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Abstract:  
A generalized history-dependent recurrence theory for the time-response analysis is derived for 
avalanche photodiodes with multilayer, heterojunction multiplication regions. The heterojunction 
multiplication region considered consists of two layers: a high-bandgap Al/sub 0.6/Ga/sub 0.4/As 
energy-buildup layer, which serves to heat up the primary electrons, and a GaAs layer, which serves as 
the primary avalanching layer. The model is used to optimize the gain-bandwidth product (GBP) by 
appropriate selection of the width of the energy-buildup layer for a given width of the avalanching 
layer. The enhanced GBP is a direct consequence of the heating of primary electrons in the energy-
buildup layer, which results in a reduced first dead space for the carriers that are injected into the 
avalanche-active GaAs layer. This effect is akin to the initial-energy effect previously shown to enhance 
the excess-noise factor characteristics in thin avalanche photodiodes (APDs). Calculations show that 
the GBP optimization is insensitive to the operational gain and the optimized APD also minimizes the 
excess-noise factor. 

SECTION I. Introduction 
Avalanche PHOTODIODES (APDs) have the benefit of providing internal optoelectronic gain, which 
leads to an enhanced receiver sensitivity in comparison to p-i-n diodes in many high-speed lightwave 
systems. Unfortunately, the avalanche multiplication process, which is the source of the APD gain, 
degrades the operating speed due to the so-called avalanche buildup time, which is the time required 
for all the impact ionizations to take place once the APD is triggered by a photogenerated carrier. The 
buildup time is intrinsically dependent on the material (namely the ionization coefficients and 
threshold energies), but it also has a strong dependence on the applied electric field (which also 
controls the mean gain) and the structure of the device. In actuality, the buildup time is random, a 
nuisance that is a direct consequence of the spatial and temporal stochastic spread of the individual 
impact-ionization events. It is the finiteness and randomness of the buildup time that is often a primary 
source for intersymbol-interference (ISI) noise at the receiver in high-speed digital lightwave systems, 
which limits the maximum bit rate allowed for reliable communication. 

For a given material, the buildup time, and hence the speed, can generally be reduced by decreasing 
the width of the active layer in conventional APDs, and by the width of the multiplication and 
absorption regions in separate–absorption–multiplication (SAM) APDs [1], [2]. This is because the 
transit times of primary and offspring carriers are reduced in a thin device. However, this comes at the 
expense of reduced sensitivity, as the quantum efficiency deteriorates due to the reduced absorption 
in thin layers. To remedy this sensitivity-versus-speed tradeoff, a number of novel structures have been 
developed. Lenox et al. reported a gain–bandwidth product (GBP) of 290GHz using a thin resonant-
cavity InGaAs–InAlAs APD [1] and Nie et al. showed a GBP of 290 GHz using resonant-cavity separate 
absorption–charge–multiplication (InGaAs–AlGaAs) APD [3]. Later, Kinsey et al. reported a record GBP 
of 320 GHz using the edge-coupled waveguide APD [4]. Edge-coupling the light into a thin (<100 nm) 
layer, however, poses a new challenge and a number of schemes have been lately proposed to 
enhance the coupling efficiency [5] [6]–[7][8][9] [10]. 

Aside from the thickness of the multiplication region, there are a number of factors that further affect 
the avalanche buildup time. As the multiplication region becomes thin (e.g., below 200nm), the dead-



space effect becomes progressively more pronounced because the dead space occupies a larger 
fraction of the multiplication region [11], [12]. The dead space is the minimum distance a carrier must 
travel in the high-field multiplication region before reaching the ionization threshold energy [13], [14]. 
This spatial inhibition between successive ionizations, which is brought about by the dead space, turns 
out to increase the buildup time, as was initially shown analytically by Hayat and Saleh [15] and 
subsequently confirmed by others [16], [17]. However, dead space is not the only factor that affects 
the speed in thin multiplication layers. Monte Carlo simulations have shown that carriers experiencing 
the high electric field, which is required in thin multiplication region, have the tendency to ionize at 
early stages of their sojourn in the multiplication region [16], [18]. Moreover, those carriers that 
impact ionize early on are found to possess speeds well above the saturated drift velocities [18]. In 
fact, Hambleton et al. showed that this velocity-enhancement effect actually overcompensates for the 
dead-space effect [19]. 

In this paper, we show that the buildup time can be further reduced by considering a heterojunction 
multiplication region. The main mechanism for the enhancement is the so-called initial-energy effect. 
In particular, when a hot (energized) carrier initiates the avalanche multiplication, its first dead space is 
reduced depending on the magnitude of the initial energy of the carrier relative to the ionization 
threshold energy. The reduced first dead space, in turn, enhances the probability of the first ionization 
occurring sooner than the corresponding probability for the offspring, cold carriers. Roughly speaking, 
in the event that an early ionization takes place, the resulting buildup time is approximately that for a 
multiplication process that is initiated by two carriers (the parent and its offspring), each of which 
would be responsible for generating, on average, half of the required gain. 

Clearly, we would expect a significant reduction in the overall build up time if we were to enhance the 
likelihood of the occurrence of the first ionization as early as possible. This is precisely what the heating 
of the parent carrier does by reducing the first dead space of the primary carrier. The heating of the 
primary carrier is accomplished by using a high field, high bandgap undoped layer adjacent to the 
avalanching region, which serves to energize the carriers to the ionization threshold energy of the 
avalanching-layer material. At the same time, the high-bandgap property of the energy-buildup layer 
reduces the possibility of having ionizations in it; thus, the heating of parent carriers is achieved while 
practically keeping the width of the multiplication region unaltered. 

Interestingly, the above effect was shown earlier to reduce the excess noise factor as well in a host of 
low-noise APDs (termed impact–ionization–engineered, I2E, APDs) developed at the University of 
Texas. The low-noise characteristics of these bandgap engineered devices where shown to be a result 
of the initial energy effect using both analytical techniques [20], [21] as well as Monte Carlo simulation 
[16], [22]. We show in this paper that by carefully selecting the width of the energy buildup layer, the 
gain–bandwidth product can also be improved and optimized. 

SECTION II. Modeling the Impulse Response in Heterostructure APDs 
The buildup time of an APD is best characterized by the width of the mean impulse response, which is 
the average response to a single photoexitation. To calculate the mean impulse response, we will 
essentially use the recurrence technique reported in [15]. However, in this paper we will introduce two 
key generalizations to our recurrence technique: 1) we modify the recurrence technique to account for 



the possibility of a reduced first dead space for a hot carrier that is injected into the multiplication 
region, and 2) we extend the theory to accommodate heterojunctions (i.e., multiple layers) within the 
high-field multiplication region.1 The first generalization will be primarily used to study the extent of 
GBP enhancement that the initial-energy effect can bring about in the ideal situation when hot carriers 
are injected into a single-layer multiplication region from a doped (low-field) layer. The second 
generalization will be used to assess the anticipated GBP enhancement in the realistic case where the 
heating is performed by an additional undoped, high-bandgap layer (viz., the energy-buildup layer), in 
which case, the multiplication region will consist of the totality of the energy-buildup layer and the 
avalanching layer. 

In the analysis that follows, we assume that carriers in the multiplication region drift with a constant 
velocity equal to their saturation velocity. This is primarily done for the simplicity of the analysis, as the 
main thrust of this work is to show the GBP enhancement rendered by a bandgap-engineered, 
heterojunction multiplication region. Further generalization to account for the position-dependent 
velocity of carriers (from the location of birth) can be done similarly to the technique developed by Ng 
et al. [17]. 

A. Recurrence Theory for Heterojunction Multiplication Regions 
Consider an APD with a heterojunction multiplication region of total width w with a certain position-
dependent electric field. Following the notation in [15], for a parent electron created in (or injected 
into) the multiplication region at location x, we define Ze(t,x) as the total random number of electrons 
resulting from the parent electron t units of time after its creation. Similarly, Zh(t,x) is defined as the 
total number of holes resulting from a parent electron at a location x at a time t after its birth. Now 
consider a case when a photogenerated electron is injected into the edge of the multiplication region 
(x=0) at time t=0. The value of the buildup-time-limited random impulse response I(t) can be obtained 
by summing up the current contributions from all the offspring electrons and holes that are traveling in 
the multiplication region at time t. Assuming ve and vh as the saturation velocities of electrons and 
holes, respectively, Ramo's Theorem gives  

(1) 

𝐼𝐼(𝑡𝑡) =
𝑞𝑞
𝑤𝑤

[𝑣𝑣𝑒𝑒𝑍𝑍𝑒𝑒(𝑡𝑡, 0) + 𝑣𝑣ℎ𝑍𝑍ℎ(𝑡𝑡, 0)]. 

In accordance with the recurrence theory [15], in order to calculate the statistics of Ze(t,x) and Zh(t,x), 
we will need to introduce additional quantities Ye(t,x) and Yh(t,x). Here, Ye(t,x) is the total number of 
electrons resulting from a parent hole born at location x at time t after its birth, and Yh(t,x) is the total 
number of holes resulting from the parent hole. In [15], recurrence equations for the mean quantities 
ze(t,x)=⟨Ze(t,x)⟩,zh(t,x)=⟨Zh(t,x)⟩,ye(t,x)=⟨Ye(t,x)⟩, and yh(t,x)=⟨Yh(t,x)⟩ were developed and used to 
compute the impulse response of a homojunction APD under the assumption that the field in the 
multiplication region is uniform. 

Generalization of the above recurrence method to accommodate heterojunctions can be obtained by 
modifying the probability density functions of the distance to ionization (carrier's free-path distance) in 
[15] so as to reflect the inhomogeneous nature (in terms of the electric field and material) of the 



multiplication region. More precisely, let he(ξ|x) denote the probability density function (pdf) of the 
net distance ξ (from x) to the first ionization resulting from an electron born at x. Similarly, we have 
hh(ξ|x) as the pdf of the net distance ξ to the first ionization resulting from a hole that is born at x. The 
generalized recurrence equations for ze(t,x) and ye(t,x) are  

TABLE I Parameters for Ionization Coefficients (α for Electrons and β for Holes) and Ionization 
Threshold Energies of In0.52 Al0.48 As, GaAs, and Al0.6 Ga0.4 As 

 

𝛼𝛼,𝛽𝛽(ℰ) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[−(𝐸𝐸𝑐𝑐/ℰ)𝑚𝑚] 

  A(𝑐𝑐𝑐𝑐−1) E𝑐𝑐(V/cm) m 𝐸𝐸𝑡𝑡ℎ(𝑒𝑒𝑒𝑒) 
GaAs[24] 𝛼𝛼 6.01 ×  106 6.01 ×  106 0.901 1.9 

 𝛽𝛽 6.01 ×  106 6.01 ×  106 0.92 1.55 
Al0.6Ga0.4As[25] 𝛼𝛼 6.01 ×  106 6.01 ×  106 1 3.4 
(ℰ < 600kV/cm) 𝛽𝛽 6.01 ×  106 6.01 ×  106 1 3.6 
Al0.6Ga0.4As[25] 𝛼𝛼 6.01 ×  106 6.01 ×  106 1 3.4 
(ℰ > 600kV/cm) 𝛽𝛽 6.01 ×  106 6.01 ×  106 1 3.6 
In0.52Al0.48As[24] 𝛼𝛼 6.01 ×  106 6.01 ×  106 1.2 2.15 

 𝛽𝛽 6.01 ×  106 6.01 ×  106 1.07 2.30 
 

(2) 

𝑧𝑧𝑒𝑒(𝑡𝑡, 𝑥𝑥) = 𝑢𝑢 �
𝑤𝑤 − 𝑥𝑥
𝑣𝑣𝑒𝑒

− 𝑡𝑡� [1 − 𝐻𝐻𝑒𝑒(𝑣𝑣𝑒𝑒𝑡𝑡|𝑥𝑥)]

+� [2𝑧𝑧𝑒𝑒(𝑡𝑡 − 𝜉𝜉/𝑣𝑣𝑒𝑒 , 𝑥𝑥 + 𝜉𝜉)
min(𝑤𝑤−𝑥𝑥,𝑣𝑣𝑒𝑒𝑡𝑡)

0
+𝑦𝑦𝑒𝑒(𝑡𝑡 − 𝜉𝜉/𝑣𝑣𝑒𝑒 , 𝑥𝑥 + 𝜉𝜉)]ℎ𝑒𝑒(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑

𝑦𝑦𝑒𝑒(𝑡𝑡, 𝑥𝑥) = � [2𝑦𝑦𝑒𝑒(𝑡𝑡 − 𝜉𝜉/𝑣𝑣ℎ , 𝑥𝑥 − 𝜉𝜉)
min(𝑥𝑥,𝑣𝑣ℎ𝑡𝑡)

0
+𝑧𝑧𝑒𝑒(𝑡𝑡 − 𝜉𝜉/𝑣𝑣ℎ , 𝑥𝑥 − 𝜉𝜉)]ℎℎ(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑

 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-table-1-source-large.gif


and those for zh(t,x) and yh(t,x) are  

(3) 

𝑧𝑧ℎ(𝑡𝑡, 𝑥𝑥) = � [2𝑧𝑧ℎ(𝑡𝑡 − 𝜉𝜉/𝑣𝑣𝑒𝑒 , 𝑥𝑥 + 𝜉𝜉

min(𝑤𝑤−𝑥𝑥,𝑣𝑣𝑒𝑒𝑡𝑡)

0

)

+𝑦𝑦ℎ(𝑡𝑡 − 𝜉𝜉/𝑣𝑣𝑒𝑒 , 𝑥𝑥 + 𝜉𝜉)]ℎ𝑒𝑒(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑

𝑦𝑦ℎ(𝑡𝑡, 𝑥𝑥) = 𝑢𝑢 �
𝑥𝑥
𝑣𝑣ℎ

− 𝑡𝑡� [1 − 𝐻𝐻ℎ(𝑣𝑣ℎ𝑡𝑡|𝑥𝑥)]

+ � [2𝑦𝑦ℎ(𝑡𝑡 − 𝜉𝜉/𝑣𝑣ℎ , 𝑥𝑥 − 𝜉𝜉

min(𝑥𝑥,𝑣𝑣ℎ𝑡𝑡)

0

)

+𝑧𝑧ℎ(𝑡𝑡 − 𝜉𝜉/𝑣𝑣ℎ , 𝑥𝑥 − 𝜉𝜉)]ℎℎ(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑

 

where u(y)=1 if y≥0 and 0 otherwise. The quantities  

 

𝐻𝐻𝑒𝑒(𝜉𝜉|𝑥𝑥) = �ℎ𝑒𝑒(𝑥𝑥′|𝑥𝑥)𝑑𝑑𝑥𝑥′
𝜉𝜉

−∞

𝐻𝐻ℎ(𝜉𝜉|𝑥𝑥) = �ℎℎ(𝑥𝑥′|𝑥𝑥)𝑑𝑑𝑥𝑥′
𝜉𝜉

−∞

 

are the cumulative probability distribution functions corresponding to the pdfs he(ξ|x) and hh(ξ|x), 
respectively. 

In order to account for the material and field inhomogeneity in the multiplication region, the pdfs he(x) 
and hh(x) must incorporate: 1) the appropriate dead-space profile, which would accommodate the 
abrupt bandgap transition at the heterojunction and 2) the position-dependent ionization coefficients, 
which, in turn, depend on both the field value and the material at any specific location. In a hard-
threshold dead-space model, the expressions for the pdfs are given by [20]  



ℎ𝑒𝑒(𝜉𝜉|𝑥𝑥)

= {𝛼𝛼(𝑥𝑥 + 𝜉𝜉)exp(−� 𝛼𝛼(𝑥𝑥 + 𝑦𝑦)𝑑𝑑𝑑𝑑),
𝜉𝜉

𝑑𝑑𝑒𝑒(𝑥𝑥)
𝜉𝜉 ≥ 𝑑𝑑𝑒𝑒(𝑥𝑥)

0, 𝜉𝜉 < 𝑑𝑑𝑒𝑒(𝑥𝑥)
(4)

and
ℎℎ(𝜉𝜉|𝑥𝑥)

= {𝛽𝛽(𝑥𝑥 − 𝜉𝜉)exp(−� 𝛽𝛽(𝑥𝑥 − 𝑦𝑦)𝑑𝑑𝑑𝑑)
𝜉𝜉

𝑑𝑑ℎ(𝑥𝑥)
, 𝜉𝜉 ≥ 𝑑𝑑ℎ(𝑥𝑥)

0, 𝜉𝜉 < 𝑑𝑑ℎ(𝑥𝑥)
.

 

(5) 

The position- and material-dependent electron dead space de(x) is calculated using the following 
implicit equation [20]: 

𝑞𝑞 � ℰ

𝑥𝑥+𝑑𝑑𝑒𝑒(𝑥𝑥)

𝑥𝑥

(𝑦𝑦)𝑑𝑑𝑑𝑑 = 𝐸𝐸th,𝑒𝑒�𝑥𝑥 + 𝑑𝑑𝑒𝑒(𝑥𝑥)� 

(6) 

where Eth,e(x+de(x)) is the electron ionization threshold energy for the material occupying the location 
x+de(x). Similarly, the hole dead space dh(x) is obtained using  

 

𝑞𝑞 � ℰ

𝑥𝑥−𝑑𝑑ℎ(𝑥𝑥)

𝑥𝑥

(𝑦𝑦)𝑑𝑑𝑑𝑑 = 𝐸𝐸th,ℎ�𝑥𝑥 − 𝑑𝑑ℎ(𝑥𝑥)�. 

(7) 

In this paper, the model used to calculate the impact ionization coefficients, α and β, along with the 
threshold energies for electron and for holes (viz., A,Ee,m, and Eth) correspond to those developed by 
Saleh et al. [24] for GaAs and Plimmer et al. [25] for Al0.6 Ga0.4 As, as shown in Table I. 



 
Fig. 1. Schematic of the heterostructure APD considered in this paper. The electric field distribution and the 
band diagram are also illustrated. 

 
Fig. 2. Corresponding dead-space profiles for electrons (solid) and holes (dashed) in a heterojunction 
multiplication region under nonconstant electric field. The vertical dotted line represents the boundary of the 
two material. 
 

Fig. 1 shows the schematic of the device structure to be examined. The device is a p-i-n 
heterostructure APD and the i-region consists of two layers: 100-nm Al0.6 Ga0.4 As and 100-nm GaAs. 
The Al0.6 Ga0.4 As layer serves as the energy-buildup layer, and the GaAs is the actual multiplication 
layer. The figure also includes the electric field distribution and and band diagram of the device. Fig. 2 
shows the electron (solid curve) and hole (dashed curve) dead-space profiles for a representative 
heterojunction multiplication region shown in the Fig. 1. The dotted vertical line at x=100 nm indicates 
the boundary of the material. The applied electric field in the multiplication region is modeled to 
decrease linearly (in the direction pointing from Al0.6 Ga0.4 As to GaAs) due to unintentional doping 
[20]. Notice how the electron and hole dead spaces anticipate the bandgap boundary and change their 
values well before the boundary. This is because in calculating the dead space, we use the threshold 
energy that coincides with the material at the anticipated location at which the dead-space is reached. 
This behavior is represented in the dead-space (6) and (7) by the terms x+de(x) and x−dh(x) in the 
arguments of Eth,e and Eth,h, respectively. Let us now examine the electron dead-space profile shown 
in Fig. 2. Due to the linearly decreasing nature of the electric field, the electron dead space increases 
linearly in the Al0.6 Ga0.4 As layer (Eth,e=3.4 eV) up to the point “a.” An electron born between positions 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-2-source-large.gif
https://ieeexplore.ieee.org/document/#deqn6
https://ieeexplore.ieee.org/document/#deqn7


“a” and “b,” however, cannot complete traveling its dead space in the Al0.6 Ga0.4 As layer. Nonetheless, 
as soon as it reaches the GaAs layer, which has a lower threshold energy (Eth,e=1.90 eV) than Al0.6 Ga0.4 
As, it will have fulfilled the dead-space requirement for GaAs and becomes capable of ionizing 
immediately after crossing the boundary. Consequently, the dead space for this class of electrons is the 
distance from their location of birth to the boundary, which warrants the negative slope of the 
electron dead-space curve between points “a” and “b.” Furthermore, in calculating the dead space for 
an electron that is born to the right of the point “b,” the ionization threshold of GaAs is used, which 
results in the increasing behavior of the dead space beyond the point “b.” Finally, note that the 
electron dead-space curve ends at the point “c” (x=159 nm in this particular case). This is because 
electrons born beyond the point “c” do not have a sufficient distance left to travel the dead space for 
GaAs and therefore escape the multiplication region without being able to impact ionize. 

The behavior of the hole dead-space profile can be explained similarly. The important observation to 
make is that holes which are born to the right of point “d” have to overcome the dead space associated 
with the Al0.6 Ga0.4 As layer (Eth,h=3.6 eV). Unfortunately, the holes born between the position “d” and 
“e” are able to complete their dead space and become capable of ionizing in the Al0.6 Ga0.4 As layer. 
This will cause an undesirable hole-feedback effect in the Al0.6 Ga0.4 As layer. In a GBP-optimized 
structure, ionization of electrons and holes in the Al0.6 Ga0.4 As must be minimized. Details of the 
optimization will be discussed in Section IV. 

B. Incorporating the Initial Energy of Parent Carriers 
If the multiplication process is initiated by a hot parent carrier, the energy that the injected carrier 
needs to build up for impact ionization is reduced significantly by an amount equal to the carrier's 
initial energy. In the case of electron injection at location x, if the initial energy of the parent electron is 
Ei, then the first dead space that the electron will experience de,i(x) is characterized by an equation 
similar to (6) but with Eth,e(x+de(x)) replaced by Eth,e(x+de,i(x))−Ei. (In cases when Ei≥Eth, we set 
de,i(x)=0.) As a result of the reduced first dead space for the parent electron, the pdf he,i(ξ|x) of the 
distance to the first impact ionization for the parent electron will be similar to (4) but with de(x) 
replaced with de,i(x). 

 
Fig. 3. Mean impulse response of a GaAs homojunction with a 100-nm multiplication layer with a mean gain of 
20. The solid curve represents the impulse response with an initial energy equal to the ionization threshold 
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energy (E=682.8 kV/cm), and the dashed curve represents the impulse response with zero initial energy 
(E=689.5 kV/cm). 
 

We now generalize the recurrence theory for the mean impulse response [15] to account for the initial-
energy effect. Let Ze,i(t,x) be defined as Ze(t,x) with the exception that for the parent electron at x, the 
distance ξ to the first impact ionization has a pdf he,i(ξ|x), as described previously. The key observation 
here is that upon the first ionization of the parent electron, the two newly created electrons and hole 
are assumed to have zero initial energy, independently of the initial energy of their parent electron. 
Consequently, conditional on the first ionization occurring at ξ, two independent copies of 
Ze(t−ξ/ve,x+ξ) and one copy of Ye(t−ξ/ve,x+ξ) are generated. Now by averaging over all possibilities for 
ξ, we obtain the following modified recurrence equation for the mean value ze,i(t,x)=⟨Ze,i(t,x)⟩ and 
zh,i(t,x)=⟨Zh,i(t,x)⟩, as follows: 

 

(8) Top 

(9) down 

𝑧𝑧𝑒𝑒,𝑖𝑖(𝑡𝑡, 𝑥𝑥) = 𝑢𝑢((𝑤𝑤 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 − 𝑡𝑡)[1 − 𝐻𝐻𝑒𝑒,𝑖𝑖(𝑣𝑣𝑒𝑒𝑡𝑡|𝑥𝑥)]

+ � [2𝑧𝑧𝑒𝑒(𝑡𝑡 − 𝜉𝜉/𝑣𝑣𝑒𝑒 , 𝑥𝑥 + 𝜉𝜉)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤−𝑥𝑥,𝑣𝑣𝑒𝑒𝑡𝑡)

0
+𝑦𝑦𝑒𝑒(𝑡𝑡 − 𝜉𝜉/𝑣𝑣𝑒𝑒 , 𝑥𝑥 + 𝜉𝜉)]ℎ𝑒𝑒,𝑖𝑖(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑

and

𝑧𝑧ℎ,𝑖𝑖(𝑡𝑡, 𝑥𝑥) = � [2𝑧𝑧𝑒𝑒(𝑡𝑡 − 𝜉𝜉/𝑣𝑣ℎ , 𝑥𝑥 − 𝜉𝜉)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑣𝑣ℎ𝑡𝑡)

0
+𝑦𝑦ℎ(𝑡𝑡 − 𝜉𝜉/𝑣𝑣ℎ , 𝑥𝑥 − 𝜉𝜉)]ℎ𝑒𝑒,𝑖𝑖(𝜉𝜉|𝑥𝑥)𝑑𝑑𝑑𝑑.

 

Note that the quantities ze(t,x) and ye(t,x) must be computed a priori, according to (2), and then used 
to calculate ze,i(t,x), and a similar statement holds in regards to zh,i(t,x). Also note that if the parent 
electron has no initial energy, then (8) and (9) collapse to the top equations in (2) and (3), respectively. 
Finally, once the quantities ze,i(t,x) and zh,i(t,x) are computed, they are used to calculate the mean 
impulse response as usual. For example, in the case of electron edge injection (x=0), the mean impulse 
response function i(t)≡E[I(t)] is determined using  

(10) 

𝑖𝑖(𝑡𝑡) =
𝑞𝑞
𝑤𝑤
�𝑣𝑣𝑒𝑒𝑧𝑧𝑒𝑒,𝑖𝑖(𝑡𝑡, 0) + 𝑣𝑣ℎ𝑧𝑧ℎ,𝑖𝑖(𝑡𝑡, 0)�. 
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SECTION III. Gain–Bandwidth Product 
To see the extent of the effect of the initial energy of injected carrier, we consider a homojunction 
GaAs APD and examine its impulse responses and bandwidth with and without an initial energy equal 
to the ionization threshold of GaAs (i.e., either Eini=Eth or Eini=0). Fig. 3 shows the impulse responses 
of a 100-nm homojunction GaAs APD. The electric field was chosen as 689.5 and 682.8 kV/cm for the 
cases Eini=0 and Eini=Eth, respectively. This choice yields the same mean gain of 20 in both cases. (In 
calculating the mean gain for each APD, the recurrence dead-space multiplication theory [20], [21] was 
used.) In our calculations, we have assumed that the saturation velocities are 1.0×107 cm/s for 
electrons and 0.5×107 cm/s for holes. As expected, the impulse response for the Eini=0 case (dashed 
curve) exhibits a flat region, from 0 to 0.4 ps, which corresponds to the dead space, while the 
multiplication process initiated by fully energized carriers (solid curve) does not exhibit the initial dead-
space region. Thus, carriers can initiate the first impact ionization earlier (possibly at the boundary) and 
have more chances to cause impact ionization before leaving the multiplication region. The solid curve 
reaches a higher value at the peak than the dashed curve does. Consequently, the solid curve decays at 
a faster rate than the dashed curve (since they both generate the same mean gain), which results in an 
improved bandwidth in the case when Eini=Eth. 

 
Fig. 4. Frequency response of a GaAs homojunction with a 100-nm multiplication layer with a mean gain of 20. 
The predicted 3-dB bandwidth for the APD with the initial energy is 20.3 GHz compared with 13.9 GHz for the 
zero-initial-energy case. 
 
It is interesting to observe the oscillatory behavior of the impulse response. Within the transit time of 
the injected electron across the multiplication region, the parent electron and its offspring electrons 
and holes continue to impact ionize, thereby adding continuously (on average) to the number of carrier 
present in the multiplication region. As a result, the impulse response monotonically increases in this 
period until the “first-generation” group of electrons synchronously escape the multiplication region, 
at which point the mean impulse response drops sharply and abruptly. Subsequently, as the residual 
carriers yet present in the multiplication region continue to ionize, the impulse response increases. 
However, as the first-generation holes begin to exit the multiplication region, the impulse response 
gradually drops; thus, the time to the second peak is precisely the hole transit time, relative to the 
injection time of the parent electron. Evidently, these holes do not reach the end synchronously, and 
hence, the drop in the impulse response is no longer abrupt. Similarly, after the last of the first-

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-4-source-large.gif


generation holes have exited the multiplication region, residual carriers within the region continue to 
ionize causing another rise in the impulse response until second-generation electrons start exiting the 
multiplication region, resulting in a subsequent valley, and so on. It is these interlaced waves of carrier 
buildup and carried departures that lead to the oscillatory behavior apparent in Fig. 3. The oscillations 
fade away, however, as the effects higher-order generations become indistinguishable in time from 
one another and as the number of carriers diminish. 

 
Fig. 5. Gain–bandwidth products of homojunction GaAs APDs with (solid) and without (dashed) the initial-energy 
effect as a function of the multiplication-layer width. 

 
Fig. 6. Computed and measured excess noise factor versus the mean gain of a 150-nm InAlAs APD developed by 
Li et al. [26]. The symbols represent the measured data reported by Li et al.. 
 

The corresponding frequency response curves are shown in Fig. 4 depicting a predicted bandwidth 
improvement from 13.9 GHz (in the Eini=0 case) to 20.3 GHz (in the Eini=Eth case). Fig. 5 shows the 
calculated GBPs of homojunction GaAs APDs as a function of the multiplication region width. The figure 
also demonstrates the improvement in the presence of the initial energy. In addition, the improvement 
is more significant as the width of the multiplication layer decreases. For example, the GBP 
improvement is 27% and 40% for the widths of 200 and 100 nm, respectively. This effect is most likely 
to be due to the increase in the significance of the dead space as the multiplication-region width 
decreases. 
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Fig. 7. Computed and measured bandwidth as a function of the mean gain. The symbols represent the measured 
data reported by Li et al.. The The velocities used for the calculation of bandwidth are 0.5×107 cm/s for 
electrons and 0.2×107 cm/s for holes. 
 

As a validation of the our model, we computed the GBP of a 150-nm InAlAs APD developed by Li et al. 
[26]. We used the ionization coefficients for In0.52 Al0.48 As reported by Saleh et al. [24], as described in 
Table I. We first estimated the initial energy of the injected carriers, as a function of the applied electric 
field, by applying our noise recursive model [20] (which captures the initial-energy effect) to 
experimental measurements. This was done by fitting the excess-noise prediction (as functions of the 
mean gain) to the measured excess-noise factors while using the initial energy as a free parameter. It 
was found that the best fit is obtained when Eini=0.50Eth, as shown in Fig. 6. This initial energy reduces 
the excess noise by approximately 20% compared with the no-initial energy case. Note that we 
observed a disagreement between calculation and experimental data for low values of gain. This may 
be due to trapping and other low-bias effects [27] that are not captured in our model. (The sensitivity 
of the excess-noise-factor versus mean-gain characteristics to the choice of Eini has been discussed 
extensively in [21].) We then applied the estimated initial energy to the recurrence theory developed 
in Section II-B and calculated the bandwidth. We used the saturation velocities in InAlAs reported by 
Ma et al. [28] (0.5×107 cm/s for electrons and 0.2×107 cm/s for holes). The calculated bandwidth, as a 
function the mean gain, is shown in Fig. 7. As shown in the figure, the calculated bandwidth with the 
initial energy is in better agreement to the measurement than those without the initial energy. The 
presence of 0.50Eth of initial energy improves the bandwidth by approximately 17 percent compared 
to no initial energy is assumed. Albeit, the mere fact that predicted GBP, when the initial-energy effect 
is considered, is close to experimental data should not be literally used to establish an absolute 
accuracy for our model. In fact, no such claim is made here since a number of other factors that affect 
the speed, such as the velocity-enhancement effect [16] [17] [18], softness of ionization [29] [30]–[31] 
[32], phonon scattering, etc., have not been specifically included in our model. Nonetheless, the point 
of the present situation is that the inclusion of the initial energy, which was shown by our noise model 
[20] to yield an improved excess-noise prediction, also moved the GBP prediction in the correct 
direction. 
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SECTION IV. Optimization of the Gain–Bandwidth Product 
In this section, we consider a heterostructure, two-layer multiplication-region APD in which the initial-
energy mechanism is generated without the requirement that injected carriers have an initial energy 
prior to entering the high-field region. The schematic of the proposed heterostructure APD to be 
optimized is shown in the top portion of Fig. 2. (The very same structure was recently utilized to 
minimize the excess noise factor [21].) In the proposed structure, a high bandgap intrinsic Al0.6 Ga0.4 As 
layer, called the energy-buildup layer, is placed between the p-layer and the GaAs multiplication layer. 
The width of the Al0.6 Ga0.4 As energy-buildup layer plays a key role in improving the GBP. On one hand, 
its width must be large enough to allow the injected carrier to ballistically build up an energy which 
exceeds the ionization threshold energy of GaAs, where the multiplications are desired to take place. 
On the other hand, the width of the Al0.6 Ga0.4 As layer should be below the dead space associated with 
the Al0.6 Ga0.4 As layer. In this way, electrons cannot impact ionize in the Al0.6 Ga0.4 As layer; however, 
they enter the GaAs with an energy equal to or greater than the ionization threshold energy of GaAs. 

Thus, the parent electron's first dead space inside the GaAs layer vanishes and at the same time no 
multiplication by it is permitted in the energy-buildup layer. With the latter property, the effective 
multiplication region of the APD is essentially the GaAs layer. Finally, note that for a given range of 
mean gains, any increase of the width of the GaAs multiplication layer corresponds to an inversely 
proportional reduction of the electric field. Since the function of the energy-buildup layer is strongly 
dependent on the range of the operational electric field (as it governs the energy buildup), it is 
conceivable that the optimum width of the Al0.6 Ga0.4 As layer would have a dependence on the width 
of the GaAs layer. 

To rigorously establish the optimality of the proposed structure, we used the theory described in 
Section 2.1 to calculate the mean impulse response function of the type of heterostructure APDs 
shown in Fig. 2. No initial energy is assumed for carriers injected into the intrinsic Al0.6 Ga0.4 As layer; 
thus, we used (2) –(7). We used the saturation velocities of GaAs (1.0×107 cm/s for electrons and 
0.5×107 cm/s for holes) throughout the device to simplify the computations. However, it is known that 
the velocity in Alx Ga1-x As drops as x, the Al composition, increases [33]. Our use of uniform saturation 
velocities can be justified by the fact that the difference of velocities between GaAs and Al0.6 Ga0.4 As is 
not very significant. For example, when x=0.5 (the highest composition available in the reference), the 
electron saturation drift velocity approaches to 0.9×107 cm/s, which is about 10% less than that in 
GaAs. The high-field hole saturation drift velocity when x=0.55 is also approximately equal to one for 
GaAs. 

Fig. 8 shows the calculated GBP as a function of the width of the Al0.6 Ga0.4 As energy-buildup layer. For 
each width of the GaAs multiplication layer, a unique optimum width of the Al0.6 Ga0.4 As energy 
buildup layer exists. Note that the improvement in the GBP becomes more significant for thick devices. 
For example, the GBP improvement for a 200-nm GaAs APD is 17.9%, while the improvement is 15.5% 
for a 100-nm APD and 11.7% for a 70-nm APD. We believe that this is due to the overhead cost caused 
by an increase in the transit time of carriers, due to the energy-buildup layer, which becomes relatively 
more significant as the width of the GaAs multiplication layer decreases. In addition, the smaller GBP 
improvement observed in thinner heterostructures is also believed to be caused by the larger hole-to-
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electron ionization coefficient ratio at high fields, which offsets the benefit of the larger relative dead 
space (relative to the width of the multiplication region).  

 
Fig. 8. GBPs (left vertical axis) of the proposed heterostructure APDs as a function of the width of the Al0.6 Ga0.4 
As energy-buildup layer. The curves are parameterized by the widths of the GaAs multiplication layer. The 
corresponding excess-noise factors are also shown (right vertical axis). 
 
We have also observed that the configuration that optimizes the GBP coincides with the configuration 
that minimizes the excess noise factor reported in [21]. This property is seen from the excess-noise 
graphs, also shown in Fig. 8 (right vertical axis). We expect this property to be a result of the fact that a 
minimum-noise configuration occurs when the probability of the occurrence of high gains is minimized 
[17] (i.e., by suppressing the tail of the probability mass function of the gain). However, since large gain 
realizations are precisely the ones that cause long buildup times, reducing the probability of such 
multiplication events therefore aids to enhance the decay of the tail of the mean impulse response as 
well. Finally, we have observed (not shown here) that the GBP is almost independent of the value of 
mean gain within a reasonable range (<30 in our calculations); thus, the optimal configuration, for a 
given GaAs multiplication layer, is almost uniformly optimal for all practical operational gains. Next, we 
will discuss the dead-space profiles and the ionization probability density functions for the optimized 
structures. 

 
Fig. 9. Electron (solid) and hole (dashed) dead-space profiles for an optimum structure (36-nm Al0.6 Ga0.4 As/164-
nm GaAs). 
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Fig. 10. Ionization pdfs for electrons (solid) and holes (dashed) for the optimal structure considered in Fig. 9. The 
dotted vertical line at x=40 nm indicates the boundary of the heterojunction. 
 

A. Optimal Dead-Space Profile and Ionization Probability 
The dead-space profiles for a representative optimal structure (36-nm Al0.6 Ga0.4 As/164-nm GaAs) is 
shown in Fig. 9. The dead space for the electrons born between x=0 and x=b is simply the distance to 
the heterojunction boundary, as explained in Section 2.1. (In contrast to the suboptimal structure 
shown in Fig. 2, the point “a” in Fig. 2 is located outside the GaAs avalanching region.) Electrons born 
beyond the point “b” complete their dead space within the GaAs layer. Thus, no electron is able to 
impact ionize within the Al0.6 Ga0.4 As layer. On the other hand, holes born to the left of point “d” will 
not be able to impact ionize in either layers. This is because the dead space is longer than the distance 
from their birth location to the left edge of the multiplication region. However, it is possible for holes 
born to the right of point “d” to travel the GaAs layer without ionizing and continue to accumulate the 
threshold energy of Al0.6 Ga0.4 As. These holes may therefore ionize in the Al0.6 Ga0.4 As layer. However, 
the probability of this latter scenario is low since it requires that the holes should travel through the 
GaAs layer, beyond their dead space, without ionizing. The fact that the ionization coefficient for GaAs 
is higher than that for Al0.6 Ga0.4 As makes the occurrence of this event unlikely. 

The probability density functions (pdf) of electrons born at x=0 (solid curve) and holes born at x=w 
(dashed curve) are shown in Fig. 10. Note that the pdf of electron impact ionization before the 
boundary (x<36 nm) is zero due to the high ionization threshold energy of Al0.6 Ga0.4 As. The distance of 
the Al0.6 Ga0.4 As layer is not sufficient for electrons to acquire the energy to overcome the dead space. 
The pdf reaches its highest at the boundary (x=36 nm) due to the sudden drop in the ionization 
threshold energy in the GaAs layer. On the other hand, holes travelling to the left (starting at x=w) 
behave normally in the GaAs layer until they encounter the Al0.6 Ga0.4 As layer, which has a lower 
ionization coefficient, and therefore the pdf drops. 

SECTION V. Conclusion 
When the ionization process is initiated by a hot parent carrier, the first dead space associated with it 
is reduced by an amount that depends on the magnitude of the initial energy of the heated carrier 
relative to the ionization threshold energy of the material. Intuitively, the existence of such an initial 
energy enhances the probability of the first ionization occurring sooner than expected. For example, 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-10-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/50/30860/1430787/1430787-fig-10-source-large.gif


consider the extreme case when the first ionization of the heated parent electron occurs almost 
immediately after injection at the edge of the avalanche multiplication region. In this simplified 
scenario, it is conceivable to think of the resulting multiplication process as two simultaneous 
multiplication processes generated by the two cold parent electrons. In a practical situation, however, 
it is unlikely that the heated carrier ionizes immediately after injection. However, its lifetime remains 
much shorter than that of a cold carrier due to its reduced dead space, and the analogy to the 
simplified “two-cold-for-one-hot” picture would still be meaningful. Further, due to the parallel nature 
of the resulting multiplication process corresponding to the cold parents, it would be reasonable to 
expect a reduction in the noise as well as the avalanche buildup time in structures that exhibit such an 
initial-energy effect. 

Indeed, it has been shown previously that the initial-energy effect does serve to reduce the excess 
noise factor. In this paper, we showed that the initial-energy effect serves to improve the bandwidth as 
well. To do so, we developed a recurrence theory for calculating the mean impulse response of the 
avalanche photodiode (APD), which generalizes the existing theories to handle heterojunction 
multiplication regions and hot-carrier injection. We showed analytically that the initial-energy effect 
can naturally occur in a heterojunction multiplication region if the layers' widths and materials are 
designed carefully to enhance this effect. Particularly, we considered a two-layer heterojunction 
multiplication region consisting of a high-bandgap Al0.6 Ga0.4 As energy-buildup layer, which serves to 
heat up the primary electrons, and a GaAs layer, which serves as the primary avalanching layer. We 
used our analytical model to design a bandgap-engineered heterostructure APD which has optimal 
gain–bandwidth product (GBP). Notably, our calculations show that for the structure considered, 
maximizing the GBP is obtained by an optimal structure that also approximately minimizes the excess 
noise factor. 
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