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Abstract 
It has recently been reported that by using a spectral-tuning algorithm, the photocurrents of multiple detectors 
with spectrally overlapping responsivities can be optimally combined to synthesize, within certain limits, the 
response of a detector with an arbitrary responsivity. However, it is known that the presence of noise in the 
photocurrent can degrade the performance of this algorithm significantly, depending on the choice of the 
responsivity spectrum to be synthesized. We generalize this algorithm to accommodate noise. The results are 
applied to quantum-dot mid-infrared detectors with bias-dependent spectral responses. Simulation and 
experiment are used to show the ability of the algorithm to reduce the adverse effect of noise on its spectral-
tuning capability. 

1. Introduction 
Modern hyperspectral sensor systems, such as the Airborne Visible∕Infrared Imaging Spectrometer (AVIRIS) or 
Hyperspectral Digital Imaging Collection Experiment (HYDICE), are capable of sensing the spectrum of a source in 
upwards of 200 bands of width 10–20 nm.[[1], [2], [3]] These systems are sophisticated and costly; they either 
use a dispersive optic element to spread the spectral content for each pixel to multiple line arrays[[3]] or use 
interferometric techniques that involve computation of the interference pattern and Fourier transform to obtain 
the spectral content.[[4], [5], [6], [7], [8]] In these systems, the spectrum or the interferogram corresponding to 
each pixel is captured on a single column of the array, leaving only one dimension of the array for gathering the 
spatial information. Multispectral systems, such as the Multispectral Thermal Imager,[[9]] are different from 
hyperspectral systems in that they use much fewer but wider bands, which results in reduced spectral 
resolution. However, multispectral sensing systems are simpler and easier to realize than hyperspectral sensing 
systems, as they require far less sophisticated optical front ends. 

A key characteristic common to existing hyperspectral and multispectral sensors is that they cannot offer 
spectral resolutions below the resolution of their bands, which is a consequence of the spectrally 
nonoverlapping nature of the bands. On the other hand, multispectral detectors often have much wider 
responsivities than the desired resolution. Nonetheless, one can extract higher spectral resolution information 
from multiple detectors provided that the detectors exhibit spectrally overlapping responsivities.[[10]] Indeed, 
the use of spectral overlap in detectors to extract higher spectral resolution information is seen in nature. For 
example, the human eye uses overlapping spectral bands of three (in some cases four) different kinds of cone 
cells to sense color. Also, it has been shown that the use of overlapping spectral filtering in technology can 
improve performance of spectral sensing systems.[[11]] 

An example of a class of detectors that can be utilized to produce spectrally overlapping bands is a subclass of 
the quantum-dot infrared photodetector (QDIP).[[12], [13], [14], [15]] A QDIP may display a bias-dependent 
spectral responsivity due to the quantum-confined Stark effect, which is caused by an asymmetric potential 
profile. As the operating bias is varied, the responsivity changes by exhibiting a shift in its peak and, to a lesser 
extent, a variation in its shape. For this type of QDIP, a single detector can be operated at multiple biases 
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sequentially, whereby the detector's responsivity changes each time the bias is varied. Therefore, a single QDIP 
can be exploited as different detectors. 

Recently, Sakoglu et al.[[10]] reported a postprocessing algorithm that exploits the spectral overlap in multiple 
detectors in QDIPs to perform spectral sensing in the range of 3–8 μm with a resolution down to 0.50 μm, which 
is one fourth of the spectral resolution of the detector. It has also been shown theoretically that this technique 
is capable of performing some level of multispectral sensing.[[10], [16]] The idea of the algorithm can be 
described as follows. Suppose that we operate the detector at K different biases and assume that for the kth 
bias the detector responsivity is 𝑅𝑅𝑘𝑘(𝜆𝜆) (𝐴𝐴/𝑊𝑊). Now suppose that we are interested in combining the outputs of 
the detectors at various biases so as to mimic the response of a desired spectral filter, or band, which we denote 
by 𝑟𝑟𝑟𝑟(𝜆𝜆). The first step of the algorithm is to form a weighted superposition of K responsivities to optimally 
approximate the multispectral band represented by 𝑟𝑟𝑐𝑐(𝜆𝜆) (in the minimum mean-square sense). Then, by 
exploiting the linearity of the detector, these very weights can be used to form a weighted sum of the individual 
photocurrents from the detector, one for each operating bias. The resulting superposition would yield the best 
approximation of the output of the sought-after band represented by 𝑟𝑟𝑐𝑐(𝜆𝜆). Synthesized responsivities obtained 
in this fashion can be continuously varied, within certain limits, in shape (unimodal or multimodal), width 
(narrowband or wideband), and location, depending on the requirements of each application. In other words, 
continuous spectral tuning is obtained.[[10]] 

On the basis of the spectral overlap and diversity of QDIPs, approaches that use principal components analysis 
and canonical correlation analysis have been developed to study the performance of sensing.[[17], [18], [19], 
[20], [21], [22]] The detectors' responsivities, which are functions of wavelength, are transformed into an 
uncorrelated function space. Since the spectra are practically sampled in wavelength, they have viewed sensing 
as an inner product between the sampled scene spectrum vector and the detector responsivity vector. They 
have transformed the vectors into an uncorrelated vector space in which the detectors' responsivities are 
decorrelated, and only the principal contributers are chosen to be used in sensing. Then, inner product outputs 
for each transformed detector constitute a new space. They have shown that sensing in this new space can give 
comparable results with a reduced data set. The new responsivities in the transformed space can still be 
overlapping in wavelength. In this work, however, instead of projecting the detectors' responsivities onto an 
uncorrelated space, we are interested in projecting them onto a new responsivity space that has certain 
properties: It is desired that the new responsivity functions have a certain center wavelength and certain 
resolution, as well as a certain shape. These properties might be wanted for certain applications in which the 
spectral information from certain bands is desired. 

From a practical standpoint, however, the success of the aforementioned postprocessing-based tunable sensing 
strategy depends upon the level of noise in the measured current, which is attributable to dark current and the 
associated generation–recombination (shot) noise.[[23], [24], [25]] Since the algorithm is based on forming a 
weighted sum of photocurrents (usually with positive and negative signs), the noise variances corresponding to 
each weighted photocurrent accumulate, resulting in approximation error and poor signal-to-noise ratio 
(SNR).[[16]] Moreover, the effect of noise on the performance is shown to vary with the spectral width of the 
desired responsivity. In particular, as the full width at half-maximum (FWHM) of the desired responsivity 
decreases, the degradation due to noise effect becomes more severe. Intuitively, this is because the magnitudes 
of the weights needed to approximate a narrow responsivity become large and the noise accumulation becomes 
more pronounced; more specifically, the ratio of the sum of weights to the sum of their absolute values 
approachs zero. Therefore, there is a fundamental trade-off between the spectral resolution sought by the 
spectral-tuning algorithm and the noise-induced error. 

In this paper we derive a generalization of the spectral-tuning algorithm[[10], [16]] reported earlier to 
accommodate noise in the photocurrent. More generally, this work provides a framework for using a collection 
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of sensors that have overlapping bands and different noise characteristics to synthesize outputs corresponding 
to a desired arbitrary band. The theory is applied to mid-infrared QDIPs fabricated by our group. 

2. Theory 
2A. Photocurrent Model 
The total current produced by a detector (labeled by k) can generally be written as  

(1) 

𝑌𝑌𝑘𝑘 = 𝑦𝑦𝑝𝑝,𝑘𝑘 + 𝑑𝑑𝑘𝑘 + 𝑁𝑁𝑘𝑘, 

where 𝑁𝑁𝑘𝑘  is the total noise (comprising one or more of the following components depending on the operating 
conditions: generation–recombination noise, signal-induced shot noise, Johnson noise, 1 𝑓𝑓⁄  noise, etc.), 𝑑𝑑𝑘𝑘 is 
the dark current representing the dc component of the current in the absence of illumination, and 𝑦𝑦𝑝𝑝,𝑘𝑘 is the 
true photocurrent resulting from illumination. Both the dark current and the noise statistics are dependent upon 
temperature, the type of detector, as well as the operating bias of the detector. However, the noise components 
are assumed to be statistically independent from detector to detector. We denote the mean and variance of the 
noise by 𝜇𝜇𝑁𝑁,𝑘𝑘 and 𝜎𝜎𝑁𝑁,𝑘𝑘

2 respectively. Moreover, we define the measurement SNR as the ratio of the 
photocurrent to the standard deviation of the noise,  

(2) 

SNR𝑘𝑘  ≜  
𝑦𝑦𝑝𝑝,𝑘𝑘

𝜎𝜎𝑁𝑁,𝑘𝑘
. 

For a linear detector, the relationship among the detector's spectral response, the source spectrum, and the 
photocurrent can be cast as  

(3) 

𝑦𝑦𝑝𝑝,𝑘𝑘 = 𝐴𝐴𝑒𝑒 � 𝑅𝑅𝑘𝑘(𝜆𝜆)
𝜆𝜆max

𝜆𝜆min

𝑔𝑔(𝜆𝜆,𝑍𝑍)d𝜆𝜆, 

where 𝑔𝑔(𝜆𝜆,𝑍𝑍) (W cm−2 μm−1) is the spectral irradiance of the source (combined with any other filters and∕or 
effects in the scene) at temperature Z (kelvin) and 𝐴𝐴𝑒𝑒 is the effective source-to-detector area that combines all 
the coupling factors. For simplicity we assume that 𝐴𝐴𝑒𝑒 does not vary from detector to detector. For the sake of 
the analysis to follow, it would be convenient to embed the noise into the integral above and obtain an 
equivalent expression for the noisy photocurrent. By using Eqs. (2) and (3), we can write  

𝑌𝑌𝑝𝑝,𝑘𝑘   ≜  𝑦𝑦𝑝𝑝,𝑘𝑘 + 𝑁𝑁𝑘𝑘 

(4) 

= 𝐴𝐴𝑒𝑒� [𝑅𝑅𝑘𝑘(𝜆𝜆) +
𝑁𝑁𝑘𝑘

𝐴𝐴𝑒𝑒 ∫ 𝑔𝑔(𝜆𝜆′,𝑍𝑍)dλ′𝜆𝜆max
𝜆𝜆min

]

𝜆𝜆max

𝜆𝜆min

 𝑔𝑔(𝜆𝜆,𝑍𝑍)dλ, 

(5) 



≈ 𝐴𝐴𝑒𝑒� [𝑅𝑅𝑘𝑘(𝜆𝜆) +
𝑅𝑅𝑘𝑘(𝜆𝜆)𝑁𝑁𝑘𝑘

𝐴𝐴𝑒𝑒 ∫ 𝑅𝑅𝑘𝑘(𝜆𝜆′)𝑔𝑔(𝜆𝜆′,𝑍𝑍)dλ′𝜆𝜆max
𝜆𝜆min

]

𝜆𝜆max

𝜆𝜆min

× 𝑔𝑔(𝜆𝜆,𝑍𝑍)dλ, 

(6) 

= 𝐴𝐴𝑒𝑒� 𝑅𝑅𝑘𝑘(𝜆𝜆)(1 +
𝑁𝑁𝑘𝑘

𝜎𝜎𝑁𝑁,𝑘𝑘SNR𝑘𝑘
)𝑔𝑔(𝜆𝜆,𝑍𝑍)dλ

𝜆𝜆max

𝜆𝜆min

. 

In Eq. (6), we can identify the noisy responsivity as  

(7) 

𝑅𝑅
˜
𝑘𝑘(𝜆𝜆)  ≜  𝑅𝑅𝑘𝑘(𝜆𝜆)(1 +

𝑁𝑁𝑘𝑘
𝜎𝜎𝑁𝑁,𝑘𝑘SNR𝑘𝑘

). 

We introduce the approximation in Eq. (5) to get rid of the dependence on source irradiance, 𝑔𝑔(𝜆𝜆,𝑍𝑍), i.e., to 
make the algorithm source independent, since the goal of the algorithm is to sense the source irradiance. This 
approximation turns into an equality when the variation in 𝑅𝑅𝑘𝑘(𝜆𝜆) is negligible over the integration range. 
However, in that case it would not serve our algorithm since there would not be any spectral diversity. 

The above approximation can be equivalently restated as  

𝑅𝑅𝑘𝑘(𝜆𝜆)∫ 𝑔𝑔(𝜆𝜆′)dλ'𝜆𝜆max
𝜆𝜆min

  ≈  ∫𝜆𝜆min

𝜆𝜆max  𝑅𝑅𝑘𝑘(𝜆𝜆′)𝑔𝑔(𝜆𝜆′)dλ′. From the first mean value theorem for integration, we know 

that at least one λ satisfies equality in the approximation. The theorem states that if 𝑅𝑅(𝜆𝜆′) : [𝜆𝜆min,𝜆𝜆max]  →  ℝ is 
continuous and 𝑔𝑔(𝜆𝜆′) : [𝜆𝜆min,𝜆𝜆max]  →  ℝ is a integrable positive function, then there exists a number λ in 

(𝜆𝜆min,𝜆𝜆max) such that � 𝑅𝑅𝑘𝑘(𝜆𝜆′)𝑔𝑔(𝜆𝜆′)dλ′ = 𝑅𝑅𝑘𝑘(𝜆𝜆′)∫ 𝑔𝑔(𝜆𝜆′)dλ′𝜆𝜆max
𝜆𝜆min

𝜆𝜆max

𝜆𝜆min

 . Moreover, since the detectors' 

responses are close to 0 near 𝜆𝜆min and 𝜆𝜆max, and have peak(s) in between, there exist at least two λ values for 
which the equality holds since this condition leads to the existance of a set of 𝜆𝜆 = {𝜆𝜆1,𝜆𝜆2,…} such that 
{𝑅𝑅𝑘𝑘(𝜆𝜆1) = 𝑅𝑅𝑘𝑘(𝜆𝜆2) = …}. Furthermore, due to nature of our spectral-tuning algorithm, which combines (with 
positive and negative weights) the detectors' spectral response, the associated approximation error also gets 
averaged. Thus, when we compare the spectral-tuning results of the original and the noise-modified algorithm, 
we see that this approximation does not seem to affect the noise-modified algorithm so badly as to make it 
worse, as we present in Section 3. 

2B. Algorithm Development 
As described in Section 1, the goal of the algorithm is to synthesize the photocurrent response of an arbitrary 
desired responsivity, 𝑟𝑟𝑐𝑐(𝜆𝜆) associated with center wavelength 𝜆𝜆𝑐𝑐, by utilizing the outputs of multiple detectors 
with spectrally overlapping responsivities. The shape and width of 𝑟𝑟𝑐𝑐(𝜆𝜆) and the location of the filter centers, 
𝜆𝜆𝑐𝑐  (𝑟𝑟 = 1,…  ,𝐶𝐶), all depend on the application. Let us assume that we have a collection of K detectors, 𝒟𝒟 =
{𝐷𝐷1,…  ,𝐷𝐷𝐾𝐾},, each having spectral responsivity 𝑅𝑅𝑘𝑘(𝜆𝜆), 𝑘𝑘 = 1,…  ,𝐾𝐾. By combining the detector-dependent 
responsivities 𝑅𝑅𝑘𝑘(𝜆𝜆), the desired responsivity 𝑟𝑟𝑐𝑐(𝜆𝜆) can be approximated linearly as  

 



(8) 

𝑟𝑟
^
𝑐𝑐(𝜆𝜆) = �𝑤𝑤𝑐𝑐,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝑅𝑅
˜
𝑘𝑘(𝜆𝜆). 

Our goal is to find the set of weights, 𝐰𝐰𝑐𝑐  ≜[𝑤𝑤𝑐𝑐,1,…  ,𝑤𝑤𝑐𝑐,𝐾𝐾]𝑇𝑇, so that we can best approximate the ideal response  

(9) 

𝑦𝑦𝑐𝑐 = 𝐴𝐴𝑒𝑒 � 𝑔𝑔
𝜆𝜆max

𝜆𝜆min

(𝜆𝜆,𝑍𝑍)𝑟𝑟𝑐𝑐(𝜆𝜆)dλ 

by means of the synthesized response 𝑌𝑌
^
𝑐𝑐 = � 𝑤𝑤𝑘𝑘,𝑐𝑐

𝐾𝐾
𝑘𝑘=1 𝑌𝑌𝑝𝑝,𝑘𝑘. It has been shown[[10]] that in the absence of 

noise, the best approximate response 𝑌𝑌
^
𝑐𝑐, in the minimum mean-square error sense, is equivalent to the 

response of the detector whose spectral response is 𝑟𝑟
^
𝑐𝑐(𝜆𝜆) = � 𝑤𝑤𝑐𝑐,𝑘𝑘

𝐾𝐾
𝑘𝑘=1 𝑅𝑅

˜
𝑘𝑘(𝜆𝜆) that best approximates the 

desired 𝑟𝑟𝑐𝑐(𝜆𝜆), in which case  

(10) 

𝑌𝑌
^
𝑐𝑐 = 𝐴𝐴𝑒𝑒 � 𝑔𝑔(𝜆𝜆,𝑍𝑍)

𝜆𝜆max

𝜆𝜆min

[�𝑤𝑤𝑐𝑐,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝑅𝑅
˜
𝑘𝑘(𝜆𝜆)]dλ. 

We now incorporate noise into the algorithm by seeking the vector 𝐰𝐰𝑐𝑐 that minimizes the average of the mean-

square error 𝜖𝜖2(𝑟𝑟𝑐𝑐 ,𝒟𝒟)  ≜  𝖤𝖤[|𝑦𝑦𝑐𝑐 − 𝑌𝑌
^
𝑐𝑐|2], where E denotes ensemble averaging. By substituting Eqs. (9) and (10) 

in this definition, we obtain  

(11) 

𝜖𝜖2(𝑟𝑟𝑐𝑐 ,𝒟𝒟) = 𝖤𝖤{|𝐴𝐴𝑒𝑒 � 𝑔𝑔(𝜆𝜆,𝑍𝑍)
𝜆𝜆max

𝜆𝜆min

[𝑟𝑟𝑐𝑐(𝜆𝜆) −�𝑤𝑤𝑐𝑐,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝑅𝑅𝑘𝑘(𝜆𝜆) ×  (1 +
𝑁𝑁𝑘𝑘

𝜎𝜎𝑁𝑁,𝑘𝑘SNR𝑘𝑘
)]dλ|2}. 

To remove the dependence of the error expression on the spectral irradiance 𝑔𝑔(𝜆𝜆), we compute an upper 
bound to this expression using the Schwarz inequality.[[26]] We assume that the noise 𝑁𝑁𝑘𝑘  has zero mean for all 
detectors and that noise for different detectors is independent. We then discretize the integral and convert Eq. 
(11) into matrix form (see Appendix AA for a detailed derivation) and obtain the expression to be minimized as  

(12) 

Δ𝜆𝜆
𝐿𝐿

 �{𝑟𝑟𝑐𝑐2(𝜆𝜆𝑗𝑗) − 2𝑟𝑟𝑐𝑐(𝜆𝜆𝑗𝑗)[�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)
𝐾𝐾

𝑘𝑘=1

] + [�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)
𝐾𝐾

𝑘𝑘=1

]2 + [�𝑤𝑤𝑐𝑐,𝑘𝑘
2 
𝑅𝑅𝑘𝑘2(𝜆𝜆𝑗𝑗)
SNR𝑘𝑘

2

𝐾𝐾

𝑘𝑘=1

]}.

𝐿𝐿

𝑗𝑗=1

 

In the above, L is the number of wavelength locations at which the spectrum was sampled, 𝜆𝜆1 = 𝜆𝜆min, 𝜆𝜆𝐿𝐿 =
𝜆𝜆max, and Δ𝜆𝜆 = 𝜆𝜆max − 𝜆𝜆min. Defining the vector forms of the discretized spectrum as 
𝐑𝐑𝑘𝑘  ≜[𝑅𝑅𝑘𝑘(𝜆𝜆1),…  ,𝑅𝑅𝑘𝑘(𝜆𝜆𝐿𝐿)]𝑇𝑇 and 𝐫𝐫𝑐𝑐   ≜  [𝑟𝑟𝑐𝑐(𝜆𝜆1),…  , 𝑟𝑟𝑐𝑐(𝜆𝜆𝐿𝐿)]𝑇𝑇, and the matrix of spectral response 𝐀𝐀  ≜ 
[𝐑𝐑1,…  ,𝐑𝐑𝐾𝐾], the weight vector that minimizes the discretized mean-square error is found to be (see Appendix 
AA for derivation)  
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(13) 

𝐰𝐰𝑐𝑐 = [𝐀𝐀𝑇𝑇𝐀𝐀 +𝚽𝚽]−1𝚷𝚷𝑐𝑐 , 

where  

(14) 

𝚽𝚽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐑𝐑1

𝑇𝑇𝐑𝐑1
SNR1

2 0 … 0

0
𝐑𝐑2

𝑇𝑇𝐑𝐑2
SNR2

2 … 0

⋮ ⋮ ⋱ ⋮

0 0 …
𝐑𝐑𝐾𝐾𝑇𝑇𝐑𝐑𝐾𝐾
SNR𝐾𝐾

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

(15) 

𝚷𝚷𝑐𝑐 = 𝐀𝐀𝑇𝑇𝐫𝐫𝑐𝑐. 

It can be seen from expression (12) that in the absence of noise, the minimization problem reduces to the 
minimization of the error in the approximation of the filter 𝑟𝑟𝑐𝑐(𝜆𝜆) (or equivalently 𝐫𝐫𝑐𝑐). However, such 
minimization can produce a solution that is highly fluctuating as a function of λ; therefore, it is desirable to 
include a regularization term that penalizes nonsmoothness in the approximation.[[10]] As such, we include a 
regularization term, 𝛼𝛼‖𝐐𝐐𝐀𝐀𝐰𝐰𝑐𝑐‖2, in the mean-square error, so that the regularized version of expression (12) 
becomes  

(16) 

Δ𝜆𝜆𝐿𝐿−1[‖𝐫𝐫𝑐𝑐 − 𝐀𝐀𝐰𝐰𝑐𝑐‖2 + 𝐰𝐰𝑐𝑐
𝑇𝑇𝚽𝚽w𝑐𝑐 + 𝛼𝛼‖𝐐𝐐𝐀𝐀𝐰𝐰𝑐𝑐‖2], 

where Q is a regularization matrix (typically a high-pass filter). As in our earlier work, we take  

(17) 

𝐐𝐐 = [

1 −1          
−1 2 −1        

      ⋱      
        −1 2 −1
          −1 1

], 

which is the Laplacian operator, and α is the corresponding weight for the penalization term and can be adjusted 
according to the desired level of roughness penalization.[[10]] (In our applications, 𝛼𝛼 = 0.04 gave good results.) 
We finally obtain an expression for the weights that minimize expression (16):  

(18) 

𝐰𝐰𝑐𝑐 = [𝐀𝐀𝑇𝑇𝐀𝐀 + 𝚽𝚽 + 𝛼𝛼𝐐𝐐𝑇𝑇𝐀𝐀𝑇𝑇𝐀𝐀𝐐𝐐]−1𝚷𝚷𝑐𝑐 . 

A flow chart summarizing the entire algorithm is shown in Fig. 1. 

3. Application to Quantum-dot Infrared Detectors 
In this section we apply the noise-modified spectral-tuning algorithm developed in Subsection 2.B to QDIPs that 
have been recently fabricated and characterized at the Center for High Technology Materials at the University of 
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New Mexico. The QDIP device used in our application has an asymmetric dots-in-a-well (DWELL) structure, 
sandwiched between highly n-doped GaAs layers and grown on a semi-insulating GaAs substrate. A simple 
schematic of the device is shown in Fig. 2. The active region of the detector consists of 15 layers of InAs 
quantum dots in an In0.15Ga0.85As well.[[27]] The well is asymmetric in the sense that the width of the top and 
bottom well layers are different (60 and 50 Å), which leads to photoresponsivities that can be spectrally tuned 
by changing the applied bias voltage. The width of the quantum-dot layer is only 5–8 Å, and the total thickness 
of the detector is ∼3.5 μm. Devices with different diameter apertures, ranging from 25 to 300 μm, were 
fabricated on a 6-by-6 array. Data from a 300 μm diameter aperture detector were chosen for our application. 
This was done due to the large aperture area, which yields a large photocurrent. 

3A. Experiment and Measurement Process 
The spectral response of the QDIP was measured at a temperature of 50 K by using a Fourier-transform infrared 
spectrometer and was averaged over 64 measurements for each bias voltage, [𝑉𝑉1,…  ,𝑉𝑉17] =
[4,3.75,…  , 2,−1.75,−2.25,…  ,−3.5] V. The set of responses was obtained in a wavenumber domain ranging 
from 500 to 5000 cm−1, corresponding to 2–20 μm. The responses were resampled to fit in a linear wavelength 
grid, with 0.01 μm intervals in the range of 2.51–11.00 μm. The parameters L and Δ𝜆𝜆, used in the algorithm, are 
therefore 850 and 8.5 μm, respectively. The spectral response was also normalized so that the peak value is 
equal to unity, and the resulting peak-normalized spectral responses, denoted by 𝑓𝑓𝑘𝑘(𝜆𝜆), were obtained. The 
average total current 𝑦𝑦𝑘𝑘  and average dark current 𝑑𝑑𝑘𝑘 of the detector for the same set of voltages were also 
measured. The average photocurrents 𝑦𝑦𝑝𝑝,𝑘𝑘 were then computed by taking the difference between the 
measured total current and the dark current, under unfiltered black-body source illumination. In total, 30 and 
110 measurements were used for the average total and dark-current response, respectively. The standard 
deviation of the current noise 𝜎𝜎𝑁𝑁,𝑘𝑘  was also estimated empirically from the dark-current measurements. 

Next, the bias-dependent peak responsivity 𝑅𝑅𝑘𝑘𝑝𝑝of the device was calculated by using the relation[[28], [29]]  

(19) 

𝑦𝑦𝑝𝑝,𝑘𝑘 = 𝐴𝐴𝑒𝑒 � 𝑅𝑅𝑘𝑘𝑝𝑝𝑓𝑓𝑘𝑘(𝜆𝜆)𝑔𝑔(𝜆𝜆,𝑍𝑍)dλ.
𝜆𝜆max

𝜆𝜆min

 

In our devices, the effective source-to-detector area was found to be 𝐴𝐴𝑒𝑒 = 10−6 cm2. The responsivity of the 
detector can now be obtained by multiplying the peak responsivity with the peak-normalized spectral response  

(20) 

𝑅𝑅𝑘𝑘(𝜆𝜆) = 𝑅𝑅𝑘𝑘𝑝𝑝𝑓𝑓𝑘𝑘(𝜆𝜆). 

We define the transmittance of the source-to-detector optical system, or the relative spectrum (with respect to 
a blackbody source), as  

(21) 

𝐺𝐺(𝜆𝜆,𝑍𝑍) =
𝑔𝑔(𝜆𝜆,𝑍𝑍)
𝑊𝑊(𝜆𝜆,𝑍𝑍)

, 

where 𝑊𝑊(𝜆𝜆,𝑍𝑍) = [2𝜋𝜋ℎ𝑟𝑟2/𝜆𝜆5]/[exp(ℎ𝑟𝑟/𝜆𝜆𝑘𝑘𝐵𝐵𝑍𝑍) − 1] (W cm−2 μm−1) is the blackbody spectral density 
determined by Planck's law at the source temperature Z (h is Planck's constant, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 
and c is the speed of light). One can pick either 𝑔𝑔(𝜆𝜆), the total irradiance, or 𝐺𝐺(𝜆𝜆), the transmittance, as the 
spectrum to be reconstructed, since one can be calculated from the other (as long as the source temperature is 
known). In our application, we consider two cases: (1) placing no filter in front of the detector so that 𝐺𝐺(𝜆𝜆) ≡ 1, 

https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-45-28-7224&id=99580#f2
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-45-28-7224&id=99580#ref27
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-45-28-7224&id=99580#ref28
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-45-28-7224&id=99580#ref29


or equivalently 𝑔𝑔(𝜆𝜆,𝑍𝑍) is the black-body irradiance at the temperature Z; and (2) placing a 3 mm polystyrene 
filter in front of the detector so that 𝐺𝐺(𝜆𝜆) is the transmittance of the filter. In our experiment, the blackbody 
source incident on the detector was at room temperature (300 K). 

The bias-dependent total current profile, 𝑦𝑦𝑘𝑘, 𝑘𝑘 = 1,…  , 𝐾𝐾 = 17. with and without the 3 mm polystyrene filter in 
the view of the detector and the dark-current profile, 𝑑𝑑𝑘𝑘, and its standard deviation are all shown in Fig. 3. 
These were measured at the detector temperature of 50 K. The peak-normalized spectral responses of the 
device, 𝑓𝑓𝑘𝑘(𝜆𝜆), measured at the same temperature for the prescribed set of bias voltages, are shown in Fig. 4. It 
can be seen in Fig. 4 that, as the bias voltage is varied, the shape of the spectral response changes, by means of 
the change in the height of dominant and secondary peaks. Also note that the FWHM of the main peaks of the 
response change from 1.5 μm (at 4 V) to 2 μm (at −2 V). The narrower the FWHM of the responsivities, the 
better the algorithm can approximate narrower responsivities r c. 

For the devices considered, much of the range of the spectral tuning lays in the atmospheric absorbtion region; 
however, we will ignore this limitation in this paper since our focus is to prove the concept of algorithmic 
spectral tuning. We have recently demonstrated QDIPs with peaks of the bias-dependent spectral responses 
spanning the range 8–12 μm. 

3B. Experiments with Simulated Noise 
To demonstrate the effect of noisy data on the old version of the algorithm[[10]] (which does not account for 
the noise), we calculated the weights 𝐰𝐰𝑟𝑟 according to Eq. (13) with the noise variances 𝜎𝜎𝑁𝑁,𝑘𝑘

2, or equivalently 
1 SNR𝑘𝑘

2⁄ , set to zero in Eq. (14). We then simply added noise (Poisson-distributed random variables[[24]] with 
specified variances) to the photocurrents before using them in the weighted superposition. On the other hand, 
to demonstrate the effectiveness of the noise-modified algorithm in mitigating noise, we used Eq. (13), with the 
actual noise parameters, to arrive at the noise-modified weights. The average value of the SNR, as defined in Eq. 
(2) and taken over the 17 bias voltages, was calculated for the two sources used; these SNRs are 226 for the 
unfiltered black-body source and 163 for the 3 mm polystyrene-filtered blackbody source. These values 
correspond to our dark-current measurements at a detector temperature of 50 K. The difference in the SNR, 
which is due to the change in the signal (as the filter was introduced), was compensated by a multiplicative 
factor of 0.72 to obtain the same level of SNR for both cases. 

3B1. Trade-off between Spectral Resolution and Approximation Error 
We applied the algorithm to obtain spectral tuning and consequently the reconstruction of the spectra of the 
two different sources. In each case, we performed spectral reconstruction of the sources from the 
photocurrents by repeatedly applying the algorithm, with a triangular tuning responsivity and a specified desired 
FWHM, while varying the center wavelengths of the triangular responsivity from the collection {5.0, 4.2, . . . , 9.8, 
10.0 μm}. The spectral reconstruction was repeated for different SNRs, ranging from 0.02 (low) to 20,000 (high), 
and for different desired FWHMs of the triangular responsivity in the range from 0.5 μm (narrow) to 2.5 μm 
(wide). 

Representative spectral reconstructions are shown in Fig. 5 for a narrow triangular responsivity with a FWHM of 
0.5 μm and in Fig. 6 for a wide desired responsivity of 1.5 μm. Included in these figures are (i) the true spectral 
irradiance viewed by the detector normalized by the blackbody spectrum (solid curve); (ii) spectral 
reconstruction of the normalized source spectrum, using ideal triangular filters of the desired FWHM, shown as 
filled circles and used as a benchmark for the performance as there is no error in approximating the tuning 
filters; (iii) spectral reconstruction of the normalized source spectrum using the old spectral-tuning algorithm, 
shown as crosses; and (iv) spectral reconstruction of the normalized spectrum using the new noise-modified 
spectral-tuning algorithm, shown as plusses. The average SNR used to generate Fig. 5 is 100. For this level of 
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SNR, we see that the old algorithm is affected severely by the presence of noise in the data, while the new 
algorithm performs reasonably well despite the noise. Spectral reconstructions with higher SNRs (>2000) were 
also obtained (results not shown); in this case, both old and noise-modified algorithms perform well yielding a 
reconstruction that is very close to the ideal reconstruction. High SNR levels are achievable at very low detector 
temperatures, or with other noise-reduction techniques such as time averaging of the photocurrent, which we 
discuss in Subsection 3.B.2. 

The results in Fig. 6 show a slightly reduced overall error in the spectral reconstruction at the expense of 
degradation in spectral resolution. Intuitively, achieving a high spectral resolution requires the algorithm to 
generate weights with large magnitudes, possibly with varying signs, as the algorithm attempts to meet the 
challenge of approximating a narrow filter using the relatively broad bias-dependent responsivities of the QDIP. 
This, in turn, results in accentuated noise accumulation as the magnitudes of the weights increase. Thus, there is 
a fundamental trade-off between synthesized spectral resolution and robustness to noise. Indeed, calculations 
confirm that there is a strong trend of increase in the sum of absolute values of the weights (over all bias 
voltages) as the desired FWHM is decreased. For example, in the case of the old algorithm with a triangular filter 
centered at 𝜆𝜆𝑐𝑐 = 6.0 μm, the sum of absolute values of the weights takes the values of 55,751, 62,666, and 
246,340 for FWHM values of 2.5, 1.5, and 0.5 μm, respectively, which directly translates to an increase in noise 
accumulation in the weighted superposition as the FWHM is reduced. In contrast, the noise-modified algorithm 
shows a similar trend in the magnitudes of the weights only at high photocurrent SNRs (>200), but the trend 
weakens and eventually disappears as the SNR decreases. For example, for an SNR value of 0.2, the noise-
modified algorithm renders the values of 4604, 4897, and 4763, for the sum of the absolute values of the 
weights, for FWHM values of 2.5, 1.5, and 0.5 μm, respectively. The decrease in the weights' magnitudes in the 
noise-modified algorithm is a direct consequence of the algorithm's attempt to combat noise. The sample 
standard deviation of the weights, which is another measure of the magnitude of the weights, also shows a 
similar trend as the sum of absolute values of the weights (results not shown). 

3B2. Role of Photocurrent Signal-to-Noise Ratio 
For each SNR level, the tuning algorithm was applied 1000 times, with the noise in the photocurrent varying 
randomly from trial to trial. The errors of the spectral reconstruction, normalized with respect to the true value 
of the target spectrum, were then calculated and averaged over the 1000 trials and over the construction 
wavelengths. We then took the square root of this empirical error to obtain the average normalized root-mean-
square error (NRMSE). This gives an average normalized error for each SNR for a given FWHM of the triangular 
responsivity, as shown in Figs. 7(a) and 7(b). In these figures, we present results for the case of reconstructing 
the blackbody spectrum for (a) narrow (FWHM=0.5 and 1.0 μm) and (b) wide (FWHM=1.5 and 2.0 μm) desired 
spectral resolutions. The performance of the algorithm was studied for both the old (thin curves) as well as the 
noise-modified algorithm (thick curves). Note that the maximum value of the NRMSE is 1 (i.e., 100%) for the 
noise-modified algorithm, since the weights approach zero as the noise power increases. 

We observe that the average NRMSE is significantly less for the noise-modified algorithm than that for the old 
algorithm. For example, for an average SNR level of 2, the NRMSE is reduced by 18 dB. In particular, the results 
shown in Fig. 7 demonstrate that the noise-modified algorithm requires much less photocurrent SNR than the 
original algorithm. For example, for the case when the FWHM is 1.0 μm, the noise-modified algorithm can attain 
an average error of 20%, for an average SNR level of 63, while the old algorithm will require an average SNR 
level of 316 (an increase of five in SNR) to achieve the same performance. For the case when the FWHM is 
1.5 μm, the required average SNR levels for the same error level are 210 and 16, respectively, for the old and the 
noise-modified algorithms. 
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We also observe in Figs. 7 that the average NRMSE in the reconstruction decreases as the FWHM is increased, 
signifying the trade-off, as described earlier, between spectral resolution and robustness to noise. For a fixed 
operating temperature, the SNR can be increased by either increasing the integration time of the detector or by 
repeating the reconstruction and averaging the results. Note that averaging the results over M photocurrent 
samples increases the SNR effectively by a factor of 𝑀𝑀1 2⁄ . However, such averaging will slow the speed of the 
reconstruction. The noise-modified algorithm, albeit, will help reduce this speed overhead by a factor ranging 
from 25 to 175 for the devices considered, depending on the desired accuracy. 

4. Potential for Multispectral-based Target Classification 
We used the tuning algorithm to perform multispectral target discrimination based on 5-band sensing. Table 1 
lists the details of the 5-band representation of the two source spectra considered (the blackbody source with 
and without the polystyrene film) with the old and noise-modified spectral-tuning algorithms. Individual bands 
correspond to triangular filters with a FWHM of 1 μm, centered at various wavelengths. The SNR is assumed as 
200. The first column of the table shows the centers of the five bands, ranging from 5 to 9 μm. The second 
column depicts the actual values of the target spectrum, sampled at the center wavelengths, while the third 
column is the ideal reconstruction using the triangular filters with a FWHM of 1 μm. The fourth and fifth columns 
are the reconstruction results using the old algorithm and the noise-modified algorithm. Separability between 
the two target spectra can be examined by comparing the Euclidean distance between the 5-band 
reconstruction (columns four or five in Table 1) and the actual samples of the spectra (column 2 in Table 1) in 
the five-dimensional multispectral feature space, comprising the reconstructed outputs of each band. More 
precisely, we have adopted a simple performance metric, defined by[[30]]  

(22) 

𝑑𝑑nor =
𝑑𝑑0 − 𝑑𝑑1

0.5(𝑑𝑑0 + 𝑑𝑑1)
, 

where 𝑑𝑑1 is the distance between the reconstructed 5-band feature vector and the true spectrum samples, and 
𝑑𝑑0 is the distance between the reconstructed 5-band feature vector and the wrong spectrum. Note that the best 
separation is achieved when 𝑑𝑑nor = 2, which corresponds to 𝑑𝑑1 = 0. On the other hand, the worst performance 
occurs when 𝑑𝑑nor = 0, which corresponds to the case when separation is impossible under this simple distance-
based metric. 

Table 1 corresponds to the cases for which the true hypothesis is the unfiltered blackbody source and the 3 mm 
polystyrene-filtered blackbody source. The results are for a noisy case in which the SNR=20 (low SNR). We can 
see that the noise-modified algorithm results in much less distance to the true spectrum, and hence larger 𝑑𝑑nor. 
For example, as shown in Table 1 for a blackbody source, the noise-modified algorithm yields 𝑑𝑑nor = 0.9311, 
which is much closer to that of the ideal reconstruction (for which 𝑑𝑑nor = 0.0217) than that of the old algorithm 
(for which 𝑑𝑑nor=0.0217). These results show that under low SNR conditions, only the noise-modified algorithm 
can be used for successful target discrimination, and the separation offered by the noise-modified algorithm is 
quite close to an ideal multispectral sensor. When the noise power is small (e.g., when the SNR is greater than 
2000), the reconstruction results for the old and new algorithm become comparable (results not shown here). 

The error in the reconstructed spectra depends upon the reconstruction wavelength, which, in turn, is mainly 
governed by (1) the shapes of the basis detector spectra 𝑅𝑅𝑘𝑘(𝜆𝜆), (2) the target spectrum 𝑔𝑔(𝜆𝜆), and (3) the shape 
of the desired target responsivity 𝑟𝑟𝑟𝑟(𝜆𝜆). Near the wavelength regions where the basis spectra have well-defined 
peaks, the reconstruction error decreases since the associated ideal filter approximation error is low. For 
example, if we consider the blackbody spectrum reconstruction results shown in Table 1 [also shown in Fig. 5(a)] 
to see the effect of the location of the peaks, we see that the error is least around 8 μm, where some of basis 
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spectra corresponding to the bias range {4– 2.5 V} have peaks according to Fig. 4. On the other hand, the error 
is worse around 5 and 7 μm where the basis spectra do not exhibit major peaks. From the polystyrene 
reconstruction in Table 1 [also shown in Figs. 5(b) and 6(b)], we observe how the accuracy of the reconstruction 
is also dictated by the shape of the source spectrum; fine features of the spectrum (narrow dips and peaks) 
cannot be reconstructed well due to the limited resolution of the basis spectra. From our experience, we 
observed that we cannot go below the target resolution of FWHM = 0.5 μm with the resolution of the basis 
spectra of the current QDIPs produced, which have a FWHM of approximately 2 μm. In addition to tuning in the 
3–8 μm range reported earlier,[[10]] the device used in this paper allows us to tune in the range of 5–10 μm. We 
have recently developed a QDIP that would allow us to have tuning in the 8–12 μm range. 

5. Conclusions 
We have developed a spectral-tuning algorithm that is based on exploiting the presence of spectral overlap and 
spectral diversity in the responsivities of a collection of detectors to synthesize the output of a desired arbitrary 
band. This work is an important generalization of an earlier version of the algorithm to accommodate and 
compensate for noise in the output of the detectors. We have applied the algorithm to quantum-dot mid-
infrared photodetectors (QDIPs) developed by our group, and have shown approximate, continuous spectral 
tuning for two different source spectra, namely, a blackbody source with and without a 3 mm polystyrene filter 
in the range of 5–10 μm. As a measure of performance, we used the normalized root-mean-square error as a 
function of different noise levels and desired tuning resolutions. We have shown that the SNR requirements for 
the noise-modified algorithm are significantly reduced when compared with the old algorithm, which did not 
accommodate photocurrent noise. This promises robustness to photocurrent noise with certain limitations 
depending on the spectral diversity in the detectors' responsivities. Also, as the desired spectral resolution of 
the tuning is reduced, the required SNR becomes less. Therefore, as the desired width of the tuning filter is 
increased, which is the case in many wideband applications, the algorithm becomes more robust to noise and 
the overall tuning error decreases. This shows a fundamental trade-off between the resolution of spectral tuning 
and robustness to noise. 

Appendix A 
The expectation of the square of the error between the actual and the approximated outputs can be written as 
[see Eqs. (9), (10), and (11) in Section 2]  

(A1) 

𝖤𝖤[|𝑦𝑦𝑐𝑐 − 𝑌𝑌
^
𝑐𝑐|2] = 𝖤𝖤{|𝐴𝐴𝑒𝑒 � 𝑔𝑔(𝜆𝜆,𝑍𝑍)

𝜆𝜆max

𝜆𝜆min

[𝑟𝑟𝑐𝑐(𝜆𝜆) −�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆)
𝐾𝐾

𝑘𝑘=1

(1 +
𝑁𝑁𝑘𝑘

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
)]dλ|2}. 

After applying the Schwarz inequality,[[26]] we can write  

(A2) 

𝖤𝖤[|𝑦𝑦𝑐𝑐 − 𝑌𝑌
^
𝑐𝑐|2]  ≤  𝖤𝖤[𝐴𝐴𝑒𝑒 � |𝑔𝑔(𝜆𝜆,𝑍𝑍)|2dλ]

𝜆𝜆max

𝜆𝜆min

× [� |𝑟𝑟𝑐𝑐(𝜆𝜆) −�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆)
𝐾𝐾

𝑘𝑘=1

𝜆𝜆max

𝜆𝜆min

× (1 +
𝑁𝑁𝑘𝑘

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
)dλ|2]. 

Since the term in the first set of brackets is a constant, the minimization reduces to the minimization of  

(A3) 
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𝖤𝖤[� |𝑟𝑟𝑐𝑐(𝜆𝜆) −�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆)
𝐾𝐾

𝑘𝑘=1

𝜆𝜆max

𝜆𝜆min

(1 +
𝑁𝑁𝑘𝑘

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
)dλ|2]. 

Expanding the equation and moving the expectation through the deterministic variables, we obtain  

(A4) 

� [𝑟𝑟𝑐𝑐2(𝜆𝜆) − 2𝑟𝑟𝑐𝑐(𝜆𝜆) �𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆)
𝐾𝐾

𝑘𝑘=1

(1 +
𝖤𝖤[𝑁𝑁𝑘𝑘]

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
)]

𝜆𝜆max

𝜆𝜆min

dλ + � 𝖤𝖤
𝜆𝜆max

𝜆𝜆min

[|�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆)
𝐾𝐾

𝑘𝑘=1

(1 +
𝑁𝑁𝑘𝑘

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
)|2]dλ. 

To complete the terms in the first integral into a quadratic, we add and subtract  

[�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆)(
𝐾𝐾

𝑘𝑘=1

1 +
𝖤𝖤[𝑁𝑁𝑘𝑘]

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
)dλ]2, 

expand the square of summation into multiplication of double summation, and obtain  

(A5) 

� �𝑟𝑟𝑐𝑐(𝜆𝜆)−�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆)�1 +
𝖤𝖤[𝑁𝑁𝑘𝑘]

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
�

𝐾𝐾

𝑘𝑘=1

�

2𝜆𝜆max

𝜆𝜆min

dλ

+ �

⎩
⎨

⎧� � 𝑤𝑤𝑐𝑐,𝑘𝑘𝑤𝑤𝑐𝑐,𝑙𝑙
𝐾𝐾
𝑙𝑙=1  

𝐾𝐾

𝑘𝑘=1
�(𝖤𝖤[𝑁𝑁𝑘𝑘𝑁𝑁𝑙𝑙] − 𝖤𝖤[𝑁𝑁𝑘𝑘]𝖤𝖤[𝑁𝑁𝑙𝑙])𝑅𝑅𝑘𝑘(𝜆𝜆)𝑅𝑅𝑙𝑙(𝜆𝜆)�

𝜎𝜎𝑁𝑁,𝑘𝑘𝜎𝜎𝑁𝑁,𝑙𝑙SNR𝑘𝑘SNR𝑙𝑙
⎭
⎬

⎫
𝜆𝜆max

𝜆𝜆min

dλ. 

Since we assume independence among noise components from different detectors, the term inside the 
parentheses in the second integral reduces to  

(A6) 

[�𝑤𝑤𝑐𝑐,𝑘𝑘
2 
𝑅𝑅𝑘𝑘2(𝜆𝜆)
SNR𝑘𝑘

2

𝐾𝐾

𝑘𝑘=1

], 

and the discretized minimization problem then becomes  

(A7) 

Δλ
𝐿𝐿

 �{[𝑟𝑟𝑐𝑐(𝜆𝜆𝑗𝑗)−�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)
𝐾𝐾

𝑘𝑘=1

(1 +
𝖤𝖤[𝑁𝑁𝑘𝑘]

SNR𝑘𝑘𝜎𝜎𝑁𝑁,𝑘𝑘
)]2 + [�𝑤𝑤𝑐𝑐,𝑘𝑘

2 
𝑅𝑅𝑘𝑘2(𝜆𝜆𝑗𝑗)
SNR𝑘𝑘

2 ]

𝐾𝐾

𝑘𝑘=1

}.

𝐿𝐿

𝑗𝑗=1

 

By invoking the assumption 𝖤𝖤[𝑁𝑁𝑘𝑘] = 0 for all k, the above quantity simplifies to  

(A8) 



Δ𝜆𝜆
𝐿𝐿

 �{𝑟𝑟𝑐𝑐2(𝜆𝜆𝑗𝑗) − 2𝑟𝑟𝑐𝑐(𝜆𝜆𝑗𝑗)[�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)
𝐾𝐾

𝑘𝑘=1

] + [�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)]2
𝐾𝐾

𝑘𝑘=1

𝐿𝐿

𝑗𝑗=1

+ [�𝑤𝑤𝑐𝑐,𝑘𝑘
2 
𝑅𝑅𝑘𝑘2(𝜆𝜆𝑗𝑗)
SNR𝑘𝑘

2

𝐾𝐾

𝑘𝑘=1

]}. 

We now differentiate with respect to 𝑤𝑤𝑐𝑐,𝑠𝑠, set the result to zero, and obtain  

(A9) 

�𝑟𝑟𝑐𝑐(𝜆𝜆𝑗𝑗)𝑅𝑅𝑠𝑠(𝜆𝜆𝑗𝑗) =
𝐿𝐿

𝑗𝑗=1

�{𝑅𝑅𝑠𝑠(𝜆𝜆𝑗𝑗)[�𝑤𝑤𝑐𝑐,𝑘𝑘𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)] + 𝑤𝑤𝑐𝑐,𝑠𝑠

𝐾𝐾

𝑘𝑘=1

 
𝑅𝑅𝑠𝑠2(𝜆𝜆𝑗𝑗)
SNR𝑠𝑠

2 }

𝐿𝐿

𝑗𝑗=1

. 

Moving 𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗) into the summation and interchanging the order of summations, we have  

(A10) 

�𝑟𝑟𝑐𝑐

𝐿𝐿

𝑗𝑗=1

(𝜆𝜆𝑗𝑗)𝑅𝑅𝑠𝑠(𝜆𝜆𝑗𝑗) = [�𝑤𝑤𝑐𝑐,𝑘𝑘 �𝑅𝑅𝑠𝑠(𝜆𝜆𝑗𝑗)𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)]
𝐿𝐿

𝑗𝑗=1

+
𝑤𝑤𝑐𝑐,𝑠𝑠

SNR𝑠𝑠
2

𝐾𝐾

𝑘𝑘=1

[�𝑅𝑅𝑠𝑠2(𝜆𝜆𝑗𝑗)
𝐿𝐿

𝑗𝑗=1

]. 

Defining 𝚷𝚷𝑐𝑐,𝑠𝑠  ≜  𝐫𝐫𝑐𝑐𝑇𝑇𝑅𝑅𝑠𝑠 = ∑ 𝑟𝑟𝑐𝑐𝐿𝐿
𝑗𝑗=1 (𝜆𝜆𝑗𝑗)𝑅𝑅𝑠𝑠(𝜆𝜆𝑗𝑗), and 𝜙𝜙𝑠𝑠,𝑘𝑘   ≜  𝐑𝐑𝑠𝑠

𝑇𝑇𝑅𝑅𝑘𝑘 = � 𝑅𝑅𝑠𝑠(𝜆𝜆𝑗𝑗)𝑅𝑅𝑘𝑘(𝜆𝜆𝑗𝑗)
𝐿𝐿

𝑗𝑗=1
,we can write the 

equation as  

(A11) 

𝚷𝚷𝑐𝑐,𝑠𝑠 = (�𝑤𝑤𝑐𝑐,𝑘𝑘𝜙𝜙𝑠𝑠,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

) +
𝑤𝑤𝑐𝑐,𝑠𝑠

SNR𝑠𝑠
2  𝜙𝜙𝑠𝑠,𝑠𝑠. 

If we repeat this equation for 𝑠𝑠 = 1,…  , 𝐾𝐾 we have a linear system of K equations with K unknowns 𝑤𝑤𝑐𝑐,𝑘𝑘, which 
can be stated in matrix form as 

(A12) 

𝚷𝚷𝑐𝑐 = [𝐀𝐀𝑇𝑇𝐀𝐀 + 𝚽𝚽]𝐰𝐰𝑐𝑐 , 
where A, ϕ, and 𝚷𝚷𝑐𝑐 are defined in Eqs. (13), (14), and (15). From linear algebra, the solution to Eq. (A12) is Eq. 
(13). 

We thank Biliana Paskaleva, Zhipeng Wang, and Amtout Abdenour at the University of New Mexico for many 
valuable discussions. This work was supported by the National Science Foundation under award IIS-0434102. 

λc  Actual Ideal Old New 

Black-body Source 
    

5 1.0000 1.0180 −5.6348 1.3027 

6 1.0000 0.9933 −1.9762 1.0701 



7 1.0000 0.9901 12.654 0.8619 

8 1.0000 0.9918 −0.2698 0.9624 

9 1.0000 0.9943 −1.0783 0.8660 

d 1  0 0.0238 13.9514 0.3674 

d 0  1.0166 1.0054 14.2562 1.0073 

d nor  2 1.9075 0.0217 0.9311 

3 mm Polystyrene Filter 
    

5 0.7905 0.6962 1.0854 0.7258 

6 0.6210 0.5533 −0.6804 0.6115 

7 0.3315 0.3224 2.0281 0.3962 

8 0.5330 0.4249 0.1977 0.3902 

9 0.5745 0.4480 0.4894 0.2898 

d 1  0 0.2051 2.1861 0.3315 

d 0  1.0166 1.1789 2.1892 1.2112 

d nor  2 1.4072 0.0013 1.1405 

Table 1. Five-band Multispectral Performance of the Algorithm in Synthesizing the Relative Power Spectrum of a 
Blackbody Source and a 3 mm Polystyrene Filter in the Case of Moderate Noise (SNR = 20) Using a Synthesized 
Triangular Filter with FWHM = 1.0 μm 

 
Fig. 1 Flow chart of the entire noise-modified spectral-tuning algorithm. 



 
Fig. 2 Schematic of the 15-layer asymmetric InAs/In0.15Ga0.85As DWELL detector structure sandwiched 
between two highly doped 𝑛𝑛-GaAs contact layers, grown on a semi-insulating GaAs substrate.[[27]] 

 
Fig. 3 Total and dark-current profiles of the DWELL detector with a 300 μm diameter at 50 K. The open diamonds 
and open squares represent the total current with and without the 3 mm polystyrene filter, respectively. The 
filled circles represent the dark current at 50 K. Inset: Noise standard deviation. 

 
Fig. 4 Peak-normalized spectral response of the QDIP for different bias voltages. 

https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-45-28-7224&id=99580#ref27


 
Fig. 5 Performance of the algorithm in synthesizing the relative power spectrum of (a) a blackbody source and 
(b) a 3 mm polystyrene filter by using the desired responsivity of ideal triangular filters of FWHM of 0.5 μm, 
under moderately low noise (with a SNR of 100). The crosses and plusses represent the original tuning algorithm 
that does not accommodate the noise and the new noise-modified tuning algorithm, respectively. The filled 
circles represent the reconstruction by using ideal responsivity. Under very low noise (for a SNR of more than 
∼2000), the ideal reconstruction (filled circles) and algorithms' reconstruction (plusses and crosses) overlap. 



 
Fig. 6 Same as Fig. 5 but with a wider desired triangular responsivity with a FWHM of 1.5 μm. 



 
Fig. 7 Comparison of the original algorithm that does not accommodate noise (thin curves) and the noise-
modified algorithm (thick curves); the performance shown in terms of average normalized root-mean-square 
error (NRMSE) versus the photocurrent SNR for desired resolution of (a) narrow FWHM of 0.5 μm (dashed 
curves) and 1.0 μm (solid curves) and (b) wide FWHMs of 1.5 μm (dashed curves) and 2.0 μm (solid curves). 
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