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Abstract. There are several approaches related to handling and stor-
ing massive amounts of multidimensional data. State-of-the-art database
systems use shared-nothing architecture for scalable spatial data manage-
ment and indexing where data co-location and query load balancing are
the primary objectives. Hence, data placement is an important component
of efficiency. Szalai-Gindl et al. (SG17) proposed a data distribution al-
gorithm for this task in an earlier work [26]. This paper investigates the
improvement possibilities of that algorithm.

1. Introduction

The focus of our work is to investigate how to handle and store massive
amounts of static, multidimensional point clouds from scientific research where
the distribution of data is organized hierarchically or otherwise heavily un-
balanced or skewed. Examples of such categories include point clouds (such
as LiDAR data, cosmological N-body simulations, intersections of road net-
works etc.) or objects from different regions in OpenStreetMap (OSM) which
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are not evenly distributed [29]. State-of-the-art database systems follow the
shared-nothing paradigm [1] comprising of a set of independent nodes where
each node has its own CPU, RAM and disk and the nodes can communicate
via high bandwidth network. We investigate how data can be distributed ef-
ficiently on such architectures. For simplicity, we use the word ’server’ and
’node’ interchangeably.

When working with massive amounts of data, it is important to optimize
spatial query processing by using distributed spatial database systems. To this
end, indexing and access methods supporting multidimensional data are nec-
essary. Over the last 40 years, numerous algorithms were proposed to address
these problems for single machine set ups. Detailed research of the literature
shows, however, that only a few work dealt with distributed environments, as
it is emphasized by Samet [24] in his classic book on spatial data structures.
More recently, researchers have been paying particular attention to the study
on how to redesign existing storage models and algorithms for distributed for
Big Data platforms [32].

There are two important types of spatial queries: box- and nearest neigh-
bor queries. According to [16], it would be useful to define two requirements
in connection with distributed search trees: ’minLoad’ and ’uniSpread’. The
requirement ’minLoad’ means that a localized query affects as few index tree
nodes as possible during the evaluation process. The advantage of this is that
queries with small search regions activate as few servers as possible. The re-
quirement ’uniSpread’ means that the tree nodes that are affected by a query
are uniformly distributed among servers. As a consequence, queries with large
result sets activate as many servers as possible. In case of using an R-tree,
the trade-offs among planning decisions were examined and discussed in an
early paper [3], although on different assumptions and requirements than here.
In [3] an important concept called ’distribution policy’ was introduced which
determined what aspects of query optimization should dominate data distribu-
tion among servers. ’Clustering’ policy organizes data across servers in such a
way that data locality is preserved. This contributes to the fulfillment of ’min-
Load’ which supports queries with small region of interest and nearest neighbor
search. Contrary, ’declustering’ policy attempts to optimize for ’uniSpread’ to
accelerate queries with large result set. ’Balance’ policy distributes data points
among the servers so that data is evenly distributed and no particular query
type has a prominent role.

In our earlier work [26], we investigated data placement in distributed en-
vironments with the goal of optimizing spatial queries. A ’load balancing’
algorithm (SG17) was introduced which supported the ’balance’ data distri-
bution policy only. In [10], we proved that if data points span a sufficiently
high dimensional space, then the aforementioned algorithm also optimizes the
response times of box queries, where query boundaries are parallel to the co-
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ordinate system. Note, that we use the phrases ’box query’ and ’range query’
interchangeably. In this work we derive formulas for upper limits of absolute
deviation of server weights which can be utilized to accelerate the load balanc-
ing algorithm.

This paper is organized as follows. Sec. 2 provides details about related
work. The SG17 algorithm is described in Sec. 3. Upper limit formulas for
the absolute deviation of server weights are derived in Sec. 4. Finally, Sec. 5
contains the conclusions and future work.

2. Related work

Following the classification scheme of [6] of point access methods, one can
distinguish Data Partitioning (DP)-based and Space Partitioning (SP)-based
index structures. In [6], the authors emphasize that neither is really suitable for
high dimensional data. In the case of DP-based search trees, such as R-trees,
the problem is the high degree of overlapping between minimum bounding
boxes (MBB). In case of static data, however, the issue can be mitigated if the
nearby points are cleverly grouped by a clustering algorithm or spatial division
and their MBBs are stored at the leaf level. For example, [13] provides a
method which utilizes an octree to subdivide the space and R-tree leaf nodes are
generated by direct insertion of neighboring points from the octree subdivisions.

The majority of related papers discussing distributed environments [16, 17,
25, 3, 22, 31, 11, 28] focus on indexing methods of the R-tree family. Applica-
tions of space filling curves (SFCs) for parallel domain decomposition and load
balancing can be found, for example, in [2] and [27]. Grid-based techniques
are investigated by [20, 4, 8]. Some approaches exist which utilize kd-tree for
space partitioning on top of local index structures [22, 23]. In [9], a distributed
high-dimensional index structure (DVA-tree) is proposed which is based on a
hybrid spill-tree and Vector Approximation files. Some papers [18, 12] make
the assumption that prior information is available, based on past experience,
logs, etc. on the distribution of query sets. Previous work mainly focused on
declustering and box queries [16, 17, 20, 25, 4, 8, 18] or clustering and proximity
search [9, 23]. However, there were also attempts to satisfy these conflicting
demands [3, 22, 27, 31, 12]. Methods which are related to Big Data platforms
[21, 33, 11, 28] usually contain little novelty from a theoretical point of view,
although they are very important in practice.

Contrary to the related works, we want to utilize a priori information about
the spatial distribution of the data in the form of a multidimensional histogram
which can be obtained during the data extraction or transformation phase of a
typical Extraction-Transformation-Loading (ETL) process. This approach was
also followed by our earlier papers [26, 10]. Although based on a histogram
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technique, the load balancing algorithm investigated here can also be applied
in cases when, instead of binning, multiple data points are represented by
centroids derived from clustering or spatial division. Applying the algorithm to
cluster centers would alter the distribution policy from ’balance’ to ’clustering’.
In the storage layer, one can use a generic two-tier index scheme including
global and local index structures. The global index structure is built on the
multidimensional histogram and is maintained at a central server. The local
index structures are created when point groups (or bins) are distributed across
slave servers. Theoretically, spatial index structures are arbitrary.

3. Load balancing

Let us consider the continuousD-dimensional vector space with the usualEu-
clidean norm. We turn our attention to a subset B ⊂ RD which is the bounding
box of r data points. We compute the histogram of point counts within B with
regular, equally-spaced binning in Cartesian coordinates. Note, that many of
our conclusions remain true for the case of less regular or irregular binning.
It is necessary, however, to compute the histogram quickly during the data
extraction or transformation phase of an ETL procedure. There are nD bins:
{B1, . . . , BnD} where n is the resolution of the histogram. We denote by w(Bj)
the number of points falling into bin Bj . We use the term ’weight’ to refer to
the point count in a particular bin further in the text. The r =

∑
j w(Bj)

data points will be apportioned among s servers: S1, S2, . . . , Ss (s ≥ 2). The
design guarantees that points within a bin are stored on the same server. The
T (Bj , Si) binary assignment function will take the value of 1 if bin Bj is as-
sociated with server Si, otherwise will be set to 0. By the assignment of bins
we mean the set of pairs (Bj , Si) where T (Bj , Si) = 1. Let us denote by w(Si)
and b(Si) the number of data points (weight) and the number of bins, respec-
tively, belonging to server Si. The mean weight of servers is defined simply as
S̄ = r/s, while the bin with maximum weights will be referred to as Bmax.

We can elaborate the assignment as a (0-1)-integer programming problem
for the domain of the binary assignment function T (Bj , Si) if the sole aim is
to ensure load balancing. There are many possibilities to fulfill this. On one
hand, one can demand that a bin group is connected or specially shaped (e.g.
hyperrectangle). On the other hand, one can optimize for load balancing in
different ways: for example, minimizing the maximum of the server weights
or minimizing the mean absolute deviation of weights. We choose the latter
option. Additionally, we will not require connectedness. The really interesting
constraint is that all the bins have to be assigned to exactly one of the servers,

i.e.
∑s
i=1 T (Bj , Si) = 1 for all j. Consequently, w(Si) =

∑nD

j=1 T (Bj , Si)w(Bj).

We would like to minimize
∑s
i=1 |w(Si)− S̄| to achieve the best load balancing.
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The minimization of the sum of absolute deviations can be transformed into a
linear programming problem, see [7, 30]. Write di = w(Si)−S̄ and dabsi = |di|.∗
Using these notations, the optimization problem becomes the following:

minimize

s∑
i=1

dabsi

subject to di +

nD∑
j=1

w(Bj) · T (Bj , Si) = S̄,

di ≤ dabsi , −di ≤ dabsi ,

s∑
i=1

T (Bj , Si) = 1 for all j,

T (Bj , Si) ∈ {0, 1},

i = 1, ..., s; j = 1, ..., nD,

To this end, we only recall the SG17 algorithm of [26]. However, one can
add an additional constraint to the optimization problem since Theorem 4.1
of Sec. 4.1 provides a general upper limit of server weights for optimal load
balancing. Therefore, one can replace the di ≤ dabsi and −di ≤ dabsi constraints
by di ≤ S̄ and−di ≤ S̄. Even stricter constraints can be used if prior knowledge
about data distribution is available (see the paragraph following Eq. 4.1). The
advantage of using these constraints is that the running time of the algorithm
can be improved.

4. Upper limits of absolute deviation of server weights

In this section, we find a constant c for the following inequality in the
general case and in a special case where data points are sparse but strongly
clustered on a wide range of scales (including cosmological N-body simulations
and intersections of road networks):

(4.1) |w(Si)− S̄| ≤ c · S̄.

In the general case, c is equal to 1 (see Corollary 4.1). Furthermore, we describe
a method in Alg. 1 which can be utilized to create actual bin assignments.
Theoretically and experimentally, we investigate the results of this approach in
the above-mentioned special case (see Sec. 4.3) and conclude that c can be less
than 1 with a high degree of likelihood for ’real-world’ data.

∗Cited articles introduce slightly different auxiliary variables. The connections between
them are dabsi = d+i + d−i and di = d+i − d−i where d+i , d−i ≥ 0 constraints are equivalent to

di ≤ dabsi ,−di ≤ dabsi .
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Algorithm 1: Bin assignment method

input : bin weights: {w(Bj)}n
D

j=1, the number of servers: s
output: an assignment of bins to servers

sort the set {w(Bj)}n
D

j=1

renumber the bins based on sorting: 0 ≤ w(B1) ≤ · · · ≤ w(BnD )
for j ← 1 to nD do

i = (j − 1 (mod s)) + 1
assign bin Bj to server Si

end

4.1. General upper limit of server weights

The aim of this subsection is to derive a general formula for the upper limit
of server weights:

Theorem 4.1. Suppose that w(Bmax) ≤ S̄. There exists an improvement for
an arbitrary assignment of bins such that

(4.2) w(Si) ≤ 2 · S̄ for all i = 1, . . . , s

holds.

One can make the assumption that w(Bmax) ≤ S̄ without loss of generality
because it can be achieved by increasing the resolution. The proof consists of
the construction of an ’augmenting’ algorithm which can improve an arbitrary
assignment of bins in such a way that Eq. 4.2 holds (see Sec. 4.2). It can be
easily shown that this bound is asymptotically sharp as s tends to ∞, i.e. bin
weights exist such that maxi w(Si)/(2S̄)→ 1 as s→∞. Consider the following
example: suppose s = r − 1, w(Si) ≥ 1 for all i = 1, . . . , s and w(Bj) ≤ 1 for
all j = 1, . . . , nD. (Again, the third assumption can be satisfied by increasing
the resolution.) Then there is a server S for which w(S) = 2 by using the
pigeonhole principle and w(S)/(2S̄) = 2/(2 + 2/s)→ 1 as s→∞.

Let us now state a corollary of Theorem 4.1.

Corollary 4.1. Suppose that w(Bj) ≤ S̄ (j = 1, . . . , nD). Then for an optimal
assignment of bins:

|w(Si)− S̄| ≤ S̄,(4.3)

σs ≤ S̄,(4.4)

where i = 1, . . . , s and σs denotes the standard deviation of w(S1), . . . , w(Ss).

Proof. Using the facts that 0 ≤ w(Si) and w(Si) ≤ 2 · S̄, which are equiv-
alent to S̄ − w(Si) ≤ S̄ and w(Si) − S̄ ≤ S̄, Eq. 4.3 is established. Hence
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w(Si)− S̄

)2 ≤ S̄2. Consequently, the following inequality holds for the vari-
ance of w(S1), . . . , w(Ss):

σ2
s =

1

s
·
s∑
i=1

(
w(Si)− S̄

)2 ≤ 1

s
·
s∑
i=1

S̄2 = S̄2,

and the proof is complete. �

Without loss of generality we can assume that 0 < w(S1) ≤ · · · ≤ w(Ss)

and let 0 ≤ Ki be an integer for which

⌈
w(Si)

S̄

⌉
= Ki + 1 (i.e. Ki · S̄ <

< w(Si) ≤ (Ki + 1) · S̄). Furthermore, we can certainly assume that 2 ≤ Ks,
since otherwise there would be no need for the improvement. It is clear that if
3 ≤ Ks, then

(4.5)

⌊
Ks

2

⌋
+ 2 ≤ Ks.

Since s · S̄ = r =
∑s
i=1 w(Si) >

∑s
i=1Ki · S̄, therefore

(4.6)

s∑
i=1

Ki ≤ s− 1

Let us denote by s0 the number of servers for which Ki = 0 (and s0 < s because
2 ≤ Ks). The following simple lemma is required for the proof of Theorem 4.1.

Lemma 4.1. Ks ≤ s0 holds.

Proof. Using Eq. 4.6 and the fact that 1 ≤ Ki if i = s0 + 1, . . . , s− 1, we get:

s∑
i=1

Ki =

s0∑
i=1

Ki +

s∑
i=s0+1

Ki ≤ s− 1,

(s− 1)− (s0 + 1) + 1 ≤
s−1∑

i=s0+1

Ki ≤ s− 1−Ks,

Ks ≤ s0. �

4.2. Proof of Theorem 4.1

To prove Theorem 4.1, we use mathematical induction on Ks. First, we
consider Ks = 2. Then we can rewrite w(Ss) as

(4.7) w(Ss) = 2 · S̄ + εs
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where 1 ≤ εs ≤ S̄. Suppose that bins B1, . . . , Bb(Ss) are assigned to server Ss
thus w(Ss) = w(B1) + · · · + w(Bb(Ss)). There exists an integer k such that
w(Bk+1) + · · ·+w(Bb(Ss)) ≤ S̄+ εs but w(Bk) + · · ·+w(Bb(Ss)) > S̄+ εs. The
bins Bk+1, . . . , Bb(Ss) remain on server Ss therefore

w(Snew
s ) = w(Bk+1) + · · ·+ w(Bb(Ss)) ≤ S̄ + εs ≤ 2 · S̄.

Using Lemma 4.1, there are at least two servers with such weights which are
not greater than S̄. The bin Bk is reassigned to one of them whose weight is
w(Bk) ≤ S̄, thus the new server weight is not greater than 2 · S̄. The bins
B1, . . . , Bk−1 are reassigned to the other server (if k > 1, otherwise none of the
bins are reassigned). The following is true:

(4.8) w(B1) + · · ·+ w(Bk−1) < S̄,

because, on the contrary, suppose w(B1) + · · · + w(Bk−1) ≥ S̄. As w(Bk) +
+ · · ·+w(Bb(Ss)) > S̄+εs, thus we could find w(B1)+· · ·+w(Bb(Ss)) > 2·S̄+εs,
contrary to Eq. 4.7. The weight of this server is less than 2 · S̄ with additional
bin weights because of Eq. 4.8. As the weights of all concerned servers are
not greater than S̄ after the reassignment, the number of servers for which
the weights are greater than 2 · S̄ has been reduced by one. The servers are
renumbered based on the new weights and one can repeat the above procedure.
This is continued until no further server is found for which w(Si) > 2 · S̄. (The
algorithm terminates because there are a finite number of servers and at every
step there is at least one server whose weight drops below 2 · S̄.)

Now suppose Ks > 2. Then, in accordance with the previous notation:

(4.9) Ks · S̄ + εs = w(Ss) = w(B1) + · · ·+ w(Bb(Ss))

where 1 ≤ εs ≤ S̄. There exists k1 such that

w(Bk1+1) + · · ·+ w(Bb(Ss)) ≤ 2 · S̄, but(4.10)

w(Bk1) + · · ·+ w(Bb(Ss)) > 2 · S̄.(4.11)

The following is true:

(4.12) w(Bk1+1) + · · ·+ w(Bb(Ss)) ≥ S̄,

because, on the contrary, suppose w(Bk1+1)+· · ·+w(Bb(Ss)) < S̄. As w(Bk1) ≤
≤ S̄, thus we could find w(Bk1) + · · ·+w(Bb(Ss)) < 2 · S̄, contrary to Eq. 4.11.
Using Eq. 4.10 and Eq. 4.12, 0 ≤ 2 · S̄−(w(Bk1+1)+ · · ·+w(Bb(Ss))) ≤ S̄ holds.
Using this and rearranging Eq. 4.9 gives

w(B1) + · · ·+ w(Bk1) =(2 · S̄ − (w(Bk1+1) + · · ·+ w(Bb(Ss))))+

+ (Ks − 2) · S̄ + εs
(4.13)
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(Ks − 2) · S̄ + εs ≤ w(B1) + · · ·+ w(Bk1) ≤
≤ S̄ + (Ks − 2) · S̄ + εs = (Ks − 1) · S̄ + εs

(4.14)

If Ks − 1 = 2, then this is the case Ks = 2l + 1 which is detailed below.
Otherwise if Ks − 1 > 2, then using Eq. 4.14 and the fact that w(Bj) ≤ S̄
(j = 1, . . . , nD), there exists an integer k2 for the remainder weight w(B1) +
+ · · ·+ w(Bk1) such that

w(Bk2+1) + · · ·+ w(Bk1) ≤ 2 · S̄, but(4.15)

w(Bk2) + · · ·+ w(Bk1) > 2 · S̄.(4.16)

As w(Bk2) ≤ S̄, thus w(Bk2+1) + · · ·+w(Bk1) ≥ S̄ otherwise there is a contra-
diction with Eq. 4.16. As a result of the above considerations:

(4.17) (Ks − 4) · S̄ + εs ≤ w(B1) + · · ·+ w(Bk2) ≤ (Ks − 3) · S̄ + εs

This is continued until the coefficient of S̄ is negative on the left side of the
previous inequality (4.17), i.e. we want to find l which is the largest among
such integers for which Ks − 2l ≥ 0. This is l =

⌊
Ks
2

⌋
.

If Ks = 2l + 1, then Eq. 4.17 is

(4.18) S̄ + εs ≤ w(B1) + · · ·+ w(Bkl) ≤ 2 · S̄ + εs,

thus, using w(Bj) ≤ S̄ (j = 1, . . . , nD), there exists an integer kl+1 such that

w(Bkl+1+1) + · · ·+ w(Bkl) ≤ S̄ + εs, but(4.19)

w(Bkl+1
) + · · ·+ w(Bkl) > S̄ + εs.(4.20)

Then w(B1) + · · · + w(Bkl+1−1) < S̄ (otherwise combining it with Eq. 4.20,
there is a contradiction with Eq. 4.18).

If Ks = 2l, then Eq. 4.17 is

(4.21) w(B1) + · · ·+ w(Bkl) ≤ S̄ + εs(≤ 2 · S̄).

There is no more division to do, unlike in the case of Ks = 2l + 1.

The bins Bk1+1, . . . , Bb(Ss) remain on server Ss. The further bins which are
originally assigned to server Ss are grouped:

{Bk2+1, . . . , Bk1}, . . . , {B1, . . . , Bkl}

in the case of Ks = 2l and the last group are subdivided into

{Bkl+1+1, . . . , Bkl}, Bkl+1
, {B1, . . . , Bkl+1−1}
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in the case of Ks = 2l + 1, respectively. Therefore the number of groups is
l + 2 in odd case and l in even case, respectively. For these groups, it is true
that their weights are less than or equal to 2 · S̄. (Moreover, for groups Bkl+1

,
{B1, . . . , Bkl+1−1} it is true that their weights are less than or equal to S̄.)

Lemma 4.1 and Eq. 4.5 yield l + 2 ≤ Ks ≤ s0, thus there are at least l + 2
servers for which w(Si) ≤ S̄. Group {Bk2+1, . . . , Bk1}, group {Bk3+1, . . . , Bk2},
etc. are reassigned to one of them. After reassignment the new Ki is certainly
less than Ks for all i = 1, . . . , s. Therefore, the number of servers for which the
weights are greater than Ks · S̄ has been reduced. The servers are renumbered
based on the new weights and this procedure is continued until no further
server is found for which w(Si) > Ks · S̄. One can use the induction hypothesis
because the value of Ks has certainly been reduced by one. �

4.3. Special limits of server weights

In this subsection, we examine a special case where points are sparse but
strongly clustered on a wide range of scales. First, it is demonstrated on two
examples where bin weights follow a power law distribution and the resolution
number n is large enough. Thereafter, the value of the constant c of Eq. 4.1 is
investigated using Alg. 1 and some theoretical results are presented about the
Zipf–Mandelbrot law.

4.3.1. Fitting the Zipf–Mandelbrot law to empirical data

The Zipf–Mandelbrot law (Z-M law) [19] is pervasive in a variety of scientific
fields, including linguistics, bibliometrics, ecology, biology etc. For a more
complete list, we refer the reader to [14]. The probability mass function (PMF)
of Z-M law is defined by the following formula if its domain spreads over all
positive integers:

(4.22) f(k;α, β) =
1

ζ(α, 1 + β) · (k + β)α
,

where ζ(α, 1 + β) in the denominator is the Hurwitz zeta function.

A numerical maximum log-likelihood method, which is based on the L-
BFGS-B [5] implementation of SciPy [15], is used to fit the PMF f(k;α, β) to
bin weights of a subset of a cosmological N-body simulation (see the left panel
of Fig. 1) and intersections of road network of central Illinois taken from the
OpenStreetMap website† (see the right panel of Fig. 1). Tab. 1 and Fig. 2 show
the results of fitting at various resolutions.
†http://www.openstreetmap.org

http://www.openstreetmap.org
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Figure 1. Left: A subset of a cosmological N-body simulation projected to two
dimensions. Right: Intersections of the road network of central Illinois.

N-body simulation road intersections
n α β MSE xmin α β MSE xmin

50 4.408 13.053 3.993 0.514 2.985 6.661 3.501 0.517
100 3.386 2.117 2.251 0.551 3.472 5.433 1.857 0.524
200 3.125 0.492 1.280 0.602 4.388 5.498 1.363 0.530
500 3.708 0.192 1.124 0.644 7.857 8.130 0.490 0.537
1000 4.189 0.995 0.492 0.681 11.670 9.983 0.569 0.546

Table 1. Fitting the Z-M law PMF to bin weights of N-body simulation data
and road intersections with various resolutions. Mean squared errors (MSE)
of maximum log-likelihood estimates are indicated in this table. The values of
parameter xmin are also provided for continuous Z-M law fitting. These are
computed from the discrete variants with fixed α and β by using Euclidean
distance minimization which is based on the L-BFGS-B method.

4.3.2. Estimating the limits of server weights using Alg. 1

It is useful to replace the discrete Z-M law by a continuous one with the
following probability density function (PDF) for simpler analytic handling:

(4.23) f(x;α, β, xmin) =
(α− 1)(xmin + β)α−1

(x+ β)α

where the parameter xmin is introduced as a free parameter with constraints
x ≥ xmin and 0 < xmin ≤ 1 in order to fit the PDF to the PMF better. As a
free parameter, xmin carries no additional meaning.
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Figure 2. Fitting the Z-M law PMF to bin weights of N-body simulation data
(top panel) and road intersections (bottom panel) with various resolutions. On
log-log plots, the experimental data are represented by circles and the fitted
Z-M PMFs are depicted by dotted lines.

The cumulative distribution function (CDF) is given by the following formula:

(4.24) F (t;α, β, xmin) = 1−
(
xmin + β

t+ β

)α−1
and the quantile function can be deduced as:

(4.25) Q(p;α, β, xmin) =
xmin + β
α−1
√

1− p
− β.

Note, that for simplicity of notation, we omit the parameters α, β, xmin if it
does not lead to misunderstanding.

In the remainder of this section we assume α > 2. Alg. 1 determines ’bin
weight’ intervals, provided that 0 ≤ w(B1) ≤ · · · ≤ w (BnD ):

[w
(
B(i−1)·s+1

)
, w (Bi·s)] for all i = 1, . . . ,

⌊
nD/s

⌋
and

[w
(
BbnD/sc·s+1

)
, w (BnD )] if s - nD

from where each server collects exactly one bin. Our aim is to estimate the
limits of server weights, therefore we want to approximate the sum of the
start and end of these intervals. Bins with zero weights can be removed
for these estimations, so let us denote by bp the number of bins which have
positive weights. It is convenient to assume s | bp. Although there is loss of
generality in assuming divisibility, this assumption makes it easier to under-
stand the method. The treatment of the general case is left to the reader.
Let 0 < w(B1) ≤ · · · ≤ w

(
Bbp
)
, unless otherwise stated. Thus, ’bin weight’
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intervals are [w
(
B(i−1)·s+1

)
, w (Bi·s)] for all i = 1, . . . , bp/s. In order to esti-

mate the endpoints of the intervals, one can treat bin weights as realizations of
a random variable X which follows the (continuous) Z-M law and its quantile
function can be used in the following way. It is clear that the size of the set of all
bin weights which are less than the start of the ith interval with w

(
B(i−1)·s+1

)
,

is (i − 1) · s. Furthermore, the empirical probability of X < w
(
B(i−1)·s+1

)
is (i − 1) · s/bp, therefore F

(
w
(
B(i−1)·s+1

))
≈ (i − 1) · s/bp which implies

Q ((i− 1) · s/bp) ≈ w
(
B(i−1)·s+1

)
.

Let Ti denote Q (((i− 1) · s)/bp) (i = 1, . . . , bp/s). It follows from the above
discussion that a lower bound of server weights can be estimated by

(4.26)

bp/s∑
i=1

w
(
B(i−1)·s+1

)
≈
bp/s∑
i=1

Ti.

By definition of the quantile function:

bp/s∑
i=1

Ti = (xmin + β) ·
bp/s−1∑
i=0

1

α−1

√
1− i·s

bp

− bp · β
s

>

> (xmin + β) ·
∫ bp/s−1

−1

1

α−1

√
1− x·s

bp

dx− bp · β
s

=

= (xmin + β) · α− 1

α− 2
·

(
bp
s
·
(

1 +
s

bp

)α−2
α−1

−
(
s

bp

) 1
1−α
)
− bp · β

s
.

The sum is treated as the right Riemann sum for the above integral and this
is an overestimation because the integrand is monotonically increasing (with
respect to x). It follows that

(4.27) w(Si) & (xmin + β) · α− 1

α− 2
·

(
bp
s
·
(

1 +
s

bp

)α−2
α−1

−
(
s

bp

) 1
1−α
)
− bp · β

s

for all i = 1, . . . , s. We denote this lower bound briefly by LB. It is important
to note LB > 0 because LB is monotonically decreasing with respect to α and
it is easy to check that LB → (xmin · bp)/s > 0 as α→∞.

Now we focus on the estimation of an upper bound of server weights which
is more complicated. Since the range of the random variable X is unbounded,
we cannot directly estimate w

(
Bbp
)

but we can choose a threshold T so that
bin weights lie under T with a high degree of likelihood (≥ 99%). Tbp/s is the
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right choice for T if bp > 100 · s because

bp
s
> 100,

(xmin + β) ·
(
bp
s

) 1
α−1

− β > (xmin + β) · 100
1

α−1 − β,

Tbp/s > Q(0.99).

Then we treat the following sum as the left Riemann sum for the next integral
similarly to the previous analysis:

bp/s∑
i=2

Ti = (xmin + β) ·
bp/s−1∑
i=1

1

α−1

√
1− i·s

bp

− bp · β
s

<

< (xmin + β) ·
∫ bp/s

1

1

α−1

√
1− x·s

bp

dx− bp · β
s

=

= (xmin + β) · α− 1

α− 2
·
(
bp
s

) 1
α−1

·
(
bp
s
− 1

)α−2
α−1

− bp · β
s

.

If bp > 100 · s, it follows from the above results that an upper bound of server
weights can be estimated by the formula

(4.28) w(Si) . (xmin + β) · α− 1

α− 2
·
(
bp
s

) 1
α−1

·
(
bp
s
− 1

)α−2
α−1

− bp · β
s

for all i = 1, . . . , s. We denote this upper bound briefly by UB.

Suppose bp > 100 · s. We want to find a constant cest for the Eq. 4.1. Using
LB, it follows that

S̄ − w(Si) . S̄ − LB ≤ cest · S̄,
1− LB/S̄ ≤ cest

and using UB, we have

w(Si)− S̄ . UB − S̄ ≤ cest · S̄,
UB/S̄ − 1 ≤ cest.

Therefore let cest be max(1−LB/S̄, UB/S̄ − 1). Note: 1−LB/S̄ < 1 because
of LB > 0 so the question is whether UB/S̄ − 1 is less than 1. It is illustrated
through concrete examples where cest < 1. Tab. 2 shows it with fixed server
number s = 10. The experimental constant cexp refers to the ratio of maximum
absolute deviation of server weights to mean weight of servers when Alg. 1 is
applied for certain bin assignments.
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Figure 3. Fitting the Z-M law PMF to bin weights of N-body simulation
data (left panel) and road intersections (right panel) with histogram resolution
n = 50. The distributions of experimental data deviate at higher bin weights
from the Z-M law.

N-body simulation road intersections
n bp cest cexp bp cest cexp
50 2347 0.094 0.158 935 0.162 0.187
100 5784 0.089 0.070 1569 0.089 0.083
200 9066 0.083 0.034 2322 0.052 0.034
500 12204 0.091 0.013 3463 0.037 0.012
1000 13748 0.322 0.005 4235 0.038 0.009

Table 2. Comparison of estimated and experimental constants for Eq. 4.1 when
server number s is fixed to 10. These constants are less than 1 for all resolution
numbers. The value of the constant cest is an overestimate of the experimental
one except for n = 50. The distributions of experimental data deviate at higher
bin weights from the Z-M law and, for resolution number n = 50, higher bin
weights are significant outliers compared to lower bin weights (see Fig. 3). The
numbers of bins with positive weights (bp) are also indicated and it can be seen
that the assumption bp > 100 · s is met almost everywhere which is important
for the estimation (see details in the text). The corresponding fitted parameters
(α, β, xmin) for histogram resolution n are contained in Tab. 1.
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5. Conclusions

Our earlier work presented the SG17 algorithm. In this paper we inves-
tigated how one can accelerate this algorithm by using upper limits of the
absolute deviation of server weights, for which we derived formulas. A special
case was examined where data points are sparse but strongly clustered on a
wide range of scales. It was demonstrated that if histogram resolution is large
enough, the related bin weights follow the Zipf–Mandelbrot law. Therefore,
some related theoretical results were derived about how much the upper limit
of absolute deviation of server weights can be improved in this special case.
Among others, our future work focus will be on cases when data points are
distributed differently. For example, if data points are more or less uniformly
distributed, bin weights follow a Poisson distribution with mean (rate) at the
average weight of bins.

We mentioned that one can use a generic two-tier index scheme including
global and local index structures in the storage layer where the global index
structure is built on the multidimensional histogram and is maintained in the
central server. However, there are additional interesting questions about this
approach: how can one

• . . . maintain this architecture when data are updated (if static, non-time-
varying condition is relaxed for data),

• . . . replicate data between servers to ensure fault tolerance etc.

Author contributions: All authors contributed to discussion and inter-
pretation of the results. J. M. Szalai-Gindl conducted the literature review and
the analysis, contributed to the paper’s concept, and wrote the paper. A. Kiss
contributed to the paper’s concept and critical revision of the manuscript.
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