseen cases, so M5
multiplies it by (n + v)/(n − v), where n is the number of training cases and v is the
number of parameters in the model [40]. The effect is to increase the estimated error of
models with many parameters constructed from small number of cases.

The estimated error of a subtree is calculated as sum of estimated error of the left and
right tree below that node multiplying with the proportion of samples that goes down to
left and right tree.

Linear models

A multivariate linear model is fit into each node of the tree using standard regression
technique. However M5 tree does not use all features in the dataset, instead it is re-
stricted to features that are referenced by tests or linear models in the subtrees below this
node. As M5 will compare the accuracy of a linear model with the accuracy of a subtree,
this ensures a level playing field in which the two types of models use the same information
[40].

After the linear model is built, M5 tree simplifies it by greedily eliminate coefficients one
by one. This way might generally result in the increase in the averaged residual, however
it also reduces the multiplicative factors above, so the estimated error can decrease.

4.1.3 Smoothing

Pregibon observes that the prediction accuracy of tree-based models can be improved by
a smoothing process. When the value of a case is predicted by a model tree, the value
given by the model at the appropriate leaf is adjusted to reflect the predicted values at
nodes along the path from the root to that leaf. The form and motivation of smoothing
process in M5 is inspired by Pregibon. It is described as follows:

• The predicted value at the leaf is the value computed by the model at that leaf

• If the case follows branch Si of subtree S,let ni be the number of training cases at
Si, PV(Si)the predicted value at Si ,and M(S)the value given by the model at S.
The predicted value backed up to S is

PV (S) =
ni.PV (Si) + k.M(S)

ni + k
(4.2)

4.2. M5’ model tree 27

To illustrate how M5 model tree works on a real problem, let take a look on Servo dataset
(UCI repository). There are 4 features consisting of two categorical variables motor, screw
and two numerical variables pgain and vgain. The class variable takes real values whose
range is from 0.13 to 7.1. A part of this dataset and the complete M5 tree for this dataset
are presented in Figure 4.1.

Figure 4.1: M5 model tree performs on Servo dataset

4.2 M5’ model tree

M5’ model tree was first proposed by Yong Wang and Ian H. Witten (1997). M5’ is
a new implementation of model-tree inducer based on M5 tree by Quinlan [40]. Some
improvements include modifications to reduce tree size, thus the tree becomes more com-
prehensible. M5’ also introduces a way to deal with categorical variables and missing
values. According to [46], M5’ performed somewhat better than the original algorithm on
the standard datasets for which results have been published.

To clarify the form of linear model that was not clear in M5 tree, M5’ uses k + 1
parameters where k is the number of attributes in data set and 1 represents constant term.
Second, during the initial splitting procedure, M5’ does not split a node if it represents
three examples or less or the standard deviation of the class values of the examples at the
node is less than 5% of the standard deviation of the class values of the entire dataset.
Third, M5’ decides to leave attributes, that are dropped from a model when their effect
is so small that it actually increases the estimated error, in higher-level models if they are
useful.

Fourth, all enumerated attributes are transformed into binary variables before con-
structing a model tree. The average class values corresponding to each possible value in
the enumeration is calculated from the training examples, and the values in the enumer-
ation are sorted according to these averages. Then, if the enumerated attribute has k
possible values, it is replaced by k − 1 synthetic binary attributes, the ith being 0 if the
value is one of the first i in the ordering and 1 otherwise [46]. To tackle the problem
that enumerated attributes having a large number of different values are automatically
favored, M5’ multiplies the SDR value by a factor that is unity for a binary split and
decays exponentially as the number of values increases.

28 Chapter 4. M5 Model Trees

In terms of processing missing values, M5’ modify the formula of SDR to

SDR =
m

|T |
× β(i)× [std(T)−

∑
j∈L,R

|Tj |
|T |
× sd(Tj)] (4.3)

where m is the number of instances without missing values for that attribute, and T
is the set of examples that reach this node. β(i) is the correction factor mentioned above,
computed for the original attribute to which this synthetic attribute corresponds. TL and
TR are the sets that result from splitting on this attribute. The pseudocode of M5’ model
tree algorithm is given below

1 M5’ (examples)
{

3 SD = sd (examples)
f o r each k−valued enumerated a t t r i b u t e

5 convert i n to k−1 syn the t i c b inary a t t r i b u t e s
root = new node

7 root . examples = examples
s p l i t (root)

9 prune (root)
}

11 s p l i t (node)
{

13 i f s i z e o f (node . examples) < 4 or sd (node . examples) < 0 .05 ∗ SD
node . type = LEAF

15 e l s e
node . type = INTERIOR

17 f o r each cont inuous and binary a t t r i b u t e
f o r a l l p o s s i b l e s p l i t p o s i t i o n s

19 c a l c u l a t e the a t t r i bu t e ’ s SDR
node . a t t r i b u t e = a t t r i bu t e with max SDR

21 s p l i t (node . l e f t)
s p l i t (node . r i g h t)

23 }
prune (node)

25 {
i f node = INTERIOR then

27 prune (node . l e f t c h i l d)
prune (node . r i g h t c h i l d)

29 node . model = l i n e a r r e g r e s s i o n (node)
i f s u b t r e e e r r o r (node) > e r r o r (node) then

31 node . type = LEAF
}

4.3 M5’Rules

M5’Rules was invented by Holmes et. al. [21]. Technically, it generates a rules set from
M5’ model tree following this process: a tree learner (M5’ tree) is applied to the full
training data set and a pruned tree is learned. Next, the best leaf (according to some
heuristic) is made into a rule and the tree is discarded. All instances covered by the
rule are removed from the dataset. The process is applied recursively to the remaining
instances and terminates when all instances are covered by one or more rules. The rules are

4.3. M5’Rules 29

generated based on an unsmoothed linear models. To illustrate this process of generating
rules from a model tree, figure 4.2 presents a model tree built for bolts dataset (1999) and
then a set of rules are produced from this tree.

Figure 4.2: M5’Rules for Bolt dataset

So we know that at each stage, M5’Rules choose a best node and convert it to a
rule. The question is which criteria to compare ’quality’ of nodes and then pick the most
informative one. In [21], they have proposed 4 heuristics. The first and most obvious
one is to choose the leaf which covers the most examples. Figure 4.2 actually uses this
heuristic to extract set of rules. The second one calculates the percent root mean squared
error as shown below:

%RMS =

√∑Nr
i=1(Yi − yi)2/Nr√∑Nr
i=1(Yi − Ȳ)2/N

(4.4)

where Yi is the actual class value for example i, yi is the class value predicted by the linear
model at a leaf, Nr is the number of examples covered by leaf, Ȳ is the mean of the class
values, and N is the total number of examples. In this case, small values of % RMS (less
than 1) indicate that the model at a leaf is doing better than simply predicting the mean
of the class values. One potential problem with percent root mean squared error is that
it may favor accuracy at the expense of coverage.

The third and fourth show two measures designed to trade of accuracy against cover-
age. The third, simply normalizes the mean absolute error at a leaf using the number of
examples it covers; the fourth, multiplies the correlation between the predicted and actual
class values for instances at a leaf by the number of instances that reach the leaf.

MAE/Cover =

∑Nr
i=1 |Yi − yi|

2Nr
(4.5)

30 Chapter 4. M5 Model Trees

CC.Cover =

∑Nr
i=1 Yiyi

NrσY σy
Nr (4.6)

Authors in [21] also conducted a experiment to test the performance of all 4 listed
heuristic. They came to several conclusions that M5’Rules using coverage heuristic is
better that M5’ in terms of accuracy, M5’Rules never produces larger rule sets and pro-
duces smaller sets on tested datasets. When compared to the commercial system Cubist,
M5’Rules outperforms it on size and is comparable on accuracy. When based on the
number of leaves it is more than three times more likely to produce significantly fewer
rules.

4.4 M5 model tree for classification

Although M5 model tree was originally invented for regression tasks, it also proves efficient
when derived to handle classification problems. This approach was proposed in [18] by E.
Frank et. al. In this approach, a data set whose target variable consists of k discrete values
is split into k data sets each of which has the same set of independent variables S and
one dependent variable Yi representing a value of Y . More particularly, target value of a
sample in ith data set is 1 if that sample belongs to Yi class and 0 otherwise. For example
in figure 4.3, the well-known Iris dataset is transformed into 3 sub-dataset for the Setosa,
Virginica and Versicolor varieties of Iris. Then k different model trees are built for the
k datasets. For a specific instance, the output of one of these model trees constitutes an
approximation to the probability that this instance belongs to the associated class. Since
the output values of the model trees are only approximations, they do not necessarily sum
to one.

In the testing stage, an instance of unknown class is processed by each of the model
trees, the result being an approximation to the probability that it belongs to that class.
The class whose model tree gives the highest value is chosen as the predicted class.

4.5 Multivariate Linear Regression in M5 model tree

One of most important properties of a M5 model tree is that it uses a multivariate linear
regression at each leaf to predict numerical values. Besides, linear regression model also is
constructed at internal nodes in pruning process. Therefore, performance of a M5 model
tree counts mainly on how good those linear models are. In this section of our work, we
would like to introduce what is linear regression model, well-known approaches used to
solve this problem and our selected approach in implementing M5 model tree. Most of
knowledge presented in below sections is from [38]

4.5.1 Linear regression model

To find a multivariate linear regression model for a data set, which holds a M instances
containing values of a group of N attributes and values of one class, we have to solve a set
of linear algebraic equations like this:

4.5. Multivariate Linear Regression in M5 model tree 31

Figure 4.3: How to use M5 tree in classification with Iris dataset

32 Chapter 4. M5 Model Trees

a11x1 + a12x2 + ...+ a1NxN = b1

a21x1 + a22x2 + ...+ a2NxN = b2

a31x1 + a32x2 + ...+ a3NxN = b3

....

aM1x1 + aM2x2 + ...+ aMNxN = bM

Here the N unknowns, xj , j = 1,2,...,N are related by M equations. The coefficients aij
with i = 1,2,...,M and j = 1,2,...,M are known numbers collected from values of attributes
of data set. The right-hand side quantities bi with i = 1,2,3...,M are from class values.
If N = M then there are as many equations as unknown and there is a good chance of
solving for a unique solution set of xj ’s. However, if one or more of M equations is a linear
combination of the others, a condition called row degeneracy, or if all equations contain
certain variables only in exactly the same linear combination, called column degeneracy,
it can be fail to find a unique solution. A set of equations that is degenerate is called
singular [38]. This is an important concept is Linear Algebraic Equations and we have
separating methods to deal with those cases.
Set of linear equations as above can be written in matrix form as

A . x = b (4.7)

Here A is the matrix of coefficients and b is the right-hand side written as a column vector.

A =


a11 a12 · · · a1N
a21 a22 · · · a2N
· · ·
aM1 aM2 · · · aMN

 b =


b1
b2
· · ·
bM


To solve the set of linear equations, one of simplest and thus most common strategies

is to use Linear least-square estimation. M ×N set of equations as presented in (1) can
be written as the N ×N set of equations

(AT .A).x = (AT .b) (4.8)

The Linear least-square estimation method minimizes the sum of squared residuals, and
leads to a closed-form expression for the estimated value of the unknown x. The problem
now becomes solving a N × N set of equations as in (2) and this offers an advantage
rather than N 6= M because there is a good chance of solving for a unique solution of
unknowns. There are a lot of methods for solving this kind of problem. Here we present
the three of most popular ones: Gauss-Jordan Elimination, Gausian Elimination with
Backsubstitution and LU Decompostion

4.5.2 Gauss-Jordan Elimination

This method can be used to find a matrix inversion and also to solve sets of linear equations.
For a better illustration of the method, we will write out equations for only the case of
four equations and four unknowns and one right-hand side vector of four elements.

4.5. Multivariate Linear Regression in M5 model tree 33


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .

x1
x2
x3
x4

 =


b1
b2
b3
b4


The routine of Gauss-Jordan elimination is processed as follows [38]. The first row is

divided by the element a11 and this is a trivial linear combination of the first row with
any other row - zero coefficient for the other row. Then each other row is subtracted an
amount of first row multiplying their first elements. As a result, the first column of A now
agrees with the identity matrix. We move to the second column and divide the second
row by a22, then subtract the first, third and fourth row from an amount of second row
multiplying their second element, so as to make their entries in the second column zero.
And so on for the remaining rows and A is transformed to a identity matrix. As we do
the operations to A, we also do the corresponding operations to the b’s.
In this routine, the element that we divide by is called the pivot. We can interchange
rows (partial pivoting) or rows and columns (full pivoting) in order to put a particularly
desirable element in the diagonal position from which the pivot is about to be selected.
There is an obvious problem when one of elements on diagonal, or pivot, is zero and we
can not divide the row by it. This is a case of solving a singular matrix.
In terms of finding matrix inversion, we just have to apply the routine above to solve 4
equations

A.x1 = b1 A.x2 = b2 A.x3 = b3 A.x4 = b4 (4.9)

where bi, i = 1, 2, 3 ,4 are columns of identity matrix. The resulting matrix is built
by xi, i = 1, 2, 3 ,4 as columns.

4.5.3 Gaussian Elimination with Backsubstitution

Use similar routine as Gauss-Jordan elimination, the only difference is that matrix A is
reduced not all the way to identity matrix but only half way. At each stage, we subtract
away rows only below the current pivot element. When a22 is the pivot element, for
example, we divide the second row by its value (as before), but now use the pivot row to
zero only a32 and a42, not a12 [38]. The equation after reduction routine will be:


a
′
11 a

′
12 a

′
13 a

′
14

0 a
′
22 a

′
23 a

′
24

0 0 a
′
33 a

′
34

0 0 0 a
′
44

 .

x1
x2
x3
x4

 =


b
′
1

b
′
2

b
′
3

b
′
4


Notice that here original b matrix is also modified according to operations made to turn
matrix A to A’ in above equation. The solving of x now becomes quite easy following
these formula

x4 = b
′
4/a44

′
(4.10)

x3 =
1

a
′
33

[b
′
3 − x4a

′
34] (4.11)

34 Chapter 4. M5 Model Trees

then we proceed x before x3 with

xi =
1

a
′
ii

[b
′
i −

N∑
j=i+1

a
′
ijxj] (4.12)

The procedure defined in (6) is called backsubstitution. The combination between Gaussian
elimination and backsubstitution yields a solution for solving set of linear equations. The
advantage of this method over Gauss-Jordan elimination is simply that this one is faster
in raw operation count [38].

4.5.4 LU Decomposition

Suppose matrix A can be decomposed into two matrices, a lower triangular matrix L and
a upper triangular matrix U

L.U = A (4.13)

In case of 4 x 4 matrix, equation above looks like this:
α11 0 0 0
α21 α22 0 0
α31 α32 a33 0
α41 α42 α43 α44

 .

β11 β12 β13 β14
0 β22 β23 β24
0 0 β33 β34
0 0 0 β44

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


To solve the linear of equations problem, (7) can be written as

A.x = (L.U).x = L.(U.x) = b (4.14)

We first solve the equation

L.y = b (4.15)

and then solve

U.x = y (4.16)

To solve equations in (9) and (10), we can use procedure (5) described in section of
Gaussian elimination and backsubstitution. The remaining problem is to solve the de-
composition and find L and U. Equation in (7) is broke into sum of terms of αij and βij

i < j : αi1β1j + αi2β2j + · · ·+ αiiβij = aij (4.17)

i = j : αi1β1j + αi2β2j + · · ·+ αiiβij = aij (4.18)

i > j : αi1β1j + αi2β2j + · · ·+ αijβjj = aij (4.19)

Because there are N2 + N unknown but only N2 equations in equations from (11),
(12) and (13), we can possibly assume that

αii = 1 i = 1, 2, ..., N (4.20)

Then we use Crout’s algorithm to solves the set of N2 +N equations for all α ’s and β ’s
by just arranging the equations in a certain order as follows.

4.5. Multivariate Linear Regression in M5 model tree 35

• Set αii = 1, i = 1, 2, ..., N

• For each j = 1, 2, 3, ... ,N do two procedures: First, for i = 1, 2, ..., j, use (11), (12)
and (14) to solve for βij

βij = aij −
i−1∑
k=1

αikβkj (4.21)

Second, for i = j + 1, j+2, ..., N use (13) to solve for αij

αij =
1

βij
(aij −

i−1∑
k=1

αikβkj) (4.22)

4.5.5 Solve a singular matrix

There is a well-known method to take over of singular matrix, it is Singular Value De-
composition: a M ×N matrix A whose number of rows M is greater than or equal to its
number of columns N, can be written as the product of an M × N column orthogonal
matrix U, an N ×N matrix diagonal matrix product of an M ×N orthogonal matrix V.

[
A
]

=
[
U
]
.


w1

w2

· · ·
· · ·

wN

 . [V T
]

then
A−1 = V.[diag(1/wj)].U

T (4.23)

where we replace 1/wj by 0 if wj is nearly zero. So we can solve x like this:

x = V.[diag(1/wj)].(U
T .B) (4.24)

However, in practice, SVD is not an optimal method because it takes a lot of resources. In
our implementation, we use LU decomposition method in a combination with a modified
matrix A to solve set of linear equations. Each time A is proved as a singular matrix, a
pre-determined constant, namely ridge is added to each element in the diagonal of matrix
A to form a new matrix which is no longer singular. The ridge is small enough to ensure
the change made to A is really trivial.

i n t su c c e s s = 0 ;
2 double r i dg e = 10ˆ(−8);

i n t i , j ;
4 whi le (su c c e s s == 0){

i n f o = LAPACKE dgesv(LAPACKROWMAJOR, n , nrhs , &A[0] ,
6 lda , &i p i v [0] , &B[0] , ldb) ;

/∗ Check f o r the exact s i n g u l a r i t y ∗/
8 i f (i n f o > 0) {

f o r (i = 0 ; i < n ; i++){
10 A [i ∗n + i] = A[i ∗n + i] + r idge ;

}
12 r i dg e = r idge ∗ 1 0 . 0 ;
}

14 e l s e
su c c e s s = 1 ;

16 }

Chapter 5

Introduction of ADATE system

In the first part of this chapter, we give a brief presentation to concepts of Evolutionary
algorithm in Machine Learning and Automatic programming. Then in the second part,
we introduce the ADATE system as an implementation and founded based on these above
concepts. Because the limited space of this dissertation, we only focus on main properties
and analytic power of ADATE. For a further and deeper understanding of ADATE system,
we highly recommend readers to refer [35], [36] and [37]

5.1 Evolutionary algorithm and Automatic programming

5.1.1 Evolutionary algorithm

Artificial evolution is a well-known approach in machine learning. This approach attempts
to create a new generation of hypothesis based on a collection of current hypothesis,
called current population. Some of elements in the current population are added directly
into the new set of hypothesis, whereas remaining ones are replaced by offsprings using
transformation rules. Generally, this is a learning method that is inspired from the biology
evolution. A typical and popular representative for artificial evolution in machine learning
is Genetic Algorithms (GAs).

Rather than search from general-to-specific hypotheses, or from simple-to-complex,
GAs generate successor hypotheses by repeatedly mutating and recombining parts of the
best currently known hypotheses. GAs identifies the best hypothesis using a function
named ’fitness function’. The process forms a generate-and-test beam-search of hypothe-
ses, in which variants of the best current hypotheses are most likely to be considered next.
A short description of GAs is as follows. At each iteration, a new set of hypothesis is
created by selecting probabilistically in the current population hypothesis which are most
fit and by adding new hypothesis. New hypotheses are created by applying a crossover
operator to pairs of most fit hypotheses and by creating single point mutations in the
resulting generation of hypotheses. This process is iterated until sufficiently fit hypotheses
are discovered.

To achieve a deeper insight into GAs, some theoretical points need to be discussed
clearly. And we present point by point in details as following.

Hypotheses representing

In general, hypotheses in GAs are represented by bit string in which each element is
either 0 or 1. The reason for this could be that GAs algorithm will be easier to apply

37

38 Chapter 5. Introduction of ADATE system

offspring generation rules such as cross over or mutation. The idea of representing hy-
potheses by bit string was introduced for the first time by Holland (1986), Grefenstette
(1988) and DeJong et al. (1993) [33].

To illustrate for this, consider an example of turning the statement ”If weather is cool
and I feel happy, I will play football” into a bit string. Assume that attribute weather has
three values rain, cool and sunny. So the first condition weather is cool would be encoded
by string 010 where second bit stands for cool. Similarly, assume feeling attribute has only
two values, eitherhappy or sad, the second condition should be encoded such as 10. And
the resulting part of this statement is represented by string 01 that is composed by No
and Yes values. So the whole statement is encoded as a bit string that is 0101001.

Fitness function and parents selection The output of fitness function is used to
rank potential hypotheses and also to probabilistically select them for inclusion into the
new generation. This is also why values of fitness function should be positive.

There will be a part of parents taken into the next generation. These parents are
selected probabilistically, with the probability of a string being selected being proportional
to its fitness.

Offspring generation GAs uses genetic operators to generate offspring from parents.
These operators are close to idealized version of genetic operation found in biological
evolution [33]. Two popular genetic operators in GAs are cross-over and mutation. In
cross-over, there are two offsprings produced from two parent strings by copying selected
bits from each parent. It is an additional string named cross-over mask to decide which
parent to the i(th) bit should belong to. There are three kinds of cross-over described in
Figure 5.1 which was also used in [33].

• Single-point crossover : As illustrated in Figure 5.1, imagine there is a point sepa-
rating the crossover mask. This makes the first offspring taking the first five bit from
the first parent and remaining bits from the other one. For the second offspring, the
process repeats with switched parents’ role.

• Two-point crossover : Similar to the single-point crossover, the crossover mask is
separated by 2 points. The i(th) bit of the offspring will decide get the i(th) bit from
either first or second parent based on value of i(th) bit from crossover mask string.

• Uniform crossover : In this case, the crossover mask bits string is created randomly.

For the mutation operator, the offspring produced by changing the value of a random
bit from a single parent, as the illustration in Figure 5.1.

5.1.2 Automatic programming

Automatic programming is defined as synthesis of programs that solve problems described
in a specification. There will be no more programming. The end users only need to have
knowledge about the application domain. They write a specification file to describe what
they want. The automatic programming system, which only knows how to program, will
produce an efficient program that solve the problem in specification file [42]

Also in [42], there are three key features in an automatic programming system: They
will be end-user oriented, communicating directly with end users; they will be general
purpose, working as well in one domain as in another; and they will be fully automatic,
requiring no human assistance.

5.1. Evolutionary algorithm and Automatic programming 39

Figure 5.1: Genetic operators: Cross-over and mutation

40 Chapter 5. Introduction of ADATE system

According to Biermann in [11], ”Computer programming is the process of constructing
executable code from fragmentary information. ... When computer programming is done
by a machine, the process is called automatic programming. AI researchers are interested
in studying automatic programming for two reasons: First, it would be highly useful to
have a powerful automatic programming systems that could receive casual and imprecise
specifications for a desired target program and then correctly generate that program; second,
automatic programming is widely believed to be a necessary component of any intelligent
system and is therefore a topic for fundamental research in its own right.”

5.2 Introduction to ADATE

5.2.1 What is ADATE system?

ADATE (Automatic Design of Algorithms Through Evolution) is an automatic program-
ming system developed by Professor Roland Olsson at Ostfold University College. ADATE
is used to automatically generate solution programs that can solve specified problems
through a series of inductive inference of algorithms.

The specification file that is the input to ADATE system must contain data samples
for the problem, that is, inputs and corresponding outputs of the specified problem. Fur-
thermore, it should specify an output evaluation function. This function is similar to the
fitness function aforementioned in Genetics Algorithm, that is used to decide if a gener-
ated program is acceptable and put into population or not. The way ADATE works is to
search in the hypotheses space for programs that fit criteria revealed in specification file.
A series of heuristics is utilized to increase the efficiency of the search.

The collection of programs by ADATE is called the kingdom where each program
is considered as a individual. At the beginning of the search, a kingdom has only one
individual that is empty and raises only an exception. Then new individuals are generated
by applying compound transformation rules. A compound transformation rule is composed
of basic forms of transformations. There are six basic forms of transformations, called
atomic transformations as described below. Definition of rules are cited from [37]

• R (Replacement): Replacement changes part of the individual with new expressions.

• REQ (Replacement without making the individuals evaluation value worse): Does
the same as Replacement but now the new individual is guaranteed to have an equal
or better evaluation value.

• ABSTR (Abstraction): This transformation takes an expression in the individual and
puts that expression in a function in a let . . . in block and replaces the expression
with a call to that function.

• CASE-DIST (Case distribution): This transformation takes a case expression inside
a function call and moves the function call into each of the case code blocks. It can
also change the scope of function definitions.

• EMB (Embedding): This transformation changes the argument type of functions.

• Crossover: This operator views a number of REQ transformations as alleles and
recombines them using a genetic algorithm operating on fixed-length genomes.

5.2. Introduction to ADATE 41

To be able to placed into the kingdom, a generated individual should perform better
than programs that already exist in the kingdom. ADATE uses a evaluation function,
with the same role as fitness function in GAs, to calculate value of individuals. ADATE
compares a newly generated individual with the individuals in the family it belongs to
and possibly replaces them if they have worse evaluation values.

By default, the evaluation values are calculated based on the number of correct and
wrong training examples, the number of memory, and time limit overflows. However,
ADATE system also allows users to define GRADE structure that makes evaluation values
taking into account user defined grade. An illustration for GRADE and evaluation function
will be presented in the next section.

It is the fact that the evolution in ADATE system is inspired by basic biological prin-
ciples of evolution, like for instance mutation and crossover. Artificial evolution process
in ADATE and natural selection share common following properties:

• Generated off-springs should be superior to their parents in certain criteria. For
instance, natural selection requires next generations adapting the living environment
more than their parents can. Similarly, in ADATE, successive programs should
produces a better performance on the evaluation function than their ancestors.

• There are similarities between transformation rules of ADATE and the way to create
variations in natural selection. For example, replacement rule and cross-over rule
in ADATE can be viewed as biological mutation and gene permutation in natural
selection.

• These two processes might last forever without stop as long as successive generations
are better than the current ones.

However, artificial evolution used in ADATE also highlights some differences from
natural evolution. The most significant distinction is that ADATE uses heuristic to limit
the search space and time, thus increase the efficiency of the search. In contrast, the major
source variation used in natural evolution, mutation, is produced randomly and does not
follow any principles. As a matter of fact, the latter process takes much longer than the
former one. In return, due to a larger search space without using heuristic, there is a huge
set of instances of off-springs generated from natural evolution and so this increases the
chance to produce best individuals.

To conclude this section, we present here a brief overview of the evolution and induction
flow during the run of ADATE system:

1. Initiate the kingdom with the single program given as the start program in the
specification file (either an empty program or some program that is to be optimized).
In addition to the actual programs, the system also maintains an integer value CP
for each program P , called the cost limit of the program. For new programs this
value is set to the initial value 1000.

2. Select the program P with the lowest CP value from the kingdom.

3. Apply CP compound program transformations to the selected program, yielding CP
new programs.

42 Chapter 5. Introduction of ADATE system

4. Try to insert each of the created programs into the kingdom in accordance with the
size-evaluation ordering described above.

5. Double the value of CP , and repeat from step 2.

The above loop is repeated until the user terminates the system. The ADATE sys-
tem has no built-in termination criteria and it is up to the user to monitor the evolving
programs and halt the system whenever he considers the evolved results good enough.

5.2.2 ADATE for classification

In classification task, a classifier has to conduct predictive analysis and produce a discrete
value of response variable. To see how ADATE perform on a classification problem, we
take Iris, a well-known dataset on UCI repository as example. This data set has 150
instances each of which contains five explanatory variables that describe properties of
Irish plants like petal length, petal width, sepal length and sepal width. The response
variable is a categorical whose values are Setosa, Virginica and Versicolor varieties of Iris.

Use ADATE to run this data set, the best synthesized program gives an accuracy of
100% on training set and 82.7% on the validation set, the run time was 10020 seconds.
As a evolutionary system, ADATE is powerful in giving a number of solutions that are
different in degree of logic order during its search through the hyper-parameter space.
Three programs below are typical examples of ADATE’s results for Iris dataset.

fun f1 (X0real , X1real , X2real , X3real) =
2 case

r cons tLe s s (X3real , r cons t (1 , 0 .25125 , 0.172751946272)) o f
4 f a l s e => i r i s C l a s s v i r g i n i c a

| t rue =>
6 case r e a lL e s s (X1real , r cons t (1 , 0 .26165 , 0 .51494362372)) o f

f a l s e => i r i s C l a s s s e t o s a
8 | t rue =>

case => r e a lL e s s (X2real , r cons t (1 , 0 .57394 , 0 .4534343)) o f
10 f a l s e => i r i s C l a s s v e r s i c o l o r

| t rue => i r i s C l a s s v i r g i n i c a
12 }

fun f2 (X0real , X1real , X2real , X3real) =
2 case r e a lL e s s (X1real , X2real) o f

f a l s e => i r i s C l a s s s e t o s a
4 | t rue =>

case
6 r e a lL e s s (

r e a l Sub t r a c t (X2real , X3real) ,
8 r e a lMu l t i p l y (X3real , X0real)

) o f
10 f a l s e => i r i s C l a s s v e r s i c o l o r

| t rue => i r i s C l a s s v i r g i n i c a

It is obvious to see that the program number 1 looks like a decision tree where each split
is made by a comparison between a variable and a constant. Simple as that, we can say

5.2. Introduction to ADATE 43

1 fun f2 (X0real , X1real , X2real , X3real) =
case r e a lL e s s (X1real , X2real) o f

3 f a l s e => i r i s C l a s s s e t o s a
| t rue =>

5 case
r e a lL e s s (

7 r e a l Sub t r a c t (X2real , X3real) ,
r e a lMu l t i p l y (X3real , X0real)

9) o f
f a l s e => i r i s C l a s s v e r s i c o l o r

11 | t rue => i r i s C l a s s v i r g i n i c a

1 fun f3 (X0real , X1real , X2real , X3real) =
case r e a lL e s s (X1real , X2real) o f

3 f a l s e => i r i s C l a s s s e t o s a
| t rue =>

5 case
r e a lL e s s (

7 X2real ,
r e a lD iv i d e (X3real , s igmoid (s igmoid (X0real)))

9) o f
f a l s e => i r i s C l a s s v e r s i c o l o r

11 | t rue => i r i s C l a s s v i r g i n i c a

ADATE has generated a first-order program to learn Iris dataset. Then, program number
2 becomes a bit more complicated when there are comparisons between two variables
X1real and X2real, or two expressions X2real − X3real and X3real × X0real. The
program number 2 uses higher-order logic and thus surpass decision tree models in terms of
complexity. Program 2 also shows that ADATE is capable of inferring linear combinations
of variables as new features. This ability of ADATE is actually very useful in discovering
higher-order features in problems that have a low level of granularity or where features are
highly correlated. This kind of problem is pretty popular in practical Machine Learning
use where the current set of features can not explain the complexity of data, or we can
call it underfitting problem. In such situations the solution is normally to exploit relations
between features in dataset by applying models that can capture relative information
between features or manually creating higher-orders features, e.g we can create features
X2, X3 for linear regression models.

Not only can ADATE discover new features by generating automatically expressions
of current features, but also can it invent functions as presented in program 3. Here
sigmoid(sigmoid(X0real)) is a function that takes a real number as the parameter. To
invent new functions, ADATE applies the approach of evolutionary algorithm that muta-
tion or applies cross-over operator on original functions, and usually along with abstraction
transformation to guide the search process. In an example illustrated in [37], we have this
function as the pre-search function, meaning before transformed:

1 fun max3(X, Y, Z) = i f X < Y then Y e l s e X

After applying abstraction transformation, we have a new function:

44 Chapter 5. Introduction of ADATE system

1 fun max3(X, Y, Z) =
l e t

3 fun g (V1 , V2) = i f V1 < V2 then V2 e l s e V1
in

5 g (X, Y)
end

ADATE has substituted V1 for X and and V2 for Y. This example shows that abstrac-
tions can be substitutive which means that a number of equal sub-expressions are replaced
with one and the same parameter. These equal sub-expressions can be arbitrarily big and
need not consist of a single variable as above.

Similar to decision tree learners, ADATE use Divide and Conquer strategy to construct
models. It can split the input space into many sub-spaces, and build different feature
extractors in different sub-spaces. This is a very powerful ability, which may explain
why ADATE can easily synthesize classifier that fit very well to many different problems.
However, this also makes ADATE’s synthesized programs easy to be overfitted. Generally,
the ADATE actually builds an ensemble of many different models in different input’s sub-
spaces. This divide and conquer strategy not only brings the fitting power to the ADATE
system, but also introduces ovefitting problem. Splitting the input space too much will
increase the chance of discovering accidental relationships (between explanatory variables
and target variable as well as among explanatory variables) of ADATE system, especially
when we have low-granularity training data (i.e. not enough data). Of course, the Occam’s
razor employed in ADATE searching strategy, and a good validation set could be very
helpful in this case. Nevertheless, empirical results showed that in general, using ADATE
to build a classifier for a high dimensionality continuous input domain is more likely to
create an overfitted solution, compared to other use cases of ADATE. You will see in the
next section that, on regression problem, ADATE usually does not divide the input space
in its solutions, which make it harder to be overfitted.

5.2.3 ADATE for regression

Using its function-inventing ability, ADATE has proved efficient in finding solutions for
regression problems. To understand how ADATE works on regression task, we present
here two examples.

The first is a simple example where we would like to predict the velocity of a falling
ball when it hits the ground, given the height H as its starting position. The correct
answer for this problem is

√
19.6H. The solution that ADATE can come up with is shown

below:

Although this ADATE’s solution is a bit more complex than the original answer, which
is
√

19.6H, Dang in [25] has explained that it is still simpler than a neural network’s
solution. In his experiment, he designed a neural network with 1 input, 10 hidden nodes
and 1 output and then got a program containing 42 operations. He concluded that ADATE
generalizes better than neural network for this SPEED problem.

In the second example, we determines to construct a model for learning Wine Quality
dataset from UCI. This dataset has 11 numeric features, namely Fixedacidity, Volatileacid-
ity, Citricacid, Residualsugar, Chlorides, Freesulfurdioxide, Totalsulfurdioxide, Density,
Ph, Sulphates, Alcohol, and one numeric target variable quality whose its value ranges

5.2. Introduction to ADATE 45

fun f H =
2 realAdd (

r ea lMu l t i p l y (
4 H,

tanh (tanh (sq r t (tanh (tanh (tanh (tanh (tanh (H)))))))) 6) ,
6 realAdd (

tanh (H) ,
8 s q r t (3)

)
10)

from 0.0 to 10.0. A typical program synthetized by ADATE is as follows

Compare to programs generated for classification, we notice that ADATE does not use
divide and conquer strategy for regression. Or in other words, ADATE does not partition
data space into sub-space and then construct particular models for them, as the way tree
learners like M5 model or CART does. This prevents ADATE from overfitting due to the
difference in distribution between testing data and training data in sub-spaces.

5.2.4 ADATE to handle imbalanced dataset

In this section, another powerful aspect of ADATE system is mentioned when it is utilized
to tackle one of most popular issues in classification Machine Learning task, imbalanced
class. Normally, a practical real-world data set is composed predominately of instances
that approximately equally belong to different classes. The data set becomes imbalanced
when the amount of instances of some class shows a big deviation from other classes. In
the domain of skewed data set issue, a major part of cases is related to data sets that
only contain two classes: the negative class or majority class and positive class which is
considered as minority class. This binary class problem often appears in fields of medical
diagnosis, gene profiling and credit card fraud detection.

The data set we have chosen to introduce this problem,named Amazon Employee
Access, was from one of Kaggle competitions [3]. The data consists of real historical data
collected in 2010 and 2011. Description of the data is described as in table 5.1. The
model built should produce an output which is either 0 or 1 for attribute ACTION to
determine whether or not access should be granted to some employee. For this data set,
the number for majority class instances is 30872 while this number for minority class is
1897. This results in the a class ratio negative class : positive class that is 17 : 1.

Because the size of Amazon Employee Access data set is really big(over 32000 in-
stances), ADATE system has to take a few weeks to run and then produce non-trivial
results on a single Linux machine. Therefore, we have used a scaled version of Amazon
data set with only 2000 instances. The class ratio in this scaled data set is still 16 : 1,
nearly the same with the ratio in the original data set. By doing this way, we still follow
our purpose that is to observe how well the ADATE system can deal with an imbalanced
data set.

ADATE separates the data set into two parts of training and validation set with 1000
instances for each. There are two specification files for two experiments. The first one is
generated automatically using default settings for GRADE structure and output evaluation
function. In the second file, we have attempted to apply misclassifying costs by defining
our own GRADE structure as well as evaluation function.

46 Chapter 5. Introduction of ADATE system

fun f
2 (

F ixedac id i ty ,
4 Vo l a t i l e a c i d i t y ,

C i t r i c a c i d ,
6 Residualsugar ,

Chlor ides ,
8 Fre e su l f u rd i ox id e ,

To ta l su l f u rd i ox id e ,
10 Density ,

Ph ,
12 Sulphates ,

Alcohol
14) =

rea lMu l t i p l y (
16 Alcohol ,

realAdd (
18 Vo l a t i l e a c i d i t y ,

s igmoid (
20 r e a l Sub t r a c t (

realAdd (
22 realAdd (

l e t
24 fun g66316 V66317 =

realAdd (realAdd (V66317 , V66317) , V66317)
26 in

g66316 (
28 r e a l Sub t r a c t (Vo l a t i l e a c i d i t y , Res idua l sugar)

)
30 end ,

realAdd (
32 realAdd (

r ea lSub t r a c t (Density , C i t r i c a c i d) ,
34 r e a l Sub t r a c t (Density , Res idua l sugar)

) ,
36 r e a l Sub t r a c t (Vo l a t i l e a c i d i t y , Ch lo r ide s)

)
38) ,

V o l a t i l e a c i d i t y
40) ,

Su lphates
42)

)
44)

)

5.2. Introduction to ADATE 47

Attribute name Description

ACTION
ACTION is 1 if the resource was approved,

0 if the resource was not

RESOUCE An ID for each resource

MGR ID
The EMPLOYEE ID of the manager of the

current EMPLOYEE ID record

ROLE ROLLUP 1 Company role grouping category id 1

ROLE ROLLUP 2 Company role grouping category id 2

ROLE DEPTNAME Company role department description

ROLE TITLE Company role business title description

ROLE FAMILY DESC Company role family extended description

ROLE FAMILY Company role family description

ROLE CODE Company role code; this code is unique to each role

Table 5.1: Amazon Employee Access description

For skewed class problems, the accuracy ratio or error rate is not a appropriate measure
because the result usually dominate high frequency class. So we attempted to include
another measure, which is F-measure, in evaluation function. Performance of programs
generated will be evaluated by both numCorrect, which represent accuracy ratio, and
F-measure. We define GRADE structure as followings:

Our defined GRADE contains three real numbers. First number represents F-measure
value. Two remaining number are the TP (True Positive) rate and TN (True Negative)
rate, respectively. While F-measure is used in evaluating programs, TP and TN rate are
printed for observation. Also in GRADE structure, we define callback functions such as
op+ (an operator that adds two grades), comparisons (compare two grades), pack (
convert grade to string) and unpack (convert back from string to grade). For a brief
description of output evaluation function, we update values of F-measure, TP and TN in
grade after each iteration in which an instance is run. F-measure in this function holds a
role as the role of fitness function in genetic algorithm. Run this spec file in about several
hours, the best program generated in kingdom is presented in Code 5.1

On training data set, this program can classified correctly 99% instances. The positive
rate is 87.5%, negative rate is 100% and F-measure is 0.934. Obviously the performance
on training set is improved a lot in the comparison with the default spec file, which is
biased on negative instances and misclasifying most of positive instances.

48 Chapter 5. Introduction of ADATE system

s t r u c tu r e Grade : GRADE =
2 s t r u c t

4 type grade = r e a l ∗ r e a l ∗ r e a l
va l ze ro = (0 . 0 , 0 . 0 , 0 . 0)

6 va l op+ = fn ((point1 ,TP1, TN1) : r e a l ∗ r e a l ∗ r ea l , (point2 ,TP2,TN2)
: r e a l ∗ r e a l ∗ r e a l) => (po int1 + point2 , TP1 + TP2,TN1 + TN2)

8 va l comparisons = [fn ((X1 ,Y1 ,T1) , (X2 ,Y2 ,T2)) =>
case Real . compare (X1 , X2) o f

10 EQUAL => Real . compare (Y1 , Y2)
| C => C

12]

14 va l pack = fn (X, Y,Z) => ” (” ˆ Real . t oS t r i ng X ˆ ” , ” ˆ
Real . t oS t r i ng Y ˆ ” , ” ˆ Real . t oS t r i ng Z ˆ ”) ”

16

va l t oS t r i ng = pack
18

va l unpack = fn S => case S t r ing . explode S o f #” (” : : Xs =>
20 case dropwhi le (fn X => X <> #” , ” , Xs) o f : : Ys =>

case dropwhi le (fn X => X <> #” , ” , Ys) o f : : Zs =>
22

case Real . f romStr ing (St r ing . implode Xs) o f SOME X =>
24 case Real . f romStr ing (St r ing . implode Ys) o f SOME Y =>

case Real . f romStr ing (St r ing . implode Zs) o f SOME Z => (X, Y, Z)
26

va l toRealOpt = NONE
28

va l po s t p r o c e s s = fn X => X
30

end

5.2. Introduction to ADATE 49

Code 5.1: Evaluation function of Amazon Access Employee problem

fun f
2 (

X0real ,
4 X1real ,

X2real ,
6 X3real ,

X4real ,
8 X5real ,

X6real ,
10 X7real ,

X8real
12) =

case r e a lL e s s (X1real , X0real) o f
14 f a l s e => ACTION1

| t rue =>
16 case r e a lL e s s (X6real , X2real) o f

f a l s e => ACTION1
18 | t rue =>

case
20 case r e a lL e s s (realAdd (X4real , X3real) , X1real) o f

f a l s e => r e a lL e s s (s igmoid (X7real) , X2real)
22 | t rue =>

case r e a lL e s s (X3real , X7real) o f
24 f a l s e => f a l s e

| t rue =>
26 case r e a lL e s s (X0real , X3real) o f

f a l s e => (
28 case r e a lL e s s (X6real , X1real) o f

f a l s e => (
30 case r e a lL e s s (X1real , X3real) o f

f a l s e => r e a lL e s s (X7real , X6real)
32 | t rue => r e a lL e s s (X0real , X8real)

)
34 | t rue =>

case r e a lL e s s (X1real , X3real) o f
36 f a l s e => (

case r e a lL e s s (X5real , X6real) o f
38 f a l s e => r e a lL e s s (X2real , X7real)

| t rue => r e a lL e s s (X7real , X0real)
40)

| t rue => r e a lL e s s (X0real , X8real)
42)

| t rue => r e a lL e s s (X6real , X8real) o f
44 f a l s e => ACTION1

| t rue => ACTION0

Chapter 6

ADATE experiments: Design and
Implementation

In this chapter, we describe ADATE experiments in an investigation of possibilities to
improve M5 Model tree. While results of experiments will be collected and analyzed in
the next chapter, in this section we present how we choose the target for improvements,
how we design experiments in the respect to our research questions, then the way we
implement related libraries and specification files.

6.1 ADATE experiments design

6.1.1 Selecting targets

Before coming up with any approach in experiments design, we need to make an impor-
tant decision: which part of the M5 model tree should be put into ADATE system for
improvements? There are roughly three separating stages in constructing a M5 tree, that
is, splitting nodes, tree pruning and smoothing process. M5 tree uses standard deviation
as a metric to split nodes, then constructs linear models at internal nodes to estimate
test errors in pruning stage and finally remove discontinuity effect between leaf nodes in
smoothing stage. Although generally ADATE does not have any strict restrictions on the
input program, we think it would be reasonable for improved programs to still remain the
idea and nature of M5 model tree. So we was looking for parts that are less involved in
the main idea and not clearly explained in M5 algorithm. Our selected targets are:

• In Pruning : To estimate the error on unseen cases of a node (actually the linear
model in that node) or a subtree, M5 algorithm multiplies the training error with
a function of number of instances in that node and number of involved parameters,
as:

Err(test) =
n+ v

n− v
× Err(train) (6.1)

However in known documents for M5 [40] and M5’ [46] trees, there is no proof for
the goodness of this approximation. Actually finding a method to estimate the
testing error based on training error have been always a crucial task in Error-based
pruning. This motivated us in using Evolutionary algorithm to search for a effective
and reasonable Error-estimate function, with the above formula as started program.

51

52 Chapter 6. ADATE experiments: Design and Implementation

• In Smoothing : Smoothing is used to compensate for the sharp discontinuities that
will inevitably occur between adjacent linear models at the leaves of the pruned tree,
particularly for some models constructed from a small number of training instances.
The calculation in smoothing procedure described by Quinlan (1992) is:

p′ =
np+ kq

n+ k
(6.2)

where p′ is the prediction passed up to the next higher node, p is the prediction
passed to this node from below, q is the value predicted by the model at this node, n
is the number of training instances that reach the node below, and k is the constant
(default value 15). In [40] and [46], smoothing process were proved substantially
increase the performance of tree. However, similar to error estimation case, there
has been still not any proof that supports the smoothing function above. Thus it is
possible to try finding a better approximation of 6.5 by Evolutionary algorithm.

6.1.2 Datasets

In ADATE experiments we use 30 datasets mainly from UCI repository [10]. They have
the number of instances ranging from a few thousands to a few of ten thousands. They
contain varying numbers of numeric and nominal attributes. None of them have missing
value. An overview of selected datasets is introduced in Table 6.1. For each dataset to
be experimented, we used K-Fold cross validation technique that is to separate the set
into K different subsets, then train on K − 1 subsets and test on the remaining one. The
process is repeated K times (folds) to get the averaged result.

6.1.3 ADATE experiments design

A. M5 smoothing improvement by ADATE

In this experiment, our target is to investigate how and to what extent ADATE can
improve the performance of M5 tree learner after smoothing process. More particularly,
we use ADATE in a search for a so-called better program than 6.5 and apply to smoothing.
There are three experiments in total. The first experiment is only involved in one dataset
(California House) to see how ADATE performs on a specified problem. For the second
and the third experiment, we would like to make generated programs more generalized
and also avoid overfitting, thus we fit all datasets in Table 6.1 to train Evolutionary model
in ADATE.

Smoothing experiment 1: We choose to improve M5 tree on California House dataset
because the performance of M5 on this dataset is quite poor compared to other learners,
as shown in Table 6.2. So this offers a chance to possibly modify the M5 algorithm and
increase its performance on a specified dataset.

In this experiment, we divide the dataset into 10 folds. For each fold, there is a M5
tree built for 9/10 data and its performance is estimated on the remaining 1/10 data.
Then these 10 trees are fit into ADATE as inputs. However, ADATE is only trained on
the first 5 trees, the synthesized programs are validated on the latter 5 trees.

6.2. ADATE experiment implementation 53

Smoothing experiment 2: With only one dataset used to train ADATE, synthesized
programs might be good for that data itself but not effective for other cases, or in other
words, programs do not generalize well. This is actually the case we encounter in smooth-
ing experiment 1. To prevent this from happening, we attempt to bring more data into
ADATE system, say all 30 datasets. In this experiment, each dataset is split into training
set and test set with ratio 66% : 33%, the training set is for building M5 tree and test
set is used to measure its performance. Among 30 trees, 15 of them are brought into
ADATE to train the evolutionary system whereas the remaining 15 are used to validate
results. One might wonder why we need such many trees for validating, roughly the same
number of trees for training. The answer is to overcome overfitting problem. Evolution-
ary algorithm normally exhaustively searchs over the hyper-parameter space looking for
most-fitting programs to the training data and it usually leads to overfitting. Dealing with
overfitting always keeps a high priority in ADATE.

Smoothing experiment 3: During the smoothing experiment 2, we have known that
using only one tree each dataset to train ADATE programs is overfitting-prone when
these programs are tested on other folds. Thus we decided to increase the number of M5
trees each dataset in this experiment. More particularly, we build 5 different trees from 5
different folds of each dataset (so we have 150 trees in total), then 100 trees are used to
train ADATE programs and the remaining 50 trees are for validating. Results and related
discussion will be brought in the next chapter.

B. M5 pruning improvement by ADATE

Apply the similar setting as smoothing experiment 3, the only difference is the target
where we aim for improving the performance of pruning procedure in M5 tree. Here the
input program would be equation 6.3.

Err(test) =
n+ v

n− v
× Err(train) (6.3)

6.2 ADATE experiment implementation

This section briefly introduces the way we implement experiments described above. There
are two main modules. First we need implement a M5 model tree library that can take
data as input, produce a M5 tree and predict values for new cases. Then we prepare
specification files representing experiments conducted in ADATE. A full description of
specification file and how to use it is available in [2]. Generally, a specification file should
contain requirements for the functions to be synthesized to the system. Some of impor-
tant requirements include starting program, training and validating data, an evaluation
function to grade programs. All modules in this section are written in MLTON [8], an
optimization of functional programming Standard ML.

6.2.1 Linear model library

In this section we present our implementation for constructing the linear model in each
internal node of M5 tree. An overview of approaches to solve a linear regression problem
has been mentioned in Chapter 4. Here we choose the ordinary least square (OLS),

54 Chapter 6. ADATE experiments: Design and Implementation

the simplest and thus most common estimator. The OLS method minimizes the sum of
squared residuals, and leads to a closed-form expression for the estimated value of the
unknown set of coefficient:

x = (AT .A)−1.(AT .b) (6.4)

The expression 6.4 also means we have to solve a matrix equation as described in 6.5.

(ATA).x = (AT .b) (6.5)

For an optimization of learning speed, we adopted library OpenBLAS [9] to implement
matrix solving operation in 6.5. OpenBLAS is an optimized BLAS library [4] which are
routines that provide standard building blocks for performing basic vector and matrix
operations. Because the BLAS are efficient, portable, and widely available, they are
commonly used in the development of high quality linear algebra software. The interface
using OpenBLAS is written in C language.

To take over of singular matrix problem, we use a modified matrix A. Each time A
is proved as a singular matrix, a pre-determined constant, namely ridge is added to each
element in the diagonal of matrix A to form a new matrix which is no longer singular.
The ridge is small enough to ensure the change made to A is really trivial. Complete code
for solve matrix function is presented in Code 6.1

Code 6.1: Solve matrix function

1 void s o l v e (i n t N, i n t NRHS, double ∗ A, double ∗ B) {
i n t n = N, nrhs = NRHS, lda = N, ldb = NRHS, i n f o ;

3 i n t i p i v [N] ;

5 i n t su c c e s s = 0 ;
double r i dg e = 10ˆ(−8);

7 i n t i , j ;
whi l e (su c c e s s == 0){

9 i n f o = LAPACKE dgesv(LAPACKROWMAJOR, n , nrhs , &A[0] , lda ,
&i p i v [0] , &B[0] , ldb) ;

11 i f (i n f o > 0) {
f o r (i = 0 ; i < n ; i++){

13 A [i ∗n + i] = A[i ∗n + i] + r idge ;
}

15 r i dg e = r idge ∗ 1 0 . 0 ;
}

17 e l s e
su c c e s s = 1 ;

19 }
}

Besides matrix solving operation, we also implemented other vector and matrix oper-
ations with OpenBLAS library, such as matrix-matrix multiplying, matrix-vector multi-
plying and vector-vector multiplying. OpenBLAS helps saving a lot of running time for
our models. To be able to use OpenBLAS functions that are written in C, we need foreign
function interface of MLTON that allows accessing and manipulating C data from SML.
In Code 6.2, we declare MLTON functions that make callbacks to C functions. Full code
of linear library is shown in Appendix A.

6.2. ADATE experiment implementation 55

Code 6.2: Code defining C functions in MLTON

va l C createCArr = import ” createCArr ” pub l i c : i n t ∗ int−> r e a l array ;
2 va l C toCArr = import ”toCArr” pub l i c : r e a l array ∗ i n t −> r e a l array ;

va l C freeVec = import ” f reeVec ” pub l i c : r e a l array −> uni t ;
4 va l C printMat = import ”printMat” pub l i c : r e a l array ∗ i n t ∗ i n t −> uni t ;

va l C mulVV = import ”mulVV” : i n t ∗ r e a l array ∗ r e a l array −> r e a l ;
6 va l C mulMV = import ”mulMV” pub l i c : i n t ∗ i n t ∗ i n t ∗ r e a l array ∗

r e a l array ∗ r e a l array −> uni t ;
8 va l C mulMM = import ”mulMM” pub l i c : i n t ∗ i n t ∗ i n t ∗ i n t ∗ r e a l array ∗

r e a l array ∗ r e a l array−> uni t ;
10 va l C mseCal = import ”mseCal” pub l i c : i n t ∗ i n t ∗ r e a l array ∗

r e a l array ∗ r e a l array ∗ r e a l array ∗ r e a l array −> r e a l ;
12 va l C maeCal = import ”maeCal” pub l i c : i n t ∗ i n t ∗ r e a l array ∗ r e a l array

∗ r e a l array ∗ r e a l array ∗ r e a l array −> r e a l ;
14 va l C so lve = import ” s o l v e ” pub l i c : i n t ∗ i n t ∗ r e a l array ∗

r e a l array −> r e a l array ;

Then, a complete function that fit a linear model from data in MLTON is defined as
follows in Code 6.3. For a short explanation, this function completely follows the equation
6.5 where A is matrix data and b is the vector of response values. Note that we only take
set of attributes that are used in test or splitting below the node, thus A itself contains
selected features instead of full data.

Code 6.3: fit a Linear model

1 fun l inearMode l (usedAtts , dataVals : r e a l l i s t l i s t ,
c l a s sVa l s : r e a l l i s t) =

3 l e t
va l se l ec tedDataVal s = s e l e c t edAt t s (usedAtts , dataVals)

5 va l nRows = l e n g t h o f l i s t (c l a s sVa l s)
va l nCols = l e n g t h o f l i s t (g e t i t h e l em e n t o f l i s t (se lectedDataVals , 1))

7 va l selectedData2Mat = fromLi s t s (se l ec tedDataVal s)
va l c la s sVa l s2Vec= Array . f romList c l a s sVa l s

9 va l A = Array . array (nCols ∗ nCols , 0 . 0)
va l b = Array . array (nCols , 0 . 0)

11 va l = C mulMM(1 , nCols , nRows , nCols , selectedData2Mat , selectedData2Mat , A)
va l = C mulMV(1 ,nRows , nCols , selectedData2Mat , c lassVals2Vec , b)

13 va l N = nCols
va l NRHS = 1

15 va l = C so lve (N,NRHS, A, b)
va l BsmlAr = CArr2SMLArray(b ,N)

17 in
(selectedData2Mat , BsmlAr)

19 end

6.2.2 M5 tree library

A M5 node contains node identification, the attribute position and attribute value it is
split, list of attributes that are in split below (to construct the linear model at this node),
the values of features X and Y reaching this node. A M5 tree is defined as a group of the
current node, left tree and right tree. M5 tree structure is shown in Code 6.4

56 Chapter 6. ADATE experiments: Design and Implementation

Code 6.4: Define M5 node and M5 tree structure

1 type M5Node = {
id : int ,

3 s p l i tA t t : int ,
s p l i tVa l : r ea l ,

5 usedAtts : bool l i s t ,
c l a s sVa lue s : r e a l l i s t ,

7 dataValues : r e a l l i s t l i s t
}

9 datatype M5Tree = empty | node o f M5Node ∗ M5Tree ∗ M5Tree

Basically there are three modules in M5 tree library: growing the tree (splitting nodes),
pruning tree and smoothing tree.

Growing M5 tree

Each time M5 tree needs to split a node, it traverses all available features in dataset
to choose the best split. For each feature, first it sorts feature values in a ascending
manner. In our implementation, we apply quick sort method to optimize the speed of our
model. There are n−1 possible spit positions in a feature with n different values. For each
of them, a reduce in standard deviation of class values is calculated before and after the
split then the one with most reduction is selected. An overview of modules implemented
to grow a M5 tree is presented in Figure 6.1

To demonstrate, MLTON implementation of findBestSplit function is shown in Code
6.5.

Pruning M5 tree

Pruning M5 tree is proceeded in a recursive manner from the leaves to the root. At
each node, first a linear model is built taking only attributes that are tested in nodes
below. However, to overcome overfitting, terms in the linear model is still remove greedily
as long as removing a term does not reduce its performance. In our implementation, we
apply the same method with Weka that uses Akaike criterion to grade the goodness of fit
of linear models. Error is estimated by Mean Squared Error. A more detailed description
of this module is drawn as in Figure 6.2

SML code for M5 tree pruning function is given is Code 6.6.

Code 6.6: M5 pruning function

1 fun prune (t r e e : M5Tree , pa r en l i n ea rD i c t , numAtts : int , i n i tVa l s)
: i n t ∗ r e a l ∗ (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t ∗ r e a l array ∗ M5Tree =

3 case t r e e o f
empty => r a i s e prune ONEBRANCH

5 | node (crrNode , empty , empty) =>
(

7 case f indBes tL inea r (crrNode) o f (l i n e a r , s e l e c t edAt t s , s e l ec tedDataVal s)
=> case co e f s 2Fu l lL in ea rCoe f s (s e l e c t edAt t s , l i n e a r , numAtts) o f

9 f u l l L i n e a rCo e f s => case l e n g t h o f l i s t (#c l a s sVa lue s crrNode) o f m =>
case mseCal (m, countSe l ec tedAtt s s e l e c t edAt t s + 1 , se lectedDataVals ,

11 l i n e a r , Array . f romList (#c l a s sVa lu e s crrNode)) o f e r r o r =>

6.2. ADATE experiment implementation 57

Figure 6.1: Flow chart of M5 tree growing module

58 Chapter 6. ADATE experiments: Design and Implementation

Code 6.5: Find best split in an attribute

1 fun f i n dBe s t Sp l i t (a t tVa l s : r e a l array , c l a s sVa l s : r e a l array ,
numInstances : int , counter : int , s p l i t I ndex , minSD) : i n t ∗ r e a l =

3 case numInstances − counter o f
0 => (sp l i t I ndex , minSD)

5 | : i n t =>
case counter o f

7 1 =>
(case separateArray (1 , numInstances , c l a s sVa l s , a t tVa l s) o f

9 (subArray1 , subArray2 , new counter) =>
case (SD Calculat ion subArray1) ∗ r e a l (new counter) +

11 (SD Calculat ion subArray2) ∗ r e a l (numInstances − new counter)
o f minSDTemp =>

13 case numInstances − new counter o f
0 => (1 , 9999999 .0)

15 | => f i n dBe s t Sp l i t (attVals , c l a s sVa l s , numInstances ,
new counter + 1 , new counter ,minSDTemp))

17 | =>
(case separateArray (counter , numInstances , c l a s sVa l s , a t tVa l s) o f

19 (subArray1 , subArray2 , new counter) =>
case numInstances − new counter o f

21 0 => (sp l i t I ndex , minSD)
| =>

23 case (SD Calculat ion subArray1) ∗ r e a l (new counter) +
(SD Calculat ion subArray2)∗ r e a l (numInstances− new counter)

25 o f minSDTemp => case minSDTemp < (minSD − 0 .000001) o f
t rue => f i n dBe s t Sp l i t (attVals , c l a s sVa l s , numInstances ,

27 new counter + 1 , new counter ,minSDTemp)
| f a l s e => f i n dBe s t Sp l i t (attVals , c l a s sVa l s , numInstances ,

29 new counter + 1 , sp l i t I ndex ,minSD))

6.2. ADATE experiment implementation 59

Figure 6.2: Flow chart of M5 tree pruning module

60 Chapter 6. ADATE experiments: Design and Implementation

(1 , e r ror , pa r en l i n ea rD i c t , f u l l L i n ea rCoe f s , t r e e))
13

| node (crrNode , l Tree , r Tree) =>
15

case prune (l Tree , pa r en l i n ea rD i c t , numAtts , i n i tVa l s) o f
17 (l params , l e r r o r , l d i c t , l l i n e a r , l prunedTree) =>

case prune (r Tree , l d i c t , numAtts , i n i tVa l s) o f
19 (r params , r e r r o r , r d i c t , r l i n e a r , r prunedTree) =>

21 case f indBes tL inea r (crrNode) o f
(l i n e a r , s e l e c t edAt t s , s e l ec tedDataVal s) =>

23 case co e f s 2Fu l lL in ea rCoe f s (s e l e c t edAt t s , l i n e a r , numAtts) o f
f u l l L i n e a rCo e f s =>

25 case l e n g t h o f l i s t (#c l a s sVa lue s crrNode) o f m =>
case mseCal (m, countSe l ec tedAtt s s e l e c t edAt t s + 1 , se lectedDataVals ,

27 l i n e a r , Array . f romList (#c l a s sVa lu e s crrNode)) o f nodeError =>
case nodeError ∗ pruneFactor (Real . f romInt m, Real . f romInt

29 (countSe l ec tedAtt s s e l e c t edAt t s + 1) , i n i tVa l s) o f adjustedNodeError =>
case (l e r r o r ∗ (getNumInstances l Tr e e) + r e r r o r ∗

31 (getNumInstances r Tree)) / Real . f romInt m of t r e eEr ro r =>
case t r e eEr ro r ∗ pruneFactor (Real . f romInt m, Real . f romInt

33 (l params + r params + 1) , i n i tVa l s) o f adjustedTreeError =>
case adjustedNodeError > adjustedTreeError o f

35 t rue =>
(l params + r params + 1 , t reeError , (getID l prunedTree ,

37 getNumInstances l prunedTree , l l i n e a r) : : (getID r prunedTree ,
#id crrNode , getNumInstances r prunedTree , r l i n e a r) : : r d i c t ,

39 f u l l L i n ea rCoe f s , node (crrNode , l prunedTree ,
| f a l s e =>

41 (countSe l ec tedAtt s s e l e c t edAt t s + 1 , nodeError , r d i c t ,
f u l l L i n ea rCoe f s , node (crrNode , empty , empty))

Smoothing M5 tree
Smoothing process goes from leaf nodes along the path to the root node. When it comes
to a node in the way, coefficient values of the linear model in leaf nodes are updated
according to value of that node. Functions implemented for this module is introduced in
Figure 6.3

6.2.3 Writing specification file

Specification file is fed to ADATE system and serve as a base to generate evolutionary
programs. It is written in ADATE-ML, a subset of Standard ML that is used by ADATE
’s inferred programs. The main motivation for using a custom language instead of all of
ML is to get a simpler language and one that is purely functional. The main features of
ML that are left out of ADATE-ML are higher order functions, fully polymorphic typing,
syntactic sugar (extra possibilities to write semantically equal code in different ways) and
the module system.

First and foremost, this file contains a f(.) function, that is the starting program for
ADATE. Code 7.1 show f(.) function for smoothing experiments while Code 7.6 show
f(.) function for pruning experiments.

Then, the specification file loads data in datasets and build trees. Actually ADATE
system considers those M5 trees as data. Its operations of training and validating programs
are processed on M5 trees. A code example for this is given in Code 6.9

6.2. ADATE experiment implementation 61

Figure 6.3: Flow chart of M5 tree smoothing module

Code 6.7: f function for smoothing experiments

fun f ((P, Q, N) : r e a l ∗ r e a l ∗ r e a l) : r e a l =
2 case to r (r cons t (0 , 5 . 0 , 1 5 . 0)) o f K =>

case r ea lMu l t i p l y (K,N) o f NewK =>
4 r e a lD iv i d e (

realAdd (
6 P,

r ea lMu l t i p l y (Q, NewK)
8) ,

realAdd (1 . 0 , NewK)
10)

62 Chapter 6. ADATE experiments: Design and Implementation

Code 6.8: f function for pruning experiments

fun f ((E, IN , IV) : r e a l ∗ r e a l ∗ r e a l) : r e a l =
2 case (rea lLessOrEqual (IV , IN)) o f

t rue =>
4 r e a lMu l t i p l y (

E,
6 10 .0

)
8 | f a l s e =>

(
10 case to r (r cons t (0 , 0 . 1 , 1 . 0)) o f K =>

r e a lMu l t i p l y (
12 E,

r ea lD iv i d e (
14 realAdd (

IV ,
16 r e a lMu l t i p l y (K, IN)

) ,
18 r e a l Sub t r a c t (

IV ,
20 IN

)
22)

)
24)

Code 6.9: f function with data loading code

(∗ make dataTrain , dataVal id f o r Inputs − one Fold ∗)
2 va l a l lXy = L i s t .map readXy data s e t Input s

va l oneCV allXy = L i s t .map (oneCVSplit 0 . 33) al lXy
4 va l (dataTrain , dataVal id Inputs) = t ra inVa l idSepara t e

(oneCV allXy , [] , [])
6 va l a l lT r e e s I npu t s = L i s t .map build unPrunedTree dataTrain

va l a l lXva l i d I npu t s = L i s t .map #1 dataVal id Inputs
8 va l a l lYva l i d I npu t s = L i s t .map #2 dataVal id Inputs

10 (∗ make data f o r Tes t input s − 5 Folds ∗)
va l t r e e X v a l i d y v a l i d l i s t l i s t = L i s t .map (treeValidData nCV (0 . 2 , 5))

12 da ta s e t Te s t i npu t s
va l a l lT r e e s Te s t i npu t s = L i s t . concat (L i s t .map #1

14 t r e e X v a l i d y v a l i d l i s t l i s t)
va l a l lXva l i d Te s t i npu t s = L i s t . concat (L i s t .map #2

16 t r e e X v a l i d y v a l i d l i s t l i s t)
va l a l lYva l i d Te s t i npu t s = L i s t . concat (L i s t .map #3

18 t r e e X v a l i d y v a l i d l i s t l i s t)

6.2. ADATE experiment implementation 63

Finally, an output evaluation function is defined to measure performance of programs
generated. Performance is calculated on validation data, i.e. the 1/10 fold when remain-
ing 9/10 data is used for training. The selected metric is relative mean squared error
(RelMSE), that is mean squared error divided by the variance of data. We choose this
metric instead of mean squared error to make the range of errors in interval of (0, 1) and
thus eliminate the effect due to the difference of values range from different datasets.

In our implementation of evaluation function, we use a little trick to avoid overfitting.
Particularly, we set a threshold for each dataset such that if the error of a newly generated
program on the current dataset is less than that threshold, we will set the error to that
threshold. This prevents programs from being so good that losing its generalized ability.
A threshold is estimated as a proportional to the error of original program on each dataset.
This segment of code is shown in Code 6.10

Code 6.10: Avoid overfitting in evaluation function

va l i n i tE r r o r = L i s t . nth (initRelMSE , I)
2 va l e r r o r =

i f I >= N then
4 ActualError

e l s e i f ActualError < (1 . 0 − Threshold) ∗ i n i tE r r o r then
6 (1 . 0 − Threshold) ∗ i n i tE r r o r

e l s e
8 ActualError

64 Chapter 6. ADATE experiments: Design and Implementation

Datasets Instances
Missing values
(%)

Numeric
attributes

Nominal attributes

2D Planes 40768 0.0 10 0

Abalone 4177 0.0 7 1

Add10 9792 0.0 10 0

Ailerons 13750 0.0 40 0

bank8FM 8192 0.0 8 0

bank32nh 8192 0.0 32 0

California House 20640 0.0 8 0

CASP 45730 0.0 9 0

CBM 11934 0.0 17 0

Combined Cycle Power Plant 9568 0.0 5 0

CPU (small) 8192 0.0 9 3

Delta Ailerons 7129 0.0 5 0

Delta Ail 7129 0.0 6 0

Anacalt 4052 0.0 1 6

CPU Act 8192 0.0 19 2

Delta Elevator 9517 0.0 5 0

Relation Network Directed 53413 0.0 22 0

Elevators 16599 0.0 18 0

Fried Delve 40768 0.0 10 0

housePrice8 22784 0.0 8 0

housePrice16 22784 0.0 16 0

hwang 13600 0.0 11 0

Kinematics8nm 8192 0.0 8 0

MV artificial 40768 0.0 7 3

parkinsons updrs 5875 0.0 19 2

Pole48 15000 0.0 48 0

Pole Telecom 14998 0.0 26 0

puma8NH 8192 0.0 8 0

puma32H 8192 0.0 32 0

Wine Quality 4898 0.0 11 0

Table 6.1: Overview description of 30 datasets in ADATE experiments

Root MSE Relative Root MSE

M5 Prime 58829.80 0.51

Bagging 52904.87 0.458

M5 Rules 55784.75 0.483

Additive Regression 57645.78 0.499

Table 6.2: A comparison of different learners on California House dataset

Chapter 7

ADATE experiments: Results and
Discussion

In this chapter, result of experiments described in Chapter 6 are presented and analyzed.
Results include synthesized programs for each target and their performances in a compar-
ison to the original expression used in M5 algorithm. We apply Relative Mean Squared
Error (RelMSE) as a measure of programs’ performance.

7.1 M5 smoothing improvement experiments

Aim for modifying the expression employed in smoothing procedure,

p′ =
np+ kq

n+ k
(7.1)

we start this experiment by a program that represents the expression 7.1, as given in
Code 7.1.

Code 7.1: Starting program for smoothing experiment

fun f ((P, Q, N) : r e a l ∗ r e a l ∗ r e a l) : r e a l =
2 case to r (r cons t (0 , 5 . 0 , 1 5 . 0)) o f K =>

r e a lD iv i d e (
4 realAdd (

r ea lMu l t i p l y (P, N) ,
6 r e a lMu l t i p l y (Q, K)

) ,
8 realAdd (N, K)

)

7.1.1 M5 smoothing on California House dataset

Recall that in this experiment, we divide the dataset into 10 folds. For each fold, there is a
M5 tree built for 9/10 data and its performance is estimated on the remaining 1/10 data.
However these M5 trees are not smoothed, instead they waits for programs generated by
ADATE to smooth later. Performance of a program is estimated by applying a tree with
new smoothing function on validation set. ADATE trains its model with the first 5 trees

65

66 Chapter 7. ADATE experiments: Results and Discussion

while preserving the last 5 trees for validation. Two of programs generated by ADATE,
f1 and f2, are given in Code 7.2 and Code 7.3. While f2 program is the best program
that ADATE can synthesize in the pre-determined amount of time, f1 program is picked
randomly along the evolutionary process so we can have a broader perspective of how
ADATE works.

Code 7.2: f1 program generated for smoothing experiment on California House

1 fun f1 (P, Q, N) =
case

3 case r cons tLe s s (N, r cons t (0 , 2 . 5 , 4 .549819233)) o f
f a l s e => to r (r cons t (11 , 0 .402491214607 , 20.0199634135))

5 | t rue =>
r e a l Sub t r a c t (to r (r cons t (0 , 2 . 5 , 3 .52146578646)) , N) o f

7 V100E3 =>
r e a lD iv i d e (

9 realAdd (r ea lMu l t i p l y (P, N) , r e a lMu l t i p l y (Q, V100E3)) ,
realAdd (N, V100E3)

11)

It is obvious that f2 is more complicated than f1. The results validated on California
House also shows that f2 performs better than f1. Further more, f1 is actually worse than
original f program. This fact can be explained by the way we conduct this experiment
that only 5 out of 10 trees are used to train ADATE, thus f1 might not be generalized well
when it is tested on all 10 folds of this dataset. To see how these two programs perform
on other datasets, we have tested them on remaining 29 datasets, all with 10 folds cross
validation, the result is presented in Table 7.1.

From Table 7.1, f1 performs better than original f program at 15 out of 30 datasets,
however it is worse than f program for overall score, with a sum of RelMSE over 30 datasets
being 12.2850 compared to 12.2838. On the other hands, f2 program beats f program for
17 datasets and yields a better overall score than f, with a RelMSE being 12.27321646. For
the California House dataset that is used to train ADATE in this experiment, the program
f2 can improve performance of M5 tree up to 0.2%. Among all datasets, f2 offers the
most increase in predictive accuracy for CASP with 0.98%. f2 also generalize quite well
on other datasets ,although the results are not too significant.

7.1.2 M5 smoothing on 30 datasets - one fold

Different from the first experiment, in this case we were looking for a more stable and
generalized program that hopefully can improve the ”quality” of smoothing process on
not only one but many datasets. To achieve that, we fit data from all 30 datasets to
ADATE, 20 of them for training and 10 for validating. Also, for each dataset we separate
only one fold, with training set over testing set ration being 66% : 33%, for the purpose of
optimizing ADATE training time. Here we present Code 7.4 as the best program ADATE
could come up with.

As a result, generally f6 offers a higher performance than f on the same testing sets
(each dataset is split with ratio 66% : 33% into training set and testing set). In Table 7.2,
we can see that the overall relative mean squared error of f and f6 for 1-fold validation are
12.40057527 and 12.31773707 respectively. Among all datasets, f6 significantly increase
the accuracy of M5 model tree up to 7% on CASP dataset.

7.1. M5 smoothing improvement experiments 67

Code 7.3: f2 program generated for smoothing experiment on California House

1 fun f2 (P, Q, N) =
case r e a lD iv id e (to r (r cons t (0 , 5 . 0 , 15 .0)) , N) o f

3 K =>
case

5 Math . tanh (
realAdd (

7 realAdd (
realAdd (

9 to r (r cons t (0 , 0 . 25 , 0 .360557744994)) ,
case

11 case
r e a lD iv i d e (

13 K,
r ea lSub t r a c t (

15 to r (r cons t (0 , 0 . 25 , 0 .233256970613)) ,
K

17)
) o f

19 V207F0 => realAdd (V207F0 , V207F0) o f
V1BD3F => r e a lMu l t i p l y (V1BD3F, V1BD3F)

21) ,
K

23) ,
K

25)
) o f

27 V2E3 =>
r e a lD iv i d e (

29 realAdd (r ea lMu l t i p l y (P, V2E3) , r e a lMu l t i p l y (Q, K)) ,
realAdd (V2E3 , K)

31)

Code 7.4: f6 program generated for smoothing experiment on 30 datasets- one fold

1 fun f6 (P, Q, N) =
case

3 r cons tLe s s (N, r cons t (5 , 0 .03156328125 , 0.151467238993)) o f
f a l s e => Q

5 | t rue =>
case

7 case r cons tLe s s (N, r cons t (0 , 0 . 25 , 0 .107651670053)) o f
f a l s e => N

9 | t rue =>
r e a lMu l t i p l y (

11 to r (r cons t (39 , 0.7949666685788486E˜7 , 18.4730153162)) ,
N

13) o f
V7AA56 =>

15 r e a lD iv i d e (
realAdd (P, r e a lMu l t i p l y (Q, V7AA56)) ,

17 realAdd (1 . 0 , V7AA56)
)

68 Chapter 7. ADATE experiments: Results and Discussion

However, when we check the overfiting possibility of f6 by testing on 10-folds cross
validation, Table 7.2 shows that it is not as good as original f program. More particularly,
f6 scores an overall RelMSE of 12.3019379, higher than f with 12.28380234. So we can
conclude that using only one fold of datasets to train ADATE system causes programs
generated by ADATE overfitted, or in other words loose its generalization ability.

7.1.3 M5 smoothing on 30 datasets - five folds

We have seen that fitting only one tree each dataset to ADATE makes generalization
ability of ADATE programs worse, as given in finding in experiment number 2 above.
Therefore in the experiment number 3, we hope to overcome this problem by increase the
number of trees each dataset to 5. Theoretically, more training data means more patterns
are captured and it increases the chance ADATE programs could perform well on testing
data. And actually the result of this experiment proves our hypothesis is right. Program
f10, given in Code 7.5, scores better relative mean squared error than f.

Code 7.5: program f10 generated for smoothing experiment on 30 datasets- five folds

fun f (P, Q, N) =
2 case

realAdd (
4 N,

r ea lMu l t i p l y (to r (r cons t (2 , 2 .5125 , 20 . 025)) tanh (N))
6) o f

NewK =>
8 r e a lD iv i d e (

realAdd (P, r e a lMu l t i p l y (Q, NewK)) ,
10 realAdd (1 . 0 , NewK)

)

Out of 30 datasets, f10 gives higher performance than f on 19 datasets, especially
highest improvement for housePrice16 with an increase of 1.62%. We calculate the overall
relative mean squared error of program f10 is 12.26619365, 1.76% lower than this number
for f. Details for this experiment’ s results are presented in Table 7.1.3

To summarize this section of M5 smoothing experiments, f10 is the best program
generate by ADATE to alter the original expression used in smoothing process 7.1. It
can improve the performance of M5 up to 1.76% on 30 tested datasets.

7.2 M5 pruning improvement experiments

For pruning experiments, our target is to find alternative programs rather than (n+v)/(n−
v) for estimating error on unseen cases from training error. To start, the input f program
representing this expression is fed to ADATE system. The SML starting program is shown
in Code 7.6.

Similar to experiment number 3 as in smoothing, here we also use all 30 datasets
divided into 5 folds. One minor difference is that we replace Electricity Boards dataset by
Relation Network Directed dataset because the effect of M5 learner on Electricity Boards
is not much. As a result, f14 is the best program synthesized during the evolutionary
process. f14 is given in Code 7.7.

7.2. M5 pruning improvement experiments 69

Code 7.6: f stating program for pruning experiments

1 fun f ((E, IN , IV) : r e a l ∗ r e a l ∗ r e a l) : r e a l =
case (rea lLessOrEqual (IV , IN)) o f

3 t rue =>
r e a lMu l t i p l y (

5 E,
10 .0

7)
| f a l s e =>

9 (
case to r (r cons t (0 , 0 . 1 , 1 . 0)) o f K =>

11 r e a lMu l t i p l y (
E,

13 r e a lD iv i d e (
realAdd (

15 IV ,
r e a lMu l t i p l y (K, IN)

17) ,
r e a l Sub t r a c t (

19 IV ,
IN

21)
)

23)
)

Code 7.7: best program for pruning experiment

fun f4 (E, IN , IV) =
2 case rea lLessOrEqual (IV , IN) o f

f a l s e =>
4 r e a lMu l t i p l y (

E,
6 r e a lD iv i d e (

realAdd (
8 IV ,

r e a lMu l t i p l y (
10 case

r cons tLe s s (
12 IV ,

r cons t (0 , 0 . 25 , 0 .117780139933)
14) o f

f a l s e => IV
16 | t rue =>

realAdd (to r (r cons t (1 , 0 .1005 , 1 .201)) , IV) ,
18 IN

)
20) ,

Math . tanh (r ea lSubt r a c t (IV , IN))
22)

)
24 | t rue =>

r e a lMu l t i p l y (IN , to r (r cons t (0 , 25 . 0 , 27.7810244153)))

70 Chapter 7. ADATE experiments: Results and Discussion

10-folds cross validation results of program f14 are presented in Table 7.4. It signifi-
cantly improve performance of M5 tree on parkinsons dataset with an increase of 2.36%.
Totally for all datasets, f14 yields a relative mean squared error of 11.51642588, better
than original program f with 11.56851245. An improvement of 5.21% over 30 datasets is
really an encouraging result for us.

7.2. M5 pruning improvement experiments 71

Dataset RelMSE f RelMSE f1 RelMSE f2

2DPlanes 0.227161553 0.227161522 0.227162688

Abalone 0.656460111 0.656939107 0.655382643

Add10 0.382324554 0.384503829 0.384701841

Ailerons 0.397625081 0.397506567 0.39728005

bank8FM 0.200856563 0.200639324 0.20078268

bank32nh 0.680085028 0.679707724 0.678022783

California House 0.471389635 0.477965165 0.469703371

CASP 0.742078189 0.741549541 0.732261045

CBM 0.020538716 0.019144381 0.022579367

Combined Cycle Power Plant 0.223177903 0.222847986 0.223063674

CPU (small) 0.168704594 0.170095243 0.169367971

Delta Ailerons 0.541864674 0.543569906 0.540750576

Delta Ail 0.541864674 0.543569906 0.540750576

Anacalt 0.147834494 0.147492776 0.150025514

CPU Act 0.146842842 0.146053296 0.145742638

Delta Elevator 0.599225594 0.599034811 0.598898679

ElectricityBoards 45781 1.000527406 1.000527406 1.000527406

Elevators 0.326046226 0.325773621 0.324953257

Fried Delve 0.296136539 0.299393719 0.300237193

housePrice8 0.675514062 0.678325835 0.67206411

housePrice16 0.624965699 0.603060349 0.616811994

hwang 0.243564421 0.24356442 0.24356442

Kinematics8nm 0.641145917 0.642893848 0.641975142

MV artificial 0.01611187 0.016180068 0.01681686

parkinsons 0.402836996 0.402652005 0.402502403

Pole48 0.128566662 0.129874572 0.130961437

Pole Telecom 0.12535655 0.126034034 0.128036381

puma8NH 0.573613771 0.57354215 0.574000948

puma32H 0.282301321 0.283485084 0.28844738

Wine Quality 0.7990807 0.801956278 0.795841432

Sum RelMSE 12.28380234 12.28504447 12.27321646

Table 7.1: Results of f1 and f2 programs on 30 datasets

72 Chapter 7. ADATE experiments: Results and Discussion

Dataset 10-fold RelMSE 1-Fold RelMSE

f f6 f f6

2DPlanes 0.227161553 0.227161521 0.225507374 0.225505361

Abalone 0.656460111 0.655865296 0.672864009 0.683176672

Add10 0.382324554 0.383464231 0.39935063 0.401003246

Ailerons 0.397625081 0.397541655 0.398175898 0.397942079

bank8FM 0.200856563 0.200815488 0.196253619 0.19608286

bank32nh 0.680085028 0.679093716 0.690485416 0.689587774

California House 0.471389635 0.472194748 0.473354878 0.47367005

CASP 0.742078189 0.746160788 0.841869122 0.771423114

CBM 0.020538716 0.019941859 0.011341854 0.012236432

Combined Cycle Power Plant 0.223177903 0.229225919 0.231948255 0.232598596

CPU (small) 0.168704594 0.170471412 0.167757819 0.169789544

Delta Ailerons 0.541864674 0.541182197 0.53138945 0.529307517

Delta Ail 0.541864674 0.541182197 0.53138945 0.529307517

Anacalt 0.147834494 0.150617786 0.126668861 0.127428519

CPU Act 0.146842842 0.147867509 0.138701062 0.140345635

Delta Elevator 0.599225594 0.599050555 0.60336591 0.605169481

ElectricityBoards 45781 1.000527406 1.000527406 1.000331157 1.000331157

Elevators 0.326046226 0.32556866 0.33170983 0.331617126

Fried Delve 0.296136539 0.298250616 0.307437999 0.309687432

housePrice8 0.675514062 0.675731452 0.65624039 0.65089561

housePrice16 0.624965699 0.624217147 0.565388057 0.558752692

hwang 0.243564421 0.243564421 0.246722836 0.246722836

Kinematics8nm 0.641145917 0.641850515 0.665371991 0.6668078

MV artificial 0.01611187 0.016156174 0.020745204 0.020810186

parkinsons 0.402836996 0.402701654 0.413909074 0.413584302

Pole48 0.128566662 0.13048015 0.130860254 0.132594752

Pole Telecom 0.12535655 0.127247584 0.143534395 0.139762772

puma8NH 0.573613771 0.573607746 0.569334875 0.569181979

puma32H 0.282301321 0.282524597 0.287756993 0.289087637

Wine Quality 0.7990807 0.797672909 0.820808609 0.803326396

Sum RelMSE 12.28380234 12.3019379 12.40057527 12.31773707

Table 7.2: Results of f6 on 30 datasets for 1-fold and 10-fold cross validation

7.2. M5 pruning improvement experiments 73

Dataset 10-folds RelMSE f 10-folds RelMSE f10

2DPlanes 0.227161553 0.227161528

Abalone 0.656460111 0.655592868

Add10 0.382324554 0.384846306

Ailerons 0.397625081 0.397481412

bank8FM 0.200856563 0.200729179

bank32nh 0.680085028 0.6778643

California House 0.471389635 0.470022093

CASP 0.742078189 0.744579252

CBM 0.020538716 0.0189431

Combined Cycle Power Plant 0.223177903 0.223072125

CPU (small) 0.168704594 0.17011096

Delta Ailerons 0.541864674 0.540676429

Delta Ail 0.541864674 0.540676429

Anacalt 0.147834494 0.147969192

CPU Act 0.146842842 0.145835501

Delta Elevator 0.599225594 0.599005296

ElectricityBoards 45781 1.000527406 1.000527406

Elevators 0.326046226 0.325110807

Fried Delve 0.296136539 0.300005511

housePrice8 0.675514062 0.669793896

housePrice16 0.624965699 0.608727861

hwang 0.243564421 0.24356442

Kinematics8nm 0.641145917 0.642474146

MV artificial 0.01611187 0.016196949

parkinsons 0.402836996 0.402612482

Pole48 0.128566662 0.130234177

Pole Telecom 0.12535655 0.127324226

puma8NH 0.573613771 0.573541191

puma32H 0.282301321 0.282207372

Wine Quality 0.7990807 0.799307233

Sum RelMSE 12.28380234 12.26619365

Table 7.3: Results of f10 on 30 datasets for 10-fold cross validation

74 Chapter 7. ADATE experiments: Results and Discussion

Dataset 10-folds RelMSE f 10-folds RelMSE f14

2DPlanes 0.227121408 0.227838771

Abalone 0.669706988 0.66420064

Add10 0.36156611 0.368688568

Ailerons 0.397763234 0.394519557

bank8FM 0.200462336 0.2003889

bank32nh 0.733198778 0.706808234

California House 0.451229745 0.464509504

CASP 0.694658551 0.70223474

CBM 0.020560585 0.01606437

Combined Cycle Power Plant 0.300532968 0.301866582

CPU (small) 0.179842365 0.168277599

Delta Ailerons 0.54267631 0.543610214

Delta Ail 0.54267631 0.543610214

Anacalt 0.146898824 0.146774375

CPU Act 0.147100802 0.140928582

Delta Elevator 0.608727126 0.602588809

Relation Networks Directed 0.22183107 0.223593793

Elevators 0.331398932 0.330942546

Fried Delve 0.288916483 0.289807517

housePrice8 0.666104582 0.67197361

housePrice16 0.621426042 0.606766916

hwang 0.243458239 0.246223521

Kinematics8nm 0.62692933 0.631133997

MV artificial 0.016111866 0.016144164

parkinsons 0.421842926 0.398183732

Pole48 0.129041877 0.129302183

Pole Telecom 0.123711657 0.124248905

puma8NH 0.577676281 0.577364167

puma32H 0.27751388 0.276696389

Wine Quality 0.797826842 0.801134785

Sum RelMSE 11.56851245 11.51642588

Table 7.4: 10-folds cross validation results of the best program by ADATE, f6, on 30 datasets

Chapter 8

Conclusion and Future Works

8.1 Conclusion

The contribution of this dissertation can be summarized into two main aspects: (i) we
have investigated decision tree learners, particularly focus on M5 model tree and its related
models; (ii) we conducted experiments using ADATE to improve M5 model tree algorithm.

We have presented task (i) in Chapters from 2 to 4. We first recognize the power
of decision tree learners in a wide range of Machine Learning problems. Then we take a
deeper look insight the structure of classification and regression trees, the way strategy
Divide and Conquer works and how to avoid overfitting that is actually a serious problem in
tree models. We debate that ensemble of trees is a good trees-related method that usually
yield a better performance than individuals and helpful in tackling overfitting. Finally
with this purpose, we introduce M5 model tree, a state-of-the-art model among decision
tree learners. Three main parts of M5 tree, which are growing, pruning and smoothing a
tree, are investigated along with M5-based modified algorithms. This knowledge is useful
in selecting targets for experiment in the next task.

In terms of task (ii), we start by a research on ADATE system, a system that employs
automatic programming and evolutionary algorithm to generate solutions given a starting
program and an output evaluation function. ADATE can apply in both classification and
regression problems, also can be used to solve special issues as imbalanced target variable.
The main focus of this part is to answer the research question, ”How and to what extent
can ADATE system improve M5 model tree?”. We choose to improve smoothing and
pruning process in a number of experiments. During the implementation of experiments,
two topics need to be taken into consideration are to optimize the running time of f
functions and to deal with overfitting. In our case, the overfitting problem is raised in
two forms. First when a program could be good on specific parts of data but bad on the
other parts, this happens in smoothing experiment number 1. Secondly, a program might
performs well on a dataset but does not generalize well on the other datasets.

Findings from experiments show that ADATE system can improve M5 model tree,
for both aspects of smoothing and pruning procedure. While f910 is the best program
generated by ADATE to replace the expression in smoothing with an increase in accuracy
being 1.76%, f14 can significantly improve performance of M5 trees when used to alter
the testing estimation expression in pruning. M5 tree with f14 can boost the accuracy up
to 5.21% over 30 datasets .Given the size of starting programs and a limited running time
of ADATE, those results is very encouraging and prove the potential power of ADATE

75

76 Chapter 8. Conclusion and Future Works

system.

8.2 Future works

For further research and experiments based on the work done in this project, we suggest
several following topics:

• Enlarge f function in ADATE experiments: It can be seen that size of starting
programs in our experiments are pretty small. It comes from the fact that we only
want to change a very small part in M5 algorithm and still remain its nature as
well as its main ideas. As a consequence, the effect of new programs on M5 tree is
not very significant. We wonder how if we feed bigger programs that cover broader
parts of this algorithm. This is also a good chance to observe closer the evolutionary
ability of ADATE. An example for this idea is to bring the whole smoothing or
pruning function into ADATE to change. This possibility could be done because as
far as I know, a recently updated version of ADATE can support to make function
calls from environment outside of ADATE-ML, which is C in our case.

• Improve growing M5 tree process: In our opinion, this is really an interesting
experiment to do. Unlike pruning or smoothing processes, changing the way M5
tree grown can lead to a completely different kind of tree and it might offer many
possibilities we never expect. A possibility is to alter the criteria when splitting
node, instead of using standard deviation. Also, splitting node process currently
involves only one variable at a time and we might would like to include more, i.e a
linear expression of variables.

• An ensemble of M5 trees: Mention to this direction of research, we would like to
put effort into an ensemble model like Random Forest. But instead of using Random
tree, we will combine M5 trees together. We believe this new model could perform
well on regression problems, at least as well as M5 tree. Of course we need to verify
this idea first before conducting experiments related to ADATE, however it is still
worth trying in our opinion.

Bibliography

[1] 1993 new car data. www.amstat.org/publications/jse/v1n1/datasets.lock.

html.

[2] Adate system. http://www-ia.hiof.no/~rolando/.

[3] Amazon access employee competition. https://www.kaggle.com/c/

amazon-employee-access-challenge.

[4] Blas. http://www.netlib.org/blas/.

[5] C5.0. https://www.rulequest.com/see5-unix.html.

[6] Face completion with a multi-output estimators. http://scikit-learn.

org/stable/auto_examples/plot_multioutput_face_completion.html#

example-plot-multioutput-face-completion-py.

[7] Iris data set. https://archive.ics.uci.edu/ml/datasets/Iris.

[8] Mlton. http://mlton.org/.

[9] Openblas. http://www.openblas.net/.

[10] Uci repository. https://archive.ics.uci.edu/ml/datasets.htmll.

[11] A. Biermann. Automatic programming. In Encyclopedia of Artificial Intelligence,
pages 18–35, 1992.

[12] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA, 1984. new edition [?]?

[13] Leo Breiman. Technical note: Some properties of splitting criteria. Machine Learning,
24(1):41–47, 1996.

[14] B. Cestnik and I. Bratko. On estimating probabilities in tree pruning. pages 138–150,
1991.

[15] Houtao Deng and George Runger. Feature selection via regularized trees. The 2012
International Joint Conference on Neural Networks (IJCNN), 2012.

[16] Tang S Doksum K and Tsui KW. Nonparametric variable selection: the EARTH
algorithm. 2008.

[17] Stig erland Hansen and Roland Olsson. Improving decision tree pruning through
automatic programming.

77

 www.amstat.org/publications/jse/v1n1/datasets.lock.html
 www.amstat.org/publications/jse/v1n1/datasets.lock.html
http://www-ia.hiof.no/~rolando/
https://www.kaggle.com/c/amazon-employee-access-challenge
https://www.kaggle.com/c/amazon-employee-access-challenge
 http://www.netlib.org/blas/
https://www.rulequest.com/see5-unix.html
http://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html#example-plot-multioutput-face-completion-py
http://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html#example-plot-multioutput-face-completion-py
http://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html#example-plot-multioutput-face-completion-py
https://archive.ics.uci.edu/ml/datasets/Iris
http://mlton.org/
 http://www.openblas.net/
 https://archive.ics.uci.edu/ml/datasets.htmll

78 BIBLIOGRAPHY

[18] E. Frank, Y. Wang, S. Inglis, G. Holmes, and I.H. Witten. Using model trees for
classification. Machine Learning, 32(1):63–76, 1998.

[19] Eibe Frank. Pruning Decision Trees and Lists. PhD thesis, University of Waikato,
2000.

[20] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29:1189–1232, 2000.

[21] M. Hall G. Holmes and E. Frank. Generating rule sets from model trees. In in Proc. of
the 12th Australian Joint Conf. on Artificial Intelligence, pages 1–12. Springer-Verlag.

[22] Kass GV. An exploratory technique for investigating large quantities of categorical
data. 1980.

[23] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[24] O’Muircheartaigh CA HFielding A. Binary segmentation in survey analysis with
particular reference to aid. The Statistician, 1977.

[25] Dang Ha The Hien. Improving Deep Learning through Automatic Programming. PhD
thesis, 2014.

[26] A. Karalic and B. Cestnik. The bayesian approach to tree-structured regression.
Proceedings of ITI-91, 1991.

[27] Loh WY. Kim H. Classification trees with bivariatelinear discriminant node models.
2003.

[28] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1(1):14–23, 2011.

[29] Hordle W Unwin A Loh WY, Chen C. Improving the precision of classification trees.
2009.

[30] Shih Y. Loh WY. Split selection methods for classification trees. 1997.

[31] Vanichsetakul N. Loh WY. Tree-structured classificationvia generalized discriminant
analysis (with discussion). J Am Stat Assoc, 1988.

[32] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition, 1997.

[33] Tom M. Mitchell. Machine Learning. 1997.

[34] T. Niblett and I. Bratko. Learning decision rules in noisy domains. pages 24–25,
1986.

[35] J. Roland Olsson. The art of writing specifications for the ADATE automatic pro-
gramming system. In Proceedings of the Annual Genetic Programming Conference,
pages 278–283. Morgan Kaufmann, 1998.

BIBLIOGRAPHY 79

[36] Roland Olsson. Inductive functional programming using incremental program trans-
formation. Artificial Intelligence, 74:55–81, 1995.

[37] Roland Olsson. How to invent functions. volume 1598 of Lecture Notes in Computer
Science, pages 232–243. Springer, 1999.

[38] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 1992.

[39] J. R. Quinlan. Induction of decision trees. machine learning. pages 81–106, 1986.

[40] J. R. Quinlan. Learning with continuous classes. pages 343–348. World Scientific,
1992.

[41] Chotirat Ann Ratanamahatana and Dimitrios Gunopulos. Scaling up the naive
bayesian classifier: Using decision trees for feature selection.

[42] C. Rich and R. C. Waters. Approaches to automatic programming. MITSUBISHI
ELECTRIC RESEARCH LABORATORIES, 1992.

[43] L. F. R. A. Torgo. Inductive Learning of Tree-based Regression Models. PhD thesis,
1999.

[44] Yong Wang and Ian H. Witten. Inducing model trees for continuous classes. In In
Proc. of the 9th European Conf. on Machine Learning Poster Papers, pages 128–137,
1997.

[45] Yong Wang and Ian H. Witten. Inducing model trees for continuous classes. In In
Proc. of the 9th European Conf. on Machine Learning Poster Papers, pages 128–137,
1997.

[46] Yong Wang and Ian H. Witten. Inducing model trees for continuous classes. In In
Proc. of the 9th European Conf. on Machine Learning Poster Papers, pages 128–137,
1997.

[47] C. Wild and G Weber. Introduction to Probability and Statistics. University of
Auckland, 1995).

Appendix A

Linear Regression Library

A.1 Matrix - Vector operations

1 #inc lude ”OpenBLAS/ cb l a s . h”
#inc lude ”OpenBLAS/common . h”

3 #inc lude ” export . h”
#inc lude ” s t d i o . h”

5 #inc lude <math . h>
Pointer createCArr (i n t l , i n t i n i t){

7 double ∗a = mal loc (l ∗ s i z e o f (double)) ;
i f (i n i t == 1){

9 i n t i =0;
f o r (i = 0 ; i < l ; i++)

11 a [i] = 0 . 0 ;
}

13 re turn &a [0] ;
}

15

Pointer toCArr (double ∗ x , i n t l){
17 double ∗y = mal loc (l ∗ s i z e o f (double)) ;

memcpy(&y [0] , &x [0] , l ∗ s i z e o f (double)) ;
19 re turn &y [0] ;
}

21 void f reeVec (double ∗ vec){
f r e e (vec) ;

23 }

25

void printMat (double ∗ x , i n t m, i n t n){
27 i n t i , j = 0 ;

29 f o r (i = 0 ; i < m; i = i + 1){
f o r (j = 0 ; j < n ; j = j + 1){

31 p r i n t f (”%f ” , x [i ∗n + j]) ;
}

33 p r i n t f (”\n”) ;
}

35 }
void pr intVec (double ∗ x , i n t l){

37 printMat (&x [0] , 1 , l) ;
}

39 i n t numNotZeroCoef (double ∗ x , i n t n) {

81

82 Chapter A. Linear Regression Library

i n t i =0;
41 i n t count = 0 ;

f o r (i = 0 ; i< n ; i = i + 1){
43 i f (x [i] != 0) count = count + 1 ;

}
45 re turn count ;
}

47 double getElement (double ∗ x , i n t index) {
re turn x [index] ;

49 }
double mseCal (i n t m, i n t n , double ∗ dataVals , double ∗ c o e f f s ,

51 double ∗ c l a s sVa l s , double ∗ preds , double ∗ d i f f){
cblas dgemv (CblasRowMajor , CblasNoTrans , m, n , 1 , &dataVals [0] , n ,

53 &c o e f f s [0] , 1 , 0 , &preds [0] , 1) ;

55 cb las daxpy (m,−1.0 , c l a s sVa l s , 1 , d i f f , 1) ;
cb las daxpy (m, 1 . 0 , preds , 1 , d i f f , 1) ;

57 double mse= cblas dnrm2 (m, d i f f , 1) / sq r t (m) ;
re turn mse ;

59 }
double maeCal (i n t m, i n t n , double ∗ dataVals , double ∗ c o e f f s ,

61 double ∗ c l a s sVa l s , double ∗ preds , double ∗ d i f f){
cblas dgemv (CblasRowMajor , CblasNoTrans , m, n , 1 , &dataVals [0] , n ,

63 &c o e f f s [0] , 1 , 0 , &preds [0] , 1) ;
cb las daxpy (m,−1.0 , c l a s sVa l s , 1 , d i f f , 1) ;

65 cb las daxpy (m, 1 . 0 , preds , 1 , d i f f , 1) ;
double mae= cblas dasum (m, d i f f , 1) / m;

67 re turn mae ;
}

69 void mulMM (in t transA , i n t m, i n t k , i n t n , double ∗ A, double ∗B,
double ∗ r e s){

71 i f (transA == 1)
cblas dgemm (CblasRowMajor , CblasTrans , CblasNoTrans ,m, n , k ,1 .0 ,&A[0] ,

73 m,&B[0] , n , 0.0 ,& r e s [0] , n) ;
e l s e

75 cblas dgemm (CblasRowMajor , CblasNoTrans , CblasNoTrans ,m, n , k ,1 .0 ,&A[0] ,
k,&B[0] , n ,0 .0 ,& r e s [0] , n) ;

77 }

79 double mulVV (i n t n , double ∗ x , double ∗y) {
double r e s = cb la s ddot (n , &x [0] , 1 , &y [0] , 1) ;

81 re turn r e s ;
}

83

void mulMV (in t tran , i n t pm, i n t pn , double ∗ pa , double ∗ px , double ∗ y)
85 {

double alpha , beta ;
87 i n t m, n , lda , incx , incy , i ;

89 m = pm; /∗ S i z e o f Column (the number o f rows) ∗/
n = pn ; /∗ S i z e o f Row (the number o f columns) ∗/

91 lda = n ; /∗ Leading dimension o f 5 ∗ 4 matrix i s 5 ∗/
incx = 1 ; // f i x ed 1

93 incy = 1 ;
alpha = 1 ;

95 beta = 0 ;

97 i f (tran == 1)

A.2. Solve Matrix operation 83

cblas dgemv (CblasRowMajor , CblasTrans , m, n , alpha , &pa [0] , lda ,
99 &px [0] , incx , beta , &y [0] , incy) ;

e l s e
101 cblas dgemv (CblasRowMajor , CblasNoTrans , m, n , alpha , &pa [0] , lda ,

&px [0] , incx , beta , &y [0] , incy) ;
103 }

double iden (double x)
105 {

re turn x ∗ x ;
107 }

A.2 Solve Matrix operation

1 #inc lude ”OpenBLAS/ lapack−n e t l i b / lapacke / inc lude / lapacke . h”
#inc lude ” export . h”

3 #inc lude ” s t d i o . h”
void pr in t mat r i x (char ∗ desc , i n t m, i n t n , double ∗ a , i n t lda) {

5 i n t i , j ;
p r i n t f (”\n %s \n” , desc) ;

7 f o r (i = 0 ; i < m; i++) {
f o r (j = 0 ; j < n ; j++) p r i n t f (” %6.2 f ” , a [i+j ∗ lda]) ;

9 p r i n t f (”\n”) ;
}

11 }

13 /∗ Aux i l i a ry rou t in e : p r i n t i n g a vec to r o f i n t e g e r s ∗/
void p r i n t i n t v e c t o r (char ∗ desc , i n t n , i n t ∗ a) {

15 i n t j ;
p r i n t f (”\n %s \n” , desc) ;

17 f o r (j = 0 ; j < n ; j++) p r i n t f (” %6i ” , a [j]) ;
p r i n t f (”\n”) ;

19 }
void Row2Col (i n t m, i n t n , double ∗ a , double ∗ r e s) {

21 i n t i , j ;
f o r (i = 0 ; i < m; i++) {

23 f o r (j = 0 ; j < n ; j++) r e s [i+j ∗m] = a [i ∗n+j] ;

25 }
}

27 void Col2Row(i n t m, i n t n , double ∗ a , double ∗ r e s) {
i n t i , j ;

29 f o r (i = 0 ; i < m; i++) {
f o r (j = 0 ; j < n ; j++) r e s [i ∗n+j] = a [i+j ∗m] ;

31

}
33 }

// Solve AX= B
35 void s o l v e (i n t N, i n t NRHS, double ∗ A, double ∗ B) {

// f p r i n t f (s tde r r , ” s o l v e 1 \n ”) ;
37 i n t n = N, nrhs = NRHS, lda = N, ldb = NRHS, i n f o ;

i n t i p i v [N] ;
39 i n t su c c e s s = 0 ;

double r i dg e = 10ˆ(−8);
41 i n t i , j ;

whi l e (su c c e s s == 0){
43

84 Chapter A. Linear Regression Library

i n f o = LAPACKE dgesv(LAPACKROWMAJOR, n , nrhs , &A[0] , lda ,
45 &ip i v [0] , &B[0] , ldb) ;

/∗ Check f o r the exact s i n g u l a r i t y ∗/
47 i f (i n f o > 0) {

// e x i t (1) ;
49 f o r (i = 0 ; i < n ; i++){

A [i ∗n + i] = A[i ∗n + i] + r idge ;
51 }

r i dg e = r idge ∗ 1 0 . 0 ;
53 }

e l s e
55 su c c e s s = 1 ;

}
57 }

Appendix B

M5 Model Tree Library

B.1 Tree Structure

1 type M5Node = {
id : int ,

3 s p l i tA t t : int ,
s p l i tVa l : r ea l ,

5 usedAtts : bool l i s t ,
c l a s sVa lue s : r e a l l i s t ,

7 dataValues : r e a l l i s t l i s t
}

9 datatype errType = MAE| MSE| RelMSE
datatype M5Tree = empty | node o f M5Node ∗ M5Tree ∗ M5Tree

11

type in i tType = {
13 m pruningMult ip l i e r : r ea l ,

m devFraction : r ea l ,
15 debug : i n t
}

B.2 Splitting Nodes

∗
2 PART I I − BUILD M5 MODEL TREE
∗)

4 (∗
I I . 1 − Helper func t i on f o r S p l i t t i n g t r e e

6 + UsedAtts : f i nd a t t r i b u t e s t e s t ed in t r e e s below f o r con s t ruc t i ng
l i n e a r r e g r e s s i o n model

8 + sepa r a t eL i s t : s epara t e a l i s t to two sub− l i s t s
+ sor tByLi s t : s o r t va lue s o f c l a s s accord ing to va lue s o f a s p e c i f i c

10 a t t r i b u t e . This a t t r i b u t e i s a l s o so r t ed
∗)

12 (∗ UsedAtts : f i nd a t t r i b u t e s t e s t ed in t r e e s below f o r con s t ruc t i ng
l i n e a r r e g r e s s i o n model ∗)

14 fun r e v e r s eL i s t (l) =
l e t

16 fun rever seHe lp (l1 , l 2) =
case l 1 o f

18 n i l => l 2

85

86 Chapter B. M5 Model Tree Library

| h : : t => r ever seHe lp (t , h : : l 2)
20 in

r ever seHe lp (l , n i l)
22 end

24 fun in i tUsedAtts (length , truePos) =
l e t

26 va l posFromEnd = length + 1 − truePos
fun in i tHe lp (0 , , l) = l

28 | i n i tHe l p (len , 1 , l) = in i tHe lp (len −1, len , t rue : : l)
| i n i tHe l p (len , pos , l) = in i tHe lp (len −1, pos−1, f a l s e : : l)

30 in
i n i tHe lp (length , posFromEnd , n i l)

32 end

34 fun getUsedAtts (empty , numAtts) = in i tUsedAtts (numAtts , 0)
| getUsedAtts (node (crrNode , ,) , numAtts) = #usedAtts crrNode

36

except ion UsedAtts LENGTHNOTMATCH
38 fun UsedAtts (lTree , rTree , numAtts , s p l i tA t t) =

l e t
40 va l in i tUsedAtts = in i tUsedAtts (numAtts , s p l i tA t t)

va l l e f tUs eAt t s = getUsedAtts (lTree , numAtts)
42 va l r ightUseAtts = getUsedAtts (rTree , numAtts)

fun o rL i s t s (l1 , l2 , l 3) =
44 l e t

fun orHelp (n i l , n i l , n i l , l) = l
46 | orHelp (n i l , n i l , h3 : : t3 ,) = r a i s e UsedAtts LENGTHNOTMATCH

| orHelp (n i l , h2 : : t2 , n i l ,) = r a i s e UsedAtts LENGTHNOTMATCH
48 | orHelp (n i l , h2 : : t2 , h3 : : t3 ,) = r a i s e UsedAtts LENGTHNOTMATCH

| orHelp (h1 : : t1 , n i l , h3 : : t3 ,) = r a i s e UsedAtts LENGTHNOTMATCH
50 | orHelp (h1 : : t1 , h2 : : t2 , n i l ,) = r a i s e UsedAtts LENGTHNOTMATCH

| orHelp (h1 : : t1 , n i l , n i l ,) = r a i s e UsedAtts LENGTHNOTMATCH
52 | orHelp (h1 : : t1 , h2 : : t2 , h3 : : t3 , l) =

orHelp (t1 , t2 , t3 , (h1 o r e l s e h2 o r e l s e h3) : : l)
54 in

r e v e r s eL i s t (orHelp (l1 , l2 , l3 , n i l))
56 end

in
58 o rL i s t s (in i tUsedAtts , l e f tUseAtt s , r ightUseAtts)

end
60

(∗ s epa r a t eL i s t : s epara t e a l i s t to two sub− l i s t s ∗)
62 fun separaArrayHelp (source , des1 , des2 , pivot , counter) =

case counter = Array . l ength (source) o f
64 t rue => (des1 , des2 , p ivot + 1)

| f a l s e =>
66 (

case counter > pivot o f
68 f a l s e =>

(case Array . update (des1 , counter , Array . sub (source , counter)) o f =>
70 separaArrayHelp (source , des1 , des2 , pivot , counter + 1))

| t rue => (case Array . update (des2 , counter − Array . l ength des1 ,
72 Array . sub (source , counter)) o f =>

separaArrayHelp (source , des1 , des2 , pivot , counter + 1))
74)

fun separateArray (counter , leng , c l a s sVa l s : r e a l array , at tVa l s : r e a l array)=
76 case counter = leng o f

B.2. Splitting Nodes 87

t rue => (c l a s sVa l s , Array . f romList n i l , counter)
78 | f a l s e =>

(
80 case Real . compare (Array . sub (attVals , counter − 1) ,

Array . sub (attVals , counter)) o f
82 EQUAL => separateArray (counter + 1 , leng , c l a s sVa l s , a t tVa l s)

| => separaArrayHelp (c l a s sVa l s , Array . array (counter , 0 . 0) ,
84 Array . array (l eng − counter , 0 . 0) , counter − 1 , 0)

86)
(∗ so r tByLi s t : s o r t l i s t o f a t t r i b u t e Vals and c l a s s Vals

88 based on Vals o f column i th ∗)

90 except ion swap OUTOFINDEX
fun swap (attVals , c l a s sVa l s , i , j) =

92 case i > Array . l ength at tVa l s o r e l s e j > Array . l ength attVa l s o f
t rue => r a i s e swap OUTOFINDEX

94 | f a l s e =>
l e t

96 va l attTemp = Array . sub (attVals , j)
va l classTemp = Array . sub (c l a s sVa l s , j)

98 in
Array . update (attVals , j , Array . sub (attVals , i)) ;

100 Array . update (attVals , i , attTemp) ;
Array . update (c l a s sVa l s , j , Array . sub (c l a s sVa l s , i)) ;

102 Array . update (c l a s sVa l s , i , classTemp)
end

104

fun p a r t i t i o n (at tVa l s : r e a l array , c l a s sVa l s : r e a l array ,
106 l e f t , r i ght , p ivot)=

case Int . compare (l e f t , r i g h t) o f
108 GREATER => r i g h t

| EQUAL =>
110 (

case Array . sub (attVals , r i g h t) > pivot o f
112 t rue => r i g h t − 1

| f a l s e => r i g h t
114)

| LESS =>
116 case Array . sub (attVals , l e f t) < pivot o f

t rue => pa r t i t i o n (attVals , c l a s sVa l s , l e f t + 1 , r i ght , p ivot)
118 | f a l s e =>

(
120 case Array . sub (attVals , r i g h t) > pivot o f

t rue => pa r t i t i o n (attVals , c l a s sVa l s , l e f t , r i g h t − 1 , p ivot)
122 | f a l s e =>

(swap (attVals , c l a s sVa l s , l e f t , r i g h t) ;
124 pa r t i t i o n (attVals , c l a s sVa l s , l e f t + 1 , r i g h t − 1 , p ivot))

)
126

128 fun qu ickSort (at tVa l s : r e a l array , c l a s sVa l s : r e a l array ,
l e f t , r i g h t) =

130 case l e f t < r i g h t o f
t rue =>

132 (
l e t

134 va l middle = Real . c e i l (Real . f romInt (l e f t + r i gh t) / 2 . 0) − 1

88 Chapter B. M5 Model Tree Library

va l p ivot = Array . sub (attVals , middle)
136 va l p ivotIndex = pa r t i t i o n (attVals , c l a s sVa l s , l e f t , r i ght , p ivot)

va l = quickSort (attVals , c l a s sVa l s , l e f t , p ivotIndex)
138 va l = quickSort (attVals , c l a s sVa l s , p ivotIndex + 1 , r i g h t)

in
140 (attVals , c l a s sVa l s)

end
142)
| f a l s e => (attVals , c l a s sVa l s)

144

(∗ ∗∗∗∗∗∗∗∗∗∗∗ Separate column−wise dataVals ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗)
146 fun f i r s tColumn dataVals =

case dataVals o f
148 n i l => (n i l , n i l)

| row : : rows =>
150 l e t

va l (f i r s tCo l , o therCo l s) = f i r s tColumn (rows)
152 in

((hd row) : : f i r s tCo l , (t l row) : : o therCo l s)
154 end

(∗
156 I I . 2 − Functions f o r s p l i t t i n g M5 Tree

+ f i ndBe s t Sp l i t : f i nd best po int to s p l i t f o r an a t t r i b u t e .
158 Return index o f s p l i t and min standard dev i a t i on

+ s p l i t : s p l i t the whole datase t reach ing t h i s node .
160 Do the f i n dBe s t Sp l i t over a l l a t t r i b u t e s

+ bui ldTree : bu i ld M5 Tree
162 ∗)

164 (∗ f i n dBe s t Sp l i t : f i nd best po int to s p l i t . Return index o f s p l i t
and max reduct i on ∗)

166 fun f i n dBe s t Sp l i t (a t tVa l s : r e a l array , c l a s sVa l s : r e a l array ,
numInstances : int , counter : int , sp l i t I ndex , minSD) : i n t ∗ r e a l =

168 case numInstances − counter o f
0 => (sp l i t I ndex , minSD)

170 | : i n t =>
case counter o f

172 1 =>
(case separateArray (1 , numInstances , c l a s sVa l s , a t tVa l s) o f

174 (subArray1 , subArray2 , new counter) =>
case (SD Calculat ion subArray1) ∗ r e a l (new counter) +

176 (SD Calculat ion subArray2) ∗ r e a l (numInstances − new counter)
o f minSDTemp =>

178 case numInstances − new counter o f
0 => (1 , 9999999 .0)

180 | => f i n dBe s t Sp l i t (attVals , c l a s sVa l s , numInstances ,
new counter + 1 , new counter ,minSDTemp))

182 | =>
(case separateArray (counter , numInstances , c l a s sVa l s , a t tVa l s) o f

184 (subArray1 , subArray2 , new counter) =>
case numInstances − new counter o f

186 0 => (sp l i t I ndex , minSD)
| =>

188 case (SD Calculat ion subArray1) ∗ r e a l (new counter) +
SD Calculat ion subArray2) ∗ r e a l (numInstances − new counter) o f

190 minSDTemp => case minSDTemp < (minSD − 0 .000001) o f
t rue => f i n dBe s t Sp l i t (attVals , c l a s sVa l s , numInstances ,

192 new counter + 1 , new counter ,minSDTemp)

B.2. Splitting Nodes 89

| f a l s e => f i n dBe s t Sp l i t (attVals , c l a s sVa l s , numInstances ,
194 new counter + 1 , sp l i t I ndex ,minSD))

196 (∗ s p l i t : s p l i t the whole datase t reach ing t h i s node .
Do the f i n dBe s t Sp l i t over a l l a t t r i b u t e s ∗)

198 fun s p l i t (dataVals , c l a s sVa l s , numAtts , numInstances , counter ,
sp l i tAt t , sp l i tVa l , minSD) : i n t ∗ r e a l ∗ r e a l =

200 case numAtts + 1 − counter o f
0 => (sp l i tAt t , sp l i tVa l , minSD)

202 | =>
case counter o f

204 1 =>
(

206 case f i r s tColumn dataVals o f (attColumn , otherAtts) =>
case qu ickSort (Array . f romList attColumn , Array . f romList c l a s sVa l s ,

208 0 , numInstances − 1) o f (sortedByArray , so r t edCla s sVa l s) =>
case f i n dBe s t Sp l i t (sortedByArray , sor tedClas sVa l s , numInstances , 1 ,

210 0 , 0 . 0)
o f (c r rSp l i t I ndex , crrMinSD) =>

212

case Array . sub (sortedByArray , c r r Sp l i t I nd ex − 1) o f c r r Sp l i tVa l =>
214 s p l i t (otherAtts , c l a s sVa l s , numAtts , numInstances , 2 , 1 ,

c r rSp l i tVa l , crrMinSD))
216 | =>

case f i r s tColumn dataVals o f (attColumn , otherAtts) =>
218 case qu ickSort (Array . f romList attColumn , Array . f romList c l a s sVa l s ,

0 , numInstances − 1) o f (sortedByArray , so r t edCla s sVa l s) =>
220 case f i n dBe s t Sp l i t (sortedByArray , sor tedClas sVa l s , numInstances , 1 ,

0 , 0 . 0) o f (c r rSp l i t I ndex , crrMinSD) =>
222

case Array . sub (sortedByArray , c r r Sp l i t I nd ex − 1) o f c r r Sp l i tVa l =>
224 case crrMinSD < (minSD − 0.000001) o f

t rue =>
226 (

s p l i t (otherAtts , c l a s sVa l s , numAtts , numInstances , counter + 1 ,
228 counter , c r r Sp l i tVa l , crrMinSD))

| f a l s e =>
230 s p l i t (otherAtts , c l a s sVa l s , numAtts , numInstances , counter + 1 ,

sp l i tAt t , sp l i tVa l ,minSD)
232 (∗ bui ldTree : bu i ld M5 Tree ∗)

except ion separaData LENGTH DATA CLASS NOTMATCH
234 fun separaData (h : : t : r e a l l i s t l i s t , n i l , , , , , ,) =

r a i s e separaData LENGTH DATA CLASS NOTMATCH
236 | separaData (n i l , h : : t , , , , , ,) =

r a i s e separaData LENGTH DATA CLASS NOTMATCH
238 | separaData (n i l , n i l , l da ta , r data , l c l a s s , r c l a s s , ,) =

(l data , r data , l c l a s s , r c l a s s)
240 | separaData (h1 : : t1 : r e a l l i s t l i s t , h2 : : t2 , l data ,

r data , l c l a s s , r c l a s s , mSplitAtt , mSplitVal) =
242 i f g e t i t h e l em e n t o f l i s t (h1 , mSplitAtt) > mSplitVal

then separaData (t1 , t2 , l data , h1 : : r data ,
244 l c l a s s , h2 : : r c l a s s , mSplitAtt , mSplitVal)

e l s e separaData (t1 , t2 , h1 : : l data , r data , h2 : : l c l a s s ,
246 r c l a s s , mSplitAtt , mSplitVal)

248 fun bui ldTree (dataVals , c l a s sVa l s , numAtts , nodeID , factor Globa lDev)
: M5Tree ∗ i n t=

250 case SD Ca l cu l a t i on f o rL i s t c l a s sVa l s o f

90 Chapter B. M5 Model Tree Library

(stdDev , numInstances) =>
252 case (numInstances < 4 o r e l s e stdDev < f ac tor Globa lDev) o f

t rue => (case { id = nodeID ,
254 s p l i tA t t = 0 ,

s p l i tVa l = 0 . 0 ,
256 usedAtts = in i tUsedAtts (numAtts , 0) ,

dataValues = dataVals ,
258 c l a s sVa lue s = c l a s sVa l s } : M5Node o f

crrNode => (node (crrNode , empty , empty) , nodeID))
260 | f a l s e => case s p l i t (dataVals , c l a s sVa l s , numAtts , numInstances ,

1 , 0 , 0 . 0 , 0 . 0) o f (m spl i tAtt , m spl i tVal , m minSD) =>
262 case Real . compare (m minSD , 9999999 .0) o f

EQUAL => (case { id = nodeID ,
264 s p l i tA t t = 0 ,

s p l i tVa l = 0 . 0 ,
266 usedAtts = in i tUsedAtts (numAtts , 0) ,

dataValues = dataVals ,
268 c l a s sVa lue s = c l a s sVa l s } : M5Node o f

crrNode => (node (crrNode , empty , empty) , nodeID))
270 | => (

case separaData (dataVals , c l a s sVa l s , n i l , n i l , n i l , n i l , m spl i tAtt ,
272 m spl i tVa l) o f

(l dataVa l s , r dataVals , l c l a s sVa l s , r c l a s sVa l s) =>
274 case bui ldTree (l dataVa l s , l c l a s sVa l s , numAtts , nodeID + 1 ,

factor Globa lDev) o f (l Tree , l ID) =>
276 case bui ldTree (r dataVals , r c l a s sVa l s , numAtts , l ID + 1 ,

factor Globa lDev) o f (r Tree , r ID) =>
278 case { id = nodeID ,

s p l i tA t t = m spl i tAtt ,
280 s p l i tVa l = m spl i tVal ,

usedAtts = UsedAtts (l Tree , r Tree , numAtts , m sp l i tAtt) ,
282 dataValues = dataVals ,

c l a s sVa lue s = c l a s sVa l s } : M5Node o f
284 crrNode => (node (crrNode , l Tree , r Tree) , r ID))

B.3 Pruning Tree

(∗
2 PART I I I : PRUNE M5 TREE
∗)

4 (∗
I I I . 1 − Import C func t i on and implement f unc t i on s to convert l i s t / array to

6 C array
∗)

8 va l C createCArr = import ” createCArr ” pub l i c : i n t ∗ int−> r e a l array ;
va l C toCArr = import ”toCArr” pub l i c : r e a l array ∗ i n t −> r e a l array ;

10 va l C freeVec = import ” f reeVec ” pub l i c : r e a l array −> uni t ;
va l C printMat = import ”printMat” pub l i c : r e a l array ∗ i n t ∗ i n t −> uni t ;

12 va l C mulVV = import ”mulVV” : i n t ∗ r e a l array ∗ r e a l array −> r e a l ;
va l C mulMV = import ”mulMV” pub l i c : i n t ∗ i n t ∗ i n t ∗ r e a l array ∗

14 r e a l array ∗ r e a l array −> uni t ;
va l C mulMM = import ”mulMM” pub l i c : i n t ∗ i n t ∗ i n t ∗ i n t ∗ r e a l array ∗

16 r e a l array ∗ r e a l array−> uni t ;
va l C mseCal = import ”mseCal” pub l i c : i n t ∗ i n t ∗ r e a l array ∗

18 r e a l array ∗ r e a l array ∗ r e a l array ∗ r e a l array −> r e a l ;
va l C maeCal = import ”maeCal” pub l i c : i n t ∗ i n t ∗ r e a l array ∗ r e a l array

B.3. Pruning Tree 91

20 ∗ r e a l array ∗ r e a l array ∗ r e a l array −> r e a l ;
va l C so lve = import ” s o l v e ” pub l i c : i n t ∗ i n t ∗ r e a l array ∗ r e a l array

22 −> r e a l array ;

24 va l C numNotZeroCoef = import ”numNotZeroCoef” pub l i c :
r e a l array ∗ i n t −> i n t ;

26 va l C getElement = import ”getElement” : r e a l array ∗ i n t −> r e a l ;
fun fromList2Vec l s =

28 l e t va l v = Array . f romList (l s)
va l l = Array . l ength (v)

30 in C toCArr (v , l)
end

32 (∗ fun f romLi s t s (l s s) = fromList2Vec (L i s t . concat (l s s)) ∗)
fun f romLi s t s (l s s) = Array . f romList (L i s t . concat (l s s))

34 fun mseCal (nRows , nCols , dataVals , coe fVals , c l a s sVa l s) =
l e t

36 va l preds = Array . array (nRows , 0 . 0)
va l d i f f = Array . array (nRows , 0 . 0)

38

va l mse = C mseCal (nRows , nCols , dataVals , coe fVals , c l a s sVa l s , preds , d i f f)
40

in
42 mse

end
44

fun maeCal (nRows , nCols , dataVals , coe fVals , c l a s sVa l s) =
46 l e t

va l preds = Array . array (nRows , 0 . 0)
48 va l d i f f = Array . array (nRows , 0 . 0)

va l mae = C maeCal (nRows , nCols , dataVals , coe fVals , c l a s sVa l s , preds , d i f f)
50 in

mae
52 end

54

fun CArr2SMLArray (arr , l en) =
56 l e t

va l sm lAr in i t = array (len , 0 . 0)
58 fun add (cAr , index , smlAr) =

case index < 0 o f
60 t rue => smlAr

| f a l s e => (update (smlAr , index , C getElement (cAr , index)) ;
62 add (cAr , index − 1 , smlAr))

in
64 add (arr , len −1, sm lAr in i t)

end
66

(∗
68 I I I . 2 − Implement l i n e a r r e g r e s s i o n model and r e l a t i v e he lpe r f unc t i on s
∗)

70 except ion selectedAtts LENGTHNOTMATCH
fun s e l e c t edAt t s (usedAtts , dataVals) : r e a l l i s t l i s t =

72 l e t
fun s e l e c tA t t s (n i l , n i l , l) = l

74 | s e l e c tA t t s (h : : t , n i l ,) = r a i s e selectedAtts LENGTHNOTMATCH
| s e l e c tA t t s (n i l , h : : t ,) = r a i s e selectedAtts LENGTHNOTMATCH

76 | s e l e c tA t t s (h : : t , s : : st , l) = i f h then s e l e c tA t t s (t , st , s : : l)
e l s e s e l e c tA t t s (t , st , l)

92 Chapter B. M5 Model Tree Library

78 in
map (fn x => r e v e r s eL i s t (1 . 0 : : s e l e c tA t t s (usedAtts , x , n i l))) dataVals

80 end

82 fun l inearMode l (usedAtts , dataVals : r e a l l i s t l i s t , c l a s sVa l s : r e a l l i s t) =
l e t

84 va l se l ec tedDataVal s = s e l e c t edAt t s (usedAtts , dataVals)
va l nRows = l e n g t h o f l i s t (c l a s sVa l s)

86 va l nCols = l e n g t h o f l i s t (g e t i t h e l em e n t o f l i s t (se lectedDataVals , 1))
va l selectedData2Mat = fromLi s t s (se l ec tedDataVal s)

88 va l c la s sVa l s2Vec= Array . f romList c l a s sVa l s
va l A = Array . array (nCols ∗ nCols , 0 . 0)

90 va l B = Array . array (nCols , 0 . 0)
va l = C mulMM(1 , nCols , nRows , nCols , selectedData2Mat , selectedData2Mat , A)

92 va l = C mulMV(1 ,nRows , nCols , selectedData2Mat , c lassVals2Vec , B)
va l N = nCols

94 va l NRHS = 1
va l = C so lve (N,NRHS, A, B)

96 va l BsmlAr = CArr2SMLArray(B,N)
in

98 (selectedData2Mat , BsmlAr)
end

100

102

fun l inea rMode l f o rArray (se l ec tedDataVal s : r e a l array , c l a s sVa l s :
104 r e a l array , nRows : int , nCols : i n t) =

l e t
106 va l A = Array . array (nCols ∗ nCols , 0 . 0)

va l B = Array . array (nCols , 0 . 0)
108 va l = C mulMM(1 , nCols , nRows , nCols , se lectedDataVals , se l ectedDataVals , A)

(∗ va l = C printMat (A, nCols , nCols) ∗)
110 va l = C mulMV(1 ,nRows , nCols , se l ectedDataVals , c l a s sVa l s , B)

(∗ va l = C printMat (B, nCols , 1) ∗)
112 va l N = nCols

va l NRHS = 1
114 va l = C so lve (N,NRHS, A, B)

(∗ va l = C printMat (B,N,NRHS) ∗)
116 va l BsmlAr = CArr2SMLArray(B,N)

in
118 BsmlAr

end
120

122 fun countSe l ec tedAtt s l =
case l o f

124 n i l => 0
| h : : t => case h o f

126 t rue => 1 + countSe l ec tedAtt s t
| f a l s e => countSe l ec tedAtt s t

128

fun pruneFactor (numInstances , numParams , i n i tVa l s : in i tType) =
130 case Real . compare (numInstances , numParams) o f

EQUAL =>
132 10 .0

| =>
134 (numInstances + numParams ∗ (#m pruningMult ip l i e r i n i tVa l s)) /

(numInstances − numParams)

B.3. Pruning Tree 93

136

fun getNumInstances (t r e e : M5Tree) =
138 case t r e e o f

empty => 0 .0
140 | node (crrNode , ,) => Real . f romInt (l e n g t h o f l i s t (#c l a s sVa lue s crrNode))

142 (∗ re turn numParams , e r r o r o f model (l i n e a r / subt ree) , l i s t o f LM , t r e e ∗)

144 fun numCoef (l i n e a r , n) =
C numNotZeroCoef (l i n e a r , n)

146

fun co e f s 2Fu l lL in ea rCoe f s (usedAtts , coe f s , numAtts) : r e a l array =
148 l e t

va l f u l l L i n e a rCo e f s = array (numAtts + 1 , 0 . 0)
150 fun f i l l F u l l L i n e a rC o e f s (n i l , ,) = ””

| f i l l F u l l L i n e a rC o e f s (f a l s e : : t , index1 , index2) = f i l l F u l l L i n e a rC o e f s
152 (t , index1 , index2 + 1)

| f i l l F u l l L i n e a rC o e f s (t rue : : t , index1 , index2) = (update (f u l l L i n ea rCoe f s ,
154 index2 , sub (coe f s , index1)) ;

f i l l F u l l L i n e a rC o e f s (t , index1 + 1 , index2 + 1))
156 va l = update (f u l l L i n ea rCoe f s , numAtts , sub (coe f s , Array . l ength c o e f s − 1))

in
158 f i l l F u l l L i n e a rC o e f s (usedAtts , 0 , 0) ;

f u l l L i n e a rCo e f s
160 end

162 fun getID (t r e e : M5Tree) =
case t r e e o f

164 empty => 0
| node (crrNode , ,) => #id crrNode

166

except ion getUsedAtts EMPTYTREE
168 fun getUsedAtts (t r e e : M5Tree) =

case t r e e o f
170 empty => r a i s e getUsedAtts EMPTYTREE
| node (crrNode , ,) => #usedAtts crrNode

172

fun getNumInstances (t r e e : M5Tree) =
174 case t r e e o f

empty => 0 .0
176 | node (crrNode , ,)=> Real . f romInt (L i s t . l ength (#c l a s sVa lu e s crrNode))

(∗
178 I I I . 3 − Prune M5 t r e e
∗)

180 (∗ update Boo lL i s t : update nth o f TRUE elements to FALSE∗)
except ion updateBoolList OUTOFBOUND

182 fun updateBoolList (l s : bool l i s t , trueUpdate : i n t) : bool l i s t =
l e t

184 fun updateBoo lL i s t he lpe r (n i l , ,) = r a i s e updateBoolList OUTOFBOUND
| updateBoo lL i s t he lpe r (t rue : : t , tU , t I) = i f tU=t I then (f a l s e : : t)

186 e l s e t rue : : updateBoo lL i s t he lpe r (t , tU , t I + 1)
| updateBoo lL i s t he lpe r (f a l s e : : t , tU , t I) =

188 f a l s e : : updateBoo lL i s t he lpe r (t , tU , t I)
in

190 updateBoo lL i s t he lpe r (l s , trueUpdate , 0)
end

192

(∗ Greedy search f o r the best o f l i n e a r model by

94 Chapter B. M5 Model Tree Library

194 removing g r e e d i l y c o e f f i c i e n t s in the model . Use Akaike c r i t e r i o n ∗)
fun removeOneCol (A : r e a l array , nRows : int , nCols : int , colToRemove : i n t)

196 : r e a l array =
l e t

198 va l B = Array . array (nRows ∗ (nCols − 1) , 0 . 0)
fun convert (indexA : int , indexB : int , indexColRemove : i n t) =

200 case indexB = Array . l ength B o f
t rue => B

202 | f a l s e =>
(

204 case indexA = indexColRemove o f
t rue => convert (indexA + 1 , indexB , indexColRemove + nCols)

206 | f a l s e => (Array . update (B, indexB , Array . sub (A, indexA)) ;
convert (indexA + 1 , indexB + 1 , indexColRemove))

208)
in

210 convert (0 , 0 , colToRemove)
end

212

fun f i ndBe s tL in ea r i nne r
214 (s e l ec tedDataVal s : r e a l array , s e l e c t edAt t s : bool l i s t ,

c l a s sVa l s : r e a l array , index : int ,
216 (fu l l SE : r ea l , initNumCoefs : int , numInstances : i n t) ,

(m coefs : r e a l array , m selectedDataVals : r e a l array ,
218 m se lec tedAtt s : bool l i s t , m Akaike : r ea l , improve : bool)) =

case countSe l ec tedAtt s s e l e c t edAt t s + 1 o f numCoefs =>
220 case numCoefs − 1 o f crrNumCoefs =>

case index = numCoefs − 1 o f
222 t rue => (m coefs , m selectedDataVals , m se lectedAtts , m Akaike , improve)

| f a l s e =>
224 (

case updateBoolList (s e l e c t edAt t s , index) o f c r r S e l e c t edAt t s =>
226 case removeOneCol (se lectedDataVals , numInstances , numCoefs , index)

o f c r rSe l ec tedDataVa l s =>
228 case l inea rMode l f o rArray

(cr rSe lectedDataVals , c l a s sVa l s , numInstances , crrNumCoefs) o f l i n e a r =>
230 case mseCal (numInstances , crrNumCoefs , c r rSe lectedDataVals ,

l i n e a r , c l a s sVa l s) o f crrMse =>
232 case crrMse ∗ crrMse ∗ Real . f romInt numInstances o f crrSE =>

case (crrSE/ fu l l SE) ∗ Real . f romInt (numInstances − initNumCoefs) + 2 .0 ∗
234 (Real . f romInt crrNumCoefs) o f crrAkaike =>

case Real . compare (crrAkaike , m Akaike) o f
236 LESS => (

f i ndBe s tL in ea r i nne r (se lectedDataVals , s e l e c t edAt t s , c l a s sVa l s ,
238 index + 1 ,

(fu l lSE , initNumCoefs , numInstances) ,
240 (l i n e a r , c r rSe lectedDataVals , c r rSe l e c t edAt t s , crrAkaike , t rue))

)
242 | => f i ndBe s tL in ea r i nne r (se lectedDataVals , s e l e c t edAt t s , c l a s sVa l s ,

index + 1 ,
244 (fu l lSE , initNumCoefs , numInstances) ,

(m coefs , m selectedDataVals , m se lectedAtts , m Akaike , improve))
246

)
248

fun f indBes tL inea r (crrNode : M5Node) =
250 case L i s t . l ength(#c l a s sVa lue s crrNode) o f numInstances =>

case countSe l ec tedAtt s (#usedAtts crrNode) + 1 o f initNumCoefs =>

B.3. Pruning Tree 95

252 case Array . f romList (#c l a s sVa lu e s crrNode) o f c l a s sVa l sArray =>
case l inearMode l (#usedAtts crrNode , #dataValues crrNode , #c l a s sVa lu e s

254 crrNode) o f (i n i t s e l e c t edDataVa l s , l i n e a r) =>
case mseCal (numInstances , initNumCoefs , i n i t s e l e c t edDataVa l s , l i n e a r ,

256 Array . f romList (#c l a s sVa lu e s crrNode)) o f fullMSE =>
case fullMSE ∗ fullMSE ∗ Real . f romInt numInstances o f f u l l SE =>

258 case Real . f romInt (numInstances − initNumCoefs) + 2 .0 ∗
(Real . f romInt initNumCoefs) o f i n i tAka ike =>

260 l e t
fun f i ndBe s tL in ea r ou t e r (c o e f s : r e a l array , s e l ec tedDataVal s : r e a l array ,

262 s e l e c t edAt t s : bool l i s t , Akaike : r ea l , improve : bool) =
case f i ndBe s tL in ea r i nne r (se lectedDataVals , s e l e c t edAt t s , c lassValsArray , 0 ,

264 (fu l lSE , initNumCoefs , numInstances) ,
(coe f s , se l ectedDataVals , s e l e c t edAt t s , Akaike , improve)) o f

266 (m coefs , m selectedDataVals , m se lectedAtts , m Akaike , m improve) =>
case m improve o f

268 t rue => f i ndBe s tL in ea r ou t e r (m coefs , m selectedDataVals , m se lectedAtts ,
m Akaike , f a l s e)

270 | f a l s e =>(m coefs , m se lectedAtts , m selectedDataVals)
in

272 f i ndBe s tL in ea r ou t e r (l i n e a r , i n i t s e l e c t edDataVa l s , #usedAtts crrNode ,
in i tAka ike , f a l s e)

274 end

276 (∗ Main pruning ∗)
except ion prune ONEBRANCH

278 fun prune (t r e e : M5Tree , pa r en l i n ea rD i c t , numAtts : int , i n i tVa l s)
: i n t ∗ r e a l ∗ (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t ∗ r e a l array ∗ M5Tree =

280 case t r e e o f
empty => r a i s e prune ONEBRANCH

282 | node (crrNode , empty , empty) =>
(

284

case f indBes tL inea r (crrNode) o f (l i n e a r , s e l e c t edAt t s , s e l ec tedDataVal s) =>
286 case co e f s 2Fu l lL in ea rCoe f s (s e l e c t edAt t s , l i n e a r , numAtts) o f

f u l l L i n e a rCo e f s =>
288 case l e n g t h o f l i s t (#c l a s sVa lue s crrNode) o f m =>

case mseCal (m, countSe l ec tedAtt s s e l e c t edAt t s + 1 , se lectedDataVals ,
290 l i n e a r , Array . f romList (#c l a s sVa lu e s crrNode)) o f e r r o r =>

(1 , e r ror , pa r en l i n ea rD i c t , f u l l L i n ea rCoe f s , t r e e)
292)

294 | node (crrNode , l Tree , r Tree) =>

296 case prune (l Tree , pa r en l i n ea rD i c t , numAtts , i n i tVa l s) o f (l params ,
l e r r o r , l d i c t , l l i n e a r , l prunedTree) =>

298 case prune (r Tree , l d i c t , numAtts , i n i tVa l s) o f (r params , r e r r o r , r d i c t ,
r l i n e a r , r prunedTree) =>

300

case f indBes tL inea r (crrNode) o f
302 (l i n e a r , s e l e c t edAt t s , s e l ec tedDataVal s)=>

case co e f s 2Fu l lL in ea rCoe f s (s e l e c t edAt t s , l i n e a r , numAtts)
304 o f f u l l L i n e a rCo e f s =>

case l e n g t h o f l i s t (#c l a s sVa lue s crrNode) o f m =>
306 case mseCal (m, countSe l ec tedAtt s s e l e c t edAt t s +1, se lectedDataVals , l i n e a r ,

Array . f romList (#c l a s sVa lu e s crrNode)) o f nodeError =>
308 case nodeError ∗ pruneFactor (Real . f romInt m, Real . f romInt

(countSe l ec tedAtt s s e l e c t edAt t s + 1) , i n i tVa l s) o f adjustedNodeError =>

96 Chapter B. M5 Model Tree Library

310 case (l e r r o r ∗ (getNumInstances l Tr e e) + r e r r o r ∗
(getNumInstances r Tree)) / Real . f romInt m of t r e eEr ro r =>

312 case t r e eEr ro r ∗ pruneFactor (Real . f romInt m,
Real . f romInt (l params + r params + 1) , i n i tVa l s)

314 o f adjustedTreeError =>
case adjustedNodeError > adjustedTreeError o f

316 t rue =>
(l params + r params + 1 , t reeError , (getID l prunedTree ,

318 #id crrNode ,
getNumInstances l prunedTree , l l i n e a r) : : (getID r prunedTree ,

320 #id crrNode , getNumInstances r prunedTree , r l i n e a r) : : r d i c t ,
f u l l L i n ea rCoe f s , node (crrNode , l prunedTree , r prunedTree))

322 | f a l s e =>
(countSe l ec tedAtt s s e l e c t edAt t s + 1 , nodeError , r d i c t ,

324 f u l l L i n ea rCoe f s , node (crrNode , empty , empty))

B.4 Smoothing Tree

(∗
2 PART IV : SMOOTHING
∗)

4

datatype r cons t = rcons t o f i n t ∗ r e a l ∗ r e a l
6 fun r e a lL e s s (X : r ea l , Y : r e a l) : bool = X < Y

fun rea lEqua l (X : r ea l , Y : r e a l) : bool = Real . compare (X, Y)=EQUAL
8 fun realAdd (X : r ea l , Y : r e a l) : r e a l = X + Y

fun r ea lMu l t i p l y (X : r ea l , Y : r e a l) : r e a l = X ∗ Y
10 fun r ea lD iv i d e (X : r ea l , Y : r e a l) : r e a l = X / Y

fun r ea lSub t r a c t (X : r ea l , Y : r e a l) : r e a l = X − Y
12 fun r cons tLe s s ((X, C) : r e a l ∗ r cons t) : bool =

case C o f r cons t (Compl , S teps i z e , Current) => r e a lL e s s (X, Current)
14 fun to r (C : r cons t) : r e a l =

case C o f r cons t (Compl , StepSize , Current) => Current
16

fun f ((P, Q, N) : r e a l ∗ r e a l ∗ r e a l) : r e a l =
18 case to r (r cons t (0 , 5 . 0 , 1 5 . 0)) o f K =>

r e a lD iv i d e (
20 realAdd (

r ea lMu l t i p l y (P, N) ,
22 r e a lMu l t i p l y (Q, K)

) ,
24 realAdd (N, K)

)
26 except ion FOUTOFBOUND

fun se l e c t edF (index , (P,Q,N)) =
28 case index o f

0 => f (P,Q,N)
30 | => r a i s e FOUTOFBOUND

32 fun lookUpDict (crrID : int , p a r en l i n e a rD i c t :
(i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t) : i n t ∗ r e a l ∗ r e a l array =

34 case pa r en l i n e a rD i c t o f
n i l => (0 , 0 . 0 , Array . f romList n i l)

36 | (nodeID , parenID , numInstances , f u l l C o e f s) : : t => i f (nodeID =crrID)
then (parenID , numInstances , f u l l C o e f s) e l s e lookUpDict (crrID , t)

38

B.5. Predicting new values 97

fun smoothLeaf (parenID , numInstances : r ea l , l e a fL inea rCoe f s ,
40 par en l i n ea rD i c t , f Index) : s t r i n g=

case parenID = 0 o f
42 t rue => ””

| f a l s e =>
44 (

l e t
46 va l (grandpaID , parenNumInstances , pa r en l i n e a rCoe f s) =

lookUpDict (parenID , pa r en l i n e a rD i c t)
48 fun updateCoef (index) =

case index = Array . l ength l e a fL i n e a rCoe f s o f
50 t rue => ””

| f a l s e =>
52 l e t

va l n = numInstances
54 va l p = Array . sub (l ea fL inea rCoe f s , index)

va l q = Array . sub (pa r en l i n ea rCoe f s , index)
56 va l temp = se l e c t edF (fIndex , (p , q , n))

va l = Array . update (l e a fL inea rCoe f s , index , temp)
58

in
60 updateCoef (index + 1)

end
62 in

updateCoef (0) ;
64 smoothLeaf (grandpaID , parenNumInstances , l e a fL inea rCoe f s ,

pa r en l i n ea rD i c t , f Index)
66 end

)
68

70 except ion smoothingProcess EMPTYTREE
fun smoothingProcess (t r e e : M5Tree , pa r en l i n ea rD i c t , f Index) : s t r i n g =

72 case t r e e o f
empty => r a i s e smoothingProcess EMPTYTREE

74 | node (crrNode , empty , empty) =>
(

76 case lookUpDict (#id crrNode , p a r en l i n e a rD i c t) o f (parentID ,
numInstances , l e a fL i n e a rCoe f s) =>

78 smoothLeaf (parentID , numInstances , l e a fL inea rCoe f s , pa r en l i n ea rD i c t ,
f Index))

80 | node (crrNode , l Tree , r Tree) =>
(

82 smoothingProcess (l Tree , pa r en l i n ea rD i c t , f Index) ;
smoothingProcess (r Tree , pa r en l i n ea rD i c t , f Index)

84)

B.5 Predicting new values

(∗
2 PART V : PREDICT
∗)

4 va l t e s tRe su l t s = r e f ””

6 except ion predictInstance INSTANCELINEATNOTMATCH
except ion predictInstance NODENOTFOUND

98 Chapter B. M5 Model Tree Library

8 except ion predictInstance INSTLENGTHNOTMATCH
fun p r ed i c t I n s t an c e (ins tVa l s , t ree , p a r en l i n e a rD i c t :

10 (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t) : r e a l =
case t r e e o f

12 empty => r a i s e predictInstance NODENOTFOUND
| node (crrNode , empty , empty) =>

14 l e t
va l (, , l i n e a r) = lookUpDict (#id crrNode , p a r en l i n e a rD i c t)

16 va l in s tVa l s ’ = in s tVa l s @ [1 . 0]
va l r e s= C mulVV(l e n g t h o f l i s t in s tVa l s ’ , Array . f romList ins tVa l s ’ ,

18 l i n e a r)

20 in
r e s

22 end
| node (crrNode , l Tree , r Tree) =>

24 case g e t i t h e l em e n t o f l i s t
(in s tVa l s , #sp l i tA t t crrNode) − #sp l i tVa l crrNode > 0 .0 o f

26 t rue => p r ed i c t I n s t an c e (ins tVa l s , r Tree , p a r en l i n e a rD i c t)
| f a l s e => p r ed i c t I n s t an c e (ins tVa l s , l Tree , p a r en l i n e a rD i c t)

28

fun predictDataVals (dataVals , t ree , p a r en l i n e a rD i c t :
30 (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t)=

case dataVals o f
32 n i l => n i l

| h : : t => p r ed i c t I n s t an c e (h , t ree , p a r en l i n e a rD i c t) : :
34 predictDataVals (t , t ree , p a r en l i n e a rD i c t)

36 fun p r ed i c t (dataVals , c l a s sVa l s , t ree , p a r en l i n e a rD i c t :
(i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t , typeErr : errType)

38 : r e a l l i s t ∗ r e a l =
case pred ictDataVals (dataVals , t ree , p a r en l i n e a rD i c t) o f r e sVa l s =>

40 case l e n g t h o f l i s t c l a s sVa l s o f numInstances =>
case typeErr = MSE of

42 t rue =>
(case mseCal (numInstances , 1 , Array . f romList resVals ,

44 Array . f romList [1 . 0] , Array . f romList c l a s sVa l s) o f nodeError =>
(resVals , valOf (Real . f romStr ing (Real . t oS t r i ng (nodeError)))))

46 | f a l s e => (
case typeErr = MAE of

48 t rue =>(
case maeCal (numInstances , 1 , Array . f romList resVals ,

50 Array . f romList [1 . 0] ,
Array . f romList c l a s sVa l s) o f nodeError =>

52 resVals , valOf (Real . f romStr ing (Real . t oS t r i ng (nodeError))))
)

54 | f a l s e => (
case SD Calculat ion (Array . f romList c l a s sVa l s) o f sdClassVal s =>

56 case mseCal (numInstances , 1 , Array . f romList resVals ,
Array . f romList [1 . 0] , Array . f romList c l a s sVa l s) o f nodeError =>

58 (resVals ,
valOf (Real . f romStr ing (Real . t oS t r i ng (nodeError / sdClassVals))))

60)
)

B.6. Data Operations 99

B.6 Data Operations

1 ∗
PART VI : RUN THE MODEL

3 ∗)

5 (∗ VI . 1 − Functions to read data from f i l e ∗)

7 fun ge tF i r s tCharL i s t (c l i : char l i s t) =
case c l i o f

9 n i l => n i l
| h : : t => i f h = #” , ” o r e l s e h = #” ”

11 then n i l
e l s e h : : g e tF i r s tCharL i s t (t)

13

fun parseLine (l i n e : char l i s t) : r e a l l i s t =
15 case l i n e o f

n i l => n i l
17 | #” , ” : : t a i l => parseL ine (t a i l)

| #” ” : : t a i l => parseL ine (t a i l)
19 | =>

l e t
21 va l numStr = implode (ge tF i r s tCharL i s t l i n e)

va l num = valOf (Real . f romStr ing (numStr))
23 in

num : : parseLine (L i s t . drop (l i n e , s i z e (numStr)))
25 end

except ion readData ERRORINPUT
27 fun readData (fi leName , nLines) =

l e t
29 fun readLines (fh , nLines) =

case (TextIO . endOfStream fh , nLines = 0) o f
31 (, t rue) => (TextIO . c l o s e I n fh ; [])

| (f a l s e , f a l s e) => (parseL ine (explode (valOf (TextIO . inputLine fh)))) : :
33 readLines (fh , nLines − 1)

| (true , f a l s e) => r a i s e readData ERRORINPUT
35 in

readLines (TextIO . openIn fi leName , nLines)
37 end

except ion readClass ERRORINPUT
39 fun readClass (f i leName , nLines) =

l e t
41 fun readLines (fh , nLines) =

case (TextIO . endOfStream fh , nLines = 0) o f
43 (, t rue) => (TextIO . c l o s e I n fh ; [])

| (f a l s e , f a l s e) =>
45 l e t

va l num = valOf (Real . f romStr ing
47 (implode (ge tF i r s tCharL i s t (explode (valOf (TextIO . inputLine fh))))))

49 in
num : : readLines (fh , nLines − 1)

51 end
| (true , f a l s e) => r a i s e readClass ERRORINPUT

53 in
readLines (TextIO . openIn fi leName , nLines)

55 end
(∗ VI . 2 − Read t r a i n i n g and va l i d a t i o n data/ c l a s s ∗)

100 Chapter B. M5 Model Tree Library

57 fun wr i t e 2F i l e (s t r : s t r i ng , f i l e : s t r i n g) =
l e t

59 va l outStr = TextIO . openOut f i l e
va l = TextIO . output (outStr , s t r)

61 va l = TextIO . c loseOut outStr
in

63 ””
end

65

fun checkContain (l s : i n t l i s t , va lue : i n t) : bool =
67 case l s o f

n i l => f a l s e
69 | h : : t l => i f h = value then true e l s e checkContain (t l , va lue)

71 fun rdomList (range : int , num: int , seed : Random . rand , r e s L i s t)
: i n t l i s t =

73 case num = 0 o f
t rue => r e s L i s t

75 | f a l s e => (
case Random . randRange (0 , range) seed o f rdomVal =>

77 case checkContain (r e sL i s t , rdomVal) o f
t rue => rdomList (range , num, seed , r e s L i s t)

79 | f a l s e => rdomList (range , num − 1 , seed , rdomVal : : r e s L i s t)
)

81

fun t r a i nVa l i d Sp l i t (X : r e a l l i s t l i s t , y : r e a l l i s t ,
83 val idRowsList : i n t l i s t , i t e r : int , X tra in : r e a l l i s t l i s t ,

y t r a i n : r e a l l i s t , X val id : r e a l l i s t l i s t , y v a l i d : r e a l l i s t) :
85 r e a l l i s t l i s t ∗ r e a l l i s t ∗ r e a l l i s t l i s t ∗ r e a l l i s t =

case y o f
87 n i l => (X train , y t ra in , X val id , y va l i d)

| h : : t => (
89 case checkContain (val idRowsList , i t e r) o f

t rue => t r a i nVa l i d Sp l i t (t l X, t l y , val idRowsList , i t e r + 1 , X train ,
91 y t ra in , (hd X) : : X val id , (hd y) : : y v a l i d)

| f a l s e => t r a i nVa l i d Sp l i t (t l X, t l y , val idRowsList , i t e r + 1 ,
93 (hd X) : : X train , (hd y) : : y t ra in , X val id , y va l i d)

)
95

fun oneCVSplit (t e s t r a t i o : r e a l) (X : r e a l l i s t l i s t , y : r e a l l i s t) :
97 (r e a l l i s t l i s t ∗ r e a l l i s t) ∗ (r e a l l i s t l i s t ∗ r e a l l i s t) =

l e t
99 va l numData = L i s t . l ength y

va l numValid : i n t = Real . f l o o r (t e s t r a t i o ∗ Real . f romInt numData)
101 va l numTrain : i n t = numData − numValid

va l seed = Random . rand (2 , 2015)
103 va l va l idRowsList = rdomList (numData − 1 , numValid , seed , [])

va l (X train , y t ra in , X val id , y va l i d) = t r a i nVa l i d Sp l i t (X, y ,
105 val idRowsList , 0 , [] , [] , [] , [])

in
107 ((X train , y t r a i n) , (X val id , y va l i d))

end
109

except ion concatenateXy LENGTHNOTMATCH
111 fun concatenateXy (n i l , n i l) = n i l

| concatenateXy (X : : Xs , y : : ys) = (X @ [y]) : : concatenateXy (Xs , ys)
113 | concatenateXy (,) =r a i s e concatenateXy LENGTHNOTMATCH

B.6. Data Operations 101

115

fun nCVSplit (X : r e a l l i s t l i s t , y : r e a l l i s t , t e s t r a t i o : r ea l ,
117 numCV : i n t) : r e a l l i s t l i s t l i s t ∗ r e a l l i s t l i s t

∗ r e a l l i s t l i s t l i s t ∗ r e a l l i s t l i s t =
119 l e t

va l numData = L i s t . l ength y
121 va l numValid : i n t = Real . f l o o r (t e s t r a t i o ∗ Real . f romInt numData)

va l numTrain : i n t = numData − numValid
123 va l seed = Random . rand (2 , 2015)

fun oneCV (i t e r : int , X t r a i n l i s t , y t r a i n l i s t , X v a l i d l i s t ,
125 y v a l i d l i s t) =

case i t e r = numCV + 1 o f
127 t rue => (X t r a i n l i s t , y t r a i n l i s t , X v a l i d l i s t , y v a l i d l i s t)

| f a l s e => (
129 l e t

va l va l idRowsList = rdomList (numData − 1 , numValid , seed , [])
131 va l (X train , y t ra in , X val id , y va l i d) = t r a i nVa l i d Sp l i t (X, y ,

val idRowsList , 0 , [] , [] , [] , [])
133 in

oneCV(i t e r + 1 , X tra in : : X t r a i n l i s t , y t r a i n : : y t r a i n l i s t ,
135 X val id : : X v a l i d l i s t , y v a l i d : : y v a l i d l i s t)

end
137)

in
139 oneCV (1 , [] , [] , [] , [])

end
141

fun eva luateTree (X train , y t ra in , X val id , y va l id , i n i tVa l s , f Index)
143 : r e a l ∗ r e a l =

l e t
145 va l factor Globa lDev = #m devFraction i n i tVa l s ∗

(#1 (SD Ca l cu l a t i on f o rL i s t y t r a i n))
147 va l (t ree , ID) = bui ldTree (X train , y t ra in , L i s t . l ength (hd X tra in) ,

1 , factor Globa lDev)
149 va l (,

,
151 par en l i n ea rD i c t ’ : (Int . i n t ∗ Int . i n t ∗ r e a l ∗ r e a l array) l i s t ,

f u l l L i n e a rCo e f f s : r e a l array ,
153 prunedTree) =

prune (t r e e , n i l , L i s t . l ength (hd X tra in) , i n i tVa l s)
155

va l pa r en l i n e a rD i c t =(1 ,0 , 0 . 0 , f u l l L i n e a rCo e f f s) : : pa r en l i n ea rD i c t ’
157 va l = smoothingProcess (prunedTree , pa r en l i n ea rD i c t , f Index)

va l (, MSEerror) =
159 p r ed i c t (X val id , y va l id , prunedTree , p a r en l i n e a rD i c t , MSE)

va l (, RelMSEerror) =
161 p r ed i c t (X val id , y va l id , prunedTree , p a r en l i n e a rD i c t , RelMSE)

in
163 (MSEerror , RelMSEerror)

end
165

fun CV Evaluate (X t r a i n l i s t , y t r a i n l i s t , X v a l i d l i s t , y v a l i d l i s t ,
167 sumMSE, sumRelError , i n i tVa l s , numCV, f Index) : r e a l ∗ r e a l =

case y t r a i n l i s t o f
169 n i l => (sumMSE/ Real . f romInt (numCV) , sumRelError/ Real . f romInt (numCV))

| h : : t a i l =>
171 l e t

va l (MSEerror , RelError) = eva luateTree (hd X t r a i n l i s t ,

102 Chapter B. M5 Model Tree Library

173 hd y t r a i n l i s t , hd X va l i d l i s t , hd y v a l i d l i s t , i n i tVa l s , f Index)
va l = pr in t (”MSE, RelMSE : ” ˆ Real . t oS t r i ng (MSEerror) ˆ” , ” ˆ

175 Real . t oS t r i ng (RelError) ˆ”\n”)
in

177 CV Evaluate (t l X t r a i n l i s t , t l y t r a i n l i s t , t l X v a l i d l i s t ,
t l y v a l i d l i s t , sumMSE + MSEerror ,

179 sumRelError + RelError ,
i n i tVa l s ,numCV, f Index)

181 end

183

fun CV error (te s tRat io , numCV, in i tVa l s , f Index) (X, y) =
185 l e t

va l (X t r a i n l i s t , y t r a i n l i s t , X v a l i d l i s t , y v a l i d l i s t) =
187 nCVSplit (X, y , t e s tRat io , numCV)

va l (MSEerr , RelMSEerr) = CV Evaluate (X t r a i n l i s t , y t r a i n l i s t ,
189 X va l i d l i s t , y v a l i d l i s t , 0 . 0 , 0 . 0 , i n i tVa l s , numCV, f Index)

in
191 (MSEerr , RelMSEerr)

end

Appendix C

ADATE specification file for
Smoothing experiment

2 fun r cons tLe s s ((X, C) : r e a l ∗ r cons t) : bool =
case C o f r cons t (Compl , StepSize , Current) => r e a lL e s s (X, Current)

4

6 fun f ((P, Q, N) : r e a l ∗ r e a l ∗ r e a l) : r e a l =
case to r (r cons t (0 , 5 . 0 , 1 5 . 0)) o f K =>

8 case r ea lMu l t i p l y (K,N) o f NewK =>
r e a lD iv i d e (

10 realAdd (
P,

12 r e a lMu l t i p l y (Q, NewK)
) ,

14 realAdd (1 . 0 , NewK)
)

16

18 %%

20

type main domain = M5Tree ∗ (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t
22 type main range = (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t

24 fun memDictHash (
(NodeID , ParentID , NumInstances , Coefs) : i n t ∗ i n t ∗ r e a l ∗

26 r e a l array
) : Word64 . word =

28 l i s t h a s h (fn X => X, [
Word64FromInt64 NodeID ,

30 Word64FromInt64 ParentID ,
realHash NumInstances ,

32 l i s t h a s h (realHash , a r r a y t o l i s t Coefs)
]

34)

36 fun main range hash Xs = l i s t h a s h (memDictHash , Xs)

38

103

104 Chapter C. ADATE specification file for Smoothing experiment

40 datatype oeArg =
exactlyOne o f (Int . i n t ∗ main domain ∗ main range)

42 | allAtOnce o f
dec ∗

44 (Int . i n t ∗ main domain ∗ main range) L i s t . l i s t Option . opt ion ∗
(Int . i n t ∗ main domain ∗ main range) L i s t . l i s t

46

48 fun lookUpDict ada (crrID : int , p a r en l i n e a rD i c t : (i n t ∗ i n t ∗ r e a l ∗
r e a l array) l i s t) : i n t ∗ r e a l ∗ r e a l array =

50 case pa r en l i n e a rD i c t o f
n i l => (0 , 0 . 0 , Array . f romList n i l)

52 | (nodeID , parenID , numInstances , f u l l C o e f s) : : t=> i f (nodeID = crrID)
then (parenID , numInstances , f u l l C o e f s) e l s e lookUpDict ada (crrID , t)

54

fun smoothLeaf ada (parenID : int , numInstances : r ea l ,
56 l e a fL i n e a rCoe f s : r e a l array , pa r en l i n e a rD i c t :

(i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t) : i n t =
58 case parenID = 0 o f

t rue => 0
60 | f a l s e =>

(
62 l e t

va l (grandpaID , parenNumInstances , pa r en l i n e a rCoe f s) =
64 lookUpDict ada (parenID , pa r en l i n e a rD i c t)

fun updateCoef (index) =
66 case index = Array . l ength l e a fL i n e a rCoe f s o f

t rue => ””
68 | f a l s e =>

l e t
70 va l n = numInstances

va l p = Array . sub (l ea fL inea rCoe f s , index)
72 va l q = Array . sub (pa r en l i n ea rCoe f s , index)

va l testNan =
74 Real .==(p , 0 . 0) andalso Real .==(q , 0 . 0)

va l val2Update = i f testNan = true then 0 .0
76 e l s e f (p / (2 . 0∗p + 2.0∗ q) , q / (2 . 0∗p + 2.0∗ q) , 1 . 0 / n)

va l = Array . update (l e a fL inea rCoe f s , index ,
78 val2Update∗ (2 . 0∗p + 2.0∗ q))

in
80 updateCoef (index + 1)

end
82 in

updateCoef (0) ;
84 smoothLeaf ada (grandpaID , parenNumInstances , l e a fL inea rCoe f s ,

p a r en l i n e a rD i c t)
86 end

)
88

fun smoothingProcess ada (
90 t r e e : M5Tree ,

p a r en l i n e a rD i c t : (Int64 . i n t ∗ Int64 . i n t ∗ r e a l ∗ r e a l array) l i s t
92) : Int64 . i n t =

case t r e e o f
94 empty => 0

| node (crrNode , empty , empty) =>
96 (case lookUpDict ada (Int64 . fromInt (#id crrNode) , p a r en l i n e a rD i c t)

o f (parentID , numInstances , l e a fL i n e a rCoe f s) =>

105

98 smoothLeaf ada (parentID , numInstances , l e a fL inea rCoe f s ,
p a r en l i n e a rD i c t))

100 | node (crrNode , l Tree , r Tree) =>
(

102 smoothingProcess ada (l Tree , p a r en l i n e a rD i c t) ;
smoothingProcess ada (r Tree , p a r en l i n e a rD i c t)

104)

106 fun arrCp (ar r : r e a l array , newArr : r e a l array , index : i n t) : i n t=
case index − Int64 . fromInt (Array . l ength ar r) o f

108 0 => 0
| => (Array . update (newArr , Int64 . t o In t index ,

110 Array . sub (arr , Int64 . t o In t index)) ; arrCp (arr , newArr , index + 1))

112 fun dictCp (d i c tS r c : (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t) :
(i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t =

114 case d i c tS r c o f
n i l => n i l

116 | (I1 , I2 , R, a r r) : : remains =>
l e t

118 va l newArr = Array . array (Array . l ength arr , 0 . 0)
va l = arrCp (arr , newArr , 0)

120 in
(I1 , I2 ,R, newArr) : : dictCp (remains)

122 end

124 (∗ type main domain = M5Tree ∗ (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t ∗)

126 fun conv (Paren l inea rDic t , PrunedTree) : main domain =
(PrunedTree ,

128 map(fn (A, B, C, D) => (Int64 . fromInt A, Int64 . fromInt B, C, D) ,
Pa r en l i n ea rD i c t))

130

132 fun conv ’ (Paren l inea rDic t , PrunedTree) =
(map(fn (A, B, C, D) => (Int64 . fromInt A, Int64 . fromInt B, C, D) ,

134 Paren l i n ea rD i c t) ,
PrunedTree

136)

138 fun main ((PrunedTree , Pa r en l i n ea rD i c t) : M5Tree ∗
(i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t) :

140 (i n t ∗ i n t ∗ r e a l ∗ r e a l array) l i s t =
l e t

142 va l Par en l i n ea rD i c t ada = dictCp (Par en l i n ea rD i c t)

144 va l temp = smoothingProcess ada (PrunedTree , Paren l i n ea rD i c t ada)
in

146 Paren l i n ea rD i c t ada
end

148

150 va l i n i tVa l s : in i tType = {
m pruningMult ip l i e r = 1 . 0 ,

152 m devFraction = 0 .05 ,
debug = 0

154 }

106 Chapter C. ADATE specification file for Smoothing experiment

156 fun readXy ((X f i l e , y f i l e , numOfIns)) =
l e t

158 va l y = readClass (y f i l e , numOfIns)
va l X = readData (X f i l e , numOfIns)

160 in
(X, y)

162 end

164 fun t ra inVa l idSepara t e (oneCV allXy , dataTrain , dataVal id) =
case oneCV allXy o f

166 n i l => (dataTrain , dataVal id)
| (t ra in , v a l i d) : : remains => t ra inVa l idSepara t e

168 (remains , t r a i n : : dataTrain , v a l i d : : dataVal id)

170

172 fun build unSmoothTree (typeErr : errType) ((X train , y t r a i n)) =
l e t

174

va l factor Globa lDev = #m devFraction i n i tVa l s ∗
176 (#1 (SD Ca l cu l a t i on f o rL i s t y t r a i n))

va l (t ree , ID) = bui ldTree (X train , y t ra in , L i s t . l ength (hd X tra in) , 1 ,
178 f ac tor Globa lDev)

va l numAtts = L i s t . l ength (hd X tra in)
180 va l (,

,
182 pa r en l i n e a rD i c t : (Int . i n t ∗ Int . i n t ∗ r e a l ∗ r e a l array) l i s t ,

f u l l L i n e a rCo e f f s : r e a l array ,
184 prunedTree) =

prune (t r e e , n i l , typeErr , numAtts , i n i tVa l s)
186 va l pa r en l i n e a rD i c t = (1 , 0 , 0 . 0 , f u l l L i n e a rCo e f f s) : : p a r en l i n e a rD i c t

va l l enCoe f s = L i s t . l ength (hd X tra in) + 1
188

in
190 (pa r en l i n ea rD i c t , prunedTree)

end
192

194 fun pairXy (X : r e a l l i s t l i s t l i s t , y : r e a l l i s t l i s t ,
r e s : (r e a l l i s t l i s t ∗ r e a l l i s t) l i s t) :

196 (r e a l l i s t l i s t ∗ r e a l l i s t) l i s t =
case y o f

198 n i l => r e s
| hy : : t l y => (hd X, hy) : : pairXy (t l X, t ly , r e s)

200

fun treeValidData nCV (tes tRat io , numCV) ((X f i l e , y f i l e , numOfIns))=
202 l e t

va l y = readClass (y f i l e , numOfIns)
204 va l X = readData (X f i l e , numOfIns)

va l (X t r a i n l i s t , y t r a i n l i s t , X v a l i d l i s t , y v a l i d l i s t) =
206 nCVSplit (X, y , t e s tRat io , numCV)

va l X y t r a i n l i s t = pairXy (X t r a i n l i s t , y t r a i n l i s t , [])
208 va l t r e e p a r e nD i c t l i s t = L i s t .map (build unSmoothTree MSE)

Xy t r a i n l i s t
210 in

(t r e e p a r e nD i c t l i s t , X v a l i d l i s t , y v a l i d l i s t)
212 end

107

214

va l datase t = [
216 (”/ l o c a l /M5/2DPlanes X 40768 10 . csv ” , ”/ l o c a l /M5/2DPlanes y 40768 . csv ” ,

40768) ,
218 (”/ l o c a l /M5/ abalone X 4177 9 . csv ” , ”/ l o c a l /M5/ aba lone y 4177 . csv ” , 4177) ,

(”/ l o c a l /M5/add10 X 9792 10 . csv ” , ”/ l o c a l /M5/add10 y 9792 . csv ” , 9792) ,
220 (”/ l o c a l /M5/ a i l e r on s X 13750 40 . csv ” , ”/ l o c a l /M5/ a i l e r on s y 13750 . csv ” ,

13750) ,
222 (”/ l o c a l /M5/bank8FM X 8192 8 . csv ” , ”/ l o c a l /M5/bank8FM y 8192 . csv ” , 8192) ,

(”/ l o c a l /M5/bank32nh X 8192 32 . csv ” , ”/ l o c a l /M5/bank32nh y 8192 . csv ” ,
224 8192) ,

(”/ l o c a l /M5/ ca l i f o r n i a hou s e X 20640 8 . csv ” , ”/ l o c a l /M5/
226 c a l i f o r n i a h ou s e y 2 0 6 4 0 . csv ” , 20640) ,

(”/ l o c a l /M5/CASP X 45730 9 . csv ” , ”/ l o c a l /M5/CASP y 45730 . csv ” , 45730) ,
228 (”/ l o c a l /M5/CBM X 11934 17 . csv ” , ”/ l o c a l /M5/CBM y 11934 . csv ” , 11934) ,

(”/ l o c a l /M5/CombinedCyclePowerPlant X 9568 4 . csv ” , ”/ l o c a l /M5/
230 CombinedCyclePowerPlant y 9568 . csv ” , 9568) ,

(”/ l o c a l /M5/ cpu smal l X 8192 12 . csv ” , ”/ l o c a l /M5/ cpu smal l y 8192 . csv ” ,
232 8192) ,

(”/ l o c a l /M5/ d e l t a a i l e r on s X 7129 5 . csv ” , ”/ l o c a l /M5/
234 d e l t a a i l e r o n s y 7 1 2 9 . csv ” , 7129) ,

(”/ l o c a l /M5/ d e l t a a i l X 71 2 9 5 . csv ” , ”/ l o c a l /M5/ d e l t a a i l y 7 1 2 9 . csv ” ,
236 7129) ,

(”/ l o c a l /M5/ anaca l t X 4052 7 . csv ” , ”/ l o c a l /M5/ anaca l t y 4052 . csv ” , 4052) ,
238 (”/ l o c a l /M5/ cpu act X 8192 21 . csv ” , ”/ l o c a l /M5/ cpu act y 8192 . csv ” ,8192) ,

(”/ l o c a l /M5/ de l t a e l v X 9517 6 . csv ” , ”/ l o c a l /M5/ d e l t a e l v y 9 5 1 7 . csv ” ,
240 9517) ,

(”/ l o c a l /M5/Relat ionNetwork Directed X 53413 22 . csv ” , ”/ l o c a l /M5/
242 Relat ionNetwork Directed y 53413 . csv ” , 53413) ,

(”/ l o c a l /M5/ e l eva to r s X 16599 18 . csv ” , ”/ l o c a l /M5/
244 e l e va t o r s y 16599 . csv ” , 16599) ,

(”/ l o c a l /M5/ f r i e d de l v e X 40768 10 . csv ” , ”/ l o c a l /M5/
246 f r i e d d e l v e y 4 0 7 6 8 . csv ” , 40768) ,

(”/ l o c a l /M5/ housePr ice8 X 22784 8 . csv ” , ”/ l o c a l /M5/
248 housePr i ce8 y 22784 . csv ” , 22784) ,

(”/ l o c a l /M5/ housePr ice16 X 22784 16 . csv ” , ”/ l o c a l /M5/
250 housePr ice16 y 22784 . csv ” , 22784) ,

(”/ l o c a l /M5/hwang X 13600 11 . csv ” , ”/ l o c a l /M5/hwang y 13600 . csv ” , 13600) ,
252 (”/ l o c a l /M5/kin8nm X 8192 8 . csv ” , ”/ l o c a l /M5/kin8nm y 8192 . csv ” , 8192) ,

(”/ l o c a l /M5/mv X 40768 10 . csv ” , ”/ l o c a l /M5/mv y 40768 . csv ” , 40768) ,
254 (”/ l o c a l /M5/ park insons updrs X 5875 21 . csv ” , ”/ l o c a l /M5/

park insons updrs y 5875 . csv ” , 5875) ,
256 (”/ l o c a l /M5/pol48 X 15000 48 . csv ” , ”/ l o c a l /M5/ po l48 y 15000 . csv ” , 15000) ,

(”/ l o c a l /M5/ pole X 14998 26 . csv ” , ”/ l o c a l /M5/ po l e y 14998 . csv ” , 14998) ,
258 (”/ l o c a l /M5/puma8NH X 8192 8 . csv ” , ”/ l o c a l /M5/puma8NH y 8192 . csv ” , 8192) ,

(”/ l o c a l /M5/puma32H X 8192 32 . csv ” , ”/ l o c a l /M5/puma32H y 8192 . csv ” ,8192) ,
260 (”/ l o c a l /M5/winequa l i ty X 4898 11 . csv ” , ”/ l o c a l /M5/

winequa l i ty y 4898 . csv ” , 4898)
262]

264 fun i n i t e v a l (I : Int . int , a l lTre e s , a l lXva l id , a l lYva l id , init RelMSE) :
r e a l l i s t =

266 case I = L i s t . l ength a l lT r e e s o f
t rue => init RelMSE

268 | f a l s e =>
l e t

270 va l prunedTree = #2 (L i s t . nth (a l lTre e s , I))
va l l i n ea rD i c t ’ = #1 (L i s t . nth (a l lTre e s , I))

108 Chapter C. ADATE specification file for Smoothing experiment

272 va l l i n ea rD i c t ’ ’ = dictCp (l i n ea rD i c t ’)
va l l i n e a rD i c t =

274 map(fn (A, B, C, D) => (Int64 . t o In t A, Int64 . t o In t B, C, D) ,
l i n ea rD i c t ’ ’)

276 va l = smoothingProcess (prunedTree , l i n e a rD i c t)
va l Xvalid = L i s t . nth (a l lXva l id , I)

278 va l Yvalid = L i s t . nth (a l lYva l id , I)
va l (, e r r o r) =

280 p r ed i c t (
Xvalid ,

282 Yvalid ,
prunedTree ,

284 l i n e a rD i c t ,
RelMSE)

286 in
i n i t e v a l (I + 1 , a l lTre e s , a l lXva l id , a l lYva l id , init RelMSE @[e r r o r])

288 end

290

va l t r e e X v a l i d y v a l i d l i s t l i s t = L i s t .map (treeValidData nCV (0 . 2 , 5))
292 datase t

va l a l lT r e e s = L i s t . concat (L i s t .map #1 t r e e X v a l i d y v a l i d l i s t l i s t)
294 va l a l lXva l i d = L i s t . concat (L i s t .map #2 t r e e X v a l i d y v a l i d l i s t l i s t)

va l a l lYva l i d = L i s t . concat (L i s t .map #3 t r e e X v a l i d y v a l i d l i s t l i s t)
296 va l initRelMSE = i n i t e v a l (0 , map(conv ’ , a l lT r e e s) , a l lXva l id , a l lYva l id ,

[])
298 va l Inputs = map(conv , L i s t . take (a l lTre e s , 100))

va l Tes t input s = map(conv , L i s t . drop (a l lTre e s , 100))
300

va l Funs to use = [
302 ” f a l s e ” , ” t rue ” ,

” r e a lL e s s ” , ” realAdd” , ” r ea lSub t r a c t ” , ” r ea lMu l t i p l y ” ,
304 ” r ea lD iv id e ” , ” tanh” ,

” to r ” , ” r cons tLe s s ”
306]

308 va l Abst rac t types = []
va l Re j e c t f un s = []

310 fun r e s t o r e t r an s f o rm D = D
fun compi l e t rans fo rm D = D

312 va l pr int synted program = Print . p r in t dec ’

314 va l AllAtOnce = f a l s e

316

except ion MaxSyntComplExn
318 va l MaxSyntCompl = (

case getCommandOption ”−−maxSyntacticComplexity ” o f
320 NONE => 200 .0

| SOME S => case Real . f romStr ing S o f SOME N => N
322) handle Ex => r a i s e MaxSyntComplExn

324

326 va l OnlyCountCalls = f a l s e
va l TimeLimit : Int . i n t = 20000000

328 va l max t ime l imit = fn () => Word64 . fromInt TimeLimit : Word64 . word
va l max t e s t t ime l im i t = fn () =>Word64 . fromInt TimeLimit :Word64 . word

109

330 va l t ime l im i t b a s e = fn () => r e a l TimeLimit

332 fun max syntact i c complex i ty () = MaxSyntCompl
fun min syntac t i c comp lex i ty () = 0 .0

334 va l Us e t e s t da t a f o r max syn ta c t i c c omp l ex i t y = f a l s e

336 va l F i l e name extens i on = ””
va l Reso lut ion = NONE

338 va l StochasticMode = f a l s e

340 va l Number o f output at t r ibute s : Int64 . i n t = 4

342

344 fun to (G : r e a l) : LargeInt . i n t =
Real . toLargeInt IEEEReal .TO NEAREST(G ∗ 1 .0 e14)

346

s t r u c tu r e Grade : GRADE =
348 s t r u c t

type grade = LargeInt . i n t
350 va l NONE = LargeInt . maxInt

va l ze ro = LargeInt . fromInt 0
352 va l op+ = LargeInt .+

va l comparisons = [LargeInt . compare]
354 fun toS t r i ng (G : grade) : s t r i n g =

Real . t oS t r i ng (Real . f romLargeInt G / 1 .0E14)
356 va l N = LargeInt . fromInt 1000000 ∗ LargeInt . fromInt 1000000

va l s i gn i f i c an tCompar i s on s = [fn (E1 , E2)
358 => LargeInt . compare (E1 div N, E2 div N)]

fun toS t r i ng (G : grade) : s t r i n g =
360 Real . t oS t r i ng (Real . f romLargeInt G / 1 .0E14)

va l pack = LargeInt . t oS t r i ng
362 fun unpack (S : s t r i n g) : grade =

case LargeInt . f romStr ing S o f SOME G => G
364

va l po s t p r o c e s s = fn X => X
366 va l toRealOpt = NONE

end
368

va l Threshold =
370 case getCommandOption ”−−th r e sho ld ” o f

SOME S => case Real . f romStr ing S o f SOME N => N
372

va l () = (p”\n\nThreshold = ” ; p r i n t r e a l Threshold ; p”\n\n”)
374

va l N = L i s t . l ength Inputs
376

fun output eva l f un (exactlyOne (I : Int . int , ,
378 pa r e n l i n e a r d i c t : main range))

: { numCorrect : Int . int , numWrong : Int . int , grade : Grade . grade }
380 L i s t . l i s t = [

l e t
382 va l prunedTree = #2 (L i s t . nth (a l lTre e s , I))

va l Xvalid = L i s t . nth (a l lXva l id , I)
384 va l Yvalid = L i s t . nth (a l lYva l id , I)

va l (, ActualError) =
386 p r ed i c t (

Xvalid ,

110 Chapter C. ADATE specification file for Smoothing experiment

388 Yvalid ,
prunedTree ,

390 map(fn (A, B, C, D) => (Int64 . t o In t A, Int64 . t o In t B, C, D) ,
p a r e n l i n e a r d i c t) ,

392 RelMSE
)

394 va l i n i tE r r o r = L i s t . nth (initRelMSE , I)
va l e r r o r =

396 i f I >= N then
ActualError

398 e l s e i f ActualError < (1 . 0 − Threshold) ∗ i n i tE r r o r then
(1 .0 − Threshold) ∗ i n i tE r r o r

400 e l s e
ActualError

402 in
i f Real .==(er ror , 0 . 0) then

404 { numCorrect = 100 , numWrong = 0 , grade = to e r r o r }
e l s e i f e r r o r > 1 .0E30 o r e l s e not (Real . isNormal e r r o r) then

406 { numCorrect = 0 , numWrong = 1 , grade = to 1 .0E30}
e l s e

408 { numCorrect = 1 , numWrong = 0 , grade = to e r r o r }
end

410]

	Preface
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Listings
	Introduction
	Background and motivation
	Research question and method
	Report Outline

	Role of Decision Trees in solving Machine Learning problems
	Advantages and applications of Decision Trees
	Challenges in using Decision Trees

	An overview on Decision tree models
	Traditional approach to construct a decision tree
	Classification trees
	Regression trees
	Ensemble of trees as a powerful method

	M5 Model Trees
	M5 model tree
	M5' model tree
	M5'Rules
	M5 model tree for classification
	Multivariate Linear Regression in M5 model tree

	Introduction of ADATE system
	Evolutionary algorithm and Automatic programming
	Introduction to ADATE

	ADATE experiments: Design and Implementation
	ADATE experiments design
	ADATE experiment implementation

	ADATE experiments: Results and Discussion
	M5 smoothing improvement experiments
	M5 pruning improvement experiments

	Conclusion and Future Works
	Conclusion
	Future works

	Bibliography
	Linear Regression Library
	Matrix - Vector operations
	Solve Matrix operation

	M5 Model Tree Library
	Tree Structure
	Splitting Nodes
	Pruning Tree
	Smoothing Tree
	Predicting new values
	Data Operations

	ADATE specification file for Smoothing experiment

