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ABSTRACT 

Pathologically-Validated Tumor Prediction Maps in MRI 

 

Alex Barrington 

Marquette University, 2019 

 

Glioblastoma (GBM) is an aggressive cancer with an average 5-year 

survival rate of about 5%. Following treatment with surgery, radiation, and 

chemotherapy, diagnosing tumor recurrence requires serial magnetic resonance 

imaging (MRI) scans. Infiltrative tumor cells beyond gadolinium enhancement on 

T1-weighted MRI are difficult to detect. This study therefore aims to improve 

tumor detection beyond traditional tumor margins. To accomplish this, a neural 

network model was trained to classify tissue samples as ‘tumor’ or ‘not tumor’. 

This model was then used to classify thousands of tiles from histology samples 

acquired at autopsy with known MRI locations on the patient’s final clinical MRI 

scan. This combined radiological-pathological (rad-path) dataset was then 

treated as a ground truth to train a second model for predicting tumor presence 

from MRI alone. Predictive maps were created for seven patients left out of the 

training steps, and tissue samples were tested to determine the model’s 

accuracy. The final model produced a receiver operator characteristic (ROC) 

area under the curve (AUC) of 0.70. This study demonstrates a new method for 

detecting infiltrative tumor beyond conventional radiologist defined margins 

based on neural networks applied to rad-path datasets in glioblastoma.   
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I.INTRODUCTION 

 

According to the American Brain Tumor Association (ABTA), almost 

80,000 people will be diagnosed with a brain tumor this year, and 16,000 people 

will die from a brain tumor this year (Brain tumor FAQs | ABTA.). Glioblastoma 

(GBM), a World Health Organization (WHO) grade IV astrocytoma, is an 

aggressive glial tumor with a poor 5-year survival rate of 5% (Brain tumor – 

statistics, 2018; Tamimi & Juweid, 2017). These tumors are diagnosed with a 

combination of imaging techniques and tissue samples acquired during surgery 

or biopsy (Brain tumor – diagnosis, 2018). Research on the exact initial cause of 

GBMs is still limited, however, these tumors can develop from lower-grade 

gliomas, such as grade II or grade III astrocytomas (Development of glioblastoma 

multiforme.; Forst, Nahed, Loeffler, & Batchelor, 2014).  

Glioblastoma Multiforme 

GBMs are classified as one of three genetic subtypes, based variations of 

isocitrate dehydrogenase (IDH): IDH-wildtype, IDH-mutant, and not otherwise 

specified (NOS). Additionally, IDH-wildtype has three subtypes: giant cell 

glioblastoma, gliosarcoma, and, most recently added, epithelioid glioblastoma. 

IDH-wildtype accounts for around 90% of GBMs diagnosed (Louis et al., 2016). 

These are generally de novo cases, while the IDH-mutant varieties commonly 

develop from lower grade gliomas (LGGs) (Ohgaki & Kleihues, 2013). These two 

varieties also show trends in the ages when they develop. IDH-wildtype is 

generally diagnosed in patients with a median age around 62, while the mutant 
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variety has a median age of 44 (Louis et al., 2016). Additional differences 

between the two include median survival, where IDH-wildtype is about 15 months 

and IDH-mutant is 31 months, the location of the tumor, with the IDH-wildtype 

developing most anywhere in the cerebrum and the IDH-mutant developing in the 

frontal lobe, and apparent necrosis, which is widespread in IDH-wildtype and 

seen much less in IDH-mutant (Ellingson, B. M. et al., 2013; Louis et al., 2016). 

Invasive GBM tumor cells spread in a diffuse manner lacking a defined 

tumor boundary beyond the core (The life of a brain tumor: How does 

glioblastoma grow? – penn medicine.), often following white matter tracts 

(Mickevicius et al., 2015). Abnormal tissue outside of contrast enhancing margins 

can be seen as hyperintense regions on a T2-weighted fluid attenuated inversion 

recovery (FLAIR) MRI scan. These hyperintense regions are thought to be a 

combination of non-contrast-enhancing tumor (nCET), and vasogenic edema 

associated with an inflammatory response. Another treatment related imaging 

artifact is known as pseudo-progression, which occurs during the first 12 weeks 

after the standard of care treatment administration of radiation and 

temozolomide, and manifests as contrast enhancement not associated with 

viable tumor (Melguizo-Gavilanes, Bruner, Guha-Thakurta, Hess, & Puduvalli, 

2015; Villanueva-Meyer, Mabray, & Cha, 2017). Although there have been 

studies showing the efficacy of multi-parametric MRI techniques, they generally 

use biopsy samples, which is not necessarily representative of the entire 

underlying tissue (Kazerooni et al., 2018; Kimura & da Cruz, L. Celso Hygino, 

2016; Yang, X. et al., 2019). Additionally, areas adjacent to the bright area on an 
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MRI may contain viable tumor or pseudoresponse (Nguyen et al., 2016; 

Villanueva-Meyer et al., 2017). Differentiating these processes from tumor 

growth, response to treatment, and treatment effects is difficult and puts 

increasing pressure on optimizing surgical resection to be correct and sufficient 

(Li, Suki, Hess, & Sawaya, 2016; Villanueva-Meyer et al., 2017). Therefore, an 

understanding of how multimodal imaging signatures relate to the underlying 

tissue pathology is critical to better treatment direction. 

Research has shown that poorer prognosis, IDH-mutant status, and 

decreased survival are all correlated with the presence of nCETs (Cohen-Gadol, 

DiLuna, Bannykh, Piepmeier, & Spencer, 2004; Jain et al., 2014; Kotrotsou et al., 

2018; Lasocki, Gaillard, Tacey, Drummond, & Stuckey, 2016; Lasocki, Gaillard, 

Tacey, Drummond, & Stuckey, 2018; Li et al., 2016). These nCETs are regions 

of tumor that do not show up on T1-weighted with gadolinium contrast (T1C) 

scans but can usually be seen in FLAIR images. These have a less distinct 

boundary, similar to what is seen in the histology of the tumor. Because of the 

importance of the nCETs in prognosis, imaging, and treatment, capturing this 

information is critical to accurate surgical resection and estimating the spread of 

the tumor (Li et al., 2016). Therefore, an understanding of how multimodal 

imaging signatures relate to the underlying tissue pathology is critical to better 

treatment direction. 

The Mayo Clinic states that "a biopsy is the only way to definitively 

diagnose a brain tumor and give a prognosis to guide treatment decisions" 

(Glioma | diagnosis and treatment, 2019). However, when a tumor cannot be 
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biopsied, a diagnosis is made on the imaging alone, which could miss key areas 

such as nCETs (How we diagnose brain tumors.). Despite the pathological 

aspect of this tumor being key to an exact diagnosis, many tumor prediction and 

segmentation algorithms that exist only use MRI to predict tumor (University of 

Pennsylvania, 2018).  

Machine Learning 

The 2018 MICCAI Multimodal Brain Tumor Segmentation Challenge used 

board-certified neuroradiologist-annotated MRI scans to produce a dataset of T1-

weighted (T1), T1C, T2-weighted (T2), and fluid-attenuated inversion recovery 

(FLAIR) images with edema, tumor core, necrosis, and whole tumor annotations 

(University of Pennsylvania, 2018). While this type of challenge is good in 

practice to assist in annotation and speed up a radiologist's heavy workload, the 

underlying pathology may not be adequately identified. The 2014 MICCAI Brain 

Tumor Digital Pathology Challenge proposed two challenges, one for classifying 

between LGG and GBM on whole slide images (WSI), and the other for 

segmenting necrotic regions (MICCAI 2014 grand challenges, 2016). Neither 

challenge involved segmenting tumor from no tumor in brain tissue, so none of 

the resulting models from that challenge will segment brain tumor without 

additional training. In the paper by Xu, AlexNet transfer learning was proved to 

be useful with histological images, particularly with brain tumor pathology (Xu et 

al., 2017). Many other examples of AlexNet's performance has been 

demonstrated in open datasets and clinical datasets (Lu, S., Lu, & Zhang, 2019; 

Yang, Y. et al., 2018). These examples of successful transfer learning using 
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AlexNet as well as MATLAB’s ease of use to implement a pre-trained AlexNet 

model were the main reason that AlexNet was used as the architecture for this 

histological prediction model. However, while Xu demonstrated good results with 

LGG vs GBM classification, necrosis segmentation, and colon cancer 

segmentation, tumor segmentation in brain tissue was not demonstrated due to 

the limitation of 2014 MICCAI dataset (MICCAI 2014 grand challenges, 2016; Xu 

et al., 2017). Because of this, there is no specific model to be able to compare 

our results to, rather just a speculative comparison between existing AlexNet 

transfer learning models. 

Machine learning is widely used in both cancer research and the clinical 

setting for its ability to quickly and reliably identify tumor masses as well as 

potential outcomes for a variety of cancer types (Bakas et al., 2018; Kourou, 

Exarchos, Exarchos, Karamouzis, & Fotiadis, 2015; Lu, C. et al., 2018; 

Manogaran et al., 2018; Rathore et al., 2019; University of Pennsylvania, 2018; 

Varuna Shree & Kumar, 2018; Zijlstra, Novitskaya, Vizio, Reis- Sobreiro, & 

Freeman, 2019). There are a seemingly myriad number of articles describing 

machine learning development, uses, and applications, but most do not use a 

histological bases for their studies. For example, Kumar uses radiological scans 

only and uses a texture analysis to segment tumor (Vijay Kumar & GV Raju, 

2010). Dong also uses radiological scans, borrowing the 2015 BRATS dataset 

(Dong, Yang, Liu, Mo, & Guo, 2017). However, as stated previously, samples of 

tissue are the only way to exactly diagnose a brain tumor (Brain tumor - 

diagnosis, 2018; Glioma | diagnosis and treatment, 2019). In order to have more 
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accurate models being trained on MRI data, the underlying histology ought to be 

included. There is therefore a gap in the validity of the underlying truth used to 

train current tumor prediction models. This underlying histology can be registered 

and brought into MRI-space to align with the MRI scans using previously 

established methods (LaViolette et al., 2014; McGarry et al., 2016). Once a 

histological dataset is created, improved MRI predictions based on underlying 

histology can occur, which is the goal of this project.  

This project creates such a dataset and then makes use of a machine 

learning classification scheme where a small dataset is used to create a much 

larger dataset, which is then used as ground truth for a final classification. 

Described in the methods, this project takes a set of 1402 tiles and labels and 

produces a model. Then that model is used to create ground truth for a new 

model to be trained using MRI. While there are many existing articles using 

weakly supervised learning (Bukowy et al., 2019; Ge, Yang, & Yu, 2018; 

Mlynarski, Delingette, Criminisi, & Ayache, 2018) similar to the methods used in 

this project, few demonstrate the ability to use a small initial dataset to create 

ground truth to classify a much larger dataset.  

Scope 

The long-term goal of this project is to generate models trained with 

datasets from patient imaging and aligned histology to better predict the location 

of tumor invasion beyond conventionally defined margins. We expect that these 

models will then provide oncologists with more accurate tumor detection for 

targeting with additional radiation, or for a better targeted biopsy procedure.  



7 
 

 

II.METHODS 

 
This study is comprised of two distinct experiments. Experiment 1 deals 

solely with histology from autopsy samples, testing the hypothesis that machine 

learning models trained with pathologist annotated samples are able to 

differentiate regions of viable tumor. The second experiment expands these 

models onto a large dataset of histology aligned to MRI scans, to test the 

hypothesis that a second algorithm trained with the combined rad-path dataset is 

able to predict tumor presence with MRI alone. 

Study Population 

This IRB approved study, (MCW-PRO17446) included 23 total subjects 

(16 male and 7 female). Experiment 1 used the tissue samples and histology 

from 15 patients, while Experiment 2 used the imaging from 16 patients. Nine of 

the patients overlapped between experiments (Table 1 and 2). Patients in this 

study ranged from 41 to 88 years old (median=62yo). Of the 23 patients, 21 had 

a final diagnosis of GBM. The other two non-GBM patients (included in 

Experiment 2 only to demonstrate model generalizability) had a final diagnosis of 

a WHO grade 3 oligodendroglioma and WHO grade 3 astrocytoma. 
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Table 1. Per Subject Breakdown of Histological Dataset for Experiment 1.  

Subject Images Test Set Tumor No Tumor 

1 39  19 20 

2 19  1 18 

3 105  91 14 

4 433  294 139 

5 66  32 34 

6 26  16 10 

7 79  73 6 

8 27  10 17 

9 18  3 15 

10 24  12 12 

11 66  24 42 

12 39  32 7 

13 87 X 57 30 

14 328 X 221 107 

15 45 X 19 26 

 

Table 2. Per Subject Breakdown of the MRI Dataset 
 

Subject Images Test Set Tumor No Tumor 

2* 1369 X 0 1369 

3* 173 X 173 0 

5* 406 X 201 205 

6* 578  364 214 

11* 575 X 3 572 

12* 1486  853 633 

14* 1257  777 480 

15* 3753  2716 1037 

16 954 X 326 628 

17 156 X 0 156 

18 4144  782 3362 

19 1969  432 1537 

20 9842 X 9741 101 

21 6429  2960 3469 

22 4571  1033 3538 

23 16405  4295 12110 
* Used in experiment 1. 
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Histological Processing (Experiment 1 & 2) 

Patients who have a GBM diagnosis are first consented to undergo 

donation of tissue to the Brain Bank in the LaViolette Lab at the Medical College 

of Wisconsin. The following process is the same as (Nguyen et al., 2016). At 

autopsy, the brains were removed and placed in a 3D printed brain cage during 

formalin fixation to maintain structural integrity. The brain tissue fixes in formalin 

solution for about two weeks. Once fixed, the brain is then sliced in the same 

orientation as the axial MRI using a custom 3D printed slicing jig. Tissue samples 

are then taken from those slices. These samples are put onto slides and stained 

using hematoxylin and eosin (H&E) to highlight cell nuclei blue/purple and 

cytoplasm and extracellular matrix pink. Once these slides are created, they are 

then digitized using a slide scanner at 40X magnification. This image is then 

down-sampled to 10X magnification. The resulting RGB image is tiled into 

2000x2000 pixel images. This process of using smaller, tiled images is similar to 

a process Barker uses in the digital processing of their 2016 paper (Barker, 

Hoogi, Depeursinge, & Rubin, 2016). 

These images produced a dataset that needed to be organized before 

proceeding. Nuclei, red blood cells, cytoplasm, and whitespace were extracted 

from these images. To do this, original images were scaled to range from 0 to 1 

instead of 0 to 255. The image was then transformed into hue, saturation, and 

intensity (HSV) space. Any pixels with saturation less than 0.1 and intensity 

greater than 0.7 were considered whitespace. Any pixels with saturation greater 

than 0.6 and hue greater than .85 or less than 0.05 was considered to be red 
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blood cells. The reason a pixel that was either greater than 0.85 or less than 0.05 

was used is due to how hue is represented in HSV space. The values from 0 to 1 

represent red to yellow to blue to red. Red occupies the regions where hue is 

less than .85 and greater than 0.05, so these values were used. Then the 

Euclidean distant to red (HSV values of [1 1 1]) from the HSV image was found. 

This resulting image was used in part to extract the nuclei. An image of the 

Euclidean distance from RGB pink (RGB values of [1 0 1]). The equation to 

extract nuclei took the extracted pink and subtracted the extracted red. This was 

then multiplied by the inverse of the original scaled RGB image. The red blood 

cells were masked out of this image. This image was then converted to grayscale 

to create an image that highlighted only nuclei. The remaining extracellular matrix 

was extracted as any pixel less than 40% of the maximum value possible in the 

pink image. The thresholds for creating these images were set so that there is 

minimal to no overlap between what is highlighted in each of the images. All four 

of these images, whitespace, red blood cells, nuclei, and extracellular matrix, 

were resized to 1% of the original size, which essentially created density maps of 

each of these images. This was done in preparation for histological registration to 

MRI scans. 

A selection of 1402 tiles that were free of artifacts were then chosen as 

the dataset. This is significantly smaller than the total number of tiles in the 

dataset, which ranges in the millions. Using this small set, a weak classification 

scheme was applied to classify the rest of the dataset.  
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Dataset Curation and Histology Annotation (Experiment 1) 

 

Figure 1. Example of a slice of brain tissue and its underlying tiles from the 
digitized histology. On the far right is an example of how a pathologist might 
annotate each tile. 

 

A MATLAB graphical user interface (GUI) was created in order for a 

pathologist to classify the selected tiles. This GUI had multiple checkboxes with 

descriptive pathological features, such as pseudopalisading necrosis, 

hypercellularity, and calcification, as well as whether or not the tile contained 

tumor. A board-certified pathologist classified each of the 1402 tiles as containing 

tumor or not containing any tumor (EJC). The pathological features were not 

used for this study but will most likely be used in future research.  
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Figure 2. Screenshot of the GUI created for pathologist annotations. 

 

After the 1402 images were classified by the pathologist, three patients 

were randomly selected to be left out of the training dataset. 163 images without 

tumor and 298 images with tumor were left out to be tested on from these three 

left-out patients. One subject had a high number of images (294 total images 

from one subject) which caused the number of images in the tumor-containing 

training dataset to be much higher than the no-tumor-containing set. After class 

balancing the training dataset, 334 no tumor class images and 334 tumor class 

images were then used to train a pretrained AlexNet convolutional neural 

network (CNN) to identify if an image contained tumor (Krizhevsky, Sutskever, & 

Hinton, 2012). This CNN was pretrained using the ImageNet dataset (ImageNet, 

2016), which is a set of more than 14 million images that are categorized in 27 
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high-level natural image categories and have up to several thousand 

subcategories. The architecture of this network is shown in Figure 3. 25% of the 

remaining images were used for validation. Data augmentation for this dataset 

included rotations of 90, 180, and 270 degrees, as well as flipping vertically and 

horizontally.  

 

 

Figure 3. AlexNet architecture. 

 

Table 3. Breakdown of Histological Dataset.  

 Train Test Total 
Images 

Used in 
Training 

Tumor 607 298 905 334 

No Tumor 334 163 497 334 

Total Images 941 461 1402 668 
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Figure 4. Design diagram for experiment 1 and the training and testing of 
the histological tumor classifier.  

 

Training Histological Model 

The final CNN output layer gave a percent confidence ranging from 0 to 1 

with 0 indicating no tumor presence and 1 indicating high confidence in tumor 

presence in the input tile. The input, as constrained by the pretrained AlexNet 

network, was a 227x227 RGB image. Since the images were 2000x2000, they 

were down-sampled to the AlexNet input size. The network, which was trained 

across 4 K80 GPUs using MATLAB 2018a, trained with a learning rate of .001 

over the course of 500 epochs. The training completed in about 6 hours. After 

training finished, it was applied across all digitized slide samples. The input was 
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a 2000x2000 tile that was extracted from the image and then down-sampled. 

Then a stride of 200 pixels was used to classify areas across the image, which 

effectively created a predicted heatmap that was .5% of the original 10X image. 

This is shown in Figure 5. 

 

Figure 5. Example of how the prediction map is created. Each black 
bounded box is predicted, then the next image 200 pixels over is predicted and 
so on. 

 

In order to have a test-set on an entire slide, a board-certified pathologist 

drew ROIs of tumor on slides. Binary masks of tumor were created as ground 

truth. These masks were binarily dilated with a square structure element with a 

width of 1000 pixels. This was done because if the images fed into the network 

may contain tumor in half of the image, it will classify the image as tumor, even if 

the underlying pixel in the ground truth is not in the ROI drawn. In this way, a 

dilated image is most representative of what the model will predict.  

MRI Processing (Experiment 2) 

MRIs were acquired using a GE MR system or Siemens system. The MRI 

closest to a patient's date of death was used for analysis. These varied in 

magnetic strength due to the scans being on different machines. 9 of the scans 
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were at 3T, 5 of these scans were at 1.5T, and 2 were on a Siemens system at 

1.5T; the two sessions from a Siemens system were not used during training. T1, 

T1C, FLAIR, and diffusion weighted images (DWI) (diffusion weights or b-values: 

b = 0 and b = 1000 s/mm2) were all acquired during these scans. The time 

between imaging and death ranged from 5 days to 184 days (median=42 days). 

The scans from these sessions required preprocessing. First, all scans 

were converted from DICOM images to NIfTI files. Apparent diffusion coefficient 

(ADC) maps were then created from the DWI images. This is done by taking the 

logarithm of the DWI image with b-value > 0 divided by the DWI image with b-

value = 0. Then dividing this by 1 over the b-value > 0, shown in Equation 1.  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.  𝐴𝐷𝐶 = log
𝐷𝑊𝐼1000

𝐷𝑊𝐼0
  

All images were then registered to each subject's FLAIR images, which 

were 512x512x22 volumes of .43x.43x5mm^3. Brain masks were extracted from 

the registered images. To extract the brain masks, ROBEX, a robust skull 

stripping algorithm for T1-weighted images, was used (Iglesias, Liu, Thompson, 

& Tu, 2011). This was chosen over the conventional brain extraction tool (BET) 

or skull stripping because of its better performance, specifically on populations 

with abnormal anatomy such as a tumor or enlarged ventricles (Smith, 2002). 

After a brain mask was created, the standard deviation within the brain mask was 

calculated to normalize the dataset. This was done in the same process as the 

2018 Ellingson paper (Ellingson, Benjamin M. et al., 2018). After normalization, 

T1-subtraction maps were created, again in the same process as the 2018 
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Ellingson paper (Ellingson et al., 2018). Used in this project were the T1, T1 plus 

contrast (T1C), FLAIR, and ADC scans. 

The images created from the histology classifier were then co-registered 

to the processed MRI images using custom MATLAB software. These steps are 

the same processing steps as in the 2014 LaViolette paper (LaViolette et al., 

2014). Because the tissue was cut in approximately the same plane as the MRI 

scans, these can be compared and co-registered through this process. This 

process warps the tissue into MRI-space and aligns it with the last scan of the 

patient’s brain. Regions of interest (ROIs) are drawn on the tissue and matched 

MRI so that artifacts can be avoided. This produces a set of ROIs of both the 

tissue and MRI and their coordinates. These were aggregated into 10x10 voxel 

ROIs in MRI-space. 
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Training MRI Model (Experiment 2) 

 

Figure 6. Illustration of the experimental design for Experiment 2. The 
model trained in Experiment 1 is first applied to whole slide images. The 
prediction maps are then brought into MRI space for comparison to the co-
registered MRI patches. These patches and the tumor prediction values were 
then used to train a second classifier which was then mapped into MRI space.  

 

Using the tumor/no tumor classification, generated from the histology 

model predicting iteratively across the slides, as ground truth, an additional CNN 

was trained to find tumor in MRI. The sum of all histological tumor predictions in 

an ROI was used as the label. Because the size of the tissue ROI was 10x10 

pixels, the underlying value for the tumor prediction was a 100-value max, the 

sum of those pixels. Tumor was considered to be anything that was above a sum 

of 10 in total. 10x10 voxel ROIs of T1, T1C, FLAIR, and ADC were input to the 

network. The network architecture is shown in Figure 8. This network was trained 

on 9 different subjects and tested on 7 additional subjects for a total of 16 
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subjects in the dataset. A total number of 54067 ROIs were given from this 

dataset, with 32473 ROIs used for training and 21594 ROIs used for testing. 7 

subjects were removed from the training set for testing as well as 20% of the 

training dataset. 

 

 

Figure 7. MRI model architecture. 

 

Table 4. Breakdown of the MRI Dataset 
 Train Test Total 

Subjects 9 7 16 

Tumor ROIs (sum of pixels > 10) 11369 13287 24656 

No Tumor ROIs (sum of pixels < 10) 21104 8307 29411 

Total ROIs 32473 21594 54067 

 

The training used a learning rate of 0.01 and trained over 100 epochs. The 

trained network was then applied voxel-wise with T1, T1C, FLAIR, and ADC as 

the inputs to produce the final output, which is the same size as the input. This 

effectively gives a heatmap of active tumor regions with a score of 0 to 1, 0 being 

confidently not tumor and 1 being confidently tumor.   
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III.RESULTS 

 

Histology 

The histology tumor classifier ran for 500 epochs and ended with a final 

training accuracy of 89.6% and a loss of .201. Within the test-set, the area under 

the curve (AUC) for the receiver operating characteristic (ROC) curve was .745, 

shown in Figure 88, and an accuracy of 70.1%. The test-set contained only naïve 

subject images. Additionally, entire slides were tested from the same naïve test-

set of subjects. Using pixel-wise comparison of annotations done by the 

pathologist and the tumor predicted in the WSI, three slides were analyzed. Only 

pixels within the tissue were used for comparison. 25749 pixels were extracted 

from the images. This resulted in an overall accuracy of 90.15% and an AUC 

of .92, shown in Figure 9. 
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Figure 8. ROC for the test set of the histological classifier. An AUC of .745 
was achieved.  

 

Figure 9. ROC for the histological classifier within the pixelwise 
comparison of multiple test-set images that a pathologist had annotated. Here, 
AUC of .920 was achieved.  

 

Figure 10 shows an example of the input, output, and both images 

combined. This is an example of a novel slide from a patient that was within the 

training dataset. This is a good example of the classifier avoiding regions of 

necrosis, seen in the middle of the tissue, but highlighting areas of active tumor. 

The classifier also did not consider areas of artifact as tumor. However, it did 

wrongly classify some regions of an artifact in the image. The artifact, at the 

bottom of the image, is the edge of the coverslip. This type of image artifact was 

not something presented to the classifier during training because all artifacts 

were discarded.  
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Figure 10. Digitized tissue sample (left), histological tumor prediction 
heatmap (middle), and the heatmap overlaid on the tissue (right). This is an 
example of a slide that was processed using the histological classifier.  

 

Two examples of the test-set are shown below in Figure 11 and Figure 12. 

The first example shows how well the model did on a naïve subject. The second 

example shows a naïve subject where the model performed poorly.  

Shown in Figure 11, the area of tumor, annotated by the pathologist, seem 

to be picked up well by the classifier. While the entire right piece of tissue was 

tumor, the classification on the left piece of tissue followed the same pattern as 

the annotation by the pathologist. Figure 12 shows some areas where the 

prediction follows the annotations, but many areas where it missed.  
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Figure 11. Original tissue a) from a test subject shown with pathologist’s 

annotation of areas of tumor b). The prediction overlaid on the tissue c) and the 
prediction itself d) are on a scale of dark blue to yellow: dark blue meaning high 
confidence that the area contains no tumor and yellow meaning high confidence 
that tumor is in this area. Shown in e), both the annotation by the pathologist 
(blue) and the prediction (red) are combined to show how well the two images 
align. The image in f) is the pathologist’s annotations binarily dilated by a square 
of 1000x1000pixels. This image is the same image in blue seen in e).  
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Figure 12. Another example of tissue from a test subject, displayed in the 

same fashion as Figure 11. This was an example where the model failed in 
multiple areas. Figure 13 goes into detail about where the model failed in this 
example.  

 

Figure 13 goes into detail where the model failed for the example tissue in 

Figure 12. There are areas of necrosis where the model tends to be about 50% 

accurate. Additionally, while the model was correct in this image around areas of 
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sulci and dura, this is usually variable upon qualitative inspection. These areas 

are usually masked out if possible. Seen in Figure 13 b), an area of tumor was 

also misclassified, which the model predicted as mostly not containing tumor. 

The model also completely avoided the bubble artifact on the lower middle of the 

image. Because the model avoided this area, it did miss areas of tumor in this 

region.   

  



26 
 

 

 

Figure 13. Examples from the overall tissue a) are representative of where 
the model tends to fail. The area of b) was an area that the model missed an 
area of tumor. In c), the model was mostly correct, though areas in the bottom 
right of this image and below this image were tumor and the model did not 
predict tumor. Both d) and e) are areas of necrosis that the model predicted 
contained tumor. The model incorrectly predicted tumor in d) where there was 
none and correctly in e).  

 

The part of the MRI training set produced by this image would not include 

the artifact region because of how the ROIs are selected during tissue 

registration to MRI, therefore, this misclassification should not persist in the MRI 

training. The ROI selection process is a manual process by which the researcher 
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marks boxes that are clear of artifacts and parts of tissue that are not useful or 

not relevant (e.g. an area of dura).  

MRI 

The MRI classifier was not quite as accurate as the histological classifier. 

The training accuracy converged to 83.1% over 100 epochs with a loss of .430. 

Checking against a test-set, the AUC was nearly .70, shown in 

Figure 14, and an accuracy of 73.3%.  

 

Table 5. Breakdown of Training Information on the Histological and MRI 

Models  
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 Epochs Final 
training 
accuracy (%) 

Final 
loss 

Test 
accuracy 
(%) 

Test 
AUC 

Histology 500 89.6 .201 70.1 .745 

MRI 100 83.1 .430 73.3 .696 

 

 

Figure 14. ROC for the MRI classifier. AUC of .696 was achieved.  

 

This ROC curve shows subtle predictive utility for the MRI classifier within 

the test-set. However, as with the histological classifier, when applying the 

classifier to an entire image, it is clear that the test-set ROC is not entirely 

representative. 
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Figure 15 shows two examples of the final output. This is an example of tissue 

that has a clearly defined tumor, highlighted in the T1C scan, but also identified 

by the MRI model. 

  

Figure 15. Example of two different MRI slices from a subject within the test-set 
a). MRI tumor prediction heatmap b) shows areas of red that are confidently 
tumor and areas of dark blue are confidently not tumor. This is the same for the 
images on the right, which are the underlying histological tumor prediction c) and 
the histological tumor prediction binarily eroded by a square of 10x10pixels d). 
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Similar to the analysis of the histology classifier, there was a 

morphological operation performed before comparing the images. In 

Figure 15 d), the ground truth of the histological prediction was grayscale-eroded 

by a 10x10 square. Since the histological prediction is a much larger region that 

what is actually tumor, this was done to show the accuracy of the MRI predictor. 

And while the images shown in 
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Figure 15 c) of the original histological tumor prediction are fairly widespread, 

eroding them shows their similarity to the tumor prediction in MRI.  

A representative slice from each of the test patients, along with their 

conventional imaging is shown in Figure 16. Figure 17 shows a validation sample 

taken from a test patient indicating where tumor was found compared to the 

predictive map. The annotation by the pathologist on the tissue sample is also 

shown. This is an example where tumor was found outside of conventionally 

defined radiologic boundaries, with no contrast enhancement and very little 

FLAIR hyperintensity, having areas of tumor confirmed by the pathologist and by 

both models.   

.  
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Figure 16. A representative MRI slice from each of the test set subjects 
from the MRI portion of this study. 
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Figure 17. A representative sample of tissue, histology, and MRI (tissue 
outlined in a yellow box). This sample shows non-enhancing tumor that was 
predicted in both the histological and MRI models and was annotated by our 
pathologist.   
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IV. DISCUSSION 

 

This study found that deep learning models were able to identify areas of 

tumor in both histological samples and MRI images. The analysis of the whole 

slide images showed how well the classifier was able to predict various areas of 

tumor with an accuracy of 90.15%, which was well above the accuracy of 70.1% 

on the test set images alone. The MRI classifier had poor test set results, with an 

accuracy of 73.3%, but well-represented the underlying tissue upon qualitative 

inspection.  

The histological model performed very well on areas of hypercellularity 

and infiltrative tumor. Though the model had good accuracy when it comes to the 

whole slide images, there were a number of specific areas where the classifier 

tended to fail. The histological model tended to avoid areas of gray matter, 

despite some areas of tumor. This is consistent with the fact that GBMs are 

generally found in areas of white matter. Because of this, the training set did not 

contain many areas of gray matter infiltration. While areas of white matter were 

usually classified accurately, the model did not generalize well enough to identify 

tumor appearing in gray matter within the test-set. The model also classified 

areas of tissue artifacts (tears, blurs, etc.) as not tumor, despite some areas of 

tumor being present. This is difficult to avoid without giving the model training 

images with artifacts present. However, this runs the risk of the model identifying 

all areas containing artifacts as containing tumor. One last area where the model 

occasionally failed was areas that contained both edema and high vascularity, 



35 
 

 

classified as not tumor, which in some cases was wrong. These areas are 

particularly important to be able to be correctly identified, particularly because 

they have imaging biomarkers that can be shown in MRI (Batchelor et al., 2013; 

Lin, 2013; McGahan et al., 2017). These cases can be seen in Figure 13. 

While a segmentation model may have been able to show better accuracy 

on a test set, a segmentation model is not a practical or effective solution to this 

problem. A pathologist would have to create annotations on hundreds or 

thousands of images. This is much more difficult than simply saying an image 

does or does not contain tumor. Additionally, a pathologist will be hesitant to 

create a definitive tumor boundary on a small image. GBMs tend to have diffuse 

boundaries that are more like a gradient than a boundary. Because of this, a 

dataset produced from many small segmented tiles will be much more inaccurate 

than the dataset produced here from many categorized tiles. A segmentation 

model could be produced from the outputs of this model in the future, but 

currently, this method of creating maps of active tumor in histology using a well-

categorized dataset ought to be used as the new standard of GBM tumor 

prediction. 

The MRI model achieved a test set AUC of .70. While this is not 

exceptional, this should not be discounted given the context and the limitations of 

the noisy and clinical dataset. Additionally, the tumor prediction maps generated 

by this model creates images that accurately represent the histology. This is 

much more representative of the model's performance than just a test set 

accuracy. This low AUC leaves room for improvement while establishing 
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methods to be used in the future, especially considering this AUC may not be 

representative of the model’s performance. However, generalizability is a 

concern. MRIs put into this network ought to be processed in the same fashion 

and have similar ranges of values.   

The final AUC of the MRI model could be influenced and hindered by the 

accuracy of the original histological classifier. For example, looking at only the 

data that the histological model classified incorrectly, if the MRI classifier was 

equally wrong and right for those examples where the histology classifier was 

wrong, at best, the AUC may actually be much higher. However, if the MRI model 

is classifying the incorrectly classified portions in the same incorrect fashion 

(tumor where the original ground truth says there is none and vice versa), then 

the .70 AUC may be artificially inflated and may actually be much lower. 

In comparison to existing models, some studies demonstrating transfer 

learning methods using AlexNet achieve AUCs around .90. However, in many 

cases, these are difficult to compare to this project. Yang's 2018 paper yields an 

AUC of .966 for their test set using AlexNet (Yang et al., 2018). While this shows 

AlexNet's efficacy, their dataset only differentiated LGG from HGG tumor. 

Chang's 2018 paper uses AlexNet to differentiate tumor, necrosis, and transition 

to necrosis (Chang, Han, Zhong, Snijders, & Mao, 2018). These images are 

visually much different from each other, so their accuracy of their models being 

above 90% is expected. Another paper shows that AlexNet can achieve an AUC 

of .94 in discriminating lung disease using a patch-based input (Hoo-Chang et 

al., 2016). Many of these papers are also based on the MICCAI dataset, which 
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as stated previously, does not have GBM histology tumor segmentation nor an 

MRI dataset verified beyond radiology.  

Unconventional Methodology 

There were a few instances throughout this project were unconventional 

methods were used. A morphological operation of binarily dilating the 

pathologist’s annotations was done in order to account for the fact that an image 

given to the network may contain tumor on the edge of the image. This is 

because the center pixel of that image might in fact be distant from the tumor 

boundary itself. A dilation of 1000x1000 pixels was done to approximate what the 

tumor would capture if the tumor were in about half of the image. This made the 

pathologist’s annotations more representative of what the classifier can capture 

since it is only predicting one pixel at a time. A morphological erosion of the 

predicted histology in MRI was also performed to qualitatively compare the MRI 

prediction maps. A 10x10 grayscale erosion helped account for the same issue 

stated previously in the histology model.  

Future Work 

Future work will include refining both models to increase accuracy. This 

will be accomplished by increasing the size of the training dataset given to the 

models as well as increasing the resolution of the data itself. For histology, a 

resolution of 10X gives a good sense of the general texture of the tissue and 

hypercellularity of an area, but a resolution of 40X may be able to show 

morphological information of nuclei that a model could use to better predict 

tumor. Recent publications have made use of a multi-pathway model for better 
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classification (Havaei et al., 2017; Pereira, Pinto, Alves, & Silva, 2016). This 

could be employed such that multiple magnifications are represented while 

highlighting the center of the image. This would ideally eliminate the need for any 

post-processing morphological operations. If a magnification greater than 10X is 

included, this may also alleviate some of the issues with the necrosis and edema 

misclassification. Having a narrower window of classification may allow for better 

detection of areas of tumor.  

The threshold for classification in MRI could also be adjusted. A mean 

value greater than 10 is considered to contain tumor, but there are regions where 

there is plenty of classified tumor in histology where the MRI may not predict 

tumor. During a post hoc analysis of this threshold, it was found that using 10 as 

a threshold for training and 50 for a threshold for testing dramatically improved 

the test set AUC. This could mean that while the model does not perform 

exceedingly well on the test set, it is good at finding areas of high tumor 

concentration. However, this results in poor sensitivity as evidenced by the test 

set AUC. 

Multi-class, rather than binary classification, could be employed to avoid 

the issues described in Figure 13. This could be done in a hierarchical way. Each 

area would be first classified as having artifact or not, and then any areas without 

artifacts would be further classified based on tissue type, and then finally 

classified based on whether it contains tumor. The final classification would be a 

combination of the previous classifications, e.g. white matter containing tumor 

free from artifact, gray matter containing no tumor free from artifact, or artifact.  
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The dilation and erosion portion of this analysis would also be revisited. 

The MRI AUC could be significantly improved by training on an eroded MRI 

dataset. Since this is more accurate to what the underlying tumor is, the 

signature of tumor within MRI may be able to be found more easily by the model. 

Since the post-hoc analysis of eroding the predicted images aligns better with the 

predicted tumor in MRI, it is hypothesized that training on these eroded images 

may yield better results for the MRI model.  

In terms of real-world applications, if the MRI classifier would have had 

better generalizable results, this model could be potentially used as a radiological 

plug-in at a workstation. This would highlight areas of suspected tumor for the 

radiologist to then confirm or reject. This could be used in combination with 

existing radiologically based models and would allow a radiologist more 

confidence in the underlying pathology. 

Limitations 

While the accuracy of this model and ROC curve shown in the results do 

look promising, as with any study, there are limitations. First, histology slides 

contain gigabytes of data that were distilled down to a set of 227x227 RGB tiles. 

This is representative of only about 1% of the total data within the slide. While 

some of this data may get filtered out anyway, radiomics and pathomics research 

has shown that much of a dataset's texture can be used as a good predictor of 

labels and outcomes (Barajas et al., 2012; Ellingson, Benjamin M., 2015; 

Kickingereder et al., 2012; Kniep et al., 2018; Lu et al., 2018; Rathore et al., 

2018; Tixier, Um, Young, & Veeraraghavan, 2019; Zacharaki et al., 2009; Zhou 
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et al., 2018). Ideally, in the future, more of this information will be preserved and 

used, but current limitations on processing speed and power hinder development 

using such large images in a dataset. 

Additionally, the 10x10 ROIs have the opposite problem of the previous 

limitation. There is not much data that is fed into the network. Ideally, a better 

method would be to use a 10x10 or larger input to a pretrained network. Since 

there are not 10x10 pretrained networks that exist, a transfer learning 

methodology could not be used directly on this dataset. The only way this could 

have been possible would have been to upscale the input data to a size that 

something like AlexNet could handle, which would be 227x227 (Krizhevsky, 

Sutskever, & Hinton, 2012). This would have created a great deal of artificial data 

that would have been given to the network. An attempt was made to locally train 

a MNIST dataset CNN model, which would then be used as a transfer learning 

model on the MRI dataset. The idea was that since the images are 28x28 in the 

MNIST dataset, there would have been minimal upscaling and therefore minimal 

artificial data being input to the network. This showed poorer results within the 

test set than the final model, most likely due to the upscaling that was performed, 

so this method was discarded. Additionally, the fact that this was trained locally 

and an established MNIST classifier was not used could have affected the 

performance of the model. Another problem with using existing models like 

AlexNet was that they can only accept 3 channels as input (Krizhevsky et al., 

2012), but additional MRI volumes could have been added. During tests with 

these existing models, the T1 scan was left out because of its generally low 
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contrast. Other volumes could include T1 subtraction maps, additional T2 scans, 

or diffusion imaging. This would provide more information to the network, which 

would be particularly helpful with such a small initial ROI size.  

An additional limitation regarding image artifacts should also be noted. In 

Figure 10, at the bottom of the image, the edge of the coverslip can not only be 

seen but overlaps with the tissue. Because of this overlap, this artifact cannot be 

easily removed from processing. While the artifacts in the training images were 

removed from the dataset, artifacts that persist in the overall dataset have not yet 

been removed. In this case, the model will understandably perform unpredictably 

and will have to be masked out. This can be difficult in some cases where, for 

example, cover slip edges go across tissue or when marker is drawn on the slide 

itself. While the tissue will ideally be processed without artifacts, this is not a 

practical assumption. 

Once this image is co-registered in MRI-space, ROIs are placed to avoid 

areas such as this. Ideally, no images with significant artifacts persisted in the 

MRI dataset when that model trained. However, nothing is perfect, and the fact 

that it could not be removed in this histological processing should be noted. 

Artifacts within the MRI dataset also were not removed prior to training. These 

consisted of some minor ringing artifacts, but this nonetheless could be affecting 

the MRI model. 

The histological model also did not add rotational or translational image 

augmentation to the dataset, which could have potentially increased the AUC of 

the model. This was done to prevent adding information to an image given to the 
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model. This type of image augmentation adds dummy values in for areas created 

when rotating or translating. Having a set value being added to areas of the 

image is not only adding artificial data into the training set, it could skew the 

model depending on what value is chosen to fill these gaps. These dummy 

values could potentially skew the training, so those two augmentation methods 

were not used.  

Pitfalls and Challenges 

Originally, the histology tumor classifier was trained on naïve networks 

with the input size changed to be 2000x2000x3. This included simple 

convolutional networks, a variation of InceptionV4, and a variation of AlexNet. 

Despite multiple attempts at training networks in this fashion, they did not 

produce an AUC as good as the pretrained AlexNet. They generally ranged 

from .6 to .7 for an AUC. In addition to the subpar AUC, upon testing across 

entire images, the resulting tumor prediction maps were much more varied and 

distributed than the pretrained AlexNet model, showing a lack of generalizability.  

This issue persisted with the MRI network as well, but to a greater degree. 

The naïve networks used to train on the MRI data tended to overclassify to one 

output or one value (e.g. either one category, “tumor”, or one specific prediction 

value, .6). This issue was greater in the MRI model due to the limited amount of 

data going into the network, particularly because the original MRI dataset used 

5x5 voxel ROIs. In all, there were only 100 data points per sample to be 

classified (5x5 images from the four scans). This was upped to 400 data points 

per example by using 10x10 voxel ROIs. The issue with using naïve networks in 
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MRI was overcome by training many different models until one converged 

properly. 

The histology dataset also changed from the original training set to the 

final training set. At first, subjects were dispersed between both the training and 

test set, only leaving out a percentage of the images and not images from 

specific subjects. In order to accurately test generalizability of the model, images 

from some subjects were left out of the training set. The images in the training 

set were then class balanced and the remainder of the images were used for 

validation during training. 

At first, a simple classification tree model was attempted with the MRI 

dataset, but while this model achieved a high test-set AUC, it did not generalize 

well to MRI slices. This was done either pixel-wise or with a vectorized version of 

the 10x10 images. The predictions only tended to highlight edges of the brain 

and areas of blood flow. Bagged trees and random forest models were also 

tested with similar results. In general, the images produced from these basic 

machine learning techniques were highly varied and did not generalize or 

highlight areas of tumor, even if they showed good performance on the test-set. 

Local development was also a challenge with the histological network. The 

size of the images and the number of images needed to train the network were 

too large for a single computer to handle. This yielded a necessity for the use of 

the MCW Research Computing Center (RCC). The RCC was able to handle 

training the AlexNet model and the hundreds of images associated with it in a 

matter of hours instead of days. This allowed for many iterations of the model to 
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be trained, rather than training one or a few models and hoping that one would 

be sufficient. Due to the randomness of shuffling the training dataset, initializing 

gradient changes, and changing the hyperparameters of the model, training 

many models will generally yield one with much better results than training a few. 

Roughly 100 different models were trained on the RCC before one was chosen 

that performed at this level. This simply could not have been achieved using local 

development only.  

This was not an issue with the MRI model. Local development was used 

for this training because the tens thousands of images used were only 10x10 and 

the architectures for the models were not very deep. While many different 

architectures were tested, only a few performed well. Once an architecture was 

selected, this was again trained in many different iterations, producing about 50 

different models. The best model was selected based on training and testing 

accuracy. None of the models achieved higher than 83% accuracy during 

training. This may have been due to the quality of the training dataset. Upon 

inspection of the last MRIs of subjects used in the training set, some contained 

ringing artifacts that may be preventing the model from reaching a higher training 

accuracy. 

Summary 

Test set accuracy of each model was 70.1% and 73.3%, respectively. 

However, comparing the histological model to a pathologist's annotations showed 

a significant improvement in accuracy to 90.15%. Likewise, qualitative 
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comparisons of the MRI predictions showed that the prediction maps 

characterize the histological prediction of the same tissue.   
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V. CONCLUSION 

 

Test set accuracy of the histological and MRI model was 70.1% and 

73.3%, respectively. However, comparing the histological model to a 

pathologist's annotations showed a significant improvement in accuracy to 

90.15%. Likewise, qualitative comparisons of the MRI predictions showed that 

the prediction maps characterize the histological prediction of the same tissue.  

This project found that it is possible to predict tumor presence in MRI 

using histological images from pathologically validated tissue. It also 

demonstated the efficacy of using a small, well-annotated dataset to classify a 

much larger dataset, as well as a novel approach to quickly creating deep 

annotations in histology. Using transfer learning, a pretrained AlexNet was able 

to classify regions of tumor in H&E images across several subjects with good 

accuracy. Additionally, despite the model not performing exceedingly well in the 

test-set alone, looking at the images in their entirety, the annotations from the 

pathologist and predictions align well with high accuracy. 

This project accomplished the goal of showing that a histologically based 

and pathologically verified MRI tumor predictor can be used to accurately identify 

tumor. A weakly-classified dataset was used to generate this final model. The 

efficacy of this model with an AUC of .75 leaves both room for improvement and 

an impression of confidence in the methods presented. The limitations of this 

study allow for potential future solutions to reduce the errors in the final model 

and improve the overall accuracy. 
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The results of both classifiers tell an important story. While they have their 

limitations in their differing methods of data input, it is still noteworthy that the 

MRI classifier did not generalize as well as the histological classifier. This 

reiterates the point made at multiple institutions that a biopsy is the best way to 

precisely diagnose a brain tumor. Because of that, it is imperative that 

pathologically-validated datasets are used to train tumor predictions models.  
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