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Plasmonic field confinement for 
separate absorption-multiplication 
in InGaAs nanopillar avalanche 
photodiodes
Alan C. Farrell1,*, Pradeep Senanayake1,*, Chung-Hong Hung1, Georges El-Howayek3, 
Abhejit Rajagopal1, Marc Currie2, Majeed M. Hayat3 & Diana L. Huffaker1,4

Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and 
active imaging systems requiring both ultrafast response time to measure photon time of flight and 
high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise 
ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low 
excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage 
of the dead-space effect using thin multiplication regions. In this work we demonstrate the first 
measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially 
lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. 
The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially 
separating the absorption region from the avalanche region via the NOA resulting in single carrier 
injection without the use of a traditional SAM heterostructure.

The early theoretical work of McIntyre1 and Emmons2 showed that the excess noise and bandwidth of 
an avalanche photodiode is determined by the stochastic nature of the avalanche process and is a func-
tion of the ratio, k, of the electron, α, to hole, β, ionization coefficients. A key assumption of their work 
was that (1) a carrier experiences a spatially uniform electric field and (2) the multiplication region is 
much larger than the ionization path length, such that the excess noise at a given gain, M, is determined 
by bulk ionization coefficients. However, since their early work it has been shown that shrinking the 
volume of the avalanche region3–7 and engineering sharp gradients in the electric field8 lowers the effec-
tive ratio of the ionization coefficients, keff , resulting in lower excess noise factors and higher 
gain-bandwidth products9,10 beyond what is predicted by bulk values of the ionization coefficients. The 
improved statistics of the impact ionization process is attributed to the ionization path length of carriers 
having a narrower probability distribution due to dead space. The dead-space effect can dramatically 
reduce the excess noise6, resulting in a keff that is much smaller than the intrinsic material k4,11,12. 
Nanopillars offer a path towards further miniaturizing the multiplication volume and exploiting the 
dead-space effect. Although nanopillar-based APDs have been reported13–17, all but one are single pillar 
demonstrations having nanoscale active areas with extremely lossy free-space or optical fiber coupling, 
limiting their usefulness.
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In this work, we provide the first excess noise measurements on nanopillar-based APDs at 1.06 μm 
with highly localized and physically separate optical absorption and multiplication regions within a nan-
opillar array. The noise measurement shows a significant reduction in excess noise compared to bulk and 
is the first exploitation of dead space effects utilizing a 3D electric field within a nanopillar. We have 
also developed a novel modeling scheme for the analysis of avalanche multiplication process in the 3D 
electric field within a nanopillar. Recursive dead-space multiplication theory has been generalized in 3D 
dimensions (3D-DSMT) to analyze our experimental data and has been found to be in good agreement.

Arrays of p-doped InGaAs nanopillars with a InGaP passivation shell were grown on n+ doped GaAs 
(111)B substrate by catalyste-free, selective-area epitaxy using metal-organic chemical vapor deposition 
(MOCVD). The lithographically defined patterned growth mask is systematically optimized in terms of 
array pitch in order to tune the enhanced optical absorption at a plasmonic resonance to the desired 
wavelength18. The detector active area was 40 μ m ×  40 μ m, corresponding to 1156 to 2809 nanopillars for 
a pitch of 1150 nm to 750 nm, respectively. Figure 1a shows a tilted (30°) scanning electron micrograph 
of the as-grown nanopillar array. The fabricated device is shown in Fig. 1b, and the inset shows the result 
of the tilted deposition: a self-aligned nanohole array which functions as a 3-dimensional plasmonic 
antenna. Ground-signal-ground (GSG) contacts were used for noise spectral density and high-speed 
measurements.

The room-temperature dark current, photocurrent, and the extracted gain, M, as a function of bias 
measured from a typical device is shown in Fig. 2a. A phase-sensitive measurement was used to distin-
guish photocurrent from dark current. It is important to accurately determine the primary photocurrent 
in order to avoid overestimating the gain, thereby underestimating the excess noise factor. In typical 
planar APDs the primary photocurrent is determined from the DC photocurrent vs. bias characteristics. 
There is a clear plateau of the photocurrent with increasing bias as a result of the electric field extend-
ing through the absorption region. This plateau, or punch-through, is usually identified as the primary 
photocurrent. However, in the NOAAD, with increasing bias the depletion region extends through a 
3-dimensional spatial distribution of photogenerated carriers. As a result, the primary photocurrent can-
not be extracted from the DC photocurrent vs. bias characteristics. The primary photocurrent can be 
determined directly by measuring the photocurrent noise for increasing reverse bias until the measured 
noise begins to exceed the calculated shot noise. The photocurrent at a bias immediately before the pho-
tocurrent noise exceeds the calculated shot noise is taken as the primary photocurrent (Supplementary 
Figure 1). The gain is calculated by normalizing the bias dependent photocurrent to the primary photo-
current, and reaches a peak value of M =  96. To characterize the nanopillar optical antenna, reflectance 
spectromicroscopy measurements were performed and correlated to the spectral photoresponse of the 
NOAAD (Fig.  2b). The reflectance spectra exhibited several reflection minima at wavelengths deter-
mined by the nanopillar array pitch (Supplementary Figure 2). There is a maximum in the photoresponse 
at 1060 nm where there is a reflection minimum, implying enhanced absorption due to the plasmonic 
resonance. Indeed, FDTD simulations show a clear absorption “hot-spot” in the exposed nanopillar tip 
at the plasmonic resonance (Fig. 2c) that is absent for off-resonant absorption (Fig. 2d).

Although very large gain is achievable in the NOAAD, an APD’s maximum usable gain is that which 
results in the optimum signal-to-noise ratio and is determined by the excess noise factor. Minimizing 
the excess noise is therefore of considerable interest and is an active area of research. A unique feature 
of NOAAD optical absorption is the localization of optical absorption to the exposed nanopillar volume, 
while the avalache region is located at the nanopillar-substrate interface. Since optical absorption near 
the multiplication region is dramatically reduced in the NOAAD, a reduction in the excess noise as 
compared to double-carrier multiplication in bulk InGaAs is expected. This effect was studied through 
detailed modeling and simulations. Although the recurrence theory for avalanche multiplication, includ-
ing the statistics of gain and impulse-response under non-uniform, static electric fields is well-known 

Figure 1.  NP array and device fabrication. (a) Tilted SEM of as-grown InGaAs nanopillar array. Scale bar, 
600 nm. (b) Fabricated NOAAD with ground-signal-ground (GSG) contacts for high speed measurements. 
The signal contact is deposited directly on the BCB to electrically isolate it from the substrate. Scale bar, 
80 μ m. Inset: Tilted metal deposition results in a self-aligned nanohole array.
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for 1D electric fields6,19, both the magnitude and direction of the electric field in the NOAAD vary in 
space. This is in direct contrast to planar APDs, which assume an internal electric field that only varies 
along the axis of the device. Here, we introduce a generalization of the recurrence theory, 3D-DSMT, to 
account for a 3D electric field. The electric field profile (Fig. 3a) was calculated by fitting the modeled 
capacitance-voltage (CV) characteristics to the measured CV (Supplementary Figure 3) by adjusting 
the doping profile within the nanopillar. Care has to be taken when extracting electric fields in nano-
structures since the surrounding material plays a major role in fringing the electric field lines20. A 3D 
electrostatic model of a single unit cell of the NOAAD is developed taking into account both the sur-
rounding cyclotene dielectric polymer and a cathode geometry which accounts for the metal on top 
of the nanopillar, on the sidewalls and on top of the cyclotene. A 2D cut through the center of the 
nanopillar, shown in Fig. 3b, shows the electric field radiating out from the junction area. Note that the 
nanopillar extends beyond the junction area due to radial overgrowth. The paths of electrons generated 
outside the multiplication region were numerically calculated to determine their position and energy 
upon entering the multiplication region (Fig. 3c). The ionization parameters were taken from measured 
impact ionization rates21.

The details of 3D-DSMT are described in the Supplementary Information. Figure 4b shows the mean 
gain as a function of applied bias for the electron trajectories shown in Fig. 3c. Since the gain reaches 
large values at a different bias voltage for each electron trajectory, it is not possible to calculate an average 
gain vs. bias curve. Nonetheless, by calculating the average bias at which the gain reaches 50, we find the 
calculated average bias of 6.9 V agrees very well with the measured bias of 6.8 V. The noise spectral den-
sity was measured under both dark and illuminated conditions, shown in Fig. 4b. The photocurrent noise 
was calculated by subtracting the dark current noise from the noise under illumination. The simulated 
excess noise factor is shown in Fig. 4c (solid line), along with the measured excess noise factor (symbols) 
and the calculated excess noise factors using McIntyre’s model (dotted lines). The excess noise calculated 
using 3D-DSMT is a weighted average based on the photogeneration profile. By modeling electron ini-
tiated multiplication and dead space effects, a good fit to the experimental data is achieved. The best fit 
to McIntyre’s model occurs for = .k 0 13eff , a significant reduction compared to bulk InGaAs, for which 

Figure 2.  Electrical and optical characterization. (a) Measured dark current and photocurrent at room 
temperature of an APD with a 40 μ m X 40 μ m active area. The extracted multiplication gain approaches 100. 
(b) Reflectance spectrum and spectral photoresponse exhibit a minimum and maximum, respectively, at 
1060 nm. (c) Photogeneration within the nanopillar at a plasmonic resonance and (d) off resonance.

Figure 3.  Electric field modeling. (a) 3D electric field distribution within nanopillar [V/cm]. (b) Electric 
field lines, drawn in black, show a field that radiates out from the junction area throughout the nanopillar 
(the nanopillar extends beyond the junction area due to radial overgrowth). (c) The electron trajectories 
through a nanopillar are numerically calculated showing that electrons generated in the nanopillar tip are 
funneled to the multiplication region by the 3D electric field.
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. < < .k0 33 0 65 for mixed carrier injection, while . < < .k0 19 0 27eff  has been reported for single car-
rier injection22.

The ability to tightly confine optical absorption to the exposed nanopillar tips means that instead of 
following Beer’s Law, there is a sharp cut-off in the optical absorption near the cyclotene-air boundary. 
This allows for a thin absorption region to be located very close to the avalanche region, minimizing the 
transit time through the low-field drift region. The temporal response of the NOAAD to a 120 fs laser 
pulse was measured with a 50 GHz oscilloscope as a function of bias, shown in Fig.  5a. By normaliz-
ing the temporal response with respect to the peak value we see the rise time of 18 ps is unaffected by 
increasing bias, indicating the avalanche build-up time is not limiting the response time. On the other 
hand, the fall time clearly decreases, ranging from 297 ps to 76 ps with increasing reverse bias. For the 
NOAAD, the capacitance monotonically decreases as the depletion region grows with increasing reverse 
bias until the parasitic contact capacitance of 250 fF is reached, resulting in an RC-limited bandwidth 
of 2.8 GHz. The frequency response is plotted in Fig.  5b,c shows the bandwidth as a function of gain. 
The bandwidth increases with gain until a plateau is reached in the − 3 dB bandwidth at 2.1 GHz. At the 
highest measured gain of M =  96, a gain-bandwidth product (GBP) of 201 GHz is achieved.

In summary, we have demonstrated a novel NOAAD architecture based on position-controlled arrays 
of III–V semiconductor nanopillars employing a self-aligned plasmonic optical antenna. The focusing of 
light near the exposed nanopillar tip physically separates the absorption region from the multiplication 
region, favoring electron injection over hole injection and reducing the excess noise compared to bulk. 
The measured keff  of 0.13 represents a substantial reduction in keff  over bulk InGaAs and is the first 
reported excess noise measurement on a nanopillar-based APD. The NOAAD reported here demonstrate 
it is possible to engineer optical absorption and electric fields within nanopillars for favorable avalanche 
statistics. The NOAADs exhibit gain approaching 100 and a bandwidth of 2.1 GHz, for a gain-bandwidth 
product of over 200 GHz. We believe further optimization is possible by bringing the absorption region 
closer to the avalanche region, resulting in increased bandwidth with minimal effect on noise.

Figure 4.  Excess noise. (a) The gain is calculated for each electron trajectory in Fig. 3c and matches well 
with the measured gain (symbols). (b) Measured current noise spectral density of the dark current and dark 
current plus photocurrent. Note that the photocurrent noise could not be measured at the highest gains 
due to the increase in dark current noise. (c) Excess noise vs. Gain of the InGaAs NOAAD. The symbols 
show the measured excess noise factor and the solid line is calculated using 3D-DSMT. The dotted lines are 
calculated using Mcyntre’s theory for (from bottom to top) k =  0.05, 0.10, 0.15 and 0.20.

Figure 5.  High speed measurements. (a) Normalized temporal response of NOAAD measured with 50 GHz 
oscilloscope and coherent Ti-Sapphire laser (998 nm, 120 fs pulse, 76 MHz repetition rate). Only the fall 
time is affected by increasing reverse bias. (b) Extracted frequency response. (c) Measured − 3 dB bandwidth 
versus gain.
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Methods
InGaAs nanopillar growth.  InGaAs nanopillars were grown on a n-doped GaAs (111)B substrate 
by selectrive area epitaxy using metal-organic chemical vapor deposition in an Emcore vertical-flow 
reactor at a pressure of 60 torr and temperature of 730 °C. A passivation shell was subsequently grown 
in situ at 600 °C. The primary precursers were trimethylindium, trimethylgallium, tertiarybutylarsine, 
and tertiarybutylphosphorus; the p-dopant was dimethylzinc. The V/III ratio for the InGaAs core and 
the InGaP shell were 43 and 26, respectively. Nanopillar height and diameter showed a dependence on 
array pitch, with height decreasing and diameter increasing for increasing pitch. The InGaP passivation 
shell thickness was 10 nm.

Device fabrication.  Nanopillar arrays were planarized by spin coating with bisbenzocyclobutene 
(CYCLOTENE, Dow Chemical) dry etch polymer and hard cured at 250 °C for 60 minutes in a Carbolite 
high temperature oven. Vias for contact to the substrate were defined by photolithography and etched in 
an Oxford 80 Plus reactive ion etcher (RIE) with a 5:4 O2/CF4 gas mixture. Ohmic contact to the sub-
strate was achieved by depositing germanium/nickel/germanium/gold (50 nm/100 nm/150 nm/200 nm) 
by electron-beam evaporation (CHA Solution) and thermal annealing at 380 °C for 30 s. The nanopillar 
tips were subsequently exposed using the aformentioned RIE and top contacts were defined by photo-
lithography. The exposed nanopillar tips were electrically contacted with chrome/gold (10 nm/150 nm) 
deposited with the substrate mounted at an angle, resulting in a self-aligned nanohole array.

Excess noise.  The excess noise was measured by illuminating the APD with a 1064nm laser (Orbits 
Lightwave Ethernal SlowLight) with shot noise limited RIN and measuring the noise power spectral 
density with a network signal analyzer (Stanford Research Systems SR780) at 100 kHz, well above 1/f 
noise. DC bias was applied through a bias tee using a low noise power supply (Agilent B2961A) and 
ultra low noise filter (Agilent N1294A-021). The impedance for conversion of power spectral density to 
current spectral density was measured by first measuring the DC photocurent at a given optical power, 
then modulating the laser at 5 kHz and measuring the power spectral density at 5 kHz with the signal 
analyzer. Assuming the peak-to-peak current is equal to the DC current, the impedance can easily be 
calculated. The amplifier and dark current noise was measured and subtracted from the APD noise 
under illumination. Gain vs. incident power was measured to ensure gain saturation does not occur at 
the incident optical power used for the excess noise measurement.

Multiplication gain.  To determine the gain, the expected shot noise was calculated from current 
measurements at each bias and compared to the measured noise at the same bias. The primary respon-
sivity was calculated at the bias immediately before the measured noise began to exceed the calculated 
shot noise. The gain was calculated by normalizing the responsivity to the primary responsivity.

Reflectance spectromicroscopy.  Optical reflectance of the NOAAD array is measured using FTIR 
micro spectroscopy system configured using a Thermo Scientific Nicolet Continuum microscope and a 
Thermo Scientific Nicolet 8700 spectrometer. The spectrometer utilizes a CaF2 beamsplitter, while the 
microscope is equipped with an internal MCT-a detector to increase signal to noise ratio.

Temporal response.  The temporal response was generated by illuminating the APD with a Coherent 
Ti-Sapphire laser with a 120-fs pulse width and 76-MHz repetition rate tuned to a 998-nm center wave-
length. Transient pulse characteristics were measured with a microwave probe (Cascade ACP40-GSG-150) 
and a 50-GHz oscilloscope (Tektronix SD-32 sampling head). A microwave bias-T (Wiltron V250) was 
used to bias to the sample while passing the transient signal to the oscilloscope. The bandwidth was 
extracted from the temporal response by FFT analysis.
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