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Abstract 
Increasing size and abundance of lianas relative to trees are pervasive changes in Neotropical forests that may 
lead to reduced forest carbon stocks. Yet the liana growth form is chronically understudied in large-scale tropical 
forest censuses, resulting in few data on the scale, cause, and impact of increasing lianas. Satellite and 
airborne remote sensing provide potential tools to map and monitor lianas at much larger spatial and rapid 
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temporal scales than are possible with plot-based forest censuses. We combined high-resolution airborne 
imaging spectroscopy and a ground-based tree canopy census to investigate whether tree canopies supporting 
lianas could be discriminated from tree canopies with no liana coverage. Using support vector 
machine algorithms, we achieved accuracies of nearly 90% in discriminating the presence–absence of lianas, and 
low error (15.7% RMSE) when predicting liana percent canopy cover. When applied to the full image of the study 
site, our model had a 4.1% false-positive error rate as validated against an independent plot-level dataset of 
liana canopy cover. Using the derived liana cover classification map, we show that 6.1%–10.2% of the 1823 ha 
study site has high-to-severe (50–100%) liana canopy cover. Given that levels of liana infestation are increasing 
in Neotropical forests and can result in high tree mortality, the extent of high-to-severe liana canopy cover 
across the landscape may have broad implications for ecosystem function and forest carbon storage. The ability 
to accurately map landscape-scale liana infestation is crucial to quantifying their effects on forest function and 
uncovering the mechanisms underlying their increase. 

1. Introduction 
Tropical forests are a critical part of the global climate system and carbon cycle. Intact tropical forests alone 
store c. 1.19 ± 0.41 Pg carbon yr− 1 from the atmosphere (Pan et al., 2011), an amount equivalent to 12.1% of 
total global carbon emissions in 2013 (Le Quere et al., 2014). For perspective, this amount of carbon is greater 
than all yearly carbon emissions from the European Union (CDIAC, 2012). Recently, plot-based studies in 
the Neotropics have documented pervasive changes in old-growth forests that may alter their role in the global 
carbon cycle. These changes include increased biomass and productivity (Phillips et al., 2009; but see Brienen et 
al., 2015), increased tree turnover (Phillips, Baker, Arroyo, & Higuchi, 2004), and shifted floristic composition 
(e.g., Laurance et al., 2004). 

Tropical lianas (woody vines) are reported to be increasing relative to trees in Neotropical forests over recent 
decades (Schnitzer, S. A. and Bongers, F., 2011, Schnitzer, S. A., et al., 2012, Yorke, S. R., et al., 2013). Reported 
annual increases in liana stem density range from 0.23% to 7.8%, while in the study areas trees either 
underwent smaller annual increases or have declined in stem abundance (Chave, J., et al., 2008, Phillips, O. L., et 
al., 2002, Schnitzer, S. A., et al., 2012, Yorke, S. R., et al., 2013). These same studies found increases in liana basal 
area rangingfrom 0.3% to 4.6% annually over the same time period, with just a 0.34% per year increase in tree 
basal area. Liana seedling recruitment, reproduction, leaf litter production, and canopy cover have also 
increased relative to trees (Benítez-Malvido, J. and Martinez-Ramos, M., 2003, Ingwell, L. L., et al., 2010, Wright, 
S. J., et al., 2004). 

The reported relative increase of lianas has broad implications for tropical forests and the global carbon cycle. 
Lianas commonly comprise a large proportion of the woody species and stem numbers in tropical forests 
(Schnitzer et al., 2012); however, lianas constitute only a small proportion of total tropical forest 
biomass (e.g., DeWalt & Chave, 2004). Nevertheless, lianas have a disproportionately large negative effect on 
tree biomass accumulation (van der Heijden, Powers, & Schnitzer, 2015) by reducing tree diameter increment 
(e.g., Schnitzer, van der Heijden, Mascaro, & Carson, 2014), leaf productivity (e.g., Perez-Salicrup, Sork, & Putz, 
2001), sap flow velocity (Álvarez-Cansino, Schnitzer, Reid, & Powers, 2015), and stem height (Perez-Salicrup, 
2001). Lianas also decrease forest carbon accumulation and long-term storage through reduced 
tree fecundity (e.g., Nabe-Nielsen, Kollmann, & Pena-Claros, 2009), increased tree mortality (e.g., Phillips et al., 
2002), and suppressed tree regeneration (e.g., Schnitzer & Carson, 2010). Trees that support large lianas or 
severe liana infestations have a 40–100% increased mortality risk compared to those with low to no liana 
infestation (Ingwell, L. L., et al., 2010, Phillips, O. L., et al., 2002). The disproportionately negative effect that 
lianas can exert on tree growth, reproduction, and lifespan, combined with their low contribution to forest 
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biomass (Duran & Gianoli, 2013), suggest a future in which Neotropical forests will absorb and store 
less atmospheric carbon dioxide annually (van der Heijden, Schnitzer, Powers, & Phillips, 2013). 

Despite the negative consequences of increasing liana size and abundance, few studies have examined temporal 
changes in tropical liana abundance and size. While some studies rely on proxy data (i.e., flowering, productivity, 
recruitment) to establish that lianas are increasing relative to trees, only five studies have used stem or canopy-
based censuses (Chave, J., et al., 2008, Ingwell, L. L., et al., 2010, Phillips, O. L., et al., 2002, Schnitzer, S. A., et al., 
2012, Yorke, S. R., et al., 2013). These studies examine a total of 160 ha of Neotropical old-growth tropical 
forests among 150 plots ranging in size from 0.1 ha to 50 ha. The limited spatial extent of long-term liana 
censuses restricts our ability to assess the scale and impact of increasing tropical lianas. 

Satellite and airborne remote sensing may allow ecologists to map and monitor liana abundance at broader 
spatial scales with higher frequency than is feasible with plot-based censuses. Previous lab and field studies have 
documented clear differences between liana and tree spectral reflectance signatures, with supporting foliar 
chemical and structural data (Table S1). These studies document specific regions of the electromagnetic 
spectrum where lianas and trees are separable, and show that leaf-level differences scale up to the canopy level. 
Only one study has successfully used remote sensing to map liana abundance at the landscape-scale. This study 
successfully identified 1150 ha of forest with severe liana canopy cover using moderate-resolution (15–30 m) 
hyperspectral and multispectral imagery (Foster, Townsend, & Zganjar, 2008). However, the liana patches 
mapped in this study were within large (> 0.45 ha) forest gaps with severe (c. > 80%) liana cover, making it 
unlikely the same moderate-resolution imagery approach could successfully map liana abundance and 
distribution in contiguous closed-canopy forest where liana cover is far more variable and less concentrated. 
Other studies have attempted liana and tree discrimination at the leaf level (Castro-Esau, K., et al., 
2004, Hesketh, M. and Sánchez-Azofeifa, G. A., 2012) and canopy level (Kalacska, Bohlman, Sánchez-Azofeifa, 
Castro-Esau, & Caelli, 2007), but did not develop methods appropriate for mapping lianas at landscape-scales. 

Recent advances in high-resolution imaging spectroscopy and analysis now provide the potential to distinguish 
lianas from trees at the sub-canopy scale. High spatial and spectral resolution imaging spectrometers are able to 
discriminate subtle differences in leaf chemistry and structure (Asner, G. P. and Martin, R. E., 2010, Kampe, T. U., 
et al., 2010), and new applications of machine learning algorithms have proven accurate for discriminating 
individual tree species (Baldeck, C. A., et al., 2015, Féret, J.-B. and Asner, G. P., 2012). 

Our goal was to map the distribution and abundance of lianas throughout a well-studied Neotropical forest 
using high-resolution imaging spectroscopy, and examine associations between liana canopy cover and the local 
topography or forest structure. Using imagery collected over central Panama by the Carnegie 
Airborne Observatory, combined with a ground-based liana canopy census of nearly 800 trees, we asked 
whether liana canopy cover could be mapped over 1823 ha of contiguous closed-canopy Neotropical forest. We 
employed machine learning classification and regression algorithms, and evaluated their ability to detect liana 
presence–absence and predict the percent canopy cover of lianas. 

2. Methods 
2.1. Site 
The study site is a mainland peninsula of the Barro Colorado Nature Monument in the Republic of Panama (Fig. 
1). The Gigante Peninsula (9.1°N, 79.8°W) is covered by a seasonally-dry, secondary tropical moist forest 
> 200 years old, interspersed with 50–70 year old forest patches recovering from agricultural disturbance (D. 
Dent, unpublished data). On nearby Barro Colorado Island 28% of canopy tree species are dry-season deciduous 
but only result in a deciduous fractional crown area of ~ 10% (Richard Condit et al., 2000), with only 3 of the 165 
liana species known to be dry-season deciduous (Putz, F. E. and Windsor, D. M., 1987, Schnitzer, S. A., et al., 
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2012). An assessment of regional deciduousness using satellite imagery found that the Gigante Peninsula was 
about 8–9% deciduous by area (Bohlman, 2010). The geological substrate is a Miocene basalt (R. H. Stewart, 
Stewart, & Woodring, 1980), and the soils are considered relatively fertile for the lowland tropics (Wright et al., 
2011). On nearby Barro Colorado Island, monthly precipitation averages c. 290 mm in the wet season (May–
December) and c. 70 mm in the dry season (January–April) (STRI, 2013). 

 
Fig. 1. Gigante Peninsula study site in central Panama. A LiDAR-derived digital elevation model (DEM) is 
displayed over the extent of the study site. 

2.2. Imagery 
In the dry season of February of 2012, the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping 
System (AToMS) acquired high-resolution data of the site with an integrated (i) full-spectral range (visible-to-
shortwave infrared) imaging spectrometer, (ii) a visible-to-near infrared (VNIR) imaging spectrometer, and (iii) a 
full-waveform light detection and ranging (LiDAR) (Asner et al., 2012). The AToMS visible-to-shortwave infrared 
imaging spectrometer (VSWIR) measures spectral radiance in 481 contiguous channels spanning the 252–
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2648 nm wavelength range. At a 2000 m flight altitude, the VSWIR data collection provided 2.0 m ground 
sampling distance, or pixel size, throughout each study landscape. The VNIR imaging spectrometer collects 288 
contiguous spectral bands over a smaller range (365–1052 nm) than the VSWIR, but at twice the spatial 
resolution (1.0 m at 2000 m altitude). The AToMS LiDAR is a dual laser, scanning waveformsystem capable of 
operating at 500,000 laser shots per second. Because the airborne data were collected along adjacent flightlines 
with 50% overlap, the LiDAR point density was 2 shots m− 2, or 8 shots per VSWIR pixel. This level of over-
sampling ensured that the derived LiDAR measurements were highly precise in horizontal and vertical space 
(Asner et al., 2012). 

The LiDAR data were used to precisely orthorectify and geolocate the VSWIR data and to provide a means to 
mask canopy gaps and shadows, water and exposed soil in the spectral data. We used the LiDAR point cloud to 
interpolate a raster digital terrain model (DTM) for the ground surface. A digital surface model (DSM) was 
similarly created based on interpolations of all first-return points. Measurement of the vertical difference 
between the DTM and DSM yielded a top-of-canopy height (TCH) model. Treefall gaps were defined based on 
the difference in relative height from the surrounding canopy (Marvin & Asner, in review). We created a 
TCHmean layer using a mean smoothing filter with a one ha kernel. The TCHmean was subtracted from the original 
TCH layer, and divided by TCHmean to produce a relative TCH layer. Treefall gaps were classified as having a 
relative TCH of − 0.7 to − 1.0, or 70–100% below the mean forest height of the surrounding 1 ha. 

The VNIR and VSWIR spectrometer data were radiometrically corrected from raw digital number (DN) values to 
radiance (W sr− 1 m− 2 nm− 1) using a flat-field correction, radiometric calibration coefficients and spectral 
calibration data collected in the laboratory, with further post-processing described in detail by Asner et al. 
(2012). Reflectance imagery was corrected for cross-track brightness gradients using a bidirectional 
reflectance distribution function (BRDF) model described by (Colgan, Baldeck, Féret, & Asner, 2012). The 
reflectance imagery was then orthorectified to the LiDAR DSM. 

We used a 2900 by 2200 pixel VSWIR image of the study site covering 1823 ha of the mainland Gigante 
Peninsula. We calculated the normalized difference vegetation index (NDVI) as (NIR − VIS) / (NIR + VIS) where 
NIR and VIS are the reflectances at 800 and 680 nm, respectively. We filtered the data to retain only well-lit 
(Asner et al., 2007), live vegetation pixels with an NDVI ≥ 0.8 and mean near infrared (850–1050 nm) reflectance 
> 20%. We removed water absorption bands and bands near the instrument measurement boundaries, resulting 
in a 178-band VSWIR image used for the analyses described below. We used a 4-band subset VNIR image of the 
same area to georeference individual tree crowns in the field. All image processing, data extraction, and layer 
creation was performed in IDL/ENVI (Exelis, Boulder, CO USA) and/or SAGA GIS (SAGA GIS, 2014). 

2.3. Field data 
2.3.1. Individual tree crown georeferencing 
During July and August 2013, we collected field data outside the boundaries of ongoing 
forest manipulation experiments at the study site. We used a combined tablet computer (Apple Inc., Cupertino, 
CA USA) and Bluetooth-enabled GPS/GLONASS receiver (Garmin Ltd., Olathe, KS USA) system to navigate and 
collect field data within the study site. We uploaded the VNIR image of the study site to the application iGIS 
(Geometry Pty Ltd., Tasmania, Australia) on the tablet system, allowing us to georeference individual tree 
crowns directly on the imagery. Once an individual tree crown in the image was confirmed on the ground, we 
marked the tree in the iGIS application and recorded all data in a custom data entry pop-up form linked to each 
point. We only marked trees ≥ 10 cm diameter at breast height (dbh, as described by Condit (1998)) that had 
90% of the crown fully sun-exposed and were clearly identifiable on the imagery (n = 780). All point coordinates 
and associated data were exported from the tablet system as shapefiles. 
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2.3.2. Liana canopy cover survey 
We assessed the percent cover of lianas in each georeferenced tree canopy using a modified version of the 
crown occupation index (cf. Clark, D. B. and Clark, D. A., 1990, van der Heijden, G. M. F., et al., 2010), as follows. 
The field team consisted of four people working in pairs, which rotated membership each day. In our version of 
the index, the centroid of each tree’s canopy was first determined, and the crown then visually bisected with 
north-south and east-west lines, forming four quadrants. Independent of their partner, each person thoroughly 
(spending up to 20 min per crown) assessed each quadrant for the percent cover of lianas to the nearest 5%. 
The two partners then discussed the quadrant estimates and mutually agreed on a final estimate for each. To 
assess reliability among the field team, one tree was independently assessed by each of the four members at the 
beginning of each field day before splitting into pairs. We also measured the dbh and of each tree and noted any 
major crown gaps or irregularities. We supplemented this dataset with 11 tree crowns from field survey plots 
from a nearby experimental liana study (see below for details). 

2.3.3. Individual tree crown pixel extraction 
Using the VNIR image in ERDAS IMAGINE (Hexagon Intergraph, Madison, AL USA) or ENVI software, we manually 
outlined the sunlit portions of the crown for each georeferenced tree, carefully avoiding shaded areas and 
crown edges. We extracted pixels from the VSWIR image using the crown polygons that encompassed at least 
three image pixels (smaller crowns were excluded due to difficulty of confidently finding their locations on the 
imagery in the field). This yielded a total of 554 usable tree crowns in the analysis, representing a total of 
21,620 pixels. The distributions of individual tree crown liana canopy cover and associated number of VSWIR 
imagery pixels are presented in Fig. 2. 

 
Fig. 2. (A) Distribution of individual tree crowns at the central Panama study site by level of liana canopy cover 
as determined by our field survey of tree crowns. (B) Distribution of VSWIR imagery pixels derived from 
geolocated liana canopy cover survey of tree crowns. 

2.4. Support vector machine classification 
Support vector machine (SVM) classification is a supervised machine learning technique that is increasingly 
being used by the remote sensing community (Mountrakis, Im, & Ogole, 2011). We chose to use SVM because 
produces comparable or better results than other algorithms such as discriminant analysis, maximum likelihood, 
or artificial neural networks (Mountrakis et al., 2011). SVM is a non-parametric classifier that makes no 
assumptions about the underlying distribution of the data, and thus SVM is particularly useful in remote sensing 
applications where the distributions of imagery data are often unknown. SVM projects samples of different 
classes into multidimensional space and fits a hyperplane that best defines the boundaries separating the 
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classes. To transform the hyperspectral data into higher dimensional space, we used the radial basis function 
(RBF) kernel because it has a low number of input parameters and higher performance relative to other kernel 
functions (Féret & Asner, 2012). Other advantages of SVM are the ability to efficiently process large input spaces 
and its insensitivity to the Hughes phenomenon, or the decrease in classification accuracy after passing a 
threshold number of input features (Melgani & Bruzzone, 2004). Thus SVM allows full use of the high 
dimensionality of hyperspectral data with relatively few training samples (Gualtieri & Cromp, 1999). All data 
processing and analysis was performed in the open-source statistical software program R (R Development Core 
Team, 2014). SVM implementation was performed using the R package ‘e1071’ (Meyer, 2012). 

2.5. SVM optimization, validation, and visualization 
We performed a two-step SVM procedure: first using SVM-classification to produce a binary model of liana 
presence–absence, followed by SVM-regression to produce a continuous model of liana percent cover trained 
by only those pixels identified from the binary model as having liana presence. Both model types were tuned 
using 10-fold cross validation over a reasonable (to constrain computation time and avoid overfitting) set of 
parameter values to find the optimal set. The parameters to be optimized for the RBF kernel are a) gamma 
(γ) controlling the flexibility of the classifier — or the trade-off between model over-fitting and under-fitting 
(Ben-Hur & Weston, 2009), and b) penalty or cost (C), controlling the trade-off between model complexity and 
training errors (Cortes & Vapnik, 1995). The parameter optimization was performed using a grid search over the 
values γ = {e− 8, e− 7,…, e− 2} and C = {e2, e3,…, e8}. 

A full binary SVM model (no cross validation) was fit using the optimal set of parameter values as determined by 
the highest F-score and area under the ROC (receiver operator characteristic) curve from the 10-fold cross 
validation tuning. The F-score is calculated by F = 2pr / (p + r), where r is the sensitivity or true positive rate and 
p is the precision, and is intended to yield high but balanced values of the sensitivity and precision of the model. 
The ROC curve from the cross-validation binary model was used to find the optimal cutoff probability that 
maximized the true positive rate (0.89) and minimized the false positive rate (0.12) for class separation. We used 
this cutoff value (0.634) to create a binary mask of only liana-present pixels. Due to insufficient data to train 
independent binary and regression models, we introduced noise into the binary mask proportional to the error 
produced by the binary model as follows. We randomly selected pixels from each class of the binary mask and 
changed them to the opposite class according to the false positive (0.12) and false negative (0.11) rates. We 
created five binary randomized error masks using this procedure, in order to assess the variance caused by the 
additional error. 

These masks were used as inputs to tune the SVM-regression model for each parameter set in the grid search 
using 10-fold cross validation. We used the RMSE and R2 averaged over the five masks to chose the optimal 
parameter set for creation of a final (no cross validation) full SVM regression model. This final full SVM-
regression model was used to predict the canopy cover of lianas over the entire study landscape (see Landscape 
Liana Cover Mapping). Out-of-range values (< 1% and > 100%) predicted by the SVM-regression model were set 
to 1 and 100, respectively. 

The kernel transformation employed by SVM means that direct interpretation of the final model in relation to 
the input variables (reflectance for each spectral band) is difficult (Üstün, Melssen, & Buydens, 2007), often 
leading to characterizations of SVM or other machine learning algorithms as “black-box” techniques. We used 
the methods proposed by Üstün et al. (2007) to determine which wavelengths are most important to the 
regression results. We obtain feature weights by calculating the inner-product between the final SVM model 
coefficients (i.e., the support vector weights) and the standardized support vector spectra from the SVM model. 
We use the standardized support vector spectra rather than the original support vector spectra (as in Üstün et 
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al., 2007) because the magnitude of feature weights are suppressed in regions of the spectrum with relatively 
low reflectance. 

2.6. Landscape liana cover mapping 
We applied the full binary SVM model to the entire VSWIR imagery to identify those pixels predicted to contain 
lianas. Liana-containing pixels were then used as inputs into the full SVM-regression model to create a map of 
predicted liana percent cover on a continuous scale. We removed all isolated groups of less than three liana-
containing pixels since this was the minimum tree crown size that was assessed in the field. 

For better visualization and comparison to other studies, we binned each pixel into one of four percent liana 
cover categories: [0–25), [25,50), [50–75), [75–100), and assessed the total liana coverage of the study site from 
this classified image. Binning should increase user confidence because we cannot quantitatively measure and 
propagate all sources of uncertainty (e.g., field census, spectral, SVM model) into the final map. We applied a 
5 m inland buffer around water features to remove any influence of below-canopy water reflectance. We 
summed the pixels in each class over the whole image to calculate the landscape-level percent cover of each 
class. 

To validate the full landscape liana cover map, we used data from an ongoing liana removal experiment at the 
study site (Martinez-Izquierdo, L., et al., in press, van der Heijden, G. M. F., et al., 2015). Eight 80 by 80 m plots 
had all lianas removed in 2011 and are maintained as liana-free. We calculated the number of pixels incorrectly 
classified by the SVM as containing lianas in the removal plots to get a landscape-level false positive rate. Eight 
other plots are unmanipulated controls, and a similar liana canopy cover assessment as described above was 
conducted annually. 

2.7. Topographic and forest structure analysis 
We assessed whether liana cover was associated with variables related to the underlying topography or forest 
structure. To match the pixel dimensions of the VSWIR image and resulting classification, we resampled the 
LiDAR-derived DEM to a 2 m pixel size. Elevation data was extracted directly from the DEM. Using the 
‘topographic modeling’ feature in ENVI, we used the DEM to create slope and aspect models at this same spatial 
resolution. The LiDAR top-of-canopy-height (TCH) and canopy gap layers (see Imagery) were both resampled to a 
2 m pixel size. A canopy gap proximity layer was created using a Euclidean distance transform with the gap layer 
as the source. Each layer (elevation, slope, aspect, TCH, and gap proximity) was used separately as a predictor in 
a linear regression model with liana cover as the response. 

3. Results 
3.1. SVM performance 
The optimal binary SVM model (presence–absence) from the 10-fold cross validation tuning yielded an F-score 
of 0.91 and specificity of 0.81, with an area under the ROC curve of 0.94 (Fig. S1, Table S2). The optimal SVM-
regression model from the 10-fold cross validation tuning yielded an average (over the five masks) RMSE of 
15.65 (0.05 sd) and R2 of 0.59 (0.003 sd). The low variation among the results of the five randomized error masks 
indicates the SVM-regression signal is not affected by the binary SVM model prediction error. A scatterplot of 
observed and SVM-regression predicted liana percent cover (Fig. S2) shows a reasonable linear fit, with 
overestimation of liana cover below 25% and underestimation of liana cover occurring from 25–100%. 

While the spectra used to train SVM models show substantial overlap in all regions of the spectrum (Fig. 3A, B), 
the SVM feature weights (i.e., from (Üstün et al., 2007)) uncover the importance of each commonly defined 
spectral regions to the final SVM classification (Fig. 3C). Multiple wavelengths in each region had large feature 
weights, signifying their relevance to classifying liana canopy cover. The visible region (400–690 nm) clearly had 
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the highest average feature weight, followed by the near infrared (NIR, 700–1340 nm) and the shortwave 
infrared-1 (SWIR-1, 1420–1790 nm) regions (Fig. 3C). The SWIR-2 (2010–2460 nm) region had the lowest average 
feature weights (70% lower than the visible) but is still important to the SVM classification. 

 
Fig. 3. Spectra used to train the optimal severe liana cover SVM model are presented as (A) unstandardized and 
(B) standardized (μ = 0, σ = 1) reflectance values. Lines are mean reflectance for training spectra (shading is ± 1 
SD). The standardization of reflectance values in (B) removes the signal of reflectance magnitude or “brightness” 
such that relative differences in regions of the spectrum are more apparent. Importance of each region to the 
SVM classification is shown in (C) with feature weights in gray with blue dashed lines representing the mean 
feature weight within each of the four spectral regions (visible, NIR, SWIR-1, SWIR-2). 

3.2. Landscape liana cover mapping 
Applying the binary SVM to the full VSWIR image, we found liana present pixels covered 58.1% of the 1823 ha 
study site. The SVM-regression model predicted severe (75–100%) and high (50–75%) liana cover over 1.2% and 
9.0% of the site, respectively (Fig 4, Fig. S5). Moderate (25–50%) and low (1–25%) liana cover was predicted over 
27.0% and 20.9% of the study site, respectively (Figs. S4 and S5). We focus on the severe and high liana cover 
classifications because they are more relevant to forest ecology (see Discussion), and we are not confident in the 
low cover class given the RMSE of 15.65%. The combined liana absent and low liana cover classifications totaled 
62.8% of the site. These calculations assume that the unclassified pixels (shaded or deciduous, see Methods) of 
the image (24.2%) have the same distribution of liana cover. 
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Fig. 4. Landscape liana cover from the SVM-regression model of the full VSWIR image overlaid on top of 
the DEM for the study site. Continuous liana cover values are binned into high [50–75%) and severe [75–100%) 
classes for better visualization. See Fig. S4 for a map of the other classes, and Fig. S5 for a map of the continuous 
range of liana cover. 

Examining the classification of the liana experimental removal plots, we found that the SVM-regression model 
incorrectly classified an average of 4.1 ± 2.0% pixels as containing high-to-severe liana cover per removal plot 
(i.e., false positives from an area known to contain 0% liana cover). The false positive rates for the moderate and 
low liana cover classes were 21.5% and 19.5%, respectively. We did not validate the prediction of liana cover in 
the control plots of the liana removal experiment because we predict liana cover on a per-area basis, while the 
field estimates are on a per-crown basis. Incorporating the high-to-severe liana cover false positive error rate 
(4.1%), we estimate a landscape-scale presence of high-to-severe liana cover in the range of 6.1%-10.2%. 

3.3. Topographic and forest structure analysis 
We found marginal positive associations between liana cover and elevation or aspect (Fig. 5). In both cases less 
than 1% of the variation in liana cover was explained by elevation or aspect (R2

elevation = 0.004, R2
aspect = 0.002). 

Additionally, we found marginal negative associations between liana cover and the remaining variables (Fig. 5). 
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Slope and TCH both explained slightly higher, but still marginal, variation in liana cover (R2
slope = 0.01, 

R2
TCH = 0.03), while distance to gap explained less than 1% (R2

GapDist = 0.003). 

 
Fig. 5. Associations between mapped continuous liana cover and topographic or forest structural variables 
(derived from 2 m resolution maps). Dashed line is the fitted linear regression line, with corresponding equation 
and R2 value in upper right corner of each panel. 

4. Discussion 
4.1. Landscape liana distribution 
We developed a method to map the distribution of liana canopy coverage at the landscape scale in a contiguous 
tropical forest. Of the over 1800 ha mapped at the study site, 6.1%–10.2% (111–186 ha) were identified as 
containing tree canopies with high-to-severe (> 50%) levels of liana cover. Ingwell et al. (2010) reported that 
16.0% of the 2127 tree crowns they surveyed on nearby Barro Colorado Island had a liana canopy cover > 75%, 
and 8.0% of tree crowns had 50–75% liana canopy cover. We find our landscape-scale estimates are consistent 
with those of three other plot-based estimates from Neotropical sites (van der Heijden et al., 2010) (Fig. 6). The 
only other landscape-scale study of liana cover identified severe liana canopy cover across 1.5% and 3% of a 
Bolivian tropical forest (Foster et al., 2008). Thus, we estimate our high-to-severe liana coverage to be generally 
lower than the range of reported values in other Neotropical forests, at least at the plot-level. 
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Fig. 6. Distribution of results from the landscape-scale map of this study in percent of pixels (black bars) 
compared to results from Table 1 in (van der Heijden et al., 2010) in percent tree crowns (grey bars). 

Our 58.1% liana presence from the binary classification matches up well with prior studies that found lianas 
were present in 53% (Ingwell et al., 2010), 58% (van der Heijden & Phillips, 2009), 42% (Putz, 1983), and 47% 
(Putz, 1984) of the trees in Neotropical forests. The presence–absence model applied to the full study site (Fig. 
S3) produced light diagonal striping resulting from a combination of the mosaicking procedure and/or large 
cross-track brightness gradient not corrected by the BRDF model. This striping suggests that low view and/or 
illumination angle reduces the ability of SVM models to discriminate lianas and trees. If image post-processing is 
unable to remove these effects, collection of supplemental tree crown training data from affected areas might 
improve the SVM model predictions. 

We did not find strong associations between severe liana cover and topography (slope/elevation/aspect) or 
forest structure (tree height/canopy gap proximity). Previous studies found that liana stem density is positively 
associated with treefall gaps (e.g., Schnitzer & Carson, 2001), higher soil fertility (but see Dalling, J. W., et al., 
2012, Gentry, A., 1991, Laurance, W., et al., 2001), and flatter terrain (Dalling et al., 2012). The disparity 
between our study and previous ones in this area may result from use of liana canopy cover in our analysis, 
whereas previous studies use liana stem locations. Liana canopies can grow tens of meters horizontally away 
from their rooting point (Penalosa, J., 1984, Putz, F. E., 1984), thereby obscuring potential associations with 
either topography or forest structure in analyses of liana canopy cover. Another possible explanation for this 
discrepancy is the spatial grain used for the analyses in each study: the current study used a 2 m spatial grain to 
assess liana associations with topography and forest structure, whereas previous studies typically use larger 
spatial grains (≥ 20 m). 

The widespread severe liana coverage in tree canopies detected in this study at the plot and landscape scale has 
major implications for forest carbon dynamics, especially in the context of the reported Neotropical liana size 
and abundance increase relative to trees (Schnitzer, S. A. and Bongers, F., 2011, van der Heijden, G. M., et al., 
2013). Liana canopy cover is reported to increase significantly as rooted liana basal area increases in the 
surrounding 2 m of a tree (Ingwell et al., 2010). Liana loadings are associated with reductions in the carbon gain 
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of trees at the stand level by an average of 0.25 Mg C ha− 1 y− 1 (van der Heijden & Phillips, 2009), and reduce net 
annual carbon gain by 76% compared to liana-free forest stands (van der Heijden et al., 2015). While the former 
study did not estimate the liana canopy coverage of the trees measured, they did find that as the basal area of 
lianas entering tree canopies increased, the growth rates of those trees strongly decreased (see also Schnitzer & 
Carson, 2010). In fact, Ingwell et al. (2010) found that the mortality rate of trees with ≥ 75% liana canopy cover 
was double that of trees supporting no lianas. If high-to-severe liana canopy cover is between 6.1% and 10.2% of 
this tropical forest landscape, and increasing annually, the impact on forest carbon storage could be substantial. 
The current and future impact of lianas on forest level carbon dynamics should be represented in global dynamic 
vegetation models by combining the results from experimental studies of the effect of lianas on forest carbon 
with remote sensing detection of their distribution and abundance. 

4.2. A new approach to liana mapping 
Although we focus on high and severe liana canopy cover, we are confident in detecting liana cover as low as 
25% (Fig. S4). This level of resolution exceeds the previous liana detection threshold from a study by Kalacska et 
al. (2007), which found low testing error rates (~ 14%) in discriminating tree crowns with liana coverage > 40% 
from tree crowns with no lianas. The high accuracy of the presence–absence model was encouraging but further 
study is needed to verify the lower levels of liana cover (< 25%). Continuing investigation into the lower 
threshold of liana detection using SVM models will be valuable because even low levels of infestation can affect 
tree growth (Schnitzer & Carson, 2010). 

The success of the SVM approach in distinguishing liana cover from no liana cover can be attributed in part to its 
use of the entire spectrum in the model. Every region of the spectrum was found to be important to the final 
model, with the visible region ranking the highest in average feature weight (Fig. 3C). The higher reflectance in 
the visible region has been previously reported (Table S1), and related to the globally lower area-based 
leaf chlorophyll content of lianas compared to trees (Asner & Martin, 2012). Most non-machine learning 
classification methods cannot incorporate the full range of data from imaging spectrometers(often in excess of 
100 bands). This loss of relevant information may lead to a reduction in classification accuracy and may have 
contributed to the lack of successful liana mapping methods to date. Moreover, the very high signal-to-noise 
ratio of the VSWIR spectrometer increases the likelihood of accurately distinguishing levels of liana cover. 

This study was performed on imagery collected from a moist forest during the annual dry season. Previous 
studies in nearby forests in Panama have shown the differences between the reflectance spectra of lianas and 
trees are most pronounced in seasonally dry forests (Castro-Esau, K., et al., 2004, Sánchez-Azofeifa, G. A., et al., 
2009) and during the dry season (Hesketh & Sánchez-Azofeifa, 2012), but tend to converge in aseasonal forests 
and during the wet season (Sánchez-Azofeifa et al., 2009). We are not referring to the effect of deciduous 
species, as deciduous pixels were removed from the model training and predictions using the NDVI and near 
infrared filtering. Whether the methods presented here would achieve similar detection accuracies during the 
wet season at this site or in aseasonal forests needs to be explored. However, because liana leaf chemistry 
differs even in wet forests (Asner & Martin, 2012), our ability to discriminate subtle differences in leaf chemistry 
using imaging spectroscopy and SVM algorithms may allow differentiation of lianas from trees even in wet 
forests or during the wet season in seasonal forests. 

Several additional factors may affect the accuracy of predicted liana cover in this study. The time lag (15–
18 months) between the airborne image acquisition and field data collection allows for unknown increases 
and/or decreases in liana cover. While this introduces some uncertainty into the final predictions, this relatively 
short time period should not substantially alter our results. Lianas appear to have faster population 
dynamics than do trees, but liana turnover occurs over a period of years, not months (Ingwell, L. L., et al., 
2010, Phillips, O. L., et al., 2005). Furthermore, annual forest canopy productivity (leaf, flower, fruit, and twig 
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production) in the control plots of the Gigante liana removal study did not vary from 2011 until 2014 (van der 
Heijden et al., 2015) which was the time period of the current study. The extent to which high species 
richness (either liana or tree or both) affects our results is unknown, but could introduce additional uncertainty. 
Many trees, especially those with severe liana cover, have multiple liana species in their crowns, potentially 
leading to less distinct spectral reflectancesignatures. However, the generalized chemical, physical, and spectral 
differences between species of lianas and trees presented in Table S1 may mean species richness does not have 
a large impact on the ability to discriminate lianas and trees using imaging spectroscopy. Expansion of this 
methodology to additional sites and the collection of species-specific data on tree crown occupation will help to 
reveal potential sources of uncertainty as this approach matures toward operational status. 

By combining ground-based canopy censuses with high-resolution imaging spectroscopy and machine learning 
algorithms, we have demonstrated the potential of mapping liana abundance at the landscape scale in 
Neotropical forests — a capacity that we previously lacked. The refinement and deployment of these tools will 
be critical in verifying, quantifying, and monitoring the increase of lianas relative to trees across the tropics. 
Moreover, landscape-scale maps will integral in helping to identify the mechanisms underlying increases in liana 
abundance across the tropics. By uncovering the scale, velocity, and drivers of the liana increase can we truly 
begin to understand what impact it will have on the role of tropical forests in the global climate system 
and carbon cycle. 
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