
Tools and Language Elements for Testing,
Encapsulation and Controlling Abstraction in

Large Scale C++ Projects

Doctoral dissertation
2019

Gábor Márton
martong@caesar.elte.hu

Thesis advisor: Dr Zoltán Porkoláb, docent
Eötvös Loránd University, Faculty of Informatics,
1117 Budapest, Pázmány Péter sétány 1/C

ELTE IK Doctoral School
Doctoral program: Foundations and Methodologies of Informatics
Head of the doctoral school: Prof. Dr Erzsébet Csuhaj-Varjú
Head of the doctoral program: Prof. Dr Zoltán Horváth

Contents

List of Figures v

Acknowledgements vii

1 Introduction 1
1.1 Thesis Structure . 4

2 Non-intrusive Testing 5
2.1 Motivation . 5
2.2 Dependency Replacement in C++ 6

2.2.1 C++ Seams . 7
2.2.2 Test Automation Conventions 14

2.3 New Non-intrusive Test Seams . 14
2.3.1 Function Call Interception based Test Seam 15
2.3.2 Syntax Tree Transformation based Test Seam 34
2.3.3 Reflection based Testing and Test Seam 42
2.3.4 Contribution . 56

2.4 Comparison of Existing and New Seams 57
2.5 Access Private Members . 62

2.5.1 Existing Methods . 62
2.5.2 Access via Explicit Instantiation 65
2.5.3 Out of Class Friend . 72
2.5.4 Related Work . 76
2.5.5 Conclusion . 76
2.5.6 Contribution . 77

3 Selective Friend 78
3.1 Motivation . 78
3.2 C++ Friends . 80
3.3 Friends in Other Programming Languages 81

3.3.1 Java . 81
3.3.2 CSharp . 83

iii

3.3.3 Other Languages . 83
3.4 Measurement . 87

3.4.1 Description of the Measurement Algorithm 87
3.4.2 Measurement Results . 96

3.5 Selective Friend . 103
3.5.1 A New Lingual Element . 103
3.5.2 Eiffel like Syntax . 111

3.6 Related Work . 112
3.6.1 Private Usage of Friend Classes 112
3.6.2 Friends and Inheritance . 115
3.6.3 Alternatives for Selective Friends 116

3.7 Future Research . 118
3.8 Conclusion . 118
3.9 Contribution . 119

4 The Read-Copy-Update Pattern 120
4.1 Context and Motivation . 120
4.2 Towards a Higher Level Abstraction for RCU 127
4.3 Smart Pointer for RCU Semantics 130

4.3.1 Memory Ordering . 132
4.3.2 Lock-Free atomic_shared_ptr 133

4.4 Performance Evaluation . 134
4.5 Correctness and Testing . 141
4.6 Future Work . 141
4.7 Conclusion . 141
4.8 Contribution . 142

5 Summary 143
5.1 Results . 144

References 146

Appendices 166

A Intel Pin: a Run-time FCI Seam 167

B The LLVM/Clang Compiler Infrastructure 172
B.1 Introduction to the LLVM IR . 173

B.1.1 Type System . 174
B.1.2 Instructions . 174

B.2 Introduction to the Clang AST . 175
B.3 RecursiveASTVisitor . 176

iv

B.4 Adding a New Attribute to Clang 180

C Dissertation Summaries 183
C.1 Dissertation Summary . 184
C.2 Disszertáció Összefoglaló . 185

Acronyms 186

Glossary 189

List of Figures

2.1 Dependency Replacement . 7
2.2 An example of a link seam . 8
2.3 An example of a preprocessor seam 9
2.4 The ’Entity’ class we would like to test 10
2.5 A legacy graphics program . 18
2.6 Testing the legacy program with compile-time FCI 19
2.7 Testing the ’Entity’ class with compile-time FCI 20
2.8 The LLVM IR when our instrumentation is enabled 23
2.9 Get the address of a virtual function 25
2.10 Total absolute time for function objects 32
2.11 Total absolute time for vector quicksort 32
2.12 Total absolute time for abstraction insertion sort 33
2.13 Replacing a simple function in the AST 40
2.14 Replacing a record type in the AST 40
2.15 Changing the AST to use a mock test double 41
2.16 An abstract class and its mock class 46
2.17 Comparison of existing and new seams 61
2.18 Semantic action for the out-of-class friend attribute 75

3.1 Friendship like access control in Java 82
3.2 Use of InternalsVisibleToAttribute in CSharp (UtilityLib.dll) 84
3.3 Use of InternalsVisibleToAttribute in CSharp (Friend2 assembly) . 84
3.4 Accessing private members in D (within the same module) 85
3.5 Rust: declaring items visible within a given scope 86

v

3.6 A more complex example for measurement 88
3.7 Private usage in functions . 97
3.8 An erroneous friend declaration in Boost 99
3.9 Private usage in classes . 100
3.10 Private usage ratio in functions . 101
3.11 Private usage ratio in classes . 102
3.12 Constraint on selective friend attribute 108
3.13 Comparing compile times, #friends: 100 110
3.14 Comparing compile times, #members: 1000 110
3.15 Alternative syntax: annotate the members to provide access for a

function . 112
3.16 Example of the access key idiom . 117
3.17 Example of the attorney-client idiom 117

4.1 Example sequence of read and update operations in RCU 123
4.2 RCU and readers-writer lock comparison 124
4.3 Usage of RCU in a linked list . 125
4.4 A shared collection . 126
4.5 Using atomic shared pointer . 128
4.6 The rcu_ptr class template . 131
4.7 rcu_ptr and its dependencies . 134
4.8 Read-side performance, data size: 32KiB 137
4.9 Read-side performance, data size: 512KiB 137
4.10 Read-side performance, data size: 4MiB 138
4.11 Read-side performance of variants of the rcu_ptr, data size: 512KiB 139
4.12 Write-side performance, data size: 32KiB 140
4.13 Write performance of RCU, data size: 512KiB 140

A.1 Test application for the legacy program 169
A.2 Pin tool to replace functions in the test application 170

B.1 Clang tool to traverse the AST . 179

vi

Acknowledgements

I would like to thank wholeheartedly to my wife Barbara, who supported me with
her patience and empathy throughout all the years I have spent working on this
thesis. This work demanded plenty of my free-time, evenings and weekends which
I could have spent rather with her. My heartfelt thanks go to my parents for all
their care and help. I’d also like to thank my brother, his family and his kids.
They always helped me to get some refreshing fun, so I could break the monotony
of the research.

Of course, thanks to all the people who advised me with their technical ex-
pertise. My special thanks go to Zoltán Porkoláb for his counsel, ideas and all
those hours he has spent with the reviews. In addition, thanks to my colleges,
Imre Szekeres, Máté Cserna, Péter Bolla, Gábor Horváth, Richárd Szalay, Péter
Szabados, Mátyás Végh, Zoltán Gera, Máté Csákvári and Krisztián Pándi for the
valuable discussions we had on the different research topics.

vii

Chapter 1

Introduction

Professional software development involves testing as a quintessential constituent
of the development process [22]. From the basic unit tests through the integration
tests up to the high-level end-to-end tests (which sit at the top of the test pyramid
[23]) their importance in quality assurance and in continuous integration/deploy-
ment is indisputable [24, 25].

One important testing strategy is black-box (also known as specification-based,
or input/output-driven) testing. During this testing method, we view the program
itself as a black box. That is, we are completely unconcerned about the internal
behaviour and structure of the program. Instead, we concentrate on finding cir-
cumstances in which the program does not behave accordingly to its specifications
[22]. Another testing strategy is white-box testing (also known as structure-based
testing), which permits us to examine the internal structure of the program. This
strategy derives test data from an inspection of the program’s logic. One goal of
these kinds of tests is to exercise paths of control flow through the code. If we
execute all possible paths of control flow through the program then possibly the
program has been completely tested, and this is considered to be exhaustive path
testing, which is impossible in practice.

Test-driven development (TDD) is a software development practice which re-
quires writing automated tests prior to developing any functional code. The devel-
opment consists of very short iterations of writing a new test and then providing
an implementation for it [26, 27]. TDD involves that first we create a contract
(an interface) between the component and the tests. In one iteration, we write a
test which uses the interface and describes one behaviour. At this point, the test
may fail, since the implementation does not provide the desired behaviour. As the
next phase of the iteration, we provide the implementation in a way that both
the preexisting tests and the newly added test pass. This method implicates that
all tests are black-box tests. We may find ourselves in a situation where we have
to substitute (or mock) something that the implementation depends on and what

1

CHAPTER 1. INTRODUCTION

is never exposed via the public interface. According to the TDD principles, this
means that we have made a mistake and the contract should be widened to expose
that internal dependency via the interface. However, encapsulation is another very
strong principle in software development which may be violated if we give away
such internals [28]. By widening the public interface and giving away strongly cou-
pled internals, the previous code structure deteriorates. This perception is aligned
with the empirical results of M. Siniaalto and P. Abrahamsson, who reveal that
unwanted side effect of TDD can be that some parts of the code may deteriorate
[29]. Consequently, some tests may not apply to this interface widening princi-
ple because the priority of encapsulation may be higher for the given component.
Even if we do not expose the internal dependencies of a component, there may be
some dependencies which should be replaced in order to create meaningful tests.
There are existing techniques to substitute these dependencies without intrusively
changing (widening) the public interface (e.g. in C/C++, one such method is when
we use the linker to do the replacement). However, all these existing techniques
have definite drawbacks.

Often, legacy code bases evolved without having very few (or not at all any)
automated tests. According to Michael Feathers, the main thing that distinguishes
legacy code from non-legacy code is a lack of comprehensive tests [30]. Refactoring
such code in order to provide tests is very hard because we cannot verify correctness
without having tests; hence it is a vicious circle. Nonetheless, we can break the
circle with such tests which does not modify the existing production code. In
this dissertation, we refer to tests which do not require any modification in the
production code as non-intrusive tests. Non-intrusive tests may be used both in
the case when encapsulation has a priority over TDD and when we would like to
add tests for legacy code bases. There are existing techniques to support such non-
intrusive tests (e.g. we may use the linker), but they all have some disadvantages.
This dissertation provides new alternative techniques to write non-intrusive tests
with significant advantages compared to earlier efforts (Thesis 1)

Encapsulation is one of the fundamental concepts in object-oriented program-
ming [31], we referred to it before. It is used to distinguish between the inter-
face and the implementation of a class, thus minimizing the dependencies among
separately-written modules [32, 33]. The interface is regularly defined in terms of
possible services or methods the class offers to its clients. Methods are specified in
forms of their signature. The implementation of a class defines the internal repre-
sentation of its objects and the way its methods are implemented. The main idea
behind encapsulation is to hide as many details of the representation of the classes
as possible. This way we can greatly reduce coupling between objects of differ-
ent classes, enforce a precise definition of class interfaces, and increase reusability.
However, sometimes we have to break encapsulation if we would like to create

2

white-box tests, because white-box testing may require the ability to access pri-
vate data and implementation details. In some compiled languages like C/C++, it
is not trivial to access these private internals, as we will see in Chapter 2.5. In this
dissertation, we provide new techniques to access private members and methods
in the test while preserving encapsulation in the production code (Thesis 2).

Encapsulation may be weakened also if one class has uncontrolled access to
all internal members of another class. The friend language construct in C++
provides such access. Thus, C++ friends are often criticised. On the other hand,
some researchers claim that if friends are used judiciously then they may be a better
choice than widening the public interface of a class [34]. We investigated the use
of friends in several open source projects and this dissertation presents our results.
These results have motivated us to propose a selective friend language construct
for C++ which can restrict friendship only to well-defined members (Thesis 3).
Such a new language element may decrease the degradation of encapsulation and
significantly increase the diagnostic capacity of the compiler.

Besides encapsulation, another quintessential concept of software development
is abstraction. Architectures for software use abstractions (idioms) to describe
system components, the nature of interactions among the components, and the
patterns that guide the composition of components into systems [35]. Raising the
level of abstraction reduces the complexity and brittleness of software through
encapsulation. Powerful abstractions that encapsulate large amounts of low-level
code tend to address highly specialized domains [36]. One such domain is concur-
rency. For instance, in C++, a lock_guard is a high-level abstraction, a mutex
wrapper which provides a mechanism for owning a mutex for the duration of a
scoped block [37]. Using the lock_guard instead of low-level mutex functions
reduces complexity and makes the software less prone to errors. Actually, the
lock_guard is one example of the "Resource Acquisition Is Initialization" (RAII)
idiom [38]. Read-copy-update (RCU) is a concurrent programming technique to
exchange data between threads [39]. It provides very efficient communication be-
tween threads if reads are way more frequent than writes. RCU is a frequently used
concurrent pattern in low level, performance critical applications, like the Linux
kernel (in fact, it originates from the Linux kernel). Earlier, there was no widely
accepted high-level abstraction of RCU for the C++ programming language. In
this dissertation, we present a new C++ class library to support the read-copy-
update pattern (Thesis 4). The library has been carefully designed to optimise
performance in a heavily multithreaded environment, at the same time providing
high-level abstraction, like the lock_guard or smart pointers.

3

CHAPTER 1. INTRODUCTION

1.1 Thesis Structure
The next Chapter (2) describes and elaborates the foundations of non-intrusive
testing in C/C++. We overview existing methods and their advantages and dis-
advantages. Two out of four theses are related to non-intrusive testing. Section
2.3 (as the first thesis) introduces new techniques for dependency replacement and
non-intrusive testing. Non-intrusive tests often require access to private internals
of a component, thus the different access methods are analysed in Section 2.5 and
several new methods are introduced (the second thesis). Chapter 3 presents re-
search results about how friends are used on open source projects and it describes
the design and implementation of C++ selective friends (third thesis). Our higher-
level abstraction for the read-copy-update pattern is introduced and analysed in
Chapter 4 (fourth thesis). Lastly, Chapter 5 summarizes the contributions.

Chapter Content
1 Define context and focus
2 Foundations for non-intrusive testing, Theses 1 and 2
2.3 Thesis 1: New non-intrusive testing methods
2.5 Thesis 2: Extending access for non-intrusive and white-box testing
3 Thesis 3: Selective friend
4 Thesis 4: High-level abstraction for the read-copy-update pattern
5 Summary

Table 1.1: Chapters and their content.

4

Chapter 2

Non-intrusive Testing

In C/C++, test code often influences the source code of the unit we want to test.
During the test development process, we often have to introduce new interfaces
to replace existing dependencies, e.g. a supplementary setter or constructor func-
tion has to be added to a class for dependency injection. In many cases, extra
template parameters are used for the same purpose. These solutions may have
serious detrimental effects on the code structure and sometimes on the run-time
performance as well. We can use non-intrusive tests (tests which do not require
any modification in the production code) to avoid these disadvantages. In this
dissertation, we refer to all those testing approaches which require source code
modification as intrusive testing.

Also, in legacy code bases often there are few or no unit tests. Refactoring
such code in order to provide tests is almost impossible because we cannot verify
correctness without having unit tests; hence it is a vicious circle. We can break
the circle with non-intrusive tests, i.e. without actually modifying the production
code.

Different non-intrusive testing methods have different weaknesses. In this chap-
ter, we introduce new non-intrusive testing approaches which have clear advantages
and complement the existing techniques.

2.1 Motivation
Testing is essential in modern software development [40, 41, 42, 43] to improve the
quality of a system and reduce the cost of maintenance. There are different levels
of testing from unit tests via integration tests to functional and non-functional
tests. In this chapter, we focus on unit testing, which is the most language-
specific method. However, some of the findings we discuss might be extended to
different/higher level tests as well.

5

CHAPTER 2. NON-INTRUSIVE TESTING

During a unit test, we check the behaviour of the unit under test. If we do
functional programming and work with pure functions alone (where all functions
are free from side-effects) then testing is easy because we just provide specific input
and assert for the desired output. However, in the object-oriented paradigm, we
have objects with some kind of state. This means the object is usually dependent
on other objects that represent the internal state. Testing our object using these
dependencies may be problematic; e.g. the dependency may represent a database
or a network connection, whose behaviour can be hard or expensive to simulate.
In order to create independent, resilient and efficient tests [44] in most cases we
need to substitute some (or even all) of the dependencies with test doubles. In this
dissertation, we call this substitution of dependencies as dependency replacement.

In object-oriented programming languages, the dependency replacement often
requires the modification of the original public interface of the unit under test. For
instance, new setter or constructor functions have to be added to a class, otherwise,
dependency replacement would not work. Nevertheless, there are cases where these
new functions are not intended to be used in production code. Moreover, in C++,
source code modification for testing could result in performance degradation, e.g.
introducing a new runtime interface and virtual functions just because of testing
might worsen the performance of the production code. Also, in legacy code bases
often there are no unit tests. Refactoring such legacy code in order to provide
tests is almost impossible because we cannot verify correctness without having
unit tests; hence it is a vicious circle. We can break the circle with non-intrusive
tests, though all of the existing non-intrusive testing methods for C++ have some
drawbacks.

2.2 Dependency Replacement in C++
Figure 2.1 shows a typical object under test, its dependencies and their possible
replacements. If A and B are objects and “A depends on B”, then we say that A
is a dependant of B and B is a dependency of A. As for dependency replacement
the dependant object is referred as the system under test (SUT). Sometimes we
refer to that as the unit under test. In this study, we use the following definitions
for test doubles: Fake classes provide empty definitions of functions in a way that
the unit tests can pass. Fakes are the simplest doubles to cut down dependencies.
Stub classes implement additionally some very basic behaviour, therefore they may
be more complex than fakes. We can set up a stub to return with a specific value.
Mock classes are used to formulate expectations, such as how many times a member
function is called with a certain value.

There are several design patterns for dependency replacement like the Factory
Method and Abstract Factory [45], the Service Locator [46, 47] and the Depen-

6

2.2. DEPENDENCY REPLACEMENT IN C++

SUT

dependency

dependency

Production

Test

Mock StubFake

Often very heavy, e.g. requires network

Figure 2.1: Dependency Replacement

dency Injection (DI) [48, 49, 50].
It is important to emphasize that dependency injection is different from the

abstract concept of dependency replacement. Dependency injection (DI) is one
realization – amongst many others – of dependency replacement. DI is used mostly
in object-oriented languages with runtime reflection, like Java and C#. Most
of these patterns can be used in the popular, managed languages and in C++
as well. Java and C# provide well documented DI frameworks (like the Unity
Container in C# [51], and the Spring framework in Java [52]), therefore DI is
the widespread method for performing dependency replacement in these managed
languages. However, at the moment there is no generally accepted DI framework
for C++.

Objects in the context of OOP are represented by instances of classes in C++.
Since C++ is not a strict object-oriented language, we should also investigate other
language constructs like free functions and function templates from the viewpoint
of dependency replacement. Generally speaking, a dependant C++ entity (class,
function, class template or function template) may have different (sometimes mul-
tiple) kinds of dependencies. For instance, it may depend on

• a global object (e.g. via a singleton).
• a global function (via a function call),
• an object via a pointer or reference,
• a type (e.g. via a type template parameter, or the type of a member)

2.2.1 C++ Seams
A seam is an abstract concept introduced by Feathers [30] as an instrument via we
can alter behaviour without changing the original unit. Dependency replacement

7

CHAPTER 2. NON-INTRUSIVE TESTING

is done via seams in C++. Up to now, four seams have been identified in the
literature [53, 54]:

1. Link seam: Change the definition of a function via some linker specific setup.
2. Preprocessor seam: With the help of the preprocessor, redefine function

names to use an alternative implementation.
3. Object seam: Based on inheritance to inject a subclass with an alternative

implementation.
4. Compile seam: Inject dependencies at compile-time through template pa-

rameters.

The enabling point of a seam is the place where we can make the decision to
use one behaviour or another. Different seams have different enabling points. For
example, replacing the constructor argument for the implementation of an interface
with a mock implementation when a unit test is set up is an object seam with the
constructor as an enabling point.

Link Seam

We can use a link seam e.g. to replace the implementation of a free function
or a member function as presented in Figure 2.2. we should link the production

// A.hpp
void foo();
// A.cpp
void foo() { ... };
// MockA.cpp
void foo() { ... };
// B.cpp
#include "A.hpp"
void bar() { foo(); ... }

Figure 2.2: An example of a link seam

code with A.o. On the other hand, when we test the bar() function then we
should link the test executable to the MockA.o object file. Link-time dependency
replacement is not possible if the dependency is defined in a static library or in the
same translation unit where the SUT is defined. It is also not feasible to use link
seams if the dependency is implemented as an inline function [53]. This makes the
use of this seam cumbersome or practically impossible when the dependant unit
is a template or when the dependency is a template. The enabling point for a link
seam is always outside of the program text (in many cases hidden in the build
system). Link seams keep the test setup code separated from the other phases
of the test. This makes the use of link seams quite difficult to identify. On top

8

2.2. DEPENDENCY REPLACEMENT IN C++

of all that, link-time substitution requires strong support from the build system
we are using. Thus, we might have to specialize the building of the tests for each
and every unit. This does not scale well and can be really demanding regarding
maintenance.

Preprocessor Seam

Preprocessor seams can be applied to replace the invocation of a global function
to an invocation of a test double [55]. Let us consider the code snippet in Figure
2.3. We can replace the standard malloc() and free() functions with our own

void *my_malloc(size_t size) {
//...
return malloc(size);

}

void my_free(void *p) {
//...
return free(p);

}

#define free my_free
#define malloc my_malloc

void unitUnderTest() {
int *array = (int *)malloc(4 * sizeof(int));
// do something with array
free(array);

}

Figure 2.3: An example of a preprocessor seam

implementation. One example usage is to collect statistics or do sanity checks
with my_malloc and my_free functions. These seams can be applied conveniently
in C, but not in C++. As soon as we use namespaces, the preprocessor might
generate code which cannot be compiled because of the ambiguous use of names.
Hazardous side effects of macros are also well known.

Preprocessor and link seams together Preprocessor and link seams may be
used together to mock a whole library: we can alter the include search path with
specific preprocessor settings [56] and we can link with the test double implemen-
tation of the library. This technique has the disadvantages of both seams. Also,
it is not possible to replace just a subset of a library. In case of the standard C or
C++ libraries most often we want to replace only a subset of the library functions
and not the whole library.

9

CHAPTER 2. NON-INTRUSIVE TESTING

Object Seam

Object seams are realized by introducing a runtime interface. For example, let us
consider the following C++ class (note, using a const qualifier on the process()
member function and an RAII lock guard instead of explicit locking would make
the code safer, but it would also make our message less visible):

// Entity.hpp
class Entity {
public:

int process(int i) {
if(m.try_lock()) {

auto result = std::accumulate(v.begin(),v.end(),i);
m.unlock();
return result;

}
else { return -1; }

}
void add(int i) {

m.lock();
v.push_back(i);
m.unlock();

}
private:

mutable std::mutex m;
std::vector<int> v;

};

Figure 2.4: The ’Entity’ class we would like to test

We would like to test the Entity::process() function for both possible return
values of try_lock. Our objective is to have a test like this:

void test() {
Entity e;
set_try_lock_fails(e);
ASSERT_EQUAL(e.process(1), -1);
set_try_lock_succeeds(e);
ASSERT_EQUAL(e.process(1), 1);

}

For the sake of the test, we introduce an interface and we can use it to change
the behaviour of the mutex object in runtime. The production specific and test
specific implementations of the interface need to be provided:

10

2.2. DEPENDENCY REPLACEMENT IN C++

struct Mutex {
virtual void lock() = 0;
virtual void unlock() = 0;
virtual bool try_lock() = 0;
virtual ~Mutex() {}

};

struct RealMutex : Mutex { //used in production code
void lock() override { m.lock(); }
void unlock() override { m.unlock(); }
bool try_lock() override { return m.try_lock(); }

private:
std::mutex m;

};

struct StubMutex : Mutex { //used in test code
// defintion of lock() and unlock() as before
bool try_lock_result = false;
bool try_lock() override {

return try_lock_result;
}

};

Now our class should use the interface:
class Entity {
public:
Entity(Mutex& m) : m(m) {}
int process(int i) { if(m.try_lock()) { ... } else { ... } }
//...

private:
Mutex& m;
//...

};

We can see that the enabling point of this seam is the newly added constructor.
The production and the test code might look like this:

void productionClient() {
RealMutex m;
Entity e(m);
// some usage of e

}
void testClient() {

// test setup
StubMutex m;
Entity e(m);
// assertions ...

}

There is a severe problem with object seams that is illustrated via this specific
example: the mutex object which was exclusively owned by the Entity now is
moved outside. There is nothing to prevent any caller from reusing (misusing)
this mutex. Regarding encapsulation this is fatal. Also, it is not clear who should
create/destroy this object and when. The same problems arise if we replace the

11

CHAPTER 2. NON-INTRUSIVE TESTING

Mutex& with a raw pointer or a smart pointer. Though passing a unique_ptr in
the constructor and getting a reference to it via a getter/setter function might be
an option, but then we would need to create that getter/setter function for m (to
set up the test). Generally speaking, the following problems may arise when we
replace dependency objects:

• Either we deprive the unit under test from the ownership of the dependency
or we use a superfluous getter/setter function.

• We add an otherwise unnecessary constructor (or alternatively a setter func-
tion).

• We introduce superfluous pointer semantics via a reference or smart pointer,
which is harmful to cache locality, hence it reduces overall performance [57].

• We have to introduce an interface just for testing. This interface has virtual
functions. Calling them requires extra pointer indirections and this might
result in cache misses and it loses the possibility of inlining, thus it harms
the overall performance [58]. Adding an extra interface makes the program
more complex, hence the program is harder to understand. Note that in
some cases it might be possible to get rid of the additional explicit interface
definition with type erasure [59], but the virtual function calls cannot be
avoided even in this case.

Compile Seam

Our Entity and mutex example would be more natural if we make Entity a
template and we use the Mutex type as a template parameter:

template <typename Mutex>
class Entity {
public:

int process(int i) { if(m.try_lock()) { ... } else { ... } }
//...

private:
Mutex m;
//...

};

However, because of testing we need to access the mutex outside of the Entity
class. Therefore, one simple approach is to define a new getter/setter function:

12

2.2. DEPENDENCY REPLACEMENT IN C++

template <typename Mutex>
class Entity {
public:

int process(int i) { if(m.try_lock()) { ... } else { ... } }
Mutex& getMutex() { return m; } // Use only from tests
//...

private:
Mutex m;
//...

};

The enabling point of this seam is the template parameter itself. Client code may
use our Entity with the appropriate type parameter:

void productionClient() {
Entity<std::mutex> e;
// some usage of e

}
void testClient() {

struct StubMutex {
//...
bool try_lock_result = false;
bool try_lock() {

return try_lock_result;
}

};
Entity<StubMutex> e;
auto& m = e.getMutex();
m.try_lock_result = false;
ASSERT_EQUAL(e.process(1), -1);
m.try_lock_result = true;
ASSERT_EQUAL(e.process(1), 1);

}

We do not need to add an additional runtime interface this time, so the test client
can use a StubMutex which does not have any virtual functions. Of course, the
implicit compile-time interface [60, item 41] of std::mutex and StubMutex must
match.

With this approach, we introduced a template parameter just because of test-
ing. The original Entity, however, was perfectly natural to be a simple class,
now it became a class template. Also, we added an extra getter/setter function
to be able to drive the dependency externally from our class. Needless to say, we
increased code complexity and compilation time [61]. There are some methods
with which we could decrease compile time, but they would further complicate the
source code (use of pimpl [62, item 22]) or the build system setup (using extern
templates [63, 14.7.2]).

Link and preprocessor seams can be used to write non-intrusive tests. However,
object and compile seams may be used for such purpose only if the unit under test
already has the proper architecture. For instance, in case of object seams the unit
must have a constructor (or setter) function to set up a different implementation

13

CHAPTER 2. NON-INTRUSIVE TESTING

for the dependency. In case of compile seams, the unit must be a template and it
must have a template parameter via which we can mock the dependency. Often,
these architectural requirements are not satisfied, therefore the use of object and
compile seams demand that we intrusively change the source code of the unit.

2.2.2 Test Automation Conventions
The test seams discussed above are frequently used in the process of creating
automated tests. Thus, we briefly overview the general test automation patterns
and we show the more specialized concepts about testing legacy code.

The four-phase test pattern is driven by the observation that each test requires
some sort of setup and tear down routines. This pattern splits each test into
four phases [64]. In the first phase, we set up everything that is required for the
system under test (SUT) to exhibit the expected behaviour. In the second phase,
we interact with the SUT. In the third phase, we do whatever is necessary to
determine whether the expected outcome has been obtained. In the fourth phase,
we tear down the test to put the world back into the state in which we found it.
This pattern is also known as the build-operate-check-clear pattern [65].

The given-when-then pattern of representing tests is originated from behaviour-
driven development [66, 67]. The given part describes the pre-conditions to the
test. In these pre-conditions, we present the state of the world before we begin
the behaviour we specify in the test. The when section represents the behaviour
we specify. The then section describes the changes we expect due to the specified
behaviour. We can also look at this pattern as a reformulation of the four-phase
test pattern. Essentially these three states are equal to the first three states of the
four-phase pattern.

In the context of the four-phase pattern, Robert C. Martin states that anyone
who reads the tests should be able to work out what they do very quickly, without
being misled or overwhelmed by details [68]. Consequently, both the four-phase
and the given-when-then patterns imply that the test setup should be strictly part
of the visible test code and should not be separated from the rest of the test code.
For instance, using a link seam to set up a test separates the "given" phase from
the rest of the test code, thus it violates both patterns and makes the test hard to
understand.

2.3 New Non-intrusive Test Seams
We have shown in the previous section that all four existing C/C++ seams have
some disadvantages that prevent us from using them or make us reluctant to use
them for non-intrusive testing. Link seams do not work with inline functions and

14

2.3. NEW NON-INTRUSIVE TEST SEAMS

require patching the build system. Link seams keep the test setup code separated
from the other phases of the test. Thus, with link seams is not feasible to write non-
intrusive tests which follow the given-when-then test pattern. Preprocessor seams
are problematic with classes and namespaces. Object seams and compile seams
often demand that we widen the public interface, thus they are intrusive. Also,
object seams might introduce additional performance penalty in the production
code.

In this section, we present new C/C++ test seams which may complement the
existing seams and could be used for non-intrusive testing. We introduce three
new non-intrusive testing seams:

1. a method based on compiler instrumentation and function call interception,

2. a procedure which transforms the original abstract syntax tree of the pro-
duction code for testing,

3. a static reflection based approach.

The seam based on tree transformations is rather experimental because the un-
derlying infrastructure is not stable enough. Also, the reflection-based seam is
presented as possible future work, because compile-time reflection is not part of
the core C++ language yet.

2.3.1 Function Call Interception based Test Seam
Function call interception (FCI) is one technique which enables non-intrusive test-
ing by making it possible to replace function bodies. By replacing functions we
can eliminate the unwanted dependencies in tests. With FCI we are able to inter-
cept function calls at runtime and we can execute actions before and/or after the
original function body or even completely replace it [69]. Different FCI methods
have different advantages and disadvantages. Compared to languages like Java, C
and C++ languages offer less mature solutions for FCI.

Function Call Interception Techniques

We differentiate the FCI techniques based on the time FCI is applied [69]. Dynamic
techniques perform the interception at program load-time or at runtime. Contrary
to dynamic approaches, static techniques achieve FCI by modifying the source
files (e.g. with the help of the preprocessor), by changing the linkage order, by
generating object files which contain the instrumentation or by modifying the
application binary image; all these modifications happen before runtime.

15

CHAPTER 2. NON-INTRUSIVE TESTING

Load-time FCI. Most modern operating systems provide the possibility to
specify shared objects to be loaded before all others. This can be used to selec-
tively override functions in other shared objects. E.g. on Linux this behaviour is
controlled by the LD_PRELOAD environment variable [70]. With this technique, call-
ing the original function is cumbersome. We have to use dlsym auxiliary function
with the RTLD_NEXT argument [71]. In case of C++ functions, we have to pro-
vide the mangled names. Furthermore, this mechanism is unreliable with member
functions (e.g. the member function pointer is not expected to have the same size
as a void pointer on some platforms [72]).

Run-time FCI. In POSIX compliant systems, runtime dynamic interception
is implemented with the help of the ptrace system call [73, 74]. If ptrace is used
with the PEEKTEXT or POKETEXT argument then it is possible to attach to a running
process and to read or write different segments of its memory. For instance, the
GNU debugger (gdb) [75] and Intel Pin [76] both use this approach. A disadvantage
of these tools is that they rely on a specific kernel functionality; thus porting these
implementations to other operating systems may be hard. E.g. Intel Pin currently
does not support function replacement on macOS [77]. Another property of this
technique is that we cannot instrument inline functions.

Pre-compilation-time FCI. We consider some use of the C/C++ prepro-
cessor as a pre-compilation-time interception. A typical use case is to replace the
malloc and the free functions from the standard C library to collect statistics
about the heap usage. This approach can be applied conveniently in C, but not
in C++. As soon as we use namespaces, the preprocessor might generate code
which cannot be compiled because of the ambiguous use of names. Hazardous side
effects of macros are also well known.

Link-time FCI. One example for the link-time static interception is the wrap
command line option of the GNU linker (ld) [78]. When this program option is
applied then the linker uses a wrapper function for the specified symbol, any un-
defined reference to symbol will be resolved to __wrap_symbol and any undefined
reference to __real_symbol will be resolved to symbol. This approach makes it
possible to replace a function and call the original. However, in case of C++ we
have to specify the mangled names as symbols. We cannot use this approach if
the symbol is defined within the very same translation unit where it is referenced.

Post-compilation-time FCI. There exist tools to modify the compiled binary
code for interception. As an example, in [79] the authors describe a method which
is a mixture of Link-time and Post-compilation-time techniques used to avoid
typical security vulnerabilities, like buffer overflow. A modified compiler can be
applied on a binary executable (or shared library) to extract type information
from the debugging data and reinsert it in the same binary which is then available
at runtime in a special data structure. At runtime, a pre-loaded shared library

16

2.3. NEW NON-INTRUSIVE TEST SEAMS

intercepts the possibly dangerous calls and validates them using the data structure
stored in the first step.

Compile-time FCI. Perhaps the most widely used static FCI technique is
to configure the compiler to emit instrumented code in a way that intercep-
tion is possible. The GNU/GCC and LLVM/Clang compilers both provides the
-finstrument-function program option to instrument each and every function
call in a way to execute code before and after the body of the functions [80]. Ac-
tually, when this instrumentation is enabled then the compiler emits two extra
calls for each function body. The prototypes of these two called functions are the
following:

void __cyg_profile_func_enter(void *this_fn, void *call_site);
void __cyg_profile_func_exit(void *this_fn, void *call_site);

The arguments for these functions represent the address of the original function
and the address of the instruction from where it was called. A serious limitation
of this technique is that we cannot replace an intercepted function with another
function; the original function will be called anyway.

Some seams are realized with FCI techniques. For instance, preprocessor seams
are implemented with pre-compilation-time FCI. Link seams are realized with
load-time and link-time FCI. The existence of compile-time, post-compile-time
and run-time FCI drives us to further extend the list of existing seams. We define
a new class of seams, the FCI seams. More specifically, we define three new seams
for each FCI technique: compile-time FCI seam, post-compile-time FCI seam and
run-time FCI seam.

In this dissertation we introduce a new compile-time FCI seam (2.3.1). We
describe a run-time FCI seam in Appendix A which is based on the existing Intel
Pin tool. However, we do not investigate post-compile-time FCI seams further.

Compile-time FCI Seam

In Figure 2.5 we present a legacy graphics program that relies on a LOGO-like
API for drawing. The API is realized as a class named the Turtle. Also, there is
Painter class which is responsible for drawing lines and shapes. This class has a
hard-wired dependency on the concrete Turtle class. Still, we would like to write
a test which checks the DrawLine() function. In this example let us suppose that
the turtle functions are quite expensive to use. Generally speaking, a dependency
may represent a database, or a network connection, whose usage can be hard, or
very expensive. Therefore, in our test, we want to mock the Turtle class (or at
least its member functions).

Our new instrumentation technique makes it possible to write non-intrusive
tests easily. Figure 2.6 lists the test which uses our new instrumentation method.

17

CHAPTER 2. NON-INTRUSIVE TESTING

// Turtle.hpp

class Turtle {
int x = 0, y = 0;

public:
void PenUp() { /* ... */ }
void PenDown() { /* ... */ }
void Forward(int distance) { /* ... */ }
void Turn(int degrees) { /* ... */ }
void GoTo(int x, int y) { /* ... */ }
int GetX() const { return x; }
int GetY() const { return y; }

};

class Painter {
Turtle turtle;

public:
void DrawLine(int x0, int y0, int x1, int y1) {

turtle.GoTo(x0, y0);
turtle.PenDown();
turtle.GoTo(x1, y1);
turtle.PenUp();

}
// ...

};

Figure 2.5: A legacy graphics program

We define our mock class (MockTurtle) with the help of the gmock macros (lines
6-10). Our test-case is defined from line 33 to 43. In the test-case we create
an instance of the Painter class, then we get a reference to its private turtle
member (line 37). Note that there are several different techniques to access a
private member, we use a method which relies on explicit template instantiations
[17]. Then we get a reference to an instance of the MockTurtle class which acts
as a test double for the Turtle instance (line 38). We state our expectations as
we would do with any other regular mock objects (lines 40-41). In line 42 we
exercise our unit under test by calling the DrawLine() method. With the help of
our tool we setup replacement functions for each member function of the Turtle
class (lines 26-27). These replacement functions behave as a proxy; they forward
each function call on a given Turtle instance to a corresponding test double (lines
17-22). The way we get the reference for a relevant test double is pretty simple
in this test: we return a reference to a static instance of the MockTurtle class
(lines 12-15). We can use this simplification because we know that there is only
one Turtle object over the lifetime of our test-case. If there were several Turtle
objects then we should solve the mapping differently, perhaps with the help of a
static hash map. Lines 45-48 contains the definition for the main() function which

18

2.3. NEW NON-INTRUSIVE TEST SEAMS

1 #include "Turtle.hpp"
2 #include <gmock/gmock.h>
3 #include <access_private.hpp>
4 #include <hook.hpp> // for SUBSTITUTE
5

6 class MockTurtle {
7 public:
8 MOCK_METHOD0(PenUp, void());
9 // PenDown, Forward, ...

10 };
11

12 MockTurtle& GetMockObject(Turtle*) {
13 static MockTurtle m;
14 return m;
15 }
16

17 namespace proxy {
18 void PenUp(Turtle* self) {
19 return GetMockObject(self).PenUp();
20 }
21 // Similarly to PenDown, Forward, ...
22 }
23

24 struct TurtleTest : ::testing::Test {
25 TurtleTest() {
26 SUBSTITUTE(Turtle::PenUp, proxy::PenUp);
27 // Similarly to PenDown, Forward, ...
28 }
29 };
30

31 ACCESS_PRIVATE_FIELD(Painter, Turtle, turtle)
32

33 TEST_F(TurtleTest, TestDrawLine) {
34 using ::testing::AtLeast;
35
36 Painter painter;
37 Turtle& turtle = access_private::turtle(painter);
38 MockTurtle& mockTurtle = GetMockObject(&turtle);
39

40 EXPECT_CALL(mockTurtle, PenDown())
41 .Times(AtLeast(1));
42 painter.DrawLine(0, 0, 10, 10);
43 }
44

45 int main(int argc, char **argv) {
46 ::testing::InitGoogleTest(&argc, argv);
47 return RUN_ALL_TESTS();
48 }

Figure 2.6: Testing the legacy program with compile-time FCI

19

CHAPTER 2. NON-INTRUSIVE TESTING

uses the functions and macros from googletest to initialize and run the test.
The most important property of this test is that the test setup is included in

the test application itself. This test structure is enabled by our instrumentation
technique which is controlled by the SUBSTITUTE macro. During the compilation
of our test binary, we have to include a header file from our auxiliary runtime li-
brary which provides the SUBSTITUTE macro, and we have to enable the mentioned
instrumentation with a compiler switch. Also, during linking, we have to link with
our given runtime library.

As another example of this new approach, we present how to test the Entity
class which has been introduced in Figure 2.4:

1 #include "Entity.hpp"
2
3 bool try_lock_result;
4 bool fake_mutex_try_lock(std::mutex* self) { return try_lock_result; }
5

6 TEST_F(Fixture, Mutex) {
7 SUBSTITUTE(&std::mutex::try_lock, &fake_mutex_try_lock);
8 Entity e;
9 try_lock_result = false;

10 EXPECT_EQ(e.process(1), -1);
11 try_lock_result = true;
12 EXPECT_EQ(e.process(1), 1);
13 }

Figure 2.7: Testing the ’Entity’ class with compile-time FCI

With the SUBSTITUTE macro, we simply replace the try_lock member function
of std::mutex with a free function named fake_mutex_try_lock. The first pa-
rameter of this free function holds a pointer to the object on which the original
try_lock member function has been called. We set the desired return value of the
free function via a global variable try_lock_result. In the test, once we set up
the desired return value of the test double (line 9 and 11), then we exercise our
unit under test and we formulate our expectations (line 10 and 12).

Our method has clear advantages compared to the LD_PRELOAD approach where
we can substitute functions only if they are defined in shared libraries. With
our technique, it is possible to write non-intrusive tests and replace even inline
functions. However, this new method requires rebuilding the application (or unit)
we want to test with the specific compiler option which will disable inlining. Our
technique has the following advantages:

• The test setup is part of the test application and clearly visible together with
the rest of the test code. This way it does not violate the given-when-then
test automation pattern and best practices.

20

2.3. NEW NON-INTRUSIVE TEST SEAMS

• It does not introduce a new tool into the existing build chain. The function-
ality is embedded into the compiler.

• On platforms where the compiler is supported, the new instrumentation
could be supported as well.

• There is no need to use mangled names.

• We can use the ordinary unit test building tools and we can group unit tests
into the same test application.

FCI with Call Expression Instrumentation

Our new interception technique and the prototype consists of two parts: a com-
piler instrumentation module and a runtime library. The instrumentation module
modifies the code to check whether a function has to be replaced or not. The
runtime library provides functions to set up the replacements.

Instrumentation During the code generation, we modify each and every func-
tion call expression to call an auxiliary function. Let us consider the following
function call expression of foo:

foo(args...);

When our instrumentation is in action, the emitted code is equal to the following
pseudo-code:

char* funptr = __fake_hook(&foo);
if (funptr) {

funptr(args...);
} else {

foo(args...);
}

The call to __fake_hook resolves at runtime if we should replace the callee with an-
other function or not. We replace a function if the returned value of __fake_hook
is not zero, in this case the returned value is a pointer to the function we call as
a substitution. If the return type of the callee function is not void then we create
an additional storage for the return value:

21

CHAPTER 2. NON-INTRUSIVE TESTING

char* funptr = __fake_hook(&foo);
using ReturnType = decltype(foo(args...);
ReturnType ret;
if (funptr) {

ret = funptr(args...);
} else {

ret = foo(args...);
}
return ret;

Our prototype is based on LLVM/Clang [81, 82]. The LLVM compiler in-
frastructure is briefly presented in Appendix B. The implementation modifies the
emitted LLVM Intermediate Representation (IR) [83] code. For instance, let us
consider the following definition of the bar C++ function:

int foo(int);

int bar(int p) {
return foo(p);

}

The LLVM IR of bar after optimization looks like this:
define i32 @_Z3bari(i32 %p) #0 {
entry:
%call = tail call i32 @_Z3fooi(i32 %p)
ret i32 %call

}

The generated code is very straightforward: there is only one basic block (entry)
which stores the return value from the call of foo and then it returns with it. Note
that the function names are mangled thus we see the _Z3 prefix for the function
names.

When we enable our instrumentation and optimization, then the IR has the
form presented in Figure 2.8. Now we have four different basic blocks. The first
block (entry) evaluates the return value1 of the __fake_hook function, compares
it to zero and emits a branch based on the comparison. The then block is executed
if the callee shall be replaced. We call the substituting function pointer, then we
jump to the last basic block(cont). The else block is executed if the callee shall
not be substituted; we just simply call the original function then jump to the cont
block. At last, in the cont block, we store the result of either the callee or the
replaced function, and we return with that.

Clang’s internal architecture [84] is built in such a way that the code generation
for all kind of call expressions are eventually handled in one common routine. For

1The type of the return value is i8*, which is a pointer to an 8 bit long data and the most
universal pointer type in LLVM. Thus, char* in C/C++ is the direct representation of i8* in
LLVM. This is why we use char* instead of void* in our C/C++ code and in the pseudo codes
above.

22

2.3. NEW NON-INTRUSIVE TEST SEAMS

define i32 @_Z3bari(i32 %p) #0 {
entry:
%fake_hook_result = tail call i8*

@__fake_hook(i8* bitcast (i32 (i32)* @_Z3fooi to i8*))
%0 = icmp eq i8* %fake_hook_result, null
br i1 %0, label %else, label %then

then: ; preds = %entry
%1 = bitcast i8* %fake_hook_result to i32 (i32)*
%subst_fun_result = tail call i32 %1(i32 %p)
br label %cont

else: ; preds = %entry
%call = tail call i32 @_Z3fooi(i32 %p)
br label %cont

cont: ; preds = %else, %then
%call_res.0 = phi i32 [%subst_fun_result, %then], [%call, %else]
ret i32 %call_res.0

}

Figure 2.8: The LLVM IR when our instrumentation is enabled

example, in the case of virtual function calls the adjustment of the this pointer
happens before calling that routine. We placed the emission of our instrumentation
code inside that routine. As a result, special cases such as the this adjustment
are automatically handled; we do not have to manually adjust the this pointer
when we substitute a virtual function.

Contradictory to -finstrument-functions, by instrumenting the call expres-
sions (and not the function body) we have the convenience that we do not have to
recompile dependent libraries if the call expression is in code outside of the library.
This has a clear advantage in case of system libraries, third-party shared libraries
and security critical applications where we have to evade library interposing.

Runtime Library The main purpose of the runtime library is to implement
the __fake_hook function which is referenced from the instrumented code. The
realization of this hook function has to find the related function pointer in case of
an active substitution. Essentially, it is a simple pointer to pointer mapping which
may be implemented with a simple hash function. However, in order to make
the lookup as fast as possible, we chose to implement the mapping with a simple
offsetting into the virtual memory (shadow memory). During program startup –
more precisely, when our shared object is loaded – we initialize the shadow memory
with the help of the mmap [85] system call. We assume that the size of a function
definition is at least 1 byte since it has to contain at least a return instruction. Let
N denote the size of a pointer in bytes of a specific architecture. Since we must

23

CHAPTER 2. NON-INTRUSIVE TESTING

be able to store a function pointer for every function, we have to reserve a shadow
memory which is N times bigger than the normal virtual address space which holds
the function definitions. If the mmap system call is called with the MAP_ANONYMOUS
argument then it guarantees that the reserved memory is initialized to zero. Note
that in practice the OS does not zero out the mapped region during the mapping,
only at the moment when a virtual address is being accessed by the first time. We
divide the user-space virtual memory into two different regions. Low memory and
high memory. We handle the memory mapping differently for each region. For
instance, on macOS the memory is partitioned as follows:

[0x7f0000000000, 0x7fffffffffff] || HighMem
[0x120000000000, 0x19ffffffffff] || HighShadow
[0x020000000000, 0x11ffffffffff] || LowShadow
[0x000000000000, 0x01ffffffffff] || LowMem

Let addr denote the original address, shadowAddr the address of the
corresponding shadow and shadowOffset the offset for a region. With this
formula shadowAddr “ addr ˚ N ` shadowOffsetpregionpaddrqq we can calculate
the shadow address. By using the shadow memory instead of a simple hash map
we trade execution time for space. The program occupies terabytes in virtual
memory, however, the resident (physical) memory usage is equal to the number
of used substitutions multiplied with N . More specifically, operating systems do
not reserve the specific physical pages to the process until there is no write to
that memory area. Consequently, those memory pages which contain the shadow
values of substituted functions will be resident physical pages registered in the
process page table. In practice, this means only a few kilobytes of additional
physical memory usage when we run the tests (given a page has a 4kb size and
not taking into account the Linux specific huge pages). During program startup,
we must make sure that our shared object gets initialized before the first function
call. Our prototype achieves this by setting the constructor attribute [86] on
the initializer function of the shared object. If there are other shared libraries
linked to the final executable with such initializer functions, then it is the user’s
responsibility to ensure that our library is initialized first.

Another purpose of the runtime library is to provide the user interface to set up
the function substitutions. Replacing a function in C is pretty simple, the shared
object defines a function for that:

_substitute_function((const char*)&foo, (const char*)&fake_foo);

We may use the SUBSTITUTE macro in case of C++ to replace functions; this
construct is more generic because it also supports member functions. Note that
we have to include the header file attached to the runtime library, also we have
to link with it. Our implementation is thread-safe if there are multiple threads
calling the very same function. Although, there is a race condition if one thread is

24

2.3. NEW NON-INTRUSIVE TEST SEAMS

1 template <typename Class, typename MemPtr>
2 const char *address_of_virtual_fun(const Class *aClass, MemPtr memptr) {
3 const char **vtable = *(const char ***)aClass;
4 struct pointerToMember {
5 size_t pointerOrOffset;
6 ptrdiff_t thisAdjustment;
7 };
8 pointerToMember p;
9 memcpy(&p, &memptr, sizeof(p));

10 static const size_t pfnAdjustment = 1;
11 size_t offset = (p.pointerOrOffset - pfnAdjustment) / sizeof(char *);
12 return vtable[offset];
13 }

Figure 2.9: Get the address of a virtual function

calling the specified function while another thread is setting up the substitution;
in such cases, the user code must ensure thread safety.

Virtual Functions A pointer-to-member function may have a different layout
in case of virtual functions than in case of regular member functions. Therefore,
we cannot just simply cast a virtual function pointer to a void pointer.

The naive approach Without compiler support, we can get the address of a
virtual function in an architecture-dependent way. On Figure 2.9 we present how
we can get the address in case of the Itanium C++ ABI [72]. First, we receive
the vtable from an object by dereferencing its vpointer (line 3). The vpointer is
the first element in the object. We interpret the bits of the pointer to member
(memptr) as an instance of the aggregate class pointerToMember (lines 4-9). Next,
we set up the architecture dependent function pointer adjustment (line 10). Then,
we get the offset and return with the appropriate element in the vtable (lines
11-12). We could replace virtual functions by exploiting this technique. Let us
suppose we have a macro named SUBSTITUTE_VIRTUAL which use this technique
and the following class hierarchy:

struct B { virtual void foo(); }; struct D : B { void foo() override; };

If we wanted to replace the foo() function when the dynamic type was D then we
would have to get a pointer to such an instance:

B* dummy = new D; SUBSTITUTE_VIRTUAL(&D::foo, dummy, &D_fake_foo);

However, to replace the function in the base class as well, we would have to get a
pointer to an instance whose dynamic type was B:

B* dummy = new B; SUBSTITUTE_VIRTUAL(&B::foo, dummy, &B_fake_foo);

25

CHAPTER 2. NON-INTRUSIVE TESTING

New compiler intrinsic The previous naive approach is ABI dependent and
it also requires a reference to an existing object. Thus, we tried to find a better
alternative without these restrictions. Generally speaking, in order to replace
functions we just need an identifier for each function – virtual or not – which is
unique in the program. Actually, each function has such a unique identifier, and
it is its own address in the program’s virtual memory. Unfortunately, there is no
valid C++ language construct to get this unique identifier. Nevertheless, GCC
has implemented this feature [87], but sadly Clang did not. Clang developers
claim that this feature is fundamentally broken, because when we use it then the
proper adjustment of the this pointer may be elided [88]. Still, our technique
could use this feature since our compiler instrumentation intervenes after the this
adjustment thunk is emitted. Thus, we implemented this functionality in the
Clang compiler, so we are able to use it within our implementation, hidden from
the users and enabled only in test code. With this approach, the replacement of
the foo() function when the dynamic type is D has the following form:

SUBSTITUTE(D::foo, D_fake_foo);

This is the very same form which we can use to replace free functions or non-virtual
member functions.

Internally, the SUBSTITUTE macro expands to a call to
_substitute_function and the arguments of that function are generated by our
new compiler intrinsic:

#define SUBSTITUTE(src, dst) \
do { _substitute_function((const char *)__function_id src, \

(const char *)__function_id dst); } while (0)

We modified the compiler to parse a new kind of unary expression when the
__function_id literal is given and the test specific instrumentation is enabled.
In case of free functions and static member functions this unary expression has
the very same type which we would get in case of the "address of" unary expres-
sion:

void foo();
void bar() {

auto p = & foo; // void (*)()
auto q = __function_id foo; // void (*)()

}

However, in case of non-static member functions the two expressions yield different
types:

26

2.3. NEW NON-INTRUSIVE TEST SEAMS

struct X { void foo(); virtual void bar(); };
void bar() {

auto p = & X::foo; // void (X::*)()
auto q = __function_id X::foo; // void (*)()
auto r = __function_id X::bar; // void (*)()

}

At runtime the value of these expressions are evaluated to hold the address of the
specific raw function which can be identified by the corresponding mangled name
in the compiled binary’s text section.

Overload Resolution We may have several functions with the same name but
with different parameters. Let us consider the below code:

struct X { int foo(int); int foo(double); };
int X_fake_foo_i(X*, int);

Normally, if we would like to get the address of X::foo(int) we have to explicitly
cast a function pointer to the appropriate type:

int(X::*mfp)(int) = & X::foo;

Here, we define a pointer variable with the name mfp which has the type
int(X::*)(int) and it holds the address of X::foo. With the __function_id
intrinsic we have to do the same, but the type will be different:

int(*mfid)(int) = __function_id X::foo;

For safety reasons, the __function _id is hidden from the users of our instru-
mentation, but they can use the three parameter form of the provided SUBSTITUTE
macro to replace an overloaded function. For example, to replace X::foo with the
X_fake_foo_i free function one has to write:

SUBSTITUTE(int(int), X::foo, X_fake_foo_i);

Other Special Cases A few standard library functions, such as abort and exit,
cannot return. Some programs define their own functions that never return. We
can declare them noreturn to tell the compiler this fact The compiler can optimize
without regard to what would happen if a noreturn function ever did return.
This makes slightly better code [86]. Our prototype supports the substitution of
functions with the noreturn attribute with functions which do return. We achieve
this by generating such code for the call expression which we would generate in
case of normal functions on the branch where the substitution is active.

Generally, during compilation, functions are not inlined unless optimization is
specified. For functions declared inline, the always_inline attribute [86] inlines
the function even if no optimization level was specified. Our implementation makes
it possible to replace always-inline functions if a special program option is passed
for the compiler. Naturally, the given function definition will not be inlined and

27

CHAPTER 2. NON-INTRUSIVE TESTING

it will be emitted as a standalone function with an address. However, there are
special cases with always-inline function declarations. For instance, in the case of
the libcxx library – which is one standard C++ library implementation – most
of the getters and setters have the always_inline attribute. For example, the
basic_string class template declares c_str() as always inline but there is an
extern template declaration in the <string> header for basic_string<char>.
Also, there is an implicit template instantiation of basic_string<char> which
does not expose c_str(), as that is declared to be always-inline. When we turn
on our instrumentation, the generated object file has an undefined reference to
c_str(), since the code is not emitted because of the extern template declaration.
To make the instrumentation work either we have to recompile libcxx with our
instrumentation enabled and we have to link against the instrumented libcxx, or we
have to eliminate somehow the extern template declaration. The latter is possible
in one of our branch of the libcxx repository. Note that we did not experience this
interesting case with the GNU standard C++ library implementation on Linux
(GCC/6.2 version).

A C++ constexpr function cannot be replaced when it is used in a compile-
time expression. However, it can be replaced whenever it is used within a runtime
context:

constexpr int foo(int p) { return p * p; }
int fake_foo(int p) { return p * p * p; }

TEST_F(FooFixture, Constexpr) {
SUBSTITUTE(foo, fake_foo);

// compile-time evaluation
static_assert(foo(2) == 4, "");

// runtime evaluation
EXPECT_EQ(foo(2), 8);

}

The expression inside the static_assert is forced to be evaluated during the
compilation.

Performance Evaluation

We measured the runtime performance of the compiled instrumented code with
the help of the Adobe C++ Performance Benchmark [89]. This benchmark is
used and accepted in the industry to measure the run-time performance of com-
piled (and instrumented) code [90, 91, 92]. A typical object-oriented program is
characterized by its high level of abstraction. While this is normally an advan-
tage for the development and maintainability of a program, it is a major headache
for an optimizing compiler and for any compile-time instrumentation. By using

28

2.3. NEW NON-INTRUSIVE TEST SEAMS

this benchmark we can measure the performance penalty caused by the instru-
mentation on the different abstraction levels like templates or function objects.
We compare our instrumentation method to a non-instrumented debug build, to a
non-instrumented release build and to a build when the -finstrument-functions
instrumentation is enabled.

We use exactly three different test suites from the Adobe benchmark. Each of
these test suites consists of a loop with each iteration sorting prepared data. The
number of iterations and the size of the data is a reasonably big number to provide
valuable measurements. The following pseudo-code describes the measurement:

void test_sort(Data Source, Data Dest)
{
start_timer();
for (int i = 0; i < iterations; ++i) {

copy(Source, Dest);
sort(Dest);
verify_sorted(Dest);

}
record_result(timer());

}

The distinguished test suites measure overhead about different abstractions.

The function objects test suite The function objects test suite compares the
performance of function pointers, functors, inline functors, standard functors, and
native comparison operators. These function pointers and function objects are
passed as a comparator to the sort algorithm. The sort algorithm is realized by a
function template, which takes the comparator as a parameter:

template<class Iterator, typename Comparator>
void sort(Iterator begin, Iterator end, Comparator compare);

With this test suite, we measure the performance overhead caused by function
pointers and function objects.

The Stepanov abstraction test suite The Stepanov abstraction test suite
examines any change in performance when adding abstraction to simple data types.
For instance, a value wrapped in a class may perform worse than a raw value:

29

CHAPTER 2. NON-INTRUSIVE TESTING

template <typename T>
struct ValueWrapper {
T value;
ValueWrapper() {}
template <typename TT>
inline operator TT() const {

return (TT)value;
}
template <typename TT>
ValueWrapper(const TT& x)

: value(x) {}
T& operator*() const { return *value; }

};

template <typename T>
inline ValueWrapper<T> operator+(const ValueWrapper<T>& x,

const ValueWrapper<T>& y) {
return ValueWrapper<T>(x.value + y.value);

}

template <typename T>
inline bool operator<(const ValueWrapper<T>& x,

const ValueWrapper<T>& y) {
return (x.value < y.value);

}

Also, a value recursively wrapped in a struct or class may perform worse than a
raw value:

typedef ValueWrapper<double> DoubleValueWrapper;
typedef ValueWrapper<ValueWrapper<

ValueWrapper<ValueWrapper<ValueWrapper<ValueWrapper<ValueWrapper<
ValueWrapper<ValueWrapper<ValueWrapper<double>>>>>>>>>>

DoubleValueWrapper10;

We measure the performance of an insertion sort when several layers of these value
wrappers are applied.

The Stepanov vector test suite This test suite is similar to the previous
one, but this time the abstraction is increased by moving from pointers to vector
iterators. We measure the performance in case of applying quicksort on a
std::vector. With this test suite, we can observe the overhead caused by
iterators.

We compiled the test suites with different compiler flags and we compared
the absolute total time of run time of each test cases. On Figure 2.10 we show
the total time for the function objects test case with the different compiler se-
tups. Our instrumentation is turned on with the -fsanitize=mock option. With
the -finstrument-functions setup we define the __cyg_profile functions in a

30

2.3. NEW NON-INTRUSIVE TEST SEAMS

standalone, separate translation unit. In case of both instrumentations, we dis-
able inlining. Figure 2.11 presents the total absolute time for the Stepanov vector
test suite. Similarly, Figure 2.12 represents the total time in one test case of the
Stepanov abstraction suite.

Both our instrumentation and -finstrument-functions causes
performance degradation. In most cases our technique performs similarly to
-finstrument-functions. Our method exchanges two extra function calls
(__cyg_profile_func_enter and __cyg_profile_func_exit) with one extra
function call to __fake_hook followed by an efficient lookup.

We experienced that with our instrumentation, the size of the binary may
grow bigger. In the case of a simple C program, we measured around 15% (bzip2).
In the case of a template heavy program (Stepanov abstractions test suite), we
measured that the executable could be up to 3 times bigger compared to a release
optimized (-O2) binary. We measured very similar size growth in case of the
-finstrument-functions feature.

We performed the measurements on a Linux machine with an Intel(R)
Core(TM) i7-4610M CPU @ 3.00GHz processor and with 16GB RAM. The given
CPU is laptop-class hardware that scales the frequency dynamically from 0.8Ghz
to 3.7Ghz, therefore we turned off turbo boost and frequency scaling by using the
appropriate ACPI kernel driver.

Note that we did not notice any degradation in the run time and in the memory
usage of the compilation process itself when our instrumentation was turned on.

Limitations And Future Work

Our prototype is implemented in the code generation part of the Clang compiler,
however, it would be architecturally better if we realized that as a transforming
optimizer pass. This pass should run before all other optimizer passes. By having
an optimizer pass, all the logic related to this instrumentation would be well sepa-
rated and self-contained. Also, it would make it possible to use our tool with other
language frontends, thus this is our most important future work. Currently, we do
not have any check to enforce that the original function and its replacement have
the same signature. In the future, we plan to create a checking function template
for the substitutions. The prototype works only on 64 bit x86 systems.

Replace the operator() of a lambda is not supported unless we can take the
address of the lambda. Similarly, member functions of structs/classes which are
defined inside a function cannot be replaced, because there is no valid expression to
get their address. Our technique relies on that we should be able to get the address
of the function we want to substitute. In the case of constructors and destructors,
we cannot get their address with any standard C++ expression. Still, replacing
constructors or destructors would be a valuable contribution in the domain of

31

CHAPTER 2. NON-INTRUSIVE TESTING

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
seconds

-fsanitize=mock

-finstrument-functions

debug build

release build

Figure 2.10: Total absolute time for function objects

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
seconds

-fsanitize=mock

-finstrument-functions

debug build

release build

Figure 2.11: Total absolute time for vector quicksort

32

2.3. NEW NON-INTRUSIVE TEST SEAMS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
seconds

-finstrument-functions

-fsanitize=mock

debug build

release build

Figure 2.12: Total absolute time for abstraction insertion sort

testing, thus this is an important area for further research.

Related Work

Our new instrumentation technique for non-intrusive testing is based on compile-
time FCI, which is a special function call interception method. The different
function call interception techniques are explained in details by Kang [69]. The
author also discusses aspect-oriented programming implementation techniques for
intercepting method calls.

There are many existing software error checking tools which are based on some
kind of instrumentation. These tools are worth to investigate because the instru-
mentation they apply could be used alternatively to the compile-time instrumen-
tation which we applied in our work. A large number of memory error detectors
are based on binary instrumentation. For example, Valgrind (Memcheck) [93], Dr.
Memory [94], Purify [95], Intel Inspector [96]. The most popular compiler instru-
mentation based error checker tools are the AddressSanitizer [97], ThreadSanitizer
[98], XRay instrumentation [99, 100] and other different sanitizers supported by
the LLVM/Clang infrastructure [101, 102]. Our instrumentation technique was
inspired by the AddressSanitizer, we reused many ideas from its implementation
(e.g shadow memory).

Our new approach uses the so-called shadow memory to implement an ex-

33

CHAPTER 2. NON-INTRUSIVE TESTING

tremely efficient hash table which contains the mapping between the functions
and their respective test doubles. Shadow memory is not a new technique it has
been used previously by various error checker software. The above mentioned Ad-
dressSanitizer and ThreadSanitizer both use shadow memory to store metadata
for a specific piece of memory. AddressSanitizer uses a shadow space scaled down
to one eight of the normal address space and can be easily used on 32 bit systems.
However, ThreadSanitizer uses 8 times larger shadow memory than the normal
address range, therefore support for 32-bit platforms is problematic and is not
planned by the maintainers. We can find users of the shadow memory mapping
outside of the LLVM universe as well. For instance, Valgrind [103] TaintTrace
[104], LIFT [105], Bound-Less [106], Umbra [107, 108] and LBC [109].

Conclusion

Test seams are used to create non-intrusive tests for legacy systems, some of these
seams are often realized via an FCI technique. We introduced our new compiler
instrumentation for C and C++ programs, which makes it possible to replace the
intercepted function call. While most of the existing instrumentation methods
modify the function to call we instrument the caller side. We substitute the ac-
tual call with a small code snippet in compilation time, which decides at runtime
whether the original or a replacement function is about to call. The decision is
made using shadow memory and an offset to minimize runtime overhead. In con-
trast to other seams, our new instrumentation seam keeps the test setup code
close to the other phases of the test. The technique makes it feasible to write
non-intrusive tests which follow the given-when-then test pattern. This way, our
method could help to implement well-structured tests for legacy software systems.

Compared to existing compile-time instrumentation solutions, our technique
does not require the modification or even the recompilation of the intercepted
functions, which is a possible advantage in case of legacy code, system libraries,
third-party shared libraries or in situations when we have to avoid library interpos-
ing. We have created a prototype implementation using the LLVM/Clang compiler
infrastructure, which is publicly available at [14].

2.3.2 Syntax Tree Transformation based Test Seam
FCI based test seams do not have the drawbacks of link and preprocessor seams.
However, those techniques are still not applicable to all cases. For example, we can-
not replace types, we can replace only simple function dependencies. Therefore, we
seek for new seams, which do not have the disadvantages of link and preprocessor
seams and enable us to replace dependent types with test double types.

34

2.3. NEW NON-INTRUSIVE TEST SEAMS

In this section, we examine a new experimental non-intrusive testing approach
which transforms certain parts of the original abstract syntax tree of the production
code for the purpose of testing.

AST Transformations

An abstract syntax tree (AST) is a data structure which represents the hierarchical
syntactic structure of the source program [110]. They are widely used in compilers
as an intermediate representation of the program through several stages that the
compiler requires. During certain compilation stages the abstract syntax tree is
being transformed, e.g. in case of C++ template instantiation existing nodes are
being modified and new nodes are added to the tree.

Abstract syntax tree transformations are used for several purposes. In the
Groovy programming language [111], it is used as a form of compile-time metapro-
gramming; it allows the developers to hook into the compilation process and to
modify the AST before bytecode generation.

The LLVM/Clang compiler infrastructure [112] makes it possible to write cer-
tain source to source transformations which modify the existing AST of a source
file and produces the modified source code as an output. This may be used,
for instance, to annotate the source code with additional statements that create
statistics about memory allocations.

CodeBoost is a source-to-source transformation tool for domain-specific op-
timisation of C++ programs [113, 114]. CodeBoost performs parsing, semantic
analysis and pretty-printing, and transformations can be implemented either in
the Stratego program transformation language or as user-defined rewrite rules em-
bedded within the C++ program.

Constant propagation, a well known data-flow optimization problem, can be
implemented on abstract syntax trees in Stratego, a rewriting system extended
with programmable rewriting strategies for the control over the application of
rules and dynamic rewrite rules for the propagation of information [115].

Prolog can be retrofitted with concrete syntax and seamless interaction of con-
crete syntax fragments with an existing "legacy" meta-programming system (based
on abstract syntax) can be achieved [116]. This can result in a considerable re-
duction of the code size and improved readability of the Prolog source code.

To support non-intrusive tests, our idea is to apply a special AST transforma-
tion. We would like to replace the AST node of the dependency with a new node
which refers to the test double. However, in most cases, the AST contains cross-
references to the nodes. For example, a call expression holds a cross-reference to
the node of the callee. (Thus, strictly speaking, the AST is not a tree.) If we
would like to replace a function definition node, then we have to replace all the
declaration references in all call expressions. To achieve that we should have to

35

CHAPTER 2. NON-INTRUSIVE TESTING

do a sophisticated traversal through the AST. Instead, we build the AST of the
program starting with the test double nodes and then we build the rest of the
AST of the production code on top of that. This way when we add a new node
then the cross-references will point to the test double nodes. To achieve this incre-
mental AST building we reuse and modify an existing algorithm: the AST import
algorithm.

The AST Import Algorithm

Traditionally, C/C++ compilers process one translation unit (TU) at a time. How-
ever, there are use cases when we have to access information from several (or all)
translation units of a program. For example, in case of link-time optimization, or
in case of cross translation unit static analysis. The LLVM/Clang cross transla-
tion unit static analysis [117] executes the same single translation unit analysis
algorithms but on an AST which is synthesized by merging several ASTs of the
individual translation units. This merged AST is created by first parsing one TU
and then importing the ASTs of the other TUs one-by-one into the first.

The algorithm to merge the ASTs is existing and implemented in the Clang
compiler. It relies on the capability of detecting structural equivalence between
different AST elements. Two AST nodes are structurally equivalent if they are

• builtin types and refer to the same type, e.g. int and int are structurally
equivalent,

• function types and all their parameters have structurally equivalent types,

• record types and all their fields in order of their definition have the same
identifier names and structurally equivalent types,

• variable or function declarations and they have the same identifier name and
their types are structurally equivalent.

This description is depicted more formally in Algorithm 2.1. Note that templates
and related AST nodes are handled similarly, but we do not include them in the
algorithm, because we would like to keep it small and presentable.

Algorithm 2.2 describes the procedure of importing an AST. The algorithm has
to ensure that the structurally equivalent nodes in the different translation units
are not getting duplicated in the merged AST. E.g. if we include the definition
of the vector template (#include <vector>) in two translation units, then their
merged AST should have only one node which represents the template. Also, we
have to discover one definition rule (ODR) violations. For instance, if there is
a class definition with the same name in both translation units, but one of the
definition contains a different number of fields. We refer to the translation unit

36

2.3. NEW NON-INTRUSIVE TEST SEAMS

Algorithm 2.1: Structural Equivalence Check

function StructurallyEquivalentTypes(T1, T2)
if T1 is Builtin and T2 is Builtin then
if T1 ““ T2 then

return True
if T1 is Function and T2 is Function then
forall pPT1, PT2q in pParamTypespT1q, ParamTypespT2qq do

if ! StructurallyEquivalent(PT1, PT2) then
return False

return True
if T1 is Record and T2 is Record then
forall pN1, N2q in pFieldNamespT1q, F ieldNamespT2qq do

if N1 ‰ N2 then
return False

forall pFT1, FT2q in pFieldTypespT1q, F ieldTypespT2qq do
if ! StructurallyEquivalent(FT1, FT2) then

return False
return True

function StructurallyEquivalentDecls(D1, D2)
N1 Ð namepD1q
N2 Ð namepD2q
if N1 ‰ N2 then
return False

T1 Ð typepD1q
T2 Ð typepD2q
return StructurallyEquivalentTypes(T1, T2)

37

CHAPTER 2. NON-INTRUSIVE TESTING

into which we import as the To TU and the one which we import from as the From
TU.

Algorithm 2.2: AST Import
for each top level Decl in the From TU do

FoundDeclsList Ð lookup all declarations in the To TU with the same
name of Decl
for each FoundDecl in FoundDeclsList do

if StructurallyEquivalentDecls(FoundDecl, Decl) then
ToDecl Ð FoundDecl
mark Decl as imported

else if Decl is a function then overloaded function
ToDecl Ð create a new AST node in To TU
import dependent declarations and types of ToDecl

else
report ODR violation

if FoundDeclsList is empty then
ToDecl Ð create a new AST node in To TU
import dependent declarations and types of ToDecl

Reusing the AST Import Algorithm for Testing

As for our contribution, we extend the already existing AST importer mechanism
and we present how we can use that to create non-intrusive tests. With the ex-
tension, we can transmogrify the original AST of the production code to an AST
which contains the nodes of test doubles instead of the nodes of the original de-
pendencies. The key to our approach is that we import everything into the test
double’s context. When the production code is being merged and when we reach
the import of a dependent entity then the lookup finds the definition of the test
double and that definition is getting used in the rest of the imported AST. We in-
troduced a new attribute ([[test_double]]) which modifies the behaviour of the
structural equivalence check. During the check of two declarations/types, if this
attribute is present in the declaration/type of the "to" context then we consider
the two entity as equivalent. The modified structural equivalent check algorithm
is presented in Algorithm 2.3. The structural equivalence check is called from the
AST import algorithm where it is always guaranteed that the second parameter is
the one from the "to" context. Thus, we check for the presence of the test double
attribute for the second parameters (T2, D2). With the help of this new attribute
and the modified equivalence check, we are able to change the import algorithm

38

2.3. NEW NON-INTRUSIVE TEST SEAMS

Algorithm 2.3: Modified Structural Equivalence Check

function StructurallyEquivalentTypes(T1, T2)
if T2.hasAttr(TestDoubleAttr) then
return True

if T1 is Builtin and T2 is Builtin then
if T1 ““ T2 then

return True
... Same as before in Algorithm 2.1

function StructurallyEquivalentDecls(D1, D2)
if D2.hasAttr(TestDoubleAttr) then
return True

N1 Ð namepD1q
N2 Ð namepD2q
if N1 ‰ N2 then
return False

... Same as before in Algorithm 2.1

to use the test double in the production code. We created a prototype implemen-
tation based on the LLVM compiler infrastructure which is publicly available at
[15]. The LLVM compiler infrastructure is briefly presented in Appendix B.

Figure 2.13 demonstrates how our new method can be used to replace a sim-
ple function in the AST. The foo() function is defined in the foo.c translation
unit and it calls the bar() function, which is defined in the very same TU. The
fake_bar.c file contains the definition for the test double which we want to use
as the replacement function in the test. The test double has the same name as the
original function we want to replace. Normally, having two definitions would cause
ODR violation during the import procedure, but this time the test double has the
special attribute attached to its definition. In test.c we have the actual test
code, which exercises the production code (foo()) and formulates expectations on
that. If foo() calls the test double bar() then the return value will be 13 and
then main() will return with success. First, we have to create the serialized AST
files for each source file (-emit-pch). Then we import the AST of the production
code (foo.ast) and the test code (test.ast) into the AST of the test double
(fake_bar.ast). We achieve this by providing the AST files in the proper order
and with the -ast-merge command line option of the compiler. Once we have the
merged AST then we emit an object file from that (-emit-obj) and during this
process, all C/C++ semantic checks are executed. Thus, if the modified AST is
semantically incorrect then we will be notified. (Note that it would be possible

39

CHAPTER 2. NON-INTRUSIVE TESTING

// foo.c
int bar() { return 1; }
int foo() {

return bar();
}

// fake_bar.c
[[test_double]]
int bar() {

return 13;
}

// test.c
int foo();
int main() {

return
foo() == 13 ? 0 : 1;

}

Create the ASTs
clang -cc1 -emit-pch -o foo.ast foo.c
clang -cc1 -emit-pch -o fake_bar.ast fake_bar.c
clang -cc1 -emit-pch -o test.ast test.c

Merge the ASTs and emit an object
clang -cc1 -ast-merge fake_bar.ast -ast-merge foo.ast -ast-merge test.ast /dev/null \
-emit-obj -o merged.o

Link
clang -o output merged.o

Run the test
./output

Figure 2.13: Replacing a simple function in the AST

// foo.h
class Bar {

int a;
public:

int f() { return 1; }
};

class Foo {
Bar bar;

public:
int ff() {

return bar.f();
}

};

// fake_bar.h
class [[test_double]]
Bar {

public:
int f() {

return 13;
}

};

// test.c
#include "foo.h"

int main() {
return Foo().ff() == 13

? 0
: 1;

}

Figure 2.14: Replacing a record type in the AST

to parse the source files on-demand instead of using the .ast files, however, that
would result in a need for re-parse even if the related source did not change.)

In Figure 2.14 we show how we can replace a record type. This time we have
a class as a dependency (Bar) defined in foo.h. The test double in fake_bar.h
simply replaces the only f() member function, which returns a fake value. The
rest of the mechanism is quite similar to before, the only difference is that this
time we have to generate AST files from headers.

The previous example in Figure 2.14 presented that we can easily replace types
if the substitute type has the same functions defined as the original one. Figure 2.15
demonstrates we can even extend the replaced type with additional functionality,
which may be very useful if we want to create mock test doubles and not just
simple stub objects. In the test (test.c) we would like to use a test double which

40

2.3. NEW NON-INTRUSIVE TEST SEAMS

// foo.h
class Bar {

int a;
public:

int f() { return 1; }
};

class Foo {
public:
Bar bar;
int ff() { return bar.f(); }

};

// mock_bar_modifiers_fwd.h
struct Bar;
void set_f_return_value(Bar* bar, int value);

// mock_bar.h
#include "mock_bar_modifiers_fwd.h"

struct [[test_double]] Bar {
int f_return_value = 0;
int f() {

return f_return_value;
}

};

void set_f_return_value(Bar* bar,
int value) {

bar->f_return_value = value;
}

// test.c
#include "foo.h"
#include "mock_bar_modifiers_fwd.h"

int main() {
Foo foo;
set_f_return_value(&foo.bar, 13);
return foo.ff() == 13 ? 0 : 1;

}

Figure 2.15: Changing the AST to use a mock test double

can be set up to return with a given value in its member function (f()). To achieve
this we provide a new header file (mock_bar_modifiers_fwd.h), which contains
prototype definitions for such functions which can modify the dependency via a
pointer. Since we use a pointer we do not have to see the whole definition of the
Bar class, a forward declaration is sufficient. With this auxiliary header file we
can create the AST dump for the test file. The definition of the setter function(s)
is placed in the test double file (mock_bar.h) together with the definition of the
mock type. The rest of the mechanism is similar to the previous examples, we have
to merge the AST files of the production and test code into the AST of the test
double. There is no need to create a separate AST file for the auxiliary header.

Evaluation

Compared to link seams, our new seam makes it possible to replace functions even
if they are inlined or statically linked. Besides, we can replace class definitions
and virtually anything because we do the replacement on the AST level. Similarly
to link seams, our method requires additional help from the build system since
we have to create the AST files separately and we have to merge them manually.
Also, the enabling point of our seam is in the build scripts, as in the case of the
link seams.

41

CHAPTER 2. NON-INTRUSIVE TESTING

Similarly to the preprocessor seams, with our approach, we can replace not just
functions but types or anything which has a name. However, our approach does
the replacement on the AST level, while the preprocessor seam does that on the
token level.

Limitations and Future Work

It is a common limitation with the four seams (link, preprocessor, FCI and ASTIm-
porter) that we can replace only those dependencies which have an identifier name.
E.g., it is not possible to replace a C++11 lambda function nested in a call of an
algorithm from the standard template library:

std::vector<int> nums{1, 2, 3, 4, 5};
std::for_each(nums.begin(), nums.end(), [](int &n){ n++; });

As of this writing, the implementation of AST importer algorithm in LLVM/-
Clang is quite immature. Especially, the import of C++ templates and C++11
expressions are not well supported. Thus, it is an important future work to im-
prove this realization because that would open up the possibility to be able to
experiment with our new technique on real C++ projects.

Conclusion

We presented a new non-intrusive testing approach which is based on transforming
the AST of the production code in a way that dependent functions or types are
replaced with test doubles. This method, although still experimental, has clear
advantages compared to the previous FCI based solution because we can replace
types as well, not just simple functions. Also, the technique exploits a compiler
aided syntax tree modification which provides much safer transformation than
we can get via tokeniser based translations with the preprocessor. Similarly to
linker based solutions, our method requires additional help from the build system.
A prototype implementation based on the LLVM/Clang compiler’s ASTImporter
module is publicly available at [15]. As the ASTImporter is still not stable at the
time of writing this dissertation, we cannot complete a comprehensive evaluation
of this approach.

2.3.3 Reflection based Testing and Test Seam
In this section, we present an idea for future research on non-intrusive seams. The
idea is based on a reflection proposal which could be used to implement generic
proxy objects and mock objects for unit testing frameworks. Although there is
a long discussion of implementing compile-time reflection for C++, there is still
no agreement on the topic. Therefore, our proposal is rather theoretical at the

42

2.3. NEW NON-INTRUSIVE TEST SEAMS

moment, however, could be the basis of future research when there is consensus
on C++ reflection.

Reflection Fundamentals

Reflection is the ability of a program to inspect or modify its own structure.
In other words, reflection is referred to as the meta information associated with
programming structures like types and functions. For example, in case of a class
type, this meta information can provide the names and types of the class’ fields.
It is said that a code is doing introspection if it is observing its own state and
structure. Also, when a code is capable of modifying its structure or state it is
called intercession.

There are several uses of reflection. For instance, it is used for serializing ob-
jects, implementing language bindings, creating object-relational mappings (ORM)
and implementing unit test frameworks with mock objects.

Compared to other mainstream programming languages, C++ is lagging be-
hind in reflection. In this section, we analyze and summarize current C++ re-
flection capabilities and researches about compile-time reflection. Based on our
analysis we introduce a new approach of compile-time reflection. This approach
could be used to implement generic proxy objects and mock objects for unit test
frameworks.

Compile-time and Runtime Reflection Compile-time reflection is about get-
ting information which is internal to the compiler during the compilation process.
Based on this information, the compiler’s internal abstract syntax tree (AST) can
be modified. Usually, this modification is not more than adding new nodes to the
AST. This can be done either by normal language elements (i.e. by adding a new
function) or by using some compiler intrinsics.

Runtime reflection is happening during the program’s execution time. Usually,
runtime reflection is implemented with the use of runtime metaobjects. This means
there is a metaobject associated with each real object. During runtime, these
metaobjects provide all the information and methods which are needed to achieve
the reflection. These metaobjects are always part of the final executable, therefore
making its size bigger. Runtime reflection works also with objects whose exact
type is not known during compile time (i.e. dynamic polymorphic types).

Runtime reflection has a few drawbacks compared to the compile-time reflec-
tion: the executable’s size will be bigger even if not all runtime objects are reflected,
and our program will perform slower in runtime. There are languages where this is
affordable, but in C++ the performance is a critical viewpoint, therefore runtime
reflection is not a real option. On the other hand, compile-time reflection is not
working with objects of dynamic polymorphic types.

43

CHAPTER 2. NON-INTRUSIVE TESTING

Reflection in Other Languages Managed languages like Java and C# have a
very strong and well-developed runtime reflection system.

In Java, it is possible to query a class’ name, package info, superclass, imple-
mented interfaces, methods, fields and annotations through the Class object. It
is even achievable to get information about private members. Regarding methods,
one can get all the parameters’ type and the return type. It is also feasible to
call one reflected member function (without knowing the exact name of it). Java
reflection can be used to list an enum class’ enumeration values as well. C# has
similar reflection capabilities to Java [118, 119].

Scala provides both runtime and compile-time reflection. The compile-time
reflection is realized in the form of macros, which provide the ability to execute
methods that manipulate abstract syntax trees at compile time. Scala uses the
so-called Universe to set up runtime or compile-time reflection. It is accomplish-
able to control the set of entities that we have reflective access to, by the so-called
mirror [120].

The D programming language provides compile-time reflection through the
Traits extension. It has very similar properties to the C++ type traits library,
but a little bit more can be achieved with it [121].

Standardized Reflection in C++

RTTI Run-Time Type Information and dynamic_cast expressions can be used
together to determine the dynamic type of an object of a polymorphic class. Under
the hood, dynamic_cast might use similar or common implementation details
to the typeid operator which results in a type_info object. Objects of class
type_info can be compared, so the same polymorphic types will have the same
objects. Since C++11, hash_code can be used which returns a value which is
identical for the same types. Also since C++11 type_index is existing, which is
a wrapper around a type_info object, that can be used as an index in associative
and unordered associative containers [63]. RTTI can be considered as a runtime
reflection in C++, however, the reflected metadata is simply not enough to execute
higher level reflection tasks.

Type Traits Type traits are type related queries and type modifications, which
can be executed during compile-time. Most of the queries are returning with a
boolean value or with a simple integral value [63]. Examples:

• is_integral checks if a type is an integral type

• is_same checks if two types are the same

• rank obtains the number of dimensions of an array type

44

2.3. NEW NON-INTRUSIVE TEST SEAMS

• remove_reference removes reference from the given type

Type traits are reflecting metadata of types, but with the help of them, it can only
be decided whether a type has a specific property or not. Higher level reflection
tasks, like querying names of all the fields of a class are impossible with them.

C++ Without Standardized Compile-Time Reflection

In this subsection, we discuss current C++ techniques which are widely used in
industrial environments. We demonstrate through examples, why the life of a
C++ programmer is harder without built-in compiler support for static reflection.

Serialization There is a boost serialization library which can be used both in-
trusively and non-intrusively [122]. The following example demonstrates the non-
intrusive method (the original class is not modified):

struct gps_position
{

int degrees; int minutes; float seconds;
};
namespace boost { namespace serialization {
template<class Arch>
void serialize(Arch& ar,gps_position& g,const unsigned int ver) {

ar & g.degrees;
ar & g.minutes;
ar & g.seconds;

} }} // namespace boost::serialization

We can see that for each and every new class a new template specialization
have to be written. If there was static reflection, then serialization could be solved
in a generic way.

Unit Test Mock Frameworks Figure 2.16 demonstrates an abstract class
(Turtle) and its mock class. The mock can be used everywhere, where the origi-
nal type appears as an interface. The mock class is created by Google’s mocking
framework, gmock [123]. It is an obvious drawback, that each and every function
have to be defined by a macro. If the interface (the abstract class in this case) is
a subject of change then the mock class has to be updated too. If there was static
reflection then mock classes could be programmed in a generic way, and they could
be created by the compiler.

45

CHAPTER 2. NON-INTRUSIVE TESTING

class Turtle {
virtual ~Turtle() {}
virtual void PenUp() = 0;
virtual void PenDown() = 0;
virtual void Forward(int distance) = 0;
virtual void Turn(int degrees) = 0;
virtual void GoTo(int x, int y) = 0;
virtual int GetX() const = 0;
virtual int GetY() const = 0;

};
class MockTurtle : public Turtle {
public:
MOCK_METHOD0(PenUp, void());
MOCK_METHOD0(PenDown, void());
MOCK_METHOD1(Forward, void(int distance));
MOCK_METHOD1(Turn, void(int degrees));
MOCK_METHOD2(GoTo, void(int x, int y));
MOCK_CONST_METHOD0(GetX, int());
MOCK_CONST_METHOD0(GetY, int());

};

Figure 2.16: An abstract class and its mock class

Static Reflection There are workarounds for the missing static reflection. The
below example demonstrates how to add metadata manually, without the com-
piler’s help:

// Our existing struct
struct Foo { int i; bool j; /* ... */ };
// "Foo" as a Boost.Fusion sequence
BOOST_FUSION_ADAPT_STRUCT(Foo, (int, i) (bool, j))
struct Action {

template<typename T>
void operator()(T& t) const {

// do whatever we need, e.g. serialize
}

};
void usage() {

Foo foo;
boost::fusion::for_each(foo, Action{});

}

Here, the Boost.Fusion library is used [124], but there are several other similar
libraries for this purpose. Someone, who is building a generic object-relational
mapping library, might end up using something similar to this. Note that, when
Foo is changing, the manually provided metadata have to be changed, so again
one conceptual change requires at least two change in the editor.

46

2.3. NEW NON-INTRUSIVE TEST SEAMS

Overview of C++ Reflection Proposals

The Reflection Study Group (SG7) of the ISO C++ Committee started its work at
the fall of 2013 with the paper N3814 – Call for Compile-Time Reflection Proposals
[125]. In this section, the most important compile-time reflection use cases are
enumerated and the C++ community is asked to provide proposals to introduce
compile-time reflection into the language. The use cases are:

1. Generation of common functions like equality operators, serialization func-
tions. (Note that this implies the enumeration of class members.)

2. Type transformations like Struct-of-Arrays.

3. Compile-time context information (replacing assert).

4. Enumeration of other entities (namespaces, enums, etc).

Low-level intrinsics - N3815 In response to N3814, N3815 was written to give
a proposal about the compile-time reflection of enumeration lists [126]. N3815
proposes to add three Property Queries to the Metaprogramming and Type Traits
Standard Library that provide compile-time access to the enumerator-list of an
enumeration type [126]. Specifically:

• std::enumerator_list_size<E>: the number of enumerator-definitions in
the enumerator-list of E.

• std::enumerator_identifier<E,I>: the identifier from the I’th enum-
erator-definition.

• std::enumerator_value<E,I>: the value from the I’th enumerator-defini-
tion.

N4027 [127], N4113 [128] and N4428 [129] further extend the approach for
classes. The reference implementation of these proposals [130] contains
compiler-specific intrinsics, with which the above-mentioned Property Queries
can be served. Amongst the enumerator related intrinsics there are other
intrinsics implemented for querying member fields of a class:

• record_member_field_count<A>: the number of fields in A.

• record_member_field_identifier<A, I>: the identifier from the I’th field
of A.

• object_member_field_ref<A, a, I>: the reference of the I’th field in ob-
ject a, where a is an instance of A.

47

CHAPTER 2. NON-INTRUSIVE TESTING

With the above three intrinsics, the Generation of common functions problem can
be solved with recursive templates. Below we show a function which sums up all
the members of a class:

struct A { int m_a; int m_b; int m_c; };

template <unsigned int Index>
struct Sum {

static int f(A a) {
return __object_member_field_ref(A,a,Index) +

Sum<Index - 1>::f(a);
}

};
template <>
struct Sum<0> {

static int f(A a) {
return __object_member_field_ref(A,a,0);

}
};

int summa(A a)
{

return Sum<__record_member_field_count(A) - 1>::f(a);
}

We can create a common generic summa if we make A to be a template parameter
of the summa function. Note that instead of the template recursion we could
use make_index_sequence<> [63] together with a variadic template and with a
parameter pack expansion.

Though other reflection proposals may have a more user-friendly interface, the
low-level intrinsic approach provides simple intrinsics for each well-defined funda-
mental reflection task. More complex queries and reflection functionalities can be
built gradually on top of the fundamental reflection elements. For instance, the
reference implementation can be easily extended to query the number of methods
[16].

Static Reflection via Template Pack Expansion N3951 (and later
P0255R0) proposes to gather the metadata at once, without a "size + index"
interface [131, 132]. From a type T, obtain static typed reflection adding two
language constructs:
(1) An instruction typename<T>... that expands members identifiers of type
T into a variadic template. Each type of n-th element of typename<T>... is a
const char* and each n-th value is the identifier of n-th member of T, expressed
in UTF-8 encoded;
(2) An instruction typedef<T>... that expands members of type T into a
variadic template (in the same order of typename<T>...). Each n-th type of
typedef<T>... is the type of the n-th member of T and each n-th value is a

48

2.3. NEW NON-INTRUSIVE TEST SEAMS

pointer to n-th member of T, or a value if member is a constexpr member or
enum item; typename<T>... and typedef<T>... could be implemented in terms
of the N3815 related lower level "size + index" reflection traits as a library.

Reflection with Concepts In P0385R1, Matus Chochlik, Axel Naumann and
David Sankel use a reflexpr operator to associate a unique implementation-
defined class with each reflected type (fundamental, compound, user-defined),
namespace, and specifier (public, virtual, etc.) [133]. A set of queries, in the
form of type traits, is used to access the name, members, and other properties of
the reflected class. Certain queries (i.e., get_pointer<>) can be used to access
the reflected objects or class members.

Exposing the AST There are proposals which aim to solve reflection related
tasks with a completely different aspect, for instance, N3883 [134] and P0590R0
[135]. They try to answer this question: How to solve enumeration of members
without template recursion? They would like to avoid template metaprogramming
in case of reflection tasks. Also, the goal of these proposals is to expose an AST
like interface into the language with which all the metadata can be queried.

Compile-time Strings Compile-time strings play an important role as being
the carrier of a reflected identifier’s name. N3815 and N3951 propose to use char
arrays as a carrier for names, this is because currently there is no better alternative
in C++. However, it might be possible that in the future a basic_string_literal
will be introduced as it is stated in D3933 [136].

Code Generators Code generators like Qt’s Meta Object Compiler (MOC)
[137] and OpenC++ Meta Object Protocol (MOP) [138] extends the base C++
language with some reflection and metaobject creation capabilities. This approach
does not modify the C++ language, instead, a pre-compile phase needs to be added
to the compilation process. Before the C++ compiler is called, the meta compiler
must be invoked to translate the extended C++ into standardized C++. We can
see the obvious disadvantages:

1. One additional compilation step is needed along with a new parsing and
semantic analysis.

2. Lack of standardization.

The goal of SG7 is to provide a powerful native reflection, with which such pre-
compilation is not needed.

49

CHAPTER 2. NON-INTRUSIVE TESTING

Static Reflection for Proxy and Mock Objects

In the following, we describe our reflection approach which could help to create a
generic proxy or mock object. First, we describe proxy and mock objects, then we
present our proposal.

Mock and Proxy Objects (and Classes) Mock objects are used in unit tests
to substitute real dependencies of a unit. (A unit is typically a class (struct) or a
free function.) The programmer can formulate expectations towards a mock object,
e.g. how many times a member function is called with a certain value? Proxy
objects are those objects which have the exact same interface as the original object,
but the implementation of each member function could be different. Therefore,
mock objects are a special kind of proxy objects. Proxy objects seemed to be
so useful that Java introduced the Dynamic Proxy concept to ease the creation
of proxies [139]. Mock objects are instances of mock classes, proxy objects are
instances of proxy classes.

A simple aggregate class is a C++ struct with publicly available fields and
without methods. The definition of a simple aggregate proxy class is a recursive
definition: A simple aggregate class is a proxy class if all of its fields have a proxy
class type. The built-in types like int, double, float are considered as proxy
types.

Proposed Approach - New Declarations Our proposal further extends the
low-level intrinsic approach. We choose to extend the low-level intrinsics because
more complex queries and reflection functionalities can be built gradually on top
of the fundamental reflection elements; there is no need to implement first a very
heavy reflection operator like reflexpr in P0385R1.

To successfully solve the problem of creating proxy and mock classes we have
to support two new declarations.

1. variable_decl for declaring and defining variables based on reflected types
and names.

2. function_decl for declaring and defining functions based on reflected types
and names.

These declarations ideally would be mapped under std::reflect namespace. This
mapping is needed in order to hide the compiler specific implementation de-
tails. This is the exact case with some already existent type traits as well, e.g.
std::is_pod.

50

2.3. NEW NON-INTRUSIVE TEST SEAMS

Declare a New Variable Let’s assume we have the following simple struct:
struct A {

int m_a;
float m_b;

};

Then we can define a new class which has the same field as A:
struct B {

reflect::variable_decl<
reflect::record_member_field_type<A, 0>,
reflect::record_member_field_identifier<A, 0> >;

};

This is equivalent to:
struct B {

int m_a;
};

In this example, variable_decl has two subexpressions

1. A type-specifier, which refers to the newly declared variable’s type.

2. A compile-time string, which is equal to the name of the newly declared
variable.

The type-specifier is an expression whose value is a type, which can be evaluated
during the compilation process. For instance, this can be a result of any kind
of meta function or can be a result of any kind of reflection expression. Note
that the new declaration variable_decl is not bound to any concrete reflection
query implementation. It just requires the first parameter to be a type. The
compile-time string can be either the C++14’s compile-time string which is a
simple char array; or this can be a basic_string_literal as described in D3933
proposal [136]. We use record_member_field_identifier, as it is implemented
in the N3815 proposal related implementation. We introduce and use a new ex-
pression record_member_field_type<T,N> which is equal to the type of T’s N-th
field type.

The declaration variable_decl should be handled as a normal variable dec-
laration/definition. Thus, we can initialize a variable like this:

struct B {
reflect::variable_decl<

reflect::record_member_field_type<A, 0>,
reflect::record_member_field_identifier<A, 0> > = 0;
// initialization expression: ^^^^

};

Once variable_decl is implemented then an aggregate proxy class can be
created recursively for struct A:

51

CHAPTER 2. NON-INTRUSIVE TESTING

template <unsigned int Index> // C has the same field names as A,
struct C : C<Index-1> { // but all fields are proxied.

reflect::variable_decl<
Proxy<reflect::record_member_field_type<A, Index>>,
reflect::record_member_field_identifier<A, Index> >;

};
template <>
struct C<0> {

reflect::variable_decl<
Proxy<reflect::record_member_field_type<A, 0>>,
reflect::record_member_field_identifier<A, 0> >;

};

Note that the start of the recursion is missing, that will be elaborated later. Here
we assume such a Proxy class is existent, which can do the proxying for all field
types of struct A.

If the proxy task is mocking (being able to create expectations), then we assume
it is possible to create a Proxy class for each primary types (integral type, floating
point type, pointer type, etc) and POD types.

By making struct A to be a template parameter we get the generic proxy
aggregate struct:

template <typename A, unsigned int Index>
struct D : D<A, Index-1> {

reflect::variable_decl<
Proxy<reflect::record_member_field_type<A, Index>>,
reflect::record_member_field_identifier<A, Index> >;

};
template <typename A>
struct D<A, 0> {

reflect::variable_decl<
Proxy<reflect::record_member_field_type<A, 0>>,
reflect::record_member_field_identifier<A, 0> >;

};

The template recursion must be started with the number of fields in type A:
template <typename A>
struct GenericAggregateProxy :

D<A, reflect::record_member_field_count<A>> {};

record_member_field_count is implemented in N3815’s reference implementa-
tion [130]. The declaration variable_decl should be implemented similarly as
type traits expressions. In the case of Clang this means

• A new token should be introduced in TokenKinds.def.

• Parsing actions should be created in clang::Parser.

• Semantic analysis should be added to clang::Sema.

• A new AST node should be introduced for variable_decl.

52

2.3. NEW NON-INTRUSIVE TEST SEAMS

• Template instantiation rules for this AST should be given.[140]

The template instantiation rules should include the template transformation
rules, which finally should result in a modified AST for this new declaration. The
template transformation rules should be delegated back to the original
clang::FieldDecl AST transformations. Similarly, intermediate code
generation could be delegated as well.

Declare a New Method On the way to provide a generic mock class, the next
step is to be able to declare and then to define functions based on reflected infor-
mation. That is the exact purpose of introducing the function_decl declaration.
The idea is similar to the one in case of variable_decl. Let us assume that all
member functions in struct A have only one parameter. The following recursively
built struct C has exactly the same functions declared as struct A:

struct A {
int m_func1(int);
float m_func2(float);

};
template <unsigned int Index> // C has the same functions as A
struct C : C<Index-1> { // but they all have one parameter

reflect::function_decl<
reflect::record_member_function_result_type<A, Index>,
reflect::record_member_function_identifier<A, Index>,
reflect::record_member_function_param<A, Index, 0> >;

};
template <>
struct C<0> {

reflect::function_decl<
reflect::record_member_function_result_type<A, 0>,
reflect::record_member_function_identifier<A, 0>,
reflect::record_member_function_param<A, 0, 0> >;

};

In this case, the start of the recursion will use the number of member functions in
struct A. Here function_decl has three subexpressions:
(1) A type-specifier, which refers to the newly declared function’s return type.
(2) A compile-time string, equal to the name of the newly declared variable.
(3) The parameter type of the function. In this case, the declared function has
only one parameter.

We introduce record_member_function_result_type,
record_member_function_identifier and record_member_function_param as
new compile-time expressions which evaluate to the return type, name and pa-
rameter type of the n-th member function. In case of functions with multiple
parameters, we introduce record_member_function_param as a type list:

53

CHAPTER 2. NON-INTRUSIVE TESTING

// C has exactly the same functions as A
template <unsigned int Index>
struct C : C<Index-1> {

reflect::function_decl<
reflect::record_member_function_result_type<A, Index>,
reflect::record_member_function_identifier<A, Index>,
// list of types !
reflect::record_member_function_params<A, Index> >;

};
template <>
struct C<0> {

reflect::function_decl<
reflect::record_member_function_result_type<A, 0>,
reflect::record_member_function_identifier<A, 0>,
reflect::record_member_function_params<A, 0> >;

};

Definition of functions based on reflected information is more complex:
template <unsigned int Index>
struct C : C<Index-1> {

reflect::function_decl<
reflect::record_member_function_result_type<A, Index>,
reflect::record_member_function_identifier<A, Index>,
reflect::record_member_function_params<A, Index> >

{
struct Handler {

template <typename... Ts>
auto operator()(std::tuple<Ts...>& args)
{

// ...
}

};
Handler{}(reflect::function_decl_params);

}
};
template <>
struct C<0> { /* ... similar as before */ };

We add reflect::function_decl_params again as a new expression, which would
be exposed as an std::tuple object. Each n-th type of the tuple should be the
type of the n-th function parameter, and each n-th value shall be a reference to
the n-th function parameter. Note that it might be more feasible to use a function
parameter pack instead of std::tuple, but for the ease of explanation, we used
the tuple.

Reflection Seam

By building a higher-level reflection library based on our proposed approach it
would be possible to create non-intrusive tests:

54

2.3. NEW NON-INTRUSIVE TEST SEAMS

class Entity {
public:

int process(int i) { if(m.try_lock()) { ... } else { ... } }
//...

private:
std::mutex m;
//...

};

void testClient() {
using EntityUnderTest =
test::ReplaceMemberType<Entity, std::mutex, StubMutex>;

EntityUnderTest e;
auto& m = e.get<StubMutex>();
// Test code as before

}

Here, EntityUnderTest is a type alias to such a type, which is equivalent to the
Entity type except that all of its members with type std::mutex are replaced
by the StubMutex type. Also, this type could give access to its internal mutex
instance via its get function template. Actually, ReplaceMemberType is a special
proxy class template, which could be built similarly as we built the generic mock
class template previously. For this technique to work, the given class has to be
header-only because the compiler has to know its internal layout and types to be
able to replace some of them with another type. This requirement might be harsh,
but upcoming C++ modules [141] may mitigate this disadvantage.

Evaluation

Our reflection proposal is based on the current reflection proposal (low-level intrin-
sics), which provides a quite clear interface for the most primitive cases. However,
in order to realize a generally usable reflection seam which covers the full language
we have to answer some open questions. For instance, regarding the variables:

1. How to declare static variables?

2. How to handle C++14’s templated variables?

In respect of the functions:

1. How to handle template functions?

2. How to handle constructors?

3. How to handle ellipsis function parameters?

4. How to handle exception specifications?

Before answering the above questions, first, we must decide how to reflect ellipsis,
template functions, exception specifications, etc.

55

CHAPTER 2. NON-INTRUSIVE TESTING

Conclusion

Reflection in C++ is a hot research area and it is a subject of frequent changes.
Many application areas require it, but the approaches to define a firm interface are
different. Reflection itself is a large topic, it is not even clear what meta information
could be queried in future C++. Despite of these uncertainties, it is sure that the
most general reflection queries like getting the fields of a class will be part of some
future C++ standard. We presented an approach with which declaring or defining
new variables and functions based on reflected meta information is possible. With
this approach, it is possible to create generic classes which could behave as generic
proxy, mock or serialization classes.

2.3.4 Contribution
Thesis 1 (New non-intrusive testing methods). I have analysed the existing depen-
dency replacement techniques of C++ for testing and evaluated their advantages
and disadvantages. I have introduced and analysed three new non-intrusive testing
approaches: (1) I have implemented a method based on compiler instrumentation
and function call interception. The new technique has clear advantages, thus it
provides an alternative way to replace dependencies. I have created and evalu-
ated a prototype implementation which is publicly available. (2) I have presented
an experimental procedure which transforms the original abstract syntax tree of
the production code for testing. With this procedure, it is possible to replace not
just simple functions but also types. I have created a proof-of-concept prototype to
demonstrate that the idea is feasible. (3) I have proposed a static reflection based
approach as a future direction. Besides replacing types this solution could be used
to implement generic proxy and mock objects for unit test frameworks.

thesis name relevant publications
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

(1) New non-intrusive test-
ing methods • • • • •

(2) Extending access for non-
intrusive and white-box testing ◦ ◦ ◦

(3) Selective friend ◦
(4) High-level abstraction for
the read-copy-update pattern ◦ ◦

56

2.4. COMPARISON OF EXISTING AND NEW SEAMS

2.4 Comparison of Existing and New Seams
In this section, we enumerate the arguments for and against each existing and the
newly introduced non-intrusive seams. Object and compile seams are not listed
here because in most of the cases they cannot be used as a non-intrusive seam (for
details please refer to 2.2.1). We include in the list, however, the Intel Pin based
non-intrusive run-time FCI seam which is described in appendix A. The various
advantages are depicted with the ` sign, while the disadvantages with the ´ sign.
Figure 2.17 summarizes the strengths and weaknesses of the listed non-intrusive
seams.

Link Seam

` Available and stable implementation on all platforms.

` No runtime performance overhead.

` There is no need to recompile the production code neither the dependent
libraries.

` Can replace functions in shared libraries.

´ C++ support is limited, we have to use mangled names.

´ The test setup code is separated from the other phases of the test.

´ Cannot replace inline functions.

´ Cannot replace function templates.

´ Cannot replace functions if they are in static libraries or in the same trans-
lation unit.

´ Cannot replace types.

Preprocessor Seam

` Available and stable implementation on all platforms.

` No runtime performance overhead.

` The test setup code is not separated from the other phases of the test.

` Can replace inline functions.

` Can replace function templates.

57

CHAPTER 2. NON-INTRUSIVE TESTING

` Can replace functions if they are in static libraries or in the same translation
unit.

` Can replace types.

` There is no need to recompile the dependent libraries, only the production
code has to be recompiled.

` Can replace functions in shared libraries.

´ The production code must be recompiled.

´ C++ support is very limited: namespaces are not supported, macros have
hazardous side effects.

´ Cannot replace anything consistently in C++ because the lack of handling
namespaces.

Run-time FCI based Seam

` Stable implementation.

` There is no need to recompile the production code unless we want to replace
inline functions.

` Can replace functions in shared libraries.

` Can replace functions in static libraries or in the same translation unit.

´ Not available on all platforms. E.g. on macOS we cannot replace functions.

´ There is a runtime performance overhead: 2x - 90x [142].

´ C++ support is limited, we have to use mangled names.

´ The test setup code is separated from the other phases of the test.

´ Cannot replace inline functions. (We have to recompile with inlining dis-
abled.)

´ Cannot replace function templates.

´ Cannot replace types.

´ We need a completely new tool (Pin) to be introduced into the existing build
chain. Developers and maintainers of the project must learn and understand
Pin.

58

2.4. COMPARISON OF EXISTING AND NEW SEAMS

´ The setup or tear-down of different test case may require clearing the sub-
stitutions of the functions. There is no obvious way to clear all the function
replacements, therefore the easiest way is to have a new Pin tool for each
test case. To launch a new process for each test cases may decrease the run
time of the test suite compared to the case where all test cases are in one
process.

Compile-time FCI based Seam (2.3.1)

` Can replace functions in shared libraries.

` Can replace functions in static libraries or in the same translation unit.

` Available on all platforms (where LLVM/Clang is available).

` Extensive C++ support (constructor and destructor cannot be replaced).

` The test setup code is not separated from the other phases of the test.

` Can replace inline functions.

` Can replace function templates.

` There is no need to recompile the dependent libraries, only the production
code has to be recompiled (because of call expression instrumentation).

´ Prototype implementation.

´ The production code has to be recompiled.

´ Cannot replace types.

´ There is a runtime performance overhead: 2x - 20x.

AST Transformation based Seam (2.3.2)

` No runtime performance overhead.

` Can replace functions in shared libraries.

` C++ support is unlimited.

` Can replace inline functions.

` Can replace function templates.

59

CHAPTER 2. NON-INTRUSIVE TESTING

` Can replace functions if they are in static libraries or in the same translation
unit.

` Can replace types.

´ Only a proof-of-concept prototype implementation is available.

´ It is needed to recompile the production code and the dependent libraries to
generate PCH files.

´ The test setup code is separated from the other phases of the test.

Compile-time Reflection based Seam (2.3.3)

` No runtime performance overhead.

` There is no need to recompile the dependent libraries.

` Can replace (member)functions in shared libraries.

` C++ support is unlimited.

` The test setup code is not separated from the other phases of the test.

` Can replace inline (member)functions.

` Can replace (member)function templates.

` Can replace (member)functions if they are in static libraries or in the same
translation unit.

` Can replace types.

´ Only a design plan is available, but there is no existing implementation.

´ It is needed to recompile the production code.

´ It is not possible to replace free functions (we can generate new free functions
only based on the reflected metadata).

´ There is no actual replacement of functions or types, instead, we always
have to generate a new type for the test which contains the replaced member
functions or types.

60

2.4. COMPARISON OF EXISTING AND NEW SEAMS

Existing Seams New Seams

Properties Link Seam
Pre-
processor
Seam

Run-time
FCI based
Seam (Intel
Pin)

Compile-
time FCI
based Seam

AST Trans-
formation
based Seam

Compile-
time Reflec-
tion based
Seam

Replace
function

Yes, in
shared libs. Yes. Yes. Yes. Yes.

Yes, but
member
functions
only.

Replace
type No. Yes. No. No. Yes.

Yes, but
member
types only.

Replace in
same TU or
in static lib

No. Yes. Yes. Yes. Yes. Yes.

Replace in
shared lib Yes. Yes. Yes. Yes. Yes. Yes.

Replace in-
line or tem-
plate func-
tion

No. Yes. No. Yes. Yes. Yes.

Place of the
test setup

Build
system.

In the test
code.

In the Pin
tool.

In the test
code.

Build
system.

In the test
code.

C++
support

Limited,
with
mangled
names.

Limited.
Problem
with
namespaces
and macros.

Limited,
with
mangled
names.

Extensive. Full.

Full,
standard
proposals
are under
discussion.

Is recom-
pilation
needed?

No. Yes. No. Yes. Yes. Yes.

Place of
instrumen-
tation

N/A. N/A. Function. Call
expression. N/A. N/A.

Stability of
the imple-
mentation

Stable. Stable. Stable. Prototype.
Proof-of-
concept
prototype.

No imple-
mentation
available.

Supported
platforms All. All.

Not all,
macOS is
not
supported.

All. All. All.

Runtime
perfor-
mance
overhead

None. None. 2x - 90x.
(See [142]) 2x - 20x. None. None.

Figure 2.17: Comparison of existing and new seams

61

CHAPTER 2. NON-INTRUSIVE TESTING

2.5 Access Private Members
Non-intrusive testing may require the ability to access private data. Imagine a
situation where a replaced member function has to access the internal state of the
object to be able to formulate an assertion on that. For instance, when testing the
Entity class with our FCI method (Figure 2.7), we may wish to check that the
mutex is unlocked when the try_lock member function is called. Thus, the test
double fake_mutex_try_lock has to access private data:

bool fake_mutex_try_lock(std::mutex* self) {
EXPECT_EQ(self->locked, true);

}

TEST_F(FooFixture, Mutex) {
SUBSTITUTE(&std::mutex::try_lock, &fake_mutex_try_lock);
// ... as before

}

When we access private data during testing we actually do white-box testing.
White-box testing (also known as clear box testing, glass box testing, transparent
box testing, and structural testing) is a method of testing software that tests
internal structures or workings of an application [143, 144].

In this section, we present exiting methods for accessing private members and
we overview their strengths and weaknesses. Later we introduce our new generic
and non-intrusive library. Currently, this library is the only available approach that
makes it possible to access private members without violating the C++ standard.
Then we present our other solution which is based on a prototype implementation
of a language extension which makes it possible to access private members by
out-of-class defined friend functions.

2.5.1 Existing Methods
There are various existing methods available for accessing private members in
C++, but all have certain drawbacks. In this section, we overview the existing
approaches and we introduce two new procedures that attempt to overcome the
difficulties.

Access via a shared reference or pointer

In this case, the unit that we wish to test has a constructor or a setter function with
a reference or a pointer parameter through which we can inject the dependency.
An example is:

Entity(Mutex& m) : m(m) {}

62

2.5. ACCESS PRIVATE MEMBERS

We cannot use a unique_ptr this way since we need to access the dependency
from the test as well; however, unique_ptr provides exclusive ownership only for
the owner.

Access via getter

As we saw previously, it might be more natural to use a getter when the unit has
exclusive ownership:

// Use only in tests !
Mutex& getMutex() { return m; }

The disadvantage here is that it violates encapsulation, i.e. it exposes an internal
member.

Use preprocessor and getter

To protect the internal member, it is possible to define the getter function only
when the unit is built for testing.

#ifdef TEST
Mutex& getMutex() { return m; }

#endif

This requires support from the build system, so during the compilation of each
translation unit of the test executable this flag needs to be defined. Also, test
specific preprocessing is hardcoded, which makes it more difficult to see through
the unit’s overall structure. Though it is quite obvious that the getter is used only
for testing, this is actually a benefit.

Change the access level with the preprocessor

A frequently applied trick is to use the preprocessor to access private members:
#define private public
#include "Unit.h"
#undef private
// Test code comes from here

Although the standard forbids us from redefining keywords [63, 17.6.4.3.1 Macro
names/2], most preprocessors accept this. The obvious drawbacks are easy to see,
however. All the other classes that are directly or indirectly included from Unit.h
now expose all their internals. This opens the possibility for errors in the test code
via accidentally accessing members of the dependencies, which we shall not know
about (violating encapsulation).

Also, this approach does not always work. To see this, consider the following
class:

63

CHAPTER 2. NON-INTRUSIVE TESTING

class X { int a; };

The default access specifier is private in the case of C++ classes, therefore the
define directive has no effect. Still, this can be circumvented with an additional
define: #define class struct.

What is more, this is undefined behaviour because the C++ standard specifies
that the order of allocation of non-static data members with different access control
is unspecified [63, 9.2 Class members/13].

Friend function or class

In C++, friends have the right to access private and protected members. With
this approach, we declare a concrete test function inside the unit to be a friend:

class Entity {
public:

friend void testClient(Entity& e);
Entity(std::unique_ptr<Mutex> m) : m(std::move(m)) {}
int process(int i) { if(m->try_lock()) { ... } else { ... } }
//...

private:
std::unique_ptr<Mutex> m;
//...

};
void testClient(Entity& e) {

// access e.m here
}

We can also declare an in-between class to be a friend; then in the tests, we can use
the different member functions of the friend class to access the private members.
Declaring a test friend is still an intrusive act, which changes the internal source
code of the unit which we want to test. Sometimes we cannot or do not want to
modify a class like that. The reasons behind that might be the following:

• It is part of a third party software package and

– Our build system would overwrite the changes we made
– We do not want to maintain our own version

• Touching the internals would require a tremendous amount of recompilation
of client code, which might not be desired.

Thus, we seek for such non-intrusive techniques which do not require changes in
the unit we wish to test.

64

2.5. ACCESS PRIVATE MEMBERS

2.5.2 Access via Explicit Instantiation
So far we have considered only intrusive methods to access private members. In
this section, we present an interesting non-intrusive technique then we present our
new solution for accessing private members as a generalization of this technique.

We can access outside of the declaring class any private member if we exploit
the fact that C++ allows us to pass the address of a private member in explicit
instantiation [63, 14.7.2 Explicit instantiation/12]. The standard permits this
behaviour because otherwise specializing traits for private types would not be
possible. Besides private members, we can access private static variables and
functions as well with this technique.

To understand how we can exploit this fact, consider the following class:
class A { static int i; };
int A::i = 42;

We would like to access the static private variable i. Normally, accessing that
private variable results in a compiler error:

int x = A::i; // Error, i is private

Yet, there is an exceptional case, namely when we provide a template argument in
an explicit template specialization. Let us assume that we have a class template
defined, so we can explicitly specialize that:

template struct private_access<&A::i>;

The template argument &A::i has a compile-time available value and it has the
type int*. In this context, &A::i is a completely valid expression, which has
the address of the private variable as the value. We need to expose this address
somehow, so we define the class template private_access as follows:

template <int* PtrValue> struct private_access {
friend int* get() { return PtrValue; }

};

The template parameter of private_access is a non-type template parameter,
which is a pointer value of type int* known at compile-time. We define the get()
function to return the actual compile-time value of this template parameter. It
returns the address of the private static variable since the template is instantiated
with that value as an argument. By defining the get() function as a friend it
becomes part of the enclosing namespace scope. Even so, its name is not found
by normal lookup (qualified or unqualified) [63, 7.3.1.2 Namespace member defi-
nitions/3]. Therefore, we need to provide an additional declaration outside of the
class:

int* get();

65

CHAPTER 2. NON-INTRUSIVE TESTING

Putting this all together, our code with a usage example is the following:
class A { static int i; };
int A::i = 42;

template <int* PtrValue> struct private_access {
friend int* get() { return PtrValue; }

};

int* get();

template struct private_access<&A::i>;

void usage() {
int* i = get();
assert(*i == 42);

}

The access of a private, non-static member is quite similar:
1 class A { int i = 42; };
2

3 template<int A::* PtrValue> struct private_access {
4 friend int A::* get() { return PtrValue; }
5 };
6

7 int A::* get();
8
9 template struct private_access<&A::i>;

10

11 void usage() {
12 A a;
13 int A::* ip = get();
14 int& i = a.*ip;
15 assert(i == 42);
16 }

The only difference is in the type of the template argument, which is now int A::*,
a pointer to member. Values of this type may be pointers to any int data member
of the class A. Once we get the pointer to the member in line 13, we can bind this
pointer to an object, and this way, we get a reference to the data member (in line
14).

Generalized private access

As for our contribution, we generalized the above-presented techniques. We have
created a library which automates the generation of the helper constructs to access
private data members and to call private member functions (both static and non-
static) [17]. Currently, this library is the only available approach which is generic
and non-intrusive and makes it possible to access private members without violat-
ing the C++ standard.

66

2.5. ACCESS PRIVATE MEMBERS

Accessing private data members becomes straightforward with the library:
class A { int m_i = 3; };

ACCESS_PRIVATE_FIELD(A, int, m_i)

void foo() {
A a;
auto &i = access_private::m_i(a);
assert(i == 3);

}

Similarly, calling private functions can be achieved like so:
class A {

int m_f(int p) { return 14 * p; }
};

ACCESS_PRIVATE_FUN(A, int(int), m_f)

void foo() {
A a;
int p = 3;
auto res = call_private::m_f(a, p);
assert(res == 42);

}

We deliberately do not use pointer-to-members in the public interface of this macro
library. We think that their use is just an implementation detail that we do not
wish to expose to the user.

As a first design decision, we place all components of this library into an un-
named namespace to prevent multiple definition linker errors. For instance, we
want the following 3 files (a.hpp, x.cpp, y.cpp) to be linkable into an executable
file:

// a.hpp
class A { int m_i = 3; };

// x.cpp
#include "A.hpp"
#include "access_private.hpp"
ACCESS_PRIVATE_FIELD(A, int, m_i)

// y.cpp
#include "A.hpp"
#include "access_private.hpp"
ACCESS_PRIVATE_FIELD(A, int, m_i)
int main() { return 0; }

Then we commence with the generic definition of private_access. We use the
nested namespace private_access_detail as a safeguard because we wish to

67

CHAPTER 2. NON-INTRUSIVE TESTING

avoid name clashing as the user code might have additional names defined in an
unnamed namespace:

namespace {
namespace private_access_detail {

template <typename PtrType, PtrType PtrValue, typename TagType>
struct private_access {

friend PtrType get(TagType) { return PtrValue; }
};

} // namespace private_access_detail
} // namespace

By introducing the PtrType type template parameter, we generalize the type of
the pointer we wish to use. This might be int* or int A::* if we take our
examples from the previous section. We also bring in the TagType type template
parameter, which we use to define different instances of the get() function. This
is achieved implicitly by instantiating the private_access class template with
different concrete tag types.

Next, we define some helper macros for concatenation:
#define PRIVATE_ACCESS_DETAIL_CONCATENATE_IMPL(x, y) x##y
#define PRIVATE_ACCESS_DETAIL_CONCATENATE(x, y) \
PRIVATE_ACCESS_DETAIL_CONCATENATE_IMPL(x, y)

We use the PRIVATE_ACCESS_DETAIL prefix for all the implementation macros that
are supposed to be hidden from the clients of this macro library.

Afterwards, we introduce a macro which contains all those things that are
common in the implementation of accessing a static or a non-static member:

1 #define PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE(Tag, Class, Type, Name, \
2 PtrTypeKind) \
3 namespace { \
4 namespace private_access_detail { \
5 struct Tag {}; \
6 /* Explicit instantiation */ \
7 template struct private_access<decltype(&Class::Name), \
8 &Class::Name, Tag>; \
9 /* Define the PtrType alias */ \

10 using PRIVATE_ACCESS_DETAIL_CONCATENATE(Alias_, Tag) = Type; \
11 using PRIVATE_ACCESS_DETAIL_CONCATENATE(PtrType_, Tag) = \
12 PRIVATE_ACCESS_DETAIL_CONCATENATE(Alias_, \
13 Tag) PtrTypeKind; \
14 /* declare the get() function */ \
15 PRIVATE_ACCESS_DETAIL_CONCATENATE(PtrType_, Tag) get(Tag); \
16 } \
17 }

The macro parameter Tag is the name of the tag class we want to define and we also
use it as a suffix for the name of the type aliases. Class denotes the qualified or
unqualified name of the class we wish to provide access to. Type is the type of the

68

2.5. ACCESS PRIVATE MEMBERS

member variable. The parameter PtrTypeKind describes what kind of pointer are
we dealing with, namely a simple pointer or a pointer-to-member. For instance, it
may have the strings * or A::*. First, we define the tag type (line 5), then comes
the explicit instantiation with the type and address of the member and with the
recently defined tag type (line 7-8).

Then, we define a type alias (with PtrType_ prefix) for the concrete type of
the pointer (line 9-13). Basically, this alias is formed from the concatenation of
the Type and PtrTypeKind parameters. For example, in the case of a pointer-to-
member, the canonical type of the type alias might be int A::*. The twist here is
that we need to add two type aliases because pointer-to-member-functions cannot
be expressed generically with one alias, e.g.:

using PtrType1 = int(int) *; // ERROR
using Alias = int(int);
using PtrType2 = Alias *; // OK

Next, we declare the get() function to make it available for finding by normal
name lookup (line 15).

Following this, we define the specific macro for non-static member fields.
1 #define PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FIELD(Tag, Class, Type, \
2 Name) \
3 PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE(Tag, Class, Type, Name, \
4 Class::*) \
5 namespace { \
6 namespace access_private { \
7 Type &Name(Class &&t) { \
8 return t.*get(private_access_detail::Tag{}); \
9 } \

10 Type &Name(Class &t) { \
11 return t.*get(private_access_detail::Tag{}); \
12 } \
13 using PRIVATE_ACCESS_DETAIL_CONCATENATE(X, Tag) = Type; \
14 using PRIVATE_ACCESS_DETAIL_CONCATENATE(Y, Tag) = \
15 const PRIVATE_ACCESS_DETAIL_CONCATENATE(X, Tag); \
16 PRIVATE_ACCESS_DETAIL_CONCATENATE(Y, Tag) & \
17 Name(const Class &t) { \
18 return t.*get(private_access_detail::Tag{}); \
19 } \
20 } \
21 }

The macro parameters Tag, Class, Type and Name have the exact same meanings
as before. In line 3, we call the previously described macro to generate all the
generic code we need. We pass "Class::*" as a macro argument since we are deal-
ing with non-static members. If we were dealing with static members, then the
argument would be "*". Then, we define two overloaded functions in the enclos-
ing access_private namespace with the name which is equal to the name of the

69

CHAPTER 2. NON-INTRUSIVE TESTING

member we are exposing, e.g. "m_i" (line 7-12). These overloads are for those
cases where the class instance is bound to an rvalue reference or to a non-const
lvalue reference. We bind the result of get() function to the object of the class,
and then we return with a reference to the resulting member. Later, (in lines
13-19) we add another overload that handles the cases where the object is bound
to a const lvalue reference. In this case, we would like to preserve the constness
of the object, therefore we should return with a const reference to the member.
So, we create a type alias for this const reference type (lines 13-15). Here, once
again we need to use two type aliases because we would like to avoid warnings that
arise from duplicated const qualifiers. If we used just one alias, then we would get
this warning if the Type macro parameter already contains a const qualifier. After
defining the type alias, we use this in the definition of the third overload (lines
16-19).

The implementation of accessing static fields is very similar to the implemen-
tation of accessing non-static members.

The realization of calling private member functions, however, requires an ex-
planation:

1 #define PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FUN(Tag, Class, Type, \
2 Name) \
3 PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE(Tag, Class, Type, Name, \
4 Class::*) \
5 namespace { \
6 namespace call_private { \
7 template <typename Obj, \
8 std::enable_if_t<std::is_same< \
9 std::remove_reference_t<Obj>, Class>::value> * = \

10 nullptr, \
11 typename... Args> \
12 auto Name(Obj &&o, Args &&... args) -> decltype(\
13 (std::forward<Obj>(o).*get(private_access_detail::Tag{}))(\
14 std::forward<Args>(args)...)) { \
15 return (std::forward<Obj>(o).* \
16 get(private_access_detail::Tag{}))(\
17 std::forward<Args>(args)...); \
18 } \
19 } \
20 }

Here, we again call the common macro that does the explicit instantiation (lines
3-4). Then we perfect forward both the object and the parameters of the private
function we wish to call (lines 7-17). We bind the pointer-to-member-function
(the result of the get() function) to the perfect forwarded object and then we
call the resulting member function with the forwarded arguments (lines 15-17).
We use the same expression’s type as the trailing return type in the header of
the function (lines 12-14). (Note that in C++14 there is no need to specify the
trailing return type.) We also restrict the set of function template instantiations

70

2.5. ACCESS PRIVATE MEMBERS

that can participate in the overload resolution with the enable_if. The goal here
is to exclude a template function when the type of the object is different from the
type of the Class parameter. By doing this, we get a more compact error message
if we misuse the library for some reason. Otherwise, we would get error messages
originating from the body of the function template.

The implementation of calling static member functions is very similar to the
implementation of calling non-statics, but we do not need the enable_if there
since we do not have an object in that case.

Somehow we need to generate unique tag types, so for this, we use the built-in
__COUNTER__ macro which returns an integer and is incremented by the prepro-
cessor each time it is referenced. __COUNTER__ is not a standard macro, but it is
available on most mainstream compilers (GCC, Clang, MSVC).

#define PRIVATE_ACCESS_DETAIL_UNIQUE_TAG \
PRIVATE_ACCESS_DETAIL_CONCATENATE(PrivateAccessTag, __COUNTER__)

The macro PRIVATE_ACCESS_DETAIL_UNIQUE_TAG() will generate a unique name
with the prefix PrivateAccessTag. Finally, we can define the main macros of the
library with the help of the unique tag generator:

#define ACCESS_PRIVATE_FIELD(Class, Type, Name) \
PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FIELD(\

PRIVATE_ACCESS_DETAIL_UNIQUE_TAG, Class, Type, Name)

#define ACCESS_PRIVATE_FUN(Class, Type, Name) \
PRIVATE_ACCESS_DETAIL_ACCESS_PRIVATE_FUN(\

PRIVATE_ACCESS_DETAIL_UNIQUE_TAG, Class, Type, Name)

During the compilation of one translation unit, each invocation of these macros
generates different tag types. Since these tag types are defined in an unnamed
namespace, we will not have any linkage errors of duplicate symbols when linking
multiple translation units together.

Now we have seen how we can access private member fields and how we can call
private member functions, regardless of whether if they are static or not. However,
this library has some limitations. We cannot access private types because the only
valid context of using that private type is inside the explicit instantiation. We
cannot call private constructors nor destructors. This is because a pointer-to-
member cannot bind to a constructor (since we do not have the object unless the
constructor is called). Nor can a pointer-to-member bind to a destructor because
there is no valid expression in C++ to grab the address of a destructor. We have a
link time error in the case of in-class declared const static variables (without an
out-of-class definition). This is because we would take the address of that variable,
and if that is not defined (i.e the compiler does a compile-time insert of the const
value), we would be trying to dereference an undefined symbol. Owing to all of
these limitations we were motivated to come up with a more sophisticated solution.

71

CHAPTER 2. NON-INTRUSIVE TESTING

Note that the Java language has a built-in support to achieve something similar.
With setAccessible we can indicate that the reflected object should suppress
access checking when it is used [145].

2.5.3 Out of Class Friend
As we saw above, private access via explicit instantiation does not work for all
kinds of private entities. So, our other contribution is to explore the idea of a new
lingual element with which we would be able to access all kinds of private members.
In our non-intrusive approach, we define a function or a class as a friend out of
the befriending class:

template <typename Mutex>
class Entity {
public:

int process(int i) { if(m.try_lock()) {} else {} }
//...

private:
Mutex m;
//...

};

friend for(Entity<StubMutex>) void test_try_lock_fails() {
Entity<StubMutex> e;
auto& m = e.m; // access the private member
// set up try_lock result value to false and do the assertions ...

}

Based on the LLVM/Clang2 compiler (version 3.6.0) [82], we created a proof-of-
concept implementation for out-of-class friends and it is now available online (see
[18]). The goal of this implementation is to demonstrate that the idea is indeed
feasible, though it is not our objective to provide a full-featured perfect realization.
Therefore, we add some restrictions to the functionality and we do not implement
proper error handling.

To ease the implementation, we use C++ attributes [63, 7.6 Attributes] in-
stead of modifying the existing grammar. More specifically, we use the GCC
__attribute__ syntax because the standard [[attribute]] syntax implementa-
tion was not complete in the Clang version we used. By using attributes, we skip
the problem of parsing and we can focus on the new semantic actions. So, the
above definition of test_try_lock_fails with attributes is the following:

__attribute__((friend(Entity<StubMutex>)))
void test_try_lock_fails() {

//...
}

2The LLVM compiler infrastructure is briefly presented in Appendix B.

72

2.5. ACCESS PRIVATE MEMBERS

However, prior to this definition, we need to explicitly instantiate the Entity class
template.

template class Entity<StubMutex>;

This is required because the attribute’s associated semantic action attempts to
access all the details of its type parameter (Entity<StubMutex>). In a future
study, it might be possible to modify the realization so as to implicitly do the
instantiation during the semantic action of the friend attribute. The instantiation
could be triggered just before accessing the details of the type parameter.

The definition with the attribute behaves exactly like any other in-class defined
friend definition. As such, it is not found by normal lookup unless we declare it
explicitly. Of course we wish it to be found by normal lookup, otherwise, we will
not be able to call the function. Overall, this means that our test code should
have the form:

template class Entity<StubMutex>;

__attribute__((friend(Entity<StubMutex>)))
void test_try_lock_fails() {

//...
}
// explicit declaration makes it available for normal lookup
void test_try_lock_fails();

// part of the test framework
void testDriver() {
test_try_lock_fails();
// ... call other test functions

}

Here testDriver is the function which embodies the test framework, whose task
is to execute each test case (or test suite) one-by-one. Another restriction of this
particular realization of out-of-class friends is to allow only functions to be declared
friends in this way.

After defining the constraints of such an attribute-based implementation we
can explore the concrete realization steps. First, we define our new attribute in
Clang’s Attr.td file:

def OutOfClassFriend : InheritableAttr {
let Spellings = [GCC<"friend">];
let Args = [TypeArgument<"Host">];
let Subjects = SubjectList<[Function]>;
let Documentation = [Undocumented];

}

Spellings defines the list of the supported attribute syntaxes, but this time it is
only the GCC style. The attribute syntax also defines the name of the attribute,
in our case it is friend. Args specifies the list of the attribute arguments. Our

73

CHAPTER 2. NON-INTRUSIVE TESTING

friend attribute has only one argument which is a type. This type argument refers
to the type that we would like to be the host class (the befriending class), i.e. the
class for which we define the additional friend function. Subobjects describe the
list of the lingual elements that might have this attribute. In this case, we only
allow functions to have it. Note that implementing this attribute for classes is an
important issue for future research.

Once we have the attribution definition in place, the Clang infrastructure will
generate all the necessary parsing code. What is left is for us to define the se-
mantic action for the new attribute and to hook that action into the existing
compiler machinery. As for the hooking, we need to add a new function call in the
ProcessDeclAttribute function. This function is dedicated to apply a specific
attribute to the specified declaration if the attribute applies to declarations. (Our
attribute applies to function declarations.)

static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr,
bool IncludeCXX11Attributes) {

//...
case AttributeList::AT_OutOfClassFriend:

handleOutOfClassFriendAttr(S, D, Attr);
break;

//...
}

The semantic action for the new attribute is defined in Figure 2.18. The S pa-
rameter holds a reference of the monumental Sema class which is responsible for
semantic analysis and AST building in the Clang compiler. The D parameter rep-
resents the declaration which has the attribute. The attribute itself is described
with the Attr parameter. The first step is to get the type parameter of the at-
tribute as a QualType (line 3-12). A QualType holds the basic type (e.g. int) and
all the qualifiers – if any – on that type. For this, we get the ParsedType from
the Attr with the getTypeArg() function (lines 4-6). A ParsedType is an opaque
pointer for QualTypes, i.e. this is a type-erased generic holder, this is something
similar to void*. Next, we get the underlying QualType from the ParsedType and
we set the location of it (lines 10-12). If we cannot get the location information
for the type, we simply set it to the location of the attribute (lines 11-12).

Afterwards, we get the RecordDecl instance from the QualType instance with
the help of the getRecordDecl function (line 15). This function returns a null
pointer if the QualType does not represent a record declaration. In Clang, a
RecordDecl is the type of the AST node that is created for C structs and unions.
Similarly, a CXXRecordDecl is specifically for C++ classes, structs and unions.
This means that we can safely cast the record declaration to a CXXRecordDecl
(line 17). The cast expression used here is a Clang specific cast, which is a “checked
cast” operation. It converts a pointer or reference from a base class to a derived

74

2.5. ACCESS PRIVATE MEMBERS

1 static void handleOutOfClassFriendAttr(Sema &S, Decl *D,
2 const AttributeList &Attr) {
3 // Get the attribute type argument as QualType
4 ParsedType PT;
5 if (Attr.hasParsedType())
6 PT = Attr.getTypeArg();
7 else { // TODO error handling
8 }
9 TypeSourceInfo *QTLoc = nullptr;

10 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
11 if (!QTLoc)
12 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
13

14 // The type argument must be a CXXRecordDecl
15 RecordDecl *RD = getRecordDecl(QT);
16 assert(RD);
17 CXXRecordDecl *CRD = cast<CXXRecordDecl>(RD);
18 // The attribute is subject of a FunctionDecl
19 FunctionDecl *FD = cast<FunctionDecl>(D);
20 // Set this function as a friend function
21 FD->setObjectOfFriendDecl();
22 // Create a new friend decl for the befriending class
23 FriendDecl::Create(S.Context, CRD, D->getLocation(),
24 cast<NamedDecl>(D), Attr.getLoc());
25 // For the record, Add the attribute to the Decl
26 D->addAttr(::new (S.Context) OutOfClassFriendAttr(
27 Attr.getRange(), S.Context, QTLoc,
28 Attr.getAttributeSpellingListIndex()));
29 }

Figure 2.18: Semantic action for the out-of-class friend attribute

75

CHAPTER 2. NON-INTRUSIVE TESTING

class, causing an assertion failure if it is not really an instance of the right type
[146].

Next, we get the more specific function declaration (FunctionDecl) from the
parameter Decl (line 19). The conversion from Decl to FunctionDecl must suc-
ceed since we explicitly specified in the Attr.td file that this attribute is valid
only for function declarations. So we use the checked cast again. Then we set up
this function declaration as a friend declaration (line 21).

Later, we create the AST node for this new friend declaration (lines 23-24).
This friend declaration references the previously synthesized CRD pointer as the
befriending class and the D parameter as the friend declaration. Once we have the
friend declaration in place, the access checking mechanism will assess the target
function like any other regular friend function.

As the last step, we register the attribute for the declaration (lines 26-28).
This step is not essential, but it makes the whole procedure complete. We did this
because in some future static analysis or another tool might want to process this
information.

2.5.4 Related Work
Accessing private non-static data members via static pointers was first presented
by Johannes Schaub [147]. Later it was extended by Chandra Shekhar Kumar
[148] so as to use friend functions instead of static pointers. We also extended
Kumar’s approach making it simpler and cleaner and we based our generic macro
library implementation on the simplified version. To the best of our knowledge,
accessing private static variables had never been presented before our work.

2.5.5 Conclusion
All non-intrusive testing methods require access to the internal state of the objects
under test. Our new methods are of course no exceptions. Therefore, for the sake
of accessing private members, we discussed different techniques available for C++.
Exploiting an exceptional language rule concerning explicit template instantiation
provides an interesting way of accessing private non-static data members. We
generalized the technique to access static members and member functions as well.
Then we created a library to automate the access. Currently, this library is the only
generic solution to access private members without violating the C++ standard.

Since our new technique above still had some shortages, we presented a more
generic method to access private or protected members. Friend declarations added
outside of a class could provide a full, non-intrusive solution to separate test related
code from the source of the unit under test. This new language element has the

76

2.5. ACCESS PRIVATE MEMBERS

capability to work on every private asset, data, function, or type. We also realized
a prototype based on C++ attributes to demonstrate the feasibility of the idea.

2.5.6 Contribution
Thesis 2 (Extending access for non-intrusive and white-box testing). I have anal-
ysed the various existing methods available for accessing private members in C++.
To support non-intrusive and white-box testing I have developed two different ap-
proaches eliminating the existing drawbacks. (1) I have created a library which ex-
ploits the explicit template instantiation mechanism of C++ and this way enables
access to private members. Currently, this library is the only generic solution to
access private members without violating the C++ standard. (2) I have presented
how friend declarations added outside of a class could provide a full, non-intrusive
solution to separate test related code from the source of the unit under test. I have
realized a prototype based on C++ attributes to justify the feasibility of out-of-class
friends.

thesis name relevant publications
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

(1) New non-intrusive testing
methods ◦ ◦ ◦ ◦ ◦

(2) Extending access for
non-intrusive and white-
box testing

• • •

(3) Selective friend ◦
(4) High-level abstraction for
the read-copy-update pattern ◦ ◦

77

Chapter 3

Selective Friend

There is a strong prejudice against the friendship access control mechanism in
C++. People claim that friendship breaks the encapsulation, reflects bad design
and creates too strong coupling. However, friends appear even in the most carefully
designed systems, and if it is used judiciously (like using the Attorney-Client idiom)
they may be a better choice than widening the public interface of the class.

In this section, we investigate how the friendship mechanism is used in C++
programs. We have made measurements on several open source projects to un-
derstand the current use of friends. Our results show various holes and errors in
friend usage, like friend functions accessing only public members or not accessing
members at all or the class which declare friends has no private members at all.
The results also show that friend functions actually use only a low percentage of
the private members they were granted to access, which is a source of errors.

These results have motivated us to propose a selective friend language con-
struct for C++ which can restrict friendship only to well-defined members. Such
a new language element may decrease the degradation of encapsulation and sig-
nificantly increase the diagnostic capacity of the compiler. We have created a
proof-of-concept implementation based on the LLVM/Clang compiler infrastruc-
ture to show that such constructs can be established with a minimal syntactical
and compilation overhead.

3.1 Motivation
Encapsulation is one of the quintessential object-oriented programming concept
(as we discussed in Chapter 1). Strictly speaking, information hiding is not a
mandatory part of encapsulation [149]. Encapsulation can be achieved by using
different programming conventions and good programmers have already success-
fully applied these practices in various languages. However, language support for

78

3.1. MOTIVATION

information hiding is essential in large-scale software projects, as the violation of
encapsulation rules can be detected in an automated way.

In modern statically typed programming languages information hiding is usu-
ally implemented via specific access control rules. These visibility rules are typ-
ically compiler-checked static rules, therefore no or minimal runtime activity is
involved. Most languages support module-based access control, but proposals
have been made to refine the type system of these languages to implement object
encapsulation too [150, 151, 152, 153, 154, 155]. In contrast, popular dynami-
cally typed languages such as Python, Ruby, and Smalltalk provide very limited
or no encapsulation at all. The implementation of object-oriented encapsulation
for dynamically typed languages is an important research area [33].

In object-oriented languages, the notion of the class is the main tool for both
modularization and encapsulation. Accordingly, most of the access rules define
the visibility of class members. Modern programming languages export services in
an anonymous way; i.e. not naming the client classes able to use those services.
An important exception is the Eiffel programming language, where selective export
possibilities provide a fine-grained description to specify which class components
are visible from individual client classes [156]. Unfortunately, most current popular
object-oriented languages lack this feature. Java, C#, and C++ restrict us to
enrol member access into visibility categories. In C++ we can use categories, like
“exporting to all clients” (public), “exporting to the subclasses” (protected), and
“exporting to none” (private). Though Java and C# add additional categories,
they still rely on anonymous category-based export.

Schärli et. al. [149] pointed out that current object-oriented programming
languages are surprisingly weak in terms of encapsulation mechanism provided for
programmers. Their criticism emphasizes that access rights are inseparable from
classes, and are not customizable. The authors also diagnose that access rights
are specified in terms of fixed client categories, typically users and heirs (i.e. using
public and protected categories).

In large projects, when the number of corresponding components is growing,
the class interactions form exponential accretion. Here superfluous visibility is a
persistent source of design, implementation and maintenance problems. On the
other hand, a fine-grained visibility strategy can utilize the full compiler possibil-
ities of modern object-oriented languages to filter out unwanted access attempts.

The C++ programming language has a special feature called friend declara-
tion to specify individual methods or full classes to access non-public members in a
class. Unfortunately, a friend has permission to access every field, method, nested
class, etc. with private or protected visibility. This behaviour essentially switches
off all possible automated detection of access violations, i.e. when a friend accesses
wrong members.

79

CHAPTER 3. SELECTIVE FRIEND

3.2 C++ Friends
In C++, friend is a special language element for access control mechanism [63,
section 11.3]:

A friend of a class is a function or class that is given permission to
use the private and protected member names from the class. A class
specifies its friends, if any, by way of friend declarations.

Example:
class A {

int x = 0;
friend void foo(A &a);

};

// Accessing private member:
void foo(A &a) { a.x = 42; }

A befriending class is a struct/class which declares one or more friend function,
friend function template, friend class or friend class template. Friend declarations
give special access rights to the friends, but they do not make the nominated
friends members of the befriending class.

Friendship is a great tool to enhance encapsulation in some special cases [34].
We often need to split a class in half when the two halves will have different
numbers of instances or different lifetimes. In these cases, the two halves usually
need direct access to each other. The safest way to implement this is to make
the two halves friends of each other. Friends have been used also for providing
better syntactics [157]. Consider for instance the binary infix arithmetic opera-
tors: aComplex + aComplex should be defined logically as part of the Complex
class. However, operator+ has to be a free-standing function to support aFloat
+ aComplex order of arguments as well, thus we declare it as a friend. Other
examples of better syntax are the stream operators (<<, >>) which often have to
access the internals of a class and they have to be free functions.

Friend is an explicit mechanism for granting access, just like membership.
Member functions and friend functions are equally privileged, they access every
innard of a class. The major difference is that a friend function is called like f(x),
while a member function is called like x.f() [34, 158]. Stroustrup states that dur-
ing the language design, a friendship declaration was seen as a mechanism similar
to that of one protection domain granting a read-write capability to another. It is
an explicit and specific part of a class declaration [159, 2.10].

When we design a class, we try to minimize the number of functions that ac-
cess the representation of the class and try to make the set of access functions
as appropriate as possible. Therefore, the first question regarding a (candidate

80

3.3. FRIENDS IN OTHER PROGRAMMING LANGUAGES

member) function is whether it really needs access to the class? Typically, the
set of functions that need access is smaller than we are willing to believe at first
[158, 19.4.2]. Meyers states that given a choice between a member function (which
can access not only the private data of a class, but also private functions, enums,
typedefs, etc.) and a non-member non-friend function (which can access none
of these things) providing the same functionality, the choice yielding greater en-
capsulation is the non-member non-friend function, because it does not increase
the number of functions that can access the private parts of the class [60, Item
23]. Sutter and Alexandrescu have similar statements [28, chapter 44]. In other
words, if we have a friend function which does not access any private entities it
weakens the encapsulation since it increases the number of functions that can ac-
cess the internals. By declaring that function non-friend, the encapsulation is not
weakened and the functionality can be preserved since there is no need to access
private entities. Consequently, we refer a friend function (or a method of a friend
class) as erroneous or superfluous if it is not used to provide better syntax — like
the non-member operator+ — and it does not access any private or protected
member.

Because friends can be easily misused [159, 160] some people discourage the use
of friends at all [161, 162]. The different use cases of friendship and the criticism
about it have motivated us to investigate friend usage in real-world, open source
projects.

3.3 Friends in Other Programming Languages

3.3.1 Java
In the Java language, there is no such thing as friendship. However, members
without any access modifier (package-private) are accessible via all those classes
which are declared in the same package [163]. This mechanism cannot control
access in such a fine-grained way as friendship, but for most of the cases, it is good
enough. For example, a white-box test [143, 144] might want to have access to
the class it is testing. This can be achieved by declaring the members of the class
package-private and by adding the test to the same package.

For a more sophisticated, friendship like access control we can use the work-
around presented at Figure 3.1 [164]. Here, class Owner has a privileged function
which shall be accessed only by the User class. The nested and public User.Key
class has a private constructor which is accessible only in the parent class (User),
therefore the User.Key object can be constructed only by the User class. The
User.usePrivileged() function uses a static instance of the mentioned Key. The
Owner.privileged() function requires an instance of the User.Key class to be

81

CHAPTER 3. SELECTIVE FRIEND

import java.util.*;
import java.lang.*;
import java.io.*;

class Owner {
public static void privileged(User.Key l) {
l.hashCode();
System.out.println("Privileged␣function␣called.");

}
}

class User {
public static class Key {

private Key() {}
}
private static Key key = new Key();
public static void usePrivileged() {
Owner.privileged(key);

}
}

class Main {
public static void main(String[] args) throws java.lang.Exception {
User.usePrivileged();
// Owner.privileged(null); // runtime error
// Owner.privileged(new User.Key());
// ^^^^^^^^^^^compile error

}
}

Figure 3.1: Friendship like access control in Java

82

3.3. FRIENDS IN OTHER PROGRAMMING LANGUAGES

passed. Putting this together, only the methods of the User class will be able to
call Owner.privileged(). If we call Owner.privileged() with a null pointer,
then we will receive a runtime error. If we try to create an instance of User.Key
not in the scope of User class, then we will get a compile error.

This technique cannot be implemented either in C++ or in C#, because it
relies on a special access rule, which is unique for Java. Namely, an enclosing class
can access its nested classes’ private members [165, 166]. With this approach,
we can precisely control which classes can access privileged functions of a class.
By evolving further this technique, we can also control which specific member
functions are accessible and this is more fine-grained access control than C++
friendship is. We can restrict access of friends only to a specific set of member
functions in C++ as well, with a similar idea which also uses private constructors
and special Key classes. Albeit, those Key classes need to declare some auxiliary
friends. Later in section 3.6.3 we elaborate this approach. This methodology is
capable of handling only member function access, but it cannot handle member
field access.

3.3.2 CSharp
In C# there is no friend keyword as well, though we can define members as
internal, thus making them available to the current assembly [167]. This is
very similar to what Java has with the package-private access level.

Also, there is the InternalsVisibleToAttribute with which we can achieve
a behaviour that is very similar to friendship [168]. With this attribute, we are
able to declare other assemblies to be friends of our assembly. The access control is
happening on assembly level and we cannot be more specific to control the access
class by class [169].

Figure 3.2 is an example that uses the InternalsVisibleToAttribute at-
tribute to make an internal member of an unsigned assembly visible to another un-
signed assembly. The attribute ensures that the inner IsFirstLetterUpperCase
method of the StringLib class in an assembly named UtilityLib is visible to
the code in an assembly named Friend2. We can see an example in Figure 3.3
which provides the source code for the Friend2 assembly. Note that if we are
compiling in C# from the command line, we must use the /out compiler switch to
ensure that the name of the friend assembly is available when the compiler binds
to external references.

3.3.3 Other Languages
D is a systems programming language with C-like syntax and static typing. It
combines efficiency, control and modelling power with safety and programmer pro-

83

CHAPTER 3. SELECTIVE FRIEND

using System;
using System.Runtime.CompilerServices;

[assembly: InternalsVisibleToAttribute("Friend2")]

namespace Utilities.StringUtilities
{

public class StringLib
{

internal static bool
IsFirstLetterUpperCase(String s)
{

string first = s.Substring(0, 1);
return first == first.ToUpper();

}
}

}

Figure 3.2: Use of InternalsVisibleToAttribute in CSharp (UtilityLib.dll)

using System;
using Utilities.StringUtilities;

public class Example
{

public static void Main()
{

String s = "The␣Sign␣of␣the␣Four";
Console.WriteLine(StringLib.IsFirstLetterUpperCase(s));

}
}

Figure 3.3: Use of InternalsVisibleToAttribute in CSharp (Friend2 assembly)

84

3.3. FRIENDS IN OTHER PROGRAMMING LANGUAGES

module X;
class A {

private:
static int a;

public:
int foo(B j) { return j.b; }

}
class B {

private:
static int b;

public:
int bar(A j) { return j.a; }

}
int abc(A p) { return p.a; }

Figure 3.4: Accessing private members in D (within the same module)

ductivity. In this language, friend access is implicit in being a member of the same
module [170]. This means a member which is declared private can be accessed by
other classes of the same module (Figure 3.4). The private attribute prevents only
other modules from accessing the members.

Rust is another systems programming language [171, 172]. In addition to public
and private, Rust allows users to declare an item as visible within a given scope
(Figure 3.5). This mechanism is similar to friendship, but we grant access to whole
modules not to just simple functions or classes. The rules are as follows:

• pub(in path) makes an item visible within the provided path. path must
be a parent module of the item whose visibility is being declared.

• pub(crate) makes an item visible within the current crate. (A crate is a unit
of compilation and linking, as well as versioning, distribution and runtime
loading.)

• pub(super) makes an item visible to the parent module.

• pub(self) makes an item visible to the current module.

Script languages like Python and Perl do not have any access restriction mech-
anism [173, 174]. However, there is a convention to name class internal variables
with an underscore prefix. The lack of access restriction sometimes results in
unbeneficial workarounds. For instance, in case of one Python implementation
of the Singleton pattern an exception is raised if the Singleton object is already
instantiated (since there is no way to make the constructor private) [175].

85

CHAPTER 3. SELECTIVE FRIEND

pub mod outer_mod {
pub mod inner_mod {

// This function is visible within ‘outer_mod‘
pub(in outer_mod) fn outer_mod_visible_fn() {}

// This function is visible to the entire crate
pub(crate) fn crate_visible_fn() {}

// This function is visible within ‘outer_mod‘
pub(super) fn super_mod_visible_fn() {

// This function is visible since we’re in the same ‘mod‘
inner_mod_visible_fn();

}

// This function is visible
pub(self) fn inner_mod_visible_fn() {}

}
pub fn foo() {

inner_mod::outer_mod_visible_fn();
inner_mod::crate_visible_fn();
inner_mod::super_mod_visible_fn();

// This function is no longer visible
// since we’re outside of ‘inner_mod‘:
// Error! ‘inner_mod_visible_fn‘ is private
//inner_mod::inner_mod_visible_fn();

}
}

Figure 3.5: Rust: declaring items visible within a given scope

86

3.4. MEASUREMENT

3.4 Measurement
For a better understanding of the current use of friends in C++, we decided to
carry out empirical research. We were interested in (i) how many private members
are accessed by friend functions, (ii) what is the ratio of accessed per non-accessed
private members, (iii) are there indications of erroneous friend usage. To execute
the measurement we implemented a utility based on the LLVM/Clang1 compiler
infrastructure’ LibTooling and LibASTMatchers libraries [176]. With the help of
these libraries, we can derive statistics from the abstract syntax tree (AST) of the
examined source files. Our utility is publicly available [19].

3.4.1 Description of the Measurement Algorithm
We can collect the statistics just for one translation unit (TU), or for a whole
project with several translation units. If there are more than one TUs in the
measure, we pay attention to not count twice those friend declarations whose
definitions are in headers.

During the measurement, we avoid collecting information on unused (i.e. nei-
ther instantiated nor explicitly specialized) templates in all contexts. If the be-
friending class is a class template, then it must have at least one instantiation/spe-
cialization to participate in the measure. We do not measure partial specializa-
tions.

We generate the statistics from measurement entries, which are stored for each
friend entity. We store a function measurement entry for each friend function
definition. If that friend declaration is a function template, then we create an
entry for each different template specialization/instantiation. It means we do not
examine the primary template itself, but only the specializations/instantiations.
So, not used (primary) function templates will not affect the collected statistics.

In the case of friend classes, we store a class measurement entry. If we find
a friend class template, then we examine only its specializations/instantiations.
For every friend class or class template specialization/instantiation, we examine
all of its member functions and member function templates and we create a func-
tion measurement entry for each of them. The member function templates are
handled similarly as we handle the simple friend function templates, i.e. only the
specializations/instantiations are checked, not the primary function template.

If the friend class or class template specialization/instantiation has nested
classes, then we collect statistics from all of the functions and function templates
of the nested classes. The rules regarding the function instantiation and special-
ization are the same as in case of non-nested classes. If the nested class happens

1The LLVM compiler infrastructure is briefly presented in Appendix B.

87

CHAPTER 3. SELECTIVE FRIEND

1 class A {
2 template <typename T>
3 friend void func(T, A& a);
4 };
5 template <typename T>
6 void func(T, A& a) {}
7

8 // Full(explicit) specialization
9 template <> void func<double>(double, A& a) {}

10

11 // Explicit instantiations
12 template void func<int>(int, A&);
13 template void func<double>(double, A&);
14

15 // Implicit instantiation
16 void foo() { A a; func<double>(1.0, a); }
17

18 // An other primary template
19 template <typename T> void func(T*, A&) {}

Figure 3.6: A more complex example for measurement

to be a class template, then we check only the specializations/instantiations of it.
Again, in cases of class templates, we do not check partial specializations. Only
explicit specializations and explicit/implicit instantiations are counted.

For example, consider the below code:
class A {

friend class B;
};
class B {

void func(A &a) {}
template <typename T>
class C {

void func(A &a) {}
};

};
template class B::C<int>;

Here, the measurement will contain two class measurement entries; one for class B
and one for class B::C<int> instantiation. Each class measurement entry con-
tains one function measurement entry.

A more complex example follows in Figure 3.6. Examining this translation unit,
we will have two function measurement entries. One for the specialization/instan-
tiation with double and one for the instantiation with int. The instantiations in
line 13 and 16 are superfluous instantiations since the compiler has already created
the corresponding representation for those instantiations via the specialization in
line 9. The last line of the example (line 19) defines a new primary template which
is independent of the friend function template.

88

3.4. MEASUREMENT

Note, there is no such thing as partial function template specialization in C++,
therefore

template <typename T> void func(T, A& a) {}
template <typename T> void func<T*>(T*, A&);

would be illegal. What is more, it is advised to not specialize function templates
at all [28, chapter 66].

Each function measurement entry contains the number of used private or pro-
tected

• member variables (including static variables),

• member functions (including static functions),

• types

in that particular function or function template specialization/instantiation. We
refer private or protected member variables, member functions and nested types
as private entities. Also, each entry contains the number of private or protected
entities in the corresponding befriending class.

For instance:

class A {
int a = 0;
int b;
int c;

friend bool operator==(A x, A y)
{

return x.a == y.a;
}

};

Here, we have one function measurement entry for operator==; the number of
used private member variables is 1 (variable a); the number of private member
variables in the befriending class is 3 (variables a, b, c).

All the statistics are derived from function measurement entries. Statistical
values are calculated separately for friend classes and for friend functions.
Under the term friend function instances, we refer:

• friend functions

• friend function template specializations/instantiations

of the befriending class. We name those friend function instances which use at
least 1 private entity as correct friend function instances. Under the term friend
class function instances we refer:

89

CHAPTER 3. SELECTIVE FRIEND

• friend classes’ member functions

• friend classes’ nested classes’ member functions

• the specializations/instantiations of the above two, if they happen to be
function templates

• member functions of friend class template specializations/instantiations

• the specializations/instantiations of the above, if it happens to be a function
template

• member functions of nested class template specializations/instantiations of
friend class template specializations/instantiations

• the specializations/instantiations of the above, if it happens to be a function
template

of the befriending class.
Under the term friendly function instances we refer all the friend function

instances plus all the friend class function instances of the befriending class. We
name those friendly function instances which use at least 1 private entity as correct
friendly function instances. The private usage of a friendly function instance is
the number of the used private entities in that particular function. The private
usage ratio of a correct friendly function instance is the number of the used private
entities divided by the number of all the private entities of the befriending class.
We interpret this number only on correct friendly functions, so it is always greater
than 0.0 and less than or equal to 1.0 (as a correct friendly function uses at least
1 private entity, which implies that its befriending class has at least 1 private
entity). The private usage of the operator== in the previous example is 1; the
private usage ratio is 1

3 .

Avoiding duplicated measurement entries

We must not count friend declarations multiple times if they are defined in a header
and there are multiple source files including this header. Consider the following 3
files:

// header file: a.h
class A { friend void func(); }; void func(){};

// source file: TU_A.cpp
#include "a.h"

// source file: TU_B.cpp
#include "a.h"

90

3.4. MEASUREMENT

In this case, we provide only one function measurement entry. That entry is
reachable via an associative container and identified by the source location of the
friend declaration (a.h:1:23).

We need to provide extra care in order to avoid the counting of the same
instantiations or specializations multiple times. We need to be attentive both
when the befriending class is a template and when the friend function itself is a
template. For example, consider the following header file:

1 // header file: a.h
2
3 template <typename T> class A;
4

5 template <typename T> void func(A<T> &a);
6

7 template <typename T> class A {
8 int a = 0;
9 int b;

10 int c;
11

12 // refers to a full specialization
13 // for this particular T
14 friend void func<T>(A &a);
15 };
16
17 template <typename T>
18 void func(A<T>& a) {
19 a.a = 1;
20 }

We forward declare the class template A (line 3), then we forward declare the
function template func that takes a reference to the object of one instantiation
of the class template A (line 5). Later, we define the class template (line 7-15).
Inside the class definition, we declare a friend function for each instantiation of A
(line 14). The definition of the function template follows (line 17-20).

Then, let us imagine we have the following two source files, each of them is
compiled into a separate translation unit:

// source file: TU_A.cpp
#include "a.h"
template void func(A<int>& a);

// source file: TU_B.cpp
#include "a.h"
template void func(A<int>& a);

Both of them contain the very same implicit instantiation of the class template, but
our measurement shall not count twice. Also, the function template is explicitly
instantiated twice, but we shall avoid adding the very same function measurement
entry twice to the friend declaration. To achieve this, we need to identify the
instantiations in a unique way. We use the diagnostic name of the identifiers,

91

CHAPTER 3. SELECTIVE FRIEND

which is the human readable form of the mangled names. We get this by calling
the getNameForDiagnostic() function on the different Decl classes provided by
Clang. The above set of the three files compiled into a project produces the
following function measurement entry:

befriending class: A<int>
friendly function: func<int>
friendDeclLoc: a.h:14:15
defLoc: a.h:18:6
diagName: func<int>
usedPrivateVarsCount: 1
parentPrivateVarsCount: 3
usedPrivateMethodsCount: 0
parentPrivateMethodsCount: 0
types.usedPrivateCount: 0
types.parentPrivateCount: 0

So we have one function measurement entry registered for the one friend declara-
tion (which is identified by its source location).

However, each friend function template could have different specializations with
their own definition. Therefore, for one friend declaration, we should register
more than one measurement entries. So we store measurement entries for such
different specializations in an associative container, with a tuple of the name of
the befriending class and the actual specialization as a key. (We need to be able
to search this container to avoid duplicates.) For instance, if the header file is the
same as before but the two source files are the following then we will have two
function measurement entries:

// source file: TU_A.cpp
#include "a.h"
template void func(A<int>& a);

// source file: TU_B.cpp
#include "a.h"
template <class T>
struct Z { using type = char; };
template <class T>
using XYZ = Z<T>;
template void func(A<XYZ<char>::type>& a);

We can see that the canonical type of XYZ<char>::type is actually simple char.
Therefore, we get one entry for func<char> and one for func<int>:

92

3.4. MEASUREMENT

befriending class: A<char>
friendly function: func<char>
friendDeclLoc: a.h:14:15
defLoc: a.h:18:6
diagName: func<char>
// ...

befriending class: A<int>
friendly function: func<int>
friendDeclLoc: a.h:14:15
defLoc: a.h:18:6
diagName: func<int>
// ...

The keys with which we store these entries are the pairs (A<char>, func<char>)
and (A<int>, func<int>). The layout of the measurement structure for friend
functions has the following form:

using FriendDeclId = std::string;
using BefriendingClassInstantiationId = std::string;
using FunctionTemplateInstantiationId = std::string;
using FuncResultKey = std::pair<BefriendingClassInstantiationId,

FunctionTemplateInstantiationId>;
using FuncResultsForFriendDecl = std::map<FuncResultKey, FuncResult>;

std::map<FriendDeclId, FuncResultsForFriendDecl> FuncResults;

The above consequences are similar in case of friend classes, therefore we just
present the layout of the measurement structure for the friend classes:

struct ClassResult {
std::string diagName;
FuncResultsForFriendDecl memberFuncResults;

};
using ClassTemplateInstantiationId = std::string;
using ClassResultKey = std::pair<BefriendingClassInstantiationId,

ClassTemplateInstantiationId>;
using ClassResultsForFriendDecl =

std::map<ClassResultKey, ClassResult>;

std::map<FriendDeclId, ClassResultsForFriendDecl> ClassResults;

Special purpose friend functions

Some degenerated use of friendship has evolved over the years. One such usage
of friend functions is to define free functions inside the declaration context of the
befriending class, i.e. to define free functions in-class. In this case, access control
is not considered at all, only the secondary property of a friend function definition
is used. For example the Boost.Operators [177] library uses friend functions and
CRTP [178] to generate free functions for client classes which derive from the
library classes.

93

CHAPTER 3. SELECTIVE FRIEND

In the following listing, a greater-than operator is automatically added, even
though there is no declaration because the greater-than operator can be imple-
mented using the already defined less-than operator [179]:

struct animal : public boost::less_than_comparable<animal> {
std::string name;
int legs;
animal(std::string n, int l) : name{std::move(n)}, legs{l} {}
bool operator<(const animal &a) const { return legs < a.legs; }

};

int main() {
animal a1{"cat", 4};
animal a2{"spider", 8};
std::cout << std::boolalpha << (a2 > a1) << ’\n’;

}

The corresponding generator class has the following form:
template <class T, class B = ::boost::detail::empty_base<T>>
struct less_than_comparable1 : B {

friend bool operator>(const T &x, const T &y) { return y < x; }
// ...

};

We might wonder why the library does not provide a free function template
instead of an in-class defined friend function, like below:

template <class T>
bool operator>(const T &x, const T &y) {

return y < x;
}

If it did that, then there would be a possible instantiation for all types, not just
for the type we really want to have the greater-than operator generated.

Another special purpose use of friends is to overcome some language constraints
during template argument deduction. For example, let us assume we want to
support implicit conversions on all operands of an operator of a class template
[60]:

94

3.4. MEASUREMENT

template <typename T> class Rational {
public:
Rational(const T &numerator = 0, const T &denominator = 1);

const T numerator() const;
const T denominator() const;
// ...

};

template <typename T>
const Rational<T> operator*(const Rational<T> &lhs,

const Rational<T> &rhs) {
// ...

}

We want the code below to compile:
Rational<int> oneHalf(1, 2);
Rational<int> result = oneHalf * 2; // error!

However, the second line will not compile. The reason behind that is the compiler
tries to deduce the T template type parameter of operator*, but it cannot. The
deduction succeeds for the first parameter (oneHalf), but it fails for the second
parameter. We might expect the compiler to use Rational<int>’s non-explicit
constructor to convert 2 into a Rational<int>. But it does not do that, because
implicit type conversion functions are never considered during template argument
deduction.

The solution for this problem is to define the operator* as a friend function
inside the body of the Rational class template:

template <typename T> class Rational {
public:

// ...

friend const Rational operator*(const Rational &lhs,
const Rational &rhs) {

// ...
}

};

Now the call to operator* will compile, because when the object oneHalf is
declared to be of type Rational<int>, the template class Rational<int> is in-
stantiated, and as part of that process, the friend function operator* that takes
Rational<int> parameters is automatically declared. As a declared function (not
a function template), compilers can use implicit conversion functions (such as
Rational’s non-explicit constructor) when calling it, and that is how they make
the call succeed. As Meyers writes in [60]:

The use of friendship has nothing to do with a need to access non-
public parts of the class. In order to make type conversions possible

95

CHAPTER 3. SELECTIVE FRIEND

on all arguments, we need a non-member function; and in order to
have the proper function automatically instantiated, we need to declare
the function inside the class. The only way to declare a non-member
function inside a class is to make it a friend.

This use relies on the side effects of friend declarations, and it falls far away
from the original intention of friendship, which was to provide sophisticated access
control.

We refer a friend function as Meyers candidate if it has the following properties:

• It has zero private usage.

• Its befriending class is a class template.

• The function is defined inside (in-class) the befriending class.

The friend functions in both of the above examples (less_than_comparable1
::operator> and Rational::operator*) fulfills these properties. Meyers candi-
dates are very likely to be using the friend declaration specifier to define in-class
free functions for a specific purpose and not for accessing private entities.

3.4.2 Measurement Results
We have measured four open source projects:

1. Boost Libraries [180], version 1.56.0, „2.0 million lines of C/C++ code

2. LLVM and Clang [82], version 3eec7e6 (llvm.org/git/clang.git), „2.3 million
lines of C/C++ code

3. ITK [181], version 4d37786 (itk.org/ITK.git), „1.0 million lines of C/C++
code

4. Qt (qtbase package, core module) [182], version 5.6.3, „200 thousand lines
of C/C++ code

The detailed measurement logs can be accessed publicly [19].
Figure 3.7 shows the distribution of private usage in friend function instances

for these projects. We can see for example in case of the Boost libraries there are
around 95 friend functions which use one private entity. With the shaded (white)
bar we display the number of the Meyers candidates. We do not draw bars for
those results where the number of friends is zero; for instance, there is no bar for
7 in case of the Clang project. We can see that there are lots of friend function
instances which do not use any of the private entities (zero private entity usage).
There can be two reasons behind this:

96

3.4. MEASUREMENT

0 1 2 3 4 5
private usage

0

20

40

60

80

100

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Boost, ver. 1.56.0

0 1 2 3 5 6 8
private usage

0

50

100

150

200

250

300

350

400

450

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Clang, ver. 3eec7e6 (3.6)

0 1 2 3 4 5 7
private usage

0

5

10

15

20

25

30

35

40

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

ITK, ver. 4d37786

0 1 2 3 4
private usage

0

20

40

60

80

100

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

QT, ver. 5.6.3

Figure 3.7: Private usage in functions

97

CHAPTER 3. SELECTIVE FRIEND

1. The befriending class does not have any private entities.

2. The friend function instance simply does not use any of the private entities.
Note, those friend function instances which are in this category might be in
the previous category as well because a friend function cannot use any of the
private entities if the befriending class does not have any.

A surprisingly big portion of the friend function instances are not using any of
the private or protected members. They are declared as friends either by mistake
or during maintenance their implementation has changed to not access any pri-
vates. Or they have been declared as friends for some special reason which is not
connected to access control, i.e. they are Meyers candidates.

According to Stroustrup we should strive to minimize the number of functions
that access internals [158, 19.4.2]. Meyers states the encapsulation is greater if
there are fewer functions that can access the private parts of the class [60, Item
23]. Consequently, we consider all those non-Meyers-candidate friend functions as
erroneous friends which have zero private usage.

Those friend functions who are Meyers candidates shall not be counted as
erroneous friends. Even though they do not access any private entities they might
have been declared as friends to define a free function. However, we cannot know
if this is the only true case. It might as well be possible, that the function had
accessed privates previously, but during maintenance, it has been changed to not
access privates anymore. Nevertheless, the number of Meyers candidates gives
us the upper limit of the error of our measurement regarding erroneous friend
functions.

We conclude that even considering the Meyers candidates there can be many
friend functions or classes which are declared as friends superfluously, this way
weakening the encapsulation. Therefore, we created a tool [19] with which we can
list all the possibly erroneous friend declarations in a project. More specifically
this tool can list

1. All those befriending classes which have at least one friend declaration but
itself does not have any private entities. Note we do not list a class if all
of its friend declarations are functions and all of those functions are Meyers
candidates.

2. All those friend classes whose all member functions do not access any pri-
vate entities in the befriending class (and the befriending class has private
entities).

3. All the friend functions which might not be friend because they do not access
any private entities. We list only those functions whose befriending class have
private entities and it is not a Meyers candidate.

98

3.4. MEASUREMENT

struct uchar_wrapper {
//... // there is no any access specifier

// Friend function definition
friend std::ptrdiff_t
operator-(uchar_wrapper const &lhs, uchar_wrapper const &rhs) {

return lhs.base_cursor - rhs.base_cursor;
}

//...
};

Figure 3.8: An erroneous friend declaration in Boost

(Note, this tool is also based on Clang LibTooling library and shares a lot of
common source code with the statistical measurement tool). With the help of the
tool we could identify those friends in the Boost, Clang, ITK and Qt projects that
were declared as friend by mistake. For instance, in the ITK library, there is a
befriending class, which declared the operator<< as a friend function:

class GDCM_EXPORT Sorter {
friend std::ostream &
operator<<(std::ostream &_os, const Sorter &s);

public:
// ...
void Print(std::ostream &os) const;

protected:
std::vector<std::string> Filenames;
// ...

};

inline std::ostream &operator<<(std::ostream & os, const Sorter &s) {
s.Print(os);
return os;

}

Still, the definition of operator<< uses only the public Print() function and does
not use any of the private entities.

We can find another example for erroneous friend usage in the Boost libraries
as well, listed in Figure 3.8. The uchar_wrapper struct does not have any ex-
plicit access specifier in the body of the class definition, i.e. all the members are
public. Still, the operator-() is declared as friend. These cases safely can be
considered as misuses of the friend construction. Note, currently there is no lan-
guage construction in C++ to enable the compilers to detect and warn about such
situations.

Figure 3.9 shows the distribution of the private usage in friend class function
instances for Boost, Clang, ITK and in Qt corelib. The number of friend class

99

CHAPTER 3. SELECTIVE FRIEND

0 1 2 3 4
private usage

0

5000

10000

15000

20000

25000

30000

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Boost, ver. 1.56.0

0 1 2 3 4 5 6 7 9 13
private usage

0

20000

40000

60000

80000

100000

120000

140000

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Clang, ver. 3eec7e6 (3.6)

0 1 2 3 4 5 12 17
private usage

0

200

400

600

800

1000

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

ITK, ver. 4d37786

0 1 2 3 4 5 6 7 10 18
private usage

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

QT, ver. 5.6.3

Figure 3.9: Private usage in classes

100

3.4. MEASUREMENT

0 20 40 60 80 100
private usage ratio (%)

0

2

4

6

8

10

12

14

16

18

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Boost, ver. 1.56.0

0 20 40 60 80 100
private usage ratio (%)

0

50

100

150

200

250

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Clang, ver. 3eec7e6 (3.6)

20 40 60 80 100
private usage ratio (%)

0

2

4

6

8

10

12

14

16

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

ITK, ver. 4d37786

0 20 40 60 80 100
private usage ratio (%)

0

10

20

30

40

50

60

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

QT, ver. 5.6.3

Figure 3.10: Private usage ratio in functions

function instances with zero private entity usage is quite high. In all four libraries,
the number of these class function instances is significantly larger than the number
of the correct class function instances. There is a huge number of member functions
in friend classes which does not use any private members but they have access for
all of the private entities of the befriending class. Compared to friend functions,
the ratio of non-correct / correct function instances is way higher in the case of
friend classes. This means that friend classes provide access for a wide range of
functions that are potentially unrelated to the befriending class. Therefore we
consider the use of friend classes more harmful to encapsulation than the use of
friend functions.

Figure 3.10 presents the average private usage ratio of correct friend function
instances while figure 3.11 displays the average private usage ratio of correct friend
class function instances. We can see, there are lots of the correct friendly function
instances which are just accessing only a small portion of the befriending class’
private entities. Also, in Figures 3.7 and 3.9 we can see that the vast majority of
the correct friendly function instances access only 1-4 private entities. I.e. those

101

CHAPTER 3. SELECTIVE FRIEND

0 20 40 60 80 100
private usage ratio (%)

0

50

100

150

200

250

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Boost, ver. 1.56.0

0 20 40 60 80 100
private usage ratio (%)

0

100

200

300

400

500

600

700

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

Clang, ver. 3eec7e6 (3.6)

0 20 40 60 80 100
private usage ratio (%)

0

5

10

15

20

25

30

35

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

ITK, ver. 4d37786

0 20 40 60 80 100
private usage ratio (%)

0

5

10

15

20

25

30

35

40

45

N
o.

fr
ie
n
d
ly

fu
n
ct
io
n
in
st
an
ce
s

QT, ver. 5.6.3

Figure 3.11: Private usage ratio in classes

102

3.5. SELECTIVE FRIEND

functions which do access internals usually do not access more than a few members.
In other words, the library authors allowed unnecessary access to a large number
of private entities.

3.5 Selective Friend

3.5.1 A New Lingual Element
Meyers states the encapsulation is greater if the number of functions that can
access the private parts of the class is fewer [60, Item 23]. Similarly, we state that
the encapsulation is greater if the number of accessible private entities is fewer
because in that case, the accessible private part of the class is smaller.

We have seen in section 3.4.2 that in Boost, Clang, ITK and Qt the vast major-
ity of correct friendly function instances access only 1-4 private entities although
the number of private entities in the befriending class is usually much higher.
Hence, we conclude there are many friend functions who access only a small sub-
set of all the private members and this way the encapsulation is weakened. To
overcome this issue, we propose a new language construct which enables friends
to access only a restricted set of explicitly named private entities. Let us consider
the syntax:

class A {
int x = 0;
int y = 0; // expected-note

// {{implicitly declared private here}}
friend for (x) void func(A &a);

};

void func(A &a) {
a.x = 1; // OK
a.y = 1; // expected-error

// {{’y’ is a private member of ’A’}}
}

During the compilation, we would expect an error at the line when we attempt to
access a.y private member because we explicitly stated that func can access only
A::x.

An alternative syntax conforming to the current C++17 standard is using
attributes:

[[friend_for(x)]] friend void func(A &a);

// Access of multiple members
[[friend_for(x, y)]] friend void func(A &a);

Even without any change to the current C++ standard, the attribute-based
friend_for implementation could be useful. The tools (compilers and external

103

CHAPTER 3. SELECTIVE FRIEND

tools) that support it could provide proper diagnostics when the semantics of the
attribute is violated. The tools which do not support it would just simply ignore
the friend_for specification. C++17 compliant compilers are required
to silently ignore unknown attributes [37, 10.6.1/6], whereas C++14
compliant compilers may produce warnings [63, 7.6.1/5]. A proof-of-concept
implementation using attributes is publicly available at [20].

Description of the Implementation

The realization of the attribute [20] is based on the LLVM/Clang2 compiler in-
frastructure (version 3.6.0) [82]. The goal of this implementation is to prove that
the idea is feasible, not to provide a full-featured perfect realization. Therefore,
we add some restrictions about the functionality and we do not implement proper
error handling. We allow only functions to be declared as selective friends. We
can select only one member to be the target of a selective friend. The argument
of the attribute has to be a unary expression which can be parsed as a pointer to
a member. Also, we use the GCC __attribute__ syntax because the standard
[[attribute]] syntax implementation is not complete in the used Clang version.
Thus, the prototype handles the following syntax:

__attribute__((friend_for(&A::x))) friend void func(A &a);

We define our new attribute in Clang’s Attr.td file:
def SelectiveFriend : InheritableAttr {
let Spellings = [GCC<"friend_for">];
let Args = [ExprArgument<"Expr">];
let Subjects = SubjectList<[Function]>;
let Documentation = [Undocumented]; }

Spellings defines the list of the supported attribute syntaxes, this time it is only
the GCC style. The attribute syntax also defines the name of the attribute, in our
case, it is "friend_for". Args specifies the list of the attribute arguments. Our
attribute has only one argument which is an expression. This argument refers to
a unary expression which takes the address of a member. Subobjects describe
the list of the lingual elements that might have this attribute. In this case, we
allow only functions to have it. Note, there is no way to specify an attribute to be
attachable only to friend function declarations, thus we had to be satisfied with
the Function declarations as subjects.

Once we have the attribution definition in place then the Clang infrastructure
will generate all the necessary parsing code. What left is to define the seman-
tic action for the new attribute and to hook that action into the existent com-
piler machinery. As for the hooking, we need to add a new function call in the
ProcessDeclAttribute function:

2The LLVM compiler infrastructure is briefly presented in Appendix B.

104

3.5. SELECTIVE FRIEND

static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr,
bool IncludeCXX11Attributes) {

// ...
case AttributeList::AT_SelectiveFriend:

handleSelectiveFriendAttr(S, D, Attr);
break;

// ...
}

This function is dedicated to apply a specific attribute to the specified declara-
tion if the attribute applies to declarations. (Our attribute applies to function
declarations.)

The semantic action for the new attribute is defined as follows:
1 static void handleSelectiveFriendAttr(
2 Sema & S, Decl * D,
3 const AttributeList &Attr) {
4

5 // TODO Add error handling, when D is not a
6 // FriendDecl
7

8 Expr *E = Attr.getArgAsExpr(0);
9

10 D->addAttr(
11 ::new (S.Context) SelectiveFriendAttr(
12 Attr.getRange(), S.Context, E,
13 Attr.getAttributeSpellingListIndex()));
14 }

The parameter S holds a reference of the monumental Sema class which is responsi-
ble for semantic analysis and AST building in the Clang compiler. The parameter D
represents the declaration which has the attribute. The attribute itself is described
with the Attr parameter. First, we retrieve the expression which is connected to
the argument of the attribute (line 8). Note, we skip the handling of the erroneous
case when the user attaches this attribute to a non-friend function. The second
step is to create a SelectiveFriendAttr node in the AST (lines 11-13). Then we
register the new node to the function declaration with addAttr (line 10).

Clang has a semantic action associated for some of the production rules of the
postfix-expression non-terminal in the C++ grammar [63, appendix 4]. These
production rules are describing the syntax of member access:

postfix-expression:
postfix-expression . [template] id-expression
postfix-expression -> [template] id-expression

In the associated semantic action, Clang checks whether the member access ex-
pression has privileges to access the actual member. In the process of checking
the privileges, Clang eventually calls the GetFriendKind() function. This func-
tion iterates over all the friend declarations of the class that the member access
expression refers to:

105

CHAPTER 3. SELECTIVE FRIEND

1 static AccessResult GetFriendKind(
2 Sema & S, const EffectiveContext &EC,
3 const AccessTarget &Target,
4 const CXXRecordDecl *Class) {
5
6 AccessResult OnFailure = AR_inaccessible;
7

8 // Okay, check friends.
9 for (auto *Friend : Class->friends()) {

10 switch (MatchesFriend(S, EC, Friend)) {
11 case AR_accessible:
12 return AR_accessible;
13
14 case AR_inaccessible:
15 continue;
16
17 case AR_dependent:
18 OnFailure = AR_dependent;
19 break;
20 }
21 }
22

23 // That’s it, give up.
24 return OnFailure;
25 }

The S parameter is a reference to the global Sema class. EC refers to the list
of the enclosing functions and/or classes (up to the highest file scope) in which
the member access expression is located. The Target parameter represents the
member that the member access expression refers to. Class refers to the class that
the member access expression deals with. This class is not necessarily a befriending
class, it might not have any friend declarations at all. For each iteration (line
10), Clang checks for the iterated friend declaration whether any of the enclosing
functions or classes (EffectiveContext) of the actually parsed member access
expression is equal to that friend declaration:

static AccessResult MatchesFriend(Sema &S, const EffectiveContext &EC,
FunctionDecl *Friend) {

// ...
for (SmallVectorImpl<FunctionDecl *>::const_iterator

I = EC.Functions.begin(),
E = EC.Functions.end();

I != E; ++I) {
if (Friend == *I)

return AR_accessible;
// ...

}
// ...

}

If that equality holds, that means the actual member access expression is valid,
because one of the parent enclosing scopes is either a friend function or a friend
class.

106

3.5. SELECTIVE FRIEND

The point which we chose to intervene into Clang’s original access checking
mechanism is in the GetFriendKind() function:

1 // Okay, check friends.
2 for (auto *Friend : Class->friends()) {
3 switch (MatchesFriend(S, EC, Friend)) {
4 case AR_accessible:
5 switch (SelectiveFriendConstraint(Friend,
6 Target)) {
7 case AR_accessible:
8 return AR_accessible;
9 case AR_inaccessible:

10 continue;
11 default:
12 assert(false &&
13 "should␣not␣reach␣this␣point");
14 }
15
16 case AR_inaccessible:
17 // ...
18 }
19 }

Whenever the MatchesFriend() function reports that the actual member is acces-
sible then we review its decision by checking if there is a selective friend attribute
(line 5-14).

Figure 3.12 shows how the constraint on the selective friend attribute is im-
plemented. The Friend parameter refers to the friend declaration. The Target
parameter represents the member that the actual member access expression refers
to. First (line 5-9), we check whether we can get a NamedDecl pointer from the
friend declaration. If we cannot get such a pointer that means the friend declara-
tion refers to a class, not a function. Since we do not handle classes we return with
AR_accessible, i.e. we do not do any restriction. Then we cast the NamedDecl
into a FunctionDecl. If the cast is not successful that means either we deal with
a function template or with a class template. If it turns out the friend declaration
refers to a class template then again we leave intact the original access checking
mechanism. Otherwise, if it is a function template then we get the pointer to the
underlying FunctionDecl (line 11-22). Finally (line 24-35), we retrieve the selec-
tive friend attribute from the function if it has any. From the expression that is
wrapped into the attribute, we get the AST node that holds the information about
the unary operator expression. From the unary operator, we get the AST node
(DeclRefExpr) that refers to the "address of" operator (&). Note, the used cast
operations will abort the program execution if the cast cannot succeed; this abort
will not happen until we do casts that are consistent with the attribution definition
and its semantic action. Then we check whether this referenced declaration (DRef)
is equal to the declaration of the member that the member access expression refers
to (Target). If they are not equal that means the actually investigated member

107

CHAPTER 3. SELECTIVE FRIEND

1 static AccessResult SelectiveFriendConstraint(
2 FriendDecl * Friend,
3 const AccessTarget &Target) {
4

5 NamedDecl *ND = Friend->getFriendDecl();
6 // handling of friend classes not implemented
7 if (!ND) {
8 return AR_accessible;
9 }

10

11 FunctionDecl *FD = dyn_cast<FunctionDecl>(ND);
12 if (!FD) {
13 FunctionTemplateDecl *FTD =
14 dyn_cast<FunctionTemplateDecl>(ND);
15 // handling of friend class templates not
16 // implemented
17 if (!FTD) {
18 return AR_accessible;
19 }
20 FD = FTD->getTemplatedDecl();
21 }
22 assert(FD);
23

24 if (SelectiveFriendAttr *Attr =
25 FD->getAttr<SelectiveFriendAttr>()) {
26 const Expr *E = Attr->getExpr();
27 const UnaryOperator *UO =
28 cast<UnaryOperator>(E);
29 const DeclRefExpr *DRef =
30 cast<DeclRefExpr>(UO->getSubExpr());
31 if (cast<NamedDecl>(DRef->getDecl()) !=
32 Target.getTargetDecl()) {
33 return AR_inaccessible;
34 }
35 }
36
37 return AR_accessible;
38 }

Figure 3.12: Constraint on selective friend attribute

108

3.5. SELECTIVE FRIEND

access expression cannot have access to the member based on this specific friend
declaration, therefore we return with AR_inaccessible; otherwise, we return with
AR_accessible.

By calling the SelectiveFriendAttr() function, we increase the complexity
of the compilation process. To estimate the overhead, we did some measurements
on the modified compiler. We generated a file which contains friend declarations
and member access expressions. Let n denote the number of member accesses and
x denote the number of friend declarations. For instance, one generated file has
the following form:

class A {
int a;
void mem_fun() {}
friend void friend_fun0() {} // 1st
friend void friend_fun1() {} // 2nd
// ...
friend void friend_funX() {} // xth
friend void caller(A &a);

};
void caller(A &a) {
[&a]() { a.mem_fun(); }(); // 1st
[&a]() { a.mem_fun(); }(); // 2nd
// ...
[&a]() { a.mem_fun(); }(); // nth

}

In the case of selective friends class A has a different form:
class A {

int a;
void mem_fun() {}
__attribute__((friend_for(&A::a))) friend void friend_fun0() {} // 1st
__attribute__((friend_for(&A::a))) friend void friend_fun1() {} // 2nd
// ...
__attribute__((friend_for(&A::a))) friend void friend_funX() {} // xth
friend void caller(A &a);

};

We compiled the generated files several times, so we could measure the compilation
time in the domain of n and x. We executed the compiler on an Intel(R) Core(TM)
i7 class processor. Let us bind x to be a constant 100. Figure 3.13 displays the
performance of the compiler, when the number of the friend functions is a constant
(exactly 100) and the number of the member accesses is growing. baseline denotes
the performance of the compiler without any modification, the new refers to the
compiler with the modification in it and the selective denotes the performance
of the modified compiler when we have the attached selective attributes to the
friend declarations. Our conclusion is that the compile time of selective friends
scarcely depend on the number of member access expressions when the number
of friend declarations is less than a hundred. However, when we fix n to 1000(N)

109

CHAPTER 3. SELECTIVE FRIEND

0 2000 4000 6000 8000 10000

#member accesses

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
T
im

e
(s
)

baseline

new

selective

Figure 3.13: Comparing compile times, #friends: 100

0 5000 10000 15000 20000

#friends

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
im

e
(s
)

baseline

new

selective

Figure 3.14: Comparing compile times, #members: 1000

110

3.5. SELECTIVE FRIEND

and let the number of the friend function declarations grow gradually, we get the
results in Figure 3.14. Let fpxq denote the compile time of N member accesses
(baseline). Let gpxq denote the compile time of N member accesses in the domain
of the number of the friend declarations where those declarations are selective
friends (selective). We can see a correlation between fpxq and gpxq: gpxq “
Cpxq ˚ fpxq, 1.12 ă Cpxq ă 1.87, 1000 ă“ x ă“ 20000. We state the compilation
overhead is always less than 3x if the number of friend declarations is less than
20000.

We conclude that the performance of the compiler is indeed degraded, but
we could measure noticeable compile time overhead only when the number of the
friend declarations were above a hundred. (Note, we estimate that having more
than a hundred friend declarations in a class is quite a rare case in C++ source
codes.) The measurement scripts and the resulted files from which we generated
the charts are publicly available online [20].

3.5.2 Eiffel like Syntax
In our implementation, we use expressions as attribute arguments: we are taking
the address of a member variable. If we did the same with a member function
that would certainly require the compiler to generate the executable code of that
function to be able to take its address. As a result, an otherwise non-generated
(inlined) function is generated into the final executable. Also, in order to be able
to take the address of a static const integral member variable, we need to define
that variable [62, page 210–211]. So we would need to define it just because of the
selective friend declaration. These side effects might not be wanted in some cases.

With our implementation, we have to specify a valid expression as an argument
to the attribute. Therefore, we cannot restrict access to a specific member type.
For that we would need to have the attribute definition to look like this:

def SelectiveFriend : InheritableAttr {
// ...
let Args = [TypeArgument<"MemberType">];
// ...

}

This is one limitation of the implementation of the attributes in the used Clang
compiler, we cannot specify an argument which is either a type or an expression.
We have to make the decision during the design of the attribute.

Because of the described difficulties, we might want to seek other alternatives.
One such alternative syntax could be to annotate each and every member via an
attribute (Figure 3.15). The current C++ standard (C++17) enables us to tag the
friend functions/classes which may access the private members. However, with the
alternative approach presented in Figure 3.15 we would have to tag the members

111

CHAPTER 3. SELECTIVE FRIEND

void func(A &a);
class A {
[[friend_for (func)]] int x = 0;
int y = 0;

};

void func(A &a) {
a.x = 1; // OK
a.y = 1; // expected-error,

// {{’y’ is a private member of ’A’}}
}

Figure 3.15: Alternative syntax: annotate the members to provide access for a
function

to indicate if they are accessible outside of the class. Actually, this method is very
similar to Eiffel’s access control.

The Eiffel programming language uses a special tagging mechanism for every
class member to achieve selective friend like access control. Eiffel features are
synonyms to C++ member variables and member functions. A feature can be
either a field or a method [183, 184]. Features can be exported to all classes [156]:

• feature {ANY} means that the specific feature is available to all classes
(analogous to C++ public).

• feature {NONE} means that the specific feature is not available to any
classes (analogous to C++ private).

• feature {CLASS_A, CLASS_B, CLASS_C} means the features will be acces-
sible by all three classes and in all of their proper descendant classes, but
not in any other classes.

3.6 Related Work

3.6.1 Private Usage of Friend Classes
In 2005, English, Buckley and Cahill defined a number of software metrics that
measure the extent to which friend class relationships are actually used in systems
[185]. Our experiments confirm these earlier results and extend them. They defined
the following relevant metrics:

• Actual Friend Methods (AFM): Counts the number of methods in a friend
class that access hidden members of the befriending class.

112

3.6. RELATED WORK

• Actual Friend Classes (AFC): The number of friend classes in a software
system which are actually exploited through friendship, i.e. the number of
those classes which have AFM ą“ 1. If we divide the AFC value of a system
with the number of friend classes in it we may have percentage value about
friend classes declared as friends superfluously.

• Complexity in the Forward Direction for Friends (CCFF(1)): Counts the
number of distinct interactions of a friend class with hidden methods and
attributes of the befriending class. (CCFF(1) is a refinement of the CCF(1)
metric of Wilkie and Kitchenham [186].)

• Response set For Friend Class (RFFC(1)): In a friend class, it counts the
number of distinct hidden members which are accessed in the befriending
class.

• Coupling Complexity in the Backward direction for Friends (CBOF(Back)):
Counts the number of declared friend classes which actually access hidden
members of the class, i.e. that utilize the friend declaration.

• Actual Friend Class Relationships (AFCR): This is a system level metric,
like AFC. AFCR is the total sum of all the friend class relationships actually
exploited in a system. Therefore, it is the sum of CBOF(Back) for all the
classes in the system.

• Members Accessed by Friends (MAF): Counts the number of hidden members
of a befriending class which are accessed by its friend classes.

All of these metrics are interpreted only in the context of friend classes, they are
not defined for friend functions. Also, it is not clear how primary class templates,
template instantiations and specializations affect these metrics. Our metrics of
private usage (and private usage ratio) is applicable to friend functions and member
functions of friend classes as well. Also, in our empirical study, we handle class
templates, their specializations and instantiations with a well-defined algorithm as
described in section 3.4.

English and Buckley have evaluated the above metrics on a number of open-
source projects. For the systems in their study, the AFC percentage ranged from
42.8% to 100%. For about 60% of all systems, the percentage of friend classes which
exploit some of the friendship available to them was less than 75%. Therefore, for
more than half of the systems in their study at least 25% of friend class decla-
rations were shown to be redundant. The CBOF(Back) metric returned mostly
small values. There were just 2 systems with a median value greater than 1 for
CBOF(Back). In addition, the maximum value of CBOF(Back) was less than 9
for all but one system. This again indicated only a small subset of friend classes

113

CHAPTER 3. SELECTIVE FRIEND

accessed hidden members. For the systems they analyzed, a large proportion of
befriending classes returned a zero value for MAF, indicating that a considerable
number of friend declarations were not exploited and as a result, no hidden mem-
bers of the befriending classes were accessed directly. In many systems a large
proportion of classes had an RFFC(1) value of zero, indicating that no use was
made of any friend relationship, where the class was declared as a friend. English
and Buckley concluded there are many friend classes which do not exploit friend-
ship. We confirm their conclusion based on our measurement results: The number
of friend class function instances with zero private entity usage is quite high in the
measured four libraries (Figure 3.9). With other words, there are many erroneous
or superfluous friend declaration of friend classes.

They also concluded that there are many friend class declarations where friend
function declarations might be more appropriate. This conclusion is also aligned
with our empirical results in Figure 3.9 and 3.7. We can see that most of the friend
class function instances have zero private usage. In the case of friend functions
the ratio of incorrect/correct friend function instances is significantly lower than
the ratio in the case of friend classes, thus friend function declarations are more
appropriate.

There are some other results in English’s study which support the raison d’etre
of selective friends. The median value for the AFM metric was found to be 1
for many systems in their research. None of the 28 systems had a median value
greater than 3. For 12 of the 28 systems, the median value of CCFF(1) was ă“ 3.
They measured that in almost 50% of systems, 50% of the classes declared as
friends were involved in less than or equal to 3 interactions that were dependent
on the friend construct. Also, in all but 2 systems the median value of MAF is less
than or equal to 3. The median value of RFFC(1) for 26 of the 28 systems was
less than or equal to 3. Therefore, in almost all systems, 50% of classes declared
as friends required access to less than or equal to 3 hidden members in other
classes. These numbers are aligned with our observation that the vast majority of
the correct friend class function instances access only 1-4 private entities (Figure
3.9). English and Buckley concluded that for all systems at least 50% of classes
declaring friends only access a small number of hidden members. We confirm
this statement based on our metrics on private usage ratio of friend class function
instances (Figure 3.11). They also concluded that the level of protection assigned
to some class members should be reconsidered, especially where friend classes only
access a small number of hidden members in a class. This again confirms the need
for a selective friend construct.

114

3.6. RELATED WORK

3.6.2 Friends and Inheritance
Counsell and Newson studied a number of hypotheses about relationships between
the use of friends and other internal attributes of a class [187]. Their results
suggest that the friend mechanism is used as an alternative to inheritance. They
examined four C++ systems of varying sizes and analysed data related to friends
collected for each. The following five hypotheses were investigated:

• The more friends in a class, the less (non-friend) coupling found in that class.

• The more friends in a class, the more methods found in that class.

• Classes declared as friends of other classes have less inheritance than other
system classes.

• Classes containing friends that engage in inheritance have fewer descendants
than other system classes.

• Classes that do not engage in any inheritance have more friends than classes
which do engage in inheritance.

Their results showed a lack of statistical significance with any of the class metrics
collected. No evidence was found to support the hypothesis that classes declared
as friends of other classes used inheritance any less than other classes. Strong
evidence was found, however, to support the hypothesis that, firstly, friends tended
to be found in classes deep in the inheritance hierarchy; secondly, that classes not
engaging in inheritance use friends considerably more than classes that do. Their
empirical evidence also suggests that friends are used primarily as a means for
facilitating operator overloading.

English, Buckley and Cahill replicated and refined the empirical study made
by Counsell and Newson [188, 189, 190, 191]. They refined their measurements
by excluding friend constructs which participate in operator overloading. Counsell
and Newson handled friendship symmetrically. However, classes or functions de-
clared as friends have the potential to import additional functionality from classes
which declare this class as a friend. Similarly, a class which declares friends has the
potential to export more functionality to the classes or functions that it declares
as friends. Therefore the coupling of classes is affected. Consequently, English and
Buckley handled coupling metrics asymmetrically for the befriending classes and
for the friend functions/classes.

Counsell and Newson included all overloaded operators (friend functions) in
their measurements. English and Buckley excluded all overloaded friend operator
functions. We neither exclude nor include all overloaded operators: we do not
distinguish overloaded operators from regular functions. Although, we further

115

CHAPTER 3. SELECTIVE FRIEND

refine and analyse the results with the concept of Meyers candidates (defined
in Section 3.4.1). Meyers candidates are those friend functions which are using
friendship not because of accessing private members but for other technical reasons
(like automatic function template instantiation). An overloaded operator may
or may not be a Meyers candidate, just as any other regular function. Meyers
candidates influence our measurement results: We exclude Meyers candidates in
the calculation of the private usage ratio. We do not tag friend functions as being
erroneously friends if they are Meyers candidates.

3.6.3 Alternatives for Selective Friends
With current C++ we can achieve semantically similar effects to the proposed
selective friend language construct. However, they all have their own drawbacks
and difficulties.

The Access Key Idiom

First, there is no such acknowledged pattern which has this name. Some people
tend to refer the presented methodology as key-oriented access protection, passkey
idiom [192], access key idiom or higher-order friendship [193]. We refer to this as
the access key idiom. Figure 3.16 presents an example for the idiom. The Owner
class has a privileged function, of which we want to restrict the access. This is
achieved by the fact that this function requires a Key object to be passed as an
argument. Since Key has a private constructor only its friends can construct any
object from it. Therefore Key controls which classes and functions can have access
to the privileged function. With this idiom we can provide selective friendship:
we can control access to a specific member function and we can restrict access of
friends to a set of private methods. (Owner::foo cannot be accessed by anybody).
The drawback of this pattern is that we cannot handle the accessing of member
fields with it, we can handle only member functions.

The Attorney-Client Idiom

This pattern uses an auxiliary class to handle (restrict) access to the private mem-
bers of a specific class. Figure 3.17 demonstrates this intermediate class is the
Attorney; just as in real life it protects its Client, so other entities can access
it only via the lawyer [194]: In this example, the Bar class has limited access to
Client, it can call only Client::A() via Attorney::callA(). So Bar acts as
a selective friend of class Client. Also, the Attorney controls which classes can
have access to the internals of Client. Attorney has a similar role as Key has
in the access key idiom. The use of this idiom does not scale well, because we

116

3.6. RELATED WORK

class Key;

class Owner {
public:

void privileged(const Key &) {}
private:

void foo();
};
class Key {

friend class User;
friend void userFunc(Owner &owner);

private:
Key() {}

};
class User {
public:

void usePrivileged(Owner &owner) {
owner.privileged(Key{}); // OK

}
};
void userFunc(Owner &owner) {
owner.privileged(Key{}); // OK

}
void noAccess(Owner &owner) {
owner.privileged(Key{}); // compile error

}

Figure 3.16: Example of the access key idiom

class Client
{
private:

void A(int a);
void B(float b);
void C(double c);
friend class Attorney;

};

class Attorney {
private:

static void callA(Client & c, int a) {
c.A(a);

}
friend class Bar;

};

class Bar { /* ... */ };

Figure 3.17: Example of the attorney-client idiom

117

CHAPTER 3. SELECTIVE FRIEND

would need to define several attorney classes if we wanted to provide access for the
different combination of members. Also, using too many attorneys might result in
unmaintainable and hardly understandable code.

3.7 Future Research
It is an important candidate for future work to create a selective friend imple-
mentation without the current limitations. For instance, we could enhance the
implementation for selective friend classes, or we could further develop it to sup-
port more than one selected member. Also, we are planning to implement this
new language element without attributes.

It is worth to investigate the possibilities of const qualified selective friends.
For instance, consider the following code block:

class A {
int x = 0;
int y = 0;
friend for (x) B const; // read-only

};
void B::func(A &a) { // expected-error, B has const access only

int i = a.x;
a.x = 1; // or expected-error here,

// a is implicitly casted to ’const A&’
}

The member functions of B could access only the listed members of A and every
instance of A would be handled as a const object.

3.8 Conclusion
We executed a fine-grained measurement about the usage of friends on several open
source projects. Based on these empirical results we claim that friendship in C++
is often misused. In a number of cases, friend functions access only public members
or not access members at all. In other cases, they gain superfluous access to private
members, which is a possible source of errors. Current C++ compilers and static
analysis tools do not issue a warning on suspicious friend usage. However, with
our publicly available friend inspection tool, we can list the possible erroneous uses
of friend declarations.

The current C++ language specification does not allow to restrict the access
of private members. With selective friends, we can establish a more sophisticated
access control. Our proposal may decrease the degradation of encapsulation. We
created a proof-of-concept implementation based on the LLVM/Clang compiler
infrastructure to show that such constructs can be established with a minimal

118

3.9. CONTRIBUTION

syntactical and compilation overhead. Even without any change to the current
C++ standard, the attribute-based friend_for implementation could be useful.
The compilers that support it could provide proper diagnostics when the semantics
of the attribute is violated. The tools which do not support it would just simply
ignore the friend_for specification as unknown attributes must be ignored ac-
cording to C++17.

3.9 Contribution
Thesis 3 (Selective friend). I have investigated how the friendship mechanism is
used in C++ programs. I have shown that there are various holes and errors in
friend usage like friend functions accessing only public members or not accessing
members at all. I have proposed a selective friend language construct for C++
which can restrict friendship only to well-defined members. I have demonstrated
that such a new language element may decrease the degradation of encapsulation
and significantly increase the diagnostic capacity of the compiler. To underpin my
statements, I have made a publicly available friend inspection tool, which can list
the possible erroneous uses of friend declarations and I have created a proof-of-
concept implementation of selective friends based on the LLVM/Clang compiler
infrastructure.

thesis name relevant publications
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

(1) New non-intrusive testing
methods ◦ ◦ ◦ ◦ ◦

(2) Extending access for non-
intrusive and white-box testing ◦ ◦ ◦

(3) Selective friend •
(4) High-level abstraction for
the read-copy-update pattern ◦ ◦

119

Chapter 4

The Read-Copy-Update Pattern

Concurrent programming with classical mutex/lock techniques does not scale well
when reads are way more frequent than writes. Such situation happens in operat-
ing system kernels among other performance critical multithreaded applications.
Read – copy – update (RCU) is a well know technique for solving the problem.
RCU guarantees minimal overhead for read operations and allows them to oc-
cur concurrently with write operations. RCU is a favourite concurrent pattern
in low-level, performance critical applications, like the Linux kernel. Currently
there is no high-level abstraction for RCU for the C++ programming language.
In this section, we present our C++ RCU class library to support efficient concur-
rent programming for the read-copy-update pattern. The library has been care-
fully designed to optimise performance in a heavily multithreaded environment,
at the same time providing high-level abstractions, like smart pointers and other
C++11/14/17 features.

4.1 Context and Motivation
Read-copy-update is a concurrent design pattern [195, 196] which allows extremely
low run-time overhead for readers. Updates can happen concurrently with reads
as they leave the old versions of the data structure intact; this way the pre-existing
readers can finish their work. Updates might require more overhead than reads
and their effect might be delayed.

An example sequence of reads and update operations is depicted in Figure 4.1.
First, three reader threads access the data concurrently (4.1a, 4.1b, 4.1c). Then
comes an updater, which copies the data. During the copy the updater behaves
as a reader of the data, thus it can operate concurrently with the existing readers
(4.1d). The update operation is performed on the copied data. While the update
is ongoing, pre-existing readers may finish their work (4.1e), also any new reader

120

4.1. CONTEXT AND MOTIVATION

will get a reference to the old data (4.1f). Once the updater had finished its work
then new readers will obtain a reference to the new data which had been previously
copied and modified by the updater (4.1g, 4.1h). Any subsequent new reader will
access the updated data (4.1i). Once all the pre-existing readers of the old data
finish their work then the old data is released (4.1j, 4.1k, 4.1l, 4.1m).

In contrast to readers-writers lock [197], RCU does not block the writers if
there are concurrent readers. Figure 4.2 describes the differences between the two
mechanisms. As described in Paul Mckenney’s Perfbook [39], “once the update
is received, the rwlock writer cannot proceed until the last reader completes, and
subsequent readers cannot proceed until the writer completes. However, these sub-
sequent readers are guaranteed to see the new value, as indicated by the green shad-
ing of the rightmost boxes. In contrast, RCU readers and updaters do not block
each other, which permits the RCU readers to see the updated values sooner. Of
course, because their execution overlaps that of the RCU updater, all of the RCU
readers might well see updated values, including the three readers that started
before the update. Nevertheless only the green-shaded rightmost RCU readers are
guaranteed to see the updated values.”

Classical RCU first appeared in the Linux kernel in 2002 [198, 39]. It provides
the following reader side primitives: rcu_read_lock() and rcu_read_unlock().
Read-side critical sections may use rcu_dereference() to access RCU protected
pointers.

On the update side we may use the synchronize_rcu() primitive and
rcu_assign_pointer() to assign values to protected pointer. Pointers stored by
rcu_assign_pointer() can be fetched from within read-side critical sections by
rcu_dereference().

The pseudo code in Figure 4.3 demonstrates how these primitives can be used
to implement the lookup and remove operations on a simple linked list of key-value
pairs. This implementation is a simplified excerpt of McKenney’s pre-BSD routing
table example [39]. With rcu_read_lock() and rcu_read_unlock() we indicate
the reader side critical section. In this read-side critical section we traverse through
the list (find()) and once we found the key we return with the associated value.
In the implementation of find() we have to use rcu_dereference() to access the
elements in the list. It might happen that the key is not in the list, in that case,
we again close the critical section and then return with a special value indicating
the element is not in the list.

In remove() we have to use a spin lock in order to protect the list from con-
current write operations. The block which is protected by the spin lock is the
write-side critical section. We iterate over the list trying to find the key and if we
found it then we unlink (remove_node()) it from the list. In the realization of
the remove_node() we have to use the rcu_assign_pointer() primitive. After

121

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

(a) First reader (b) Second reader

(c) Third reader (d) Updater, creates a copy and modi-
fies that

(e) Pre-existing reader finishes (f) New reader, references the old data
since update is ongoing

(g) Updater finishes (h) New reader, references the updated
data

122

4.1. CONTEXT AND MOTIVATION

(i) Another new reader, references the
updated data

(j) One reader which references the old
data finishes

(k) Another reader which references the
old data finishes

(l) Last reader which references the old
data finishes

(m) Old data is freed

Figure 4.1: Example sequence of read and update operations in RCU

123

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

RCU reader

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU readerRCU reader

RCU reader

RCU reader

spin rwlock writer

RCU updater

spin

spin

spin

Update Received

rwlock reader

rwlock reader

rwlock reader

RCU reader

RCU reader

RCU reader

Time

image source: Paul McKenny, Perfbook [39]

Figure 4.2: RCU and readers-writer lock comparison

the removal, with the synchronize_rcu() primitive we wait for all pre-existing
RCU read-side critical sections to completely finish. Then we can deallocate the
list node which is no longer needed and this way can close the write-side critical
section by releasing the lock.

Classic RCU requires that read-side critical sections obey the same rules obeyed
by the critical sections of pure spinlocks: blocking or sleeping of any sort is strictly
prohibited. Since 2002 many different RCU flavours have appeared in the Linux
kernel which relaxes this strict requirement. Using realtime RCU [199, 200, 201]
read-side critical sections may be preempted and may block while acquiring spin-
locks. Sleepable RCU allows more, it permits arbitrary sleeping (or blocking)
within RCU read-side critical sections [202, 203].

The different RCU flavours in the Linux kernel are naturally dependent on
the kernel internals, for example on the scheduler. Obviously, they cannot be
used in user space. Userspace RCU (URCU) [204, 205] was created by Desnoy-
ers in 2009 and has a similar API to the kernel space RCU flavours. URCU has
different variants and implementations. For instance, the Quiescent-State-Based
Reclamation RCU (QSBR) provides near-zero read-side overhead but the price
of minimal overhead is that each thread in an application is required to period-
ically invoke rcu_quiescent_state() to announce that it resides in a quiescent
state [206]. The general-purpose user space realization can be used in applications

124

4.1. CONTEXT AND MOTIVATION

SPINLOCK(lock);

Value lookup(List list, Key key) {
Node* node;
Value local_value;
rcu_read_lock();
// iterate over the list and return the value
// of the found element
if (node = find(list, key)) {
local_value = node->value
rcu_read_unlock();
return local_value;

}
rcu_read_unlock();
return not_found;

}

void remove (List list, Key key) {
Node* node;
spin_lock(lock);
// iterate over the list and find the key
if (node = find(list, key)) {
remove_node(list, node);
spin_unlock(lock);
synchronize_rcu();
free(node);
return;

}
spin_unlock(lock);

}

Figure 4.3: Usage of RCU in a linked list

125

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

class X {
std::vector<int> v;
mutable std::mutex m;

public:
int sum() const { // read operation

std::lock_guard<std::mutex> lock{m};
return std::accumulate(v.begin(), v.end(), 0);

}
void add(int i) { // write operation
std::lock_guard<std::mutex> lock{m};
v.push_back(i);

}
};

Figure 4.4: A shared collection

where we cannot guarantee that each thread will invoke rcu_quiescent_state()
sufficiently often. However, this versatility has its own price, general-purpose RCU
has to use memory barriers in the read-side. A third variant uses POSIX signals
to eliminate these barriers, obviously, this flavour cannot be used on non-POSIX
systems.

URCU has been proposed to be incorporated into the C and C++ standard
with the C API provided by Desnoyers realization [207]. URCU provides a low-
level C API, therefore it is more prone to errors in C++ programs than a well
established high-level C++ API can be. For instance, it is easy to forget to
call rcu_read_unlock() on all return paths. Also, the user must remember to
manually lock a spinlock in the update operation. This is by itself a source of errors,
but this lock must be released on all return paths, which is again another source
of errors. Furthermore, in URCU there is no automatic memory reclamation; to
deallocate memory, first, we have to use the synchronize_rcu() primitive. (Note
that besides Desnoyers realization there are a surprisingly large number of other
lesser known userspace RCU implementations, and more are being created all the
time. E.g. [208, 209].)

In this chapter we present an alternative implementation for user space RCU
as a C++ smart pointer, thus there is no need to manually deallocate memory.
Our realization provides a high-level abstraction C++ API to the users, so they
can use a simple construct which is not prone to errors, still its performance is
satisfying for most of the use cases.

126

4.2. TOWARDS A HIGHER LEVEL ABSTRACTION FOR RCU

4.2 Towards a Higher Level Abstraction for
RCU

Figure 4.4 presents a collection that is shared among multiple readers and writers
in a concurrent manner. It is a common way to make the collection thread-safe by
holding a lock until the iteration is finished (on the reader thread). This approach
does not scale well, especially when reads are way more frequent than writes [39].
Instead of a simple lock_guard we could use a readers-writers lock [197], but that
would scale badly as well, especially when we have multiple concurrent writers
[39].

The first idea to make it better is to have a shared pointer and hold the lock
only until that is copied by the reader or updated by the writer:

class X {
std::shared_ptr<std::vector<int>> v;
mutable std::mutex m;

public:
X() : v(std::make_shared<std::vector<int>>()) {}
int sum() const { // read operation
std::shared_ptr<std::vector<int>> local_copy;
{
std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
// assume processing the data takes longer than copying it
return std::accumulate(local_copy->begin(), local_copy->end(), 0);

}
void add(int i) { // write operation
std::shared_ptr<std::vector<int>> local_copy;
{
std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
local_copy->push_back(i);
{
std::lock_guard<std::mutex> lock{m};
v = local_copy;

}
}

};

Now we have a race on the pointee itself during the write. So we need to have a
deep copy:

127

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

void add(int i) { // write operation
std::shared_ptr<std::vector<int>> local_copy;
{
std::lock_guard<std::mutex> lock{m};
local_copy = v;

}
auto local_deep_copy = std::make_shared<std::vector<int>>(*local_copy);
local_deep_copy->push_back(i);
{
std::lock_guard<std::mutex> lock{m};
v = local_deep_copy;

}
}

The copy construction of the underlying data (vector<int>) is thread-safe since
the copy constructor parameter is a constant reference to vector<int>.

Still, there is one more problem: if there are two concurrent write operations
then we might miss one of them. We should check whether the other writer had
done an update after the actual writer has loaded the local copy. If it did then
we should load the data again and try to do the update again. This leads to the
idea of using an atomic_compare_exchange in a while loop. We could use an
atomic_shared_ptr if that was included in the current C++ standard, but until
then we have to be satisfied with the free function overloads for shared_ptr:

1 class X {
2 std::shared_ptr<std::vector<int>> v;
3
4 public:
5 X() : v(std::make_shared<std::vector<int>>()) {}
6 int sum() const { // read operation
7 auto local_copy = std::atomic_load(&v);
8 return std::accumulate(local_copy->begin(), local_copy->end(), 0);
9 }

10 void add(int i) { // write operation
11 auto local_copy = std::atomic_load(&v);
12 auto exchange_result = false;
13 while (!exchange_result) {
14 // we need a deep copy
15 auto local_deep_copy =
16 std::make_shared<std::vector<int>>(*local_copy);
17 local_deep_copy->push_back(i);
18 exchange_result = std::atomic_compare_exchange_strong(
19 &v, &local_copy, local_deep_copy);
20 }
21 }
22 };

Figure 4.5: Using atomic shared pointer

These free function overloads take a simple shared_ptr as a parameter and per-
form the specific atomic operations:

128

4.2. TOWARDS A HIGHER LEVEL ABSTRACTION FOR RCU

template <class T>
std::shared_ptr<T> atomic_load(const std::shared_ptr<T>* p);

template <class T>
bool atomic_compare_exchange_strong(std::shared_ptr<T>* p,

std::shared_ptr<T>* expected,
std::shared_ptr<T> desired);

Note, the atomic_shared_ptr class template which would replace these free func-
tions might be included in the C++20 standard [210].

In the write operation, we do the update on the copy of the original pointee
(line 17 of Figure 4.5) and not on the pointee of the member. During both the
read operation and the write operation we do not modify the pointee. Thus, the
element type of the member shared_ptr can be changed to be a constant:

class X {
std::shared_ptr<const std::vector<int>> v;
// ...

};

We might notice that we can move-construct the third parameter of
atomic_compare_exchange_strong, therefore we can spare a reference count
increment and decrement:

exchange_result =
std::atomic_compare_exchange_strong(

&v, &local_copy, std::move(local_deep_copy));

Regarding the write operation, since we are already in a while loop we could re-
place atomic_compare_exchange_strong with atomic_compare_exchange_weak.
That can result in a performance gain on some platforms [63, 211]. However,
atomic_compare_exchange_weak can fail spuriously1. Consequently, we might do
the deep copy more often than needed if we used the weak counterpart.

In the current form of class X nothing stops another programmer (e.g. a naive
maintainer of the code years later) to add a new reader operation, like this:

int another_sum() const {
return std::accumulate(v->begin(), v->end(), 0);

}

This is definitely a race condition and a problem. To avoid this user error and
to hide the sensitive technical details we created a smart pointer which we named
as rcu_ptr. This smart pointer provides a general higher level abstraction above
atomic_shared_ptr. Below we present how can we use rcu_ptr in our running
example:

1Spurious failure enables implementation of compare-and-exchange on a broader class of ma-
chines, e.g., load-locked store-conditional machines [63]

129

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

class X {
rcu_ptr<std::vector<int>> v;

public:
X() : v(std::make_shared<std::vector<int>>()) {}
int sum() const { // read operation
std::shared_ptr<const std::vector<int>> local_copy = v.read();
return std::accumulate(local_copy->begin(), local_copy->end(), 0);

}
void add(int i) { // write operation
v.copy_update([i](std::vector<int> *copy) { copy->push_back(i); });

}
};

The read() method of rcu_ptr returns a shared_ptr<const T> by value, there-
fore it is thread-safe. The existence of the shared_ptr in the scope enforces that
the read object will live at least until this read operation finishes. By using the
shared pointer this way, we are free from the ABA problem [212, 213] since the
memory address associated with the object cannot be reused until the object itself
is reclaimed [214]. The copy_update() method receives a lambda. This lambda
is called whenever an update needs to be done, i.e. it will be called continuously
until the update is successful. The lambda receives a T* for the copy of the actual
data. We can modify the copy of the actual data inside the lambda.

4.3 Smart Pointer for RCU Semantics
In Figure 4.6 we present the simplified implementation of the rcu_ptr class tem-
plate. The complete implementation is available and free to use at [21]. We provide
a default constructor and a default destructor (lines 6 and 7). The move and copy
operations are deleted (lines 9-12) because rcu_ptr is essentially a wrapper around
an atomic type (we plan to support atomic_shared_ptr as soon as it is included
in the standard). And all atomic types are neither copyable nor movable (be-
cause there is no sense to assign meaning for an operation spanning two separately
atomic objects) [215, 216].

We can create an rcu_ptr from an lvalue or rvalue reference of
shared_ptr<const T> (lines 14-15). These functions just simply copy or move
their parameter into the member shared_ptr. There is no need to make these
constructors thread-safe, because the construction can be done only by one
thread.

Lines 21-27 is the realization of the reset() methods which receive a
shared_ptr<const T> as an lvalue or rvalue reference parameter. We can use it
to reset the wrapped data to a new value independent from the old value (e.g.
vector.clear()). Actually, with the parameter, we overwrite the currently
contained shared_ptr. The overwrite has to be an atomic operation in order to

130

4.3. SMART POINTER FOR RCU SEMANTICS

1 template <typename T>
2 class rcu_ptr {
3 std::shared_ptr<const T> sp;
4
5 public:
6 rcu_ptr() = default;
7 ~rcu_ptr() = default;
8

9 rcu_ptr(const rcu_ptr& rhs) = delete;
10 rcu_ptr& operator=(const rcu_ptr& rhs) = delete;
11 rcu_ptr(rcu_ptr&&) = delete;
12 rcu_ptr& operator=(rcu_ptr&&) = delete;
13

14 rcu_ptr(const std::shared_ptr<const T>& sp_) : sp(sp_) {}
15 rcu_ptr(std::shared_ptr<const T>&& sp_) : sp(std::move(sp_)) {}
16

17 std::shared_ptr<const T> read() const {
18 return std::atomic_load_explicit(&sp, std::memory_order_consume);
19 }
20

21 void reset(const std::shared_ptr<const T>& r) {
22 std::atomic_store_explicit(&sp, r, std::memory_order_release);
23 }
24 void reset(std::shared_ptr<const T>&& r) {
25 std::atomic_store_explicit(&sp, std::move(r),
26 std::memory_order_release);
27 }
28
29 template <typename R>
30 void copy_update(R&& fun) {
31
32 std::shared_ptr<const T> sp_l =
33 std::atomic_load_explicit(&sp, std::memory_order_consume);
34
35 std::shared_ptr<T> r;
36 do {
37 if (sp_l) {
38 // deep copy
39 r = std::make_shared<T>(*sp_l);
40 }
41

42 // update
43 std::forward<R>(fun)(r.get());
44

45 } while (!std::atomic_compare_exchange_strong_explicit(
46 &sp, &sp_l, std::shared_ptr<const T>(std::move(r)),
47 std::memory_order_release, std::memory_order_consume));
48 }
49 };

Figure 4.6: The rcu_ptr class template

131

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

protect the member from concurrent reset() calls.
In lines 17-19, the read() method atomically loads the member shared_ptr

and returns with a copy of that. The copy_update() function template (lines
29-48) receives an rvalue reference to an instance of a callable type. First, we
create a local copy of the member as sp_l (lines 32-33). If this local copy is set
(i.e the rcu_ptr instance is initialized) then we create a deep copy, that is we copy
the pointee itself and we create a new shared_ptr<T> (denoted as r) pointing to
the copy (lines 37-40). Note, that this is a non-constant shared pointer. In line
43 we call the callable and we pass a non-constant pointer to the new copy as a
parameter. Then in lines 45-47 we exchange the member shared pointer with a
shared_ptr to the deep copy if we find that the member still points to the same
object of which we created the copy. If it turns out that is not the case (i.e. another
thread was faster), then we repeat the whole deep copy update sequence until we
succeed (line 36). The callers of the copy_update() function must be aware that
in case of an unset (or default initialized) rcu_ptr the callable will be called with
a null pointer as an argument. Also, a call expression with this function is invalid,
if the wrapped data type (T) is a non-copyable type.

4.3.1 Memory Ordering
A memory_order_release store is said to synchronize with a
memory_order_acquire load if that load returns the value stored or in some
special cases, some later value [217, 63]. When a memory_order_release store
synchronizes with a memory_order_acquire load, any memory reference
preceding the memory_order_release store will happen before any memory
reference following the memory_order_acquire load [217, 63]. This
property allows a linked structure to be locklessly traversed by using
memory_order_release stores when updating pointers to reference new data
elements and by using memory_order_acquire loads when loading pointers while
locklessly traversing the data structure [217]. A memory_order_release store is
dependency ordered before a memory_order_consume load when that load returns
the value stored, or in some special cases, some later value [217, 63]. Then, if the
load carries a dependency to some later memory reference, any memory reference
preceding the memory_order_release store will happen before that later
memory reference [217, 63]. This means that when there is dependency ordering,
memory_order_consume gives the same guarantees that memory_order_acquire
does, but possibly at a lower cost [217].

In the classical RCU, the rcu_dereference() primitive implements the notion
of a dependency ordered load, which suppresses aggressive code-motion compiler
optimizations and generates a simple load on any system other than DEC Al-
pha, where it generates a load followed by a memory-barrier instruction. The

132

4.3. SMART POINTER FOR RCU SEMANTICS

rcu_assign_pointer() primitive implements the notion of store release, which
on sequentially consistent and total-store-ordered systems compiles to a simple
assignment [204].

In our implementation of rcu_ptr::copy_update() function we can also use
the release and consume semantics. We cannot use relaxed ordering because in
case of that if the fun is inlined and fun itself is not an ordering operation or
it does not contain any fences then the load or the compare_exchange might be
reordered into the middle of fun. Also, we need to "see" the latest updates so we
can copy and update the "most recent" version. Though, there is a data depen-
dency chain: sp_l->r->compare_exchange(...,r). So if all the architectures
were preserving data-dependency ordering, then we would be fine with relaxed.
However, some architectures do not preserve data-dependency ordering (e.g. DEC
Alpha), therefore we need to explicitly state that we rely on that neither the CPU
nor the compiler will reorder data dependent operations. This is what we express
with the consume-release semantics. Consequently, during all the atomic load op-
erations in the rcu_ptr class template, we can use memory_order_consume and
during all atomic store operations (including the read-modify-write operation) we
use memory_order_release. If the definition of the fun callable is unseen by the
compiler (i.e. it is defined in another translation unit) then the user has to anno-
tate the declaration of the callable with the [[carries_dependency]] attribute
[63]. Otherwise, the compiler may assume that the dependency chain is broken
during the call and consequently it would fall back to the safer but less efficient
acquire semantics [63].

Unfortunately, the consume memory order is temporarily deprecated
in C++17. It is widely accepted that the current definition of
memory_order_consume in the C++11/14 standard is not useful. All current
compilers essentially map it to memory_order_acquire. The difficulties appear
to stem both from the high implementation complexity and from the fact that
the current definition uses a fairly general definition of "dependency" [218, 217].
As such, the consume ordering has to be redefined. While this work is in
progress, hopefully ready for the next revision of C++, users are encouraged to
not use this ordering and instead use acquire ordering, so as to not be exposed to
a breaking change in the future. As for our rcu_ptr, in order to reach the
consume semantics, we may use hardware specific instructions in the future to
overcome the mentioned problem.

4.3.2 Lock-Free atomic_shared_ptr
Our rcu_ptr can be used with the free functions overloads of the atomic_ prefix
[63, section 20.8.2.6] for std::shared_ptr. Since the atomic_shared_ptr [210] is
still in experimental phase, we use our own wrapper template class around the free

133

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

Figure 4.7: rcu_ptr and its dependencies

functions. The free functions are implemented in terms of a spinlock in the cur-
rently available standard libraries. Having a lock-free atomic_shared_ptr would
be really beneficial. However, implementing a lock-free atomic_shared_ptr in a
portable way can have extreme difficulties [219]. Though, it is easier on architec-
tures where the double word CAS operation is available as a CPU instruction as we
can see that with Anthony Williams implementation [220]. We can use Williams’
implementation with our rcu_ptr class template as well if a double word CAS op-
eration is available. We depict the relations between rcu_ptr and its dependent
components in Figure 4.7.

4.4 Performance Evaluation
We executed performance measurements on a dual CPU system (two Intel® Xeon®

X5670 CPUs). Each CPU had 6 physical cores with hyper-threading enabled, this

134

4.4. PERFORMANCE EVALUATION

sums up to 24 threads. Also, each CPU had 12MB cache. We used Ubuntu 14.04
operating system (Linux kernel 3.13).

We took the class X from the running example (presented in Figure 4.4) and
slightly changed it:

class X {
std::vector<int> v;
const int default_value = 1;
mutable std::mutex m;

public:
X(size_t vec_size) : v(vec_size, default_value) {}
int read_one(unsigned index) const { // read operation
std::lock_guard<std::mutex> lock{m};
return v[index];

}
void update_all(int value) { // write operation
std::lock_guard<std::mutex> lock{m};
for (auto& e : v)
e = value;

}
};

We added a constructor via which we can set up the size of the vector. We
modified the read operation to read only one value from the vector. We also
changed the write operation to update all elements in the vector. We implemented
this modified class in terms of several different synchronization mechanisms:

• std mutex. Standard mutex from the C++ Standard Template Library
(STL). We used the STL implementation libstdc++ from GNU Compiler
Collection (version 5.4). On POSIX systems, std::mutex uses
pthread_mutex_lock and pthread_mutex_unlock functions from the
pthread library. On Linux, these pthread functions are implemented in
terms of futex (fast userspace mutex) [221] system call. It provides very
fast uncontended lock acquisition and release. The futex state is stored in a
user-space variable. Atomic operations are used in order to change the
state of the futex in the uncontended case without the overhead of a
syscall. In the contended cases, the kernel is invoked to put tasks to sleep
and wake them up.

• tbb qrw mutex. Intel® TBB queuing reader-writer mutex [222]. A
queuing_rw_mutex is scalable, in the sense that if a thread has to
wait to acquire the mutex, it spins on its own local cache line. A
queuing_rw_mutex is fair. Threads acquire a lock on a queuing_rw_mutex
in the order that they request it.

• tbb srw mutex.Intel® TBB spin reader-writer mutex [222]. A
spin_rw_mutex is not scalable or fair. It is ideal when the lock is lightly

135

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

contended and is held for only a few machine instructions. If a thread has
to wait to acquire a spin_rw_mutex, it busy waits, which can degrade
system performance if the wait is long. However, if the wait is typically
short, a spin_rw_mutex significantly improves performance compared to
other mutexes.

• rcuptr. Our rcu_ptr with non-lock-free atomic shared pointer. We use a
wrapper template class which encapsulates the free function overloads for
atomic operations on a standard shared_ptr.

• rcuptr jss. Our rcu_ptr with Anthony Williams’ lock-free atomic shared
pointer [220]. Note that the examined Intel CPU has the double word CAS
operation.

• urcu bp. The bulletproof version of the URCU library. We used the bullet-
proof version because that is the general version of URCU. The "bulletproof"
version is the only one which can be used even when we cannot register
individual threads with the URCU library.

We created a separate test binary for each mechanism. Each test binary consists
of a timer thread which ticks approximately after one second, one writer thread
and several reader threads (configurable number). As for the measure metrics, we
count how many times a reader or writer thread finishes its operation during the
elapsed time period. The timer thread sets an atomic stop flag while all the other
threads read this flag continuously and they stop when it is set. We used relaxed
memory ordering for writing and reading this flag in order to make sure that the
cache system is not affected by the measurement itself. We executed each test
binary with a different number of reader threads and with different vector sizes.
We executed one test binary with a specific configuration (number of threads,
vector size) five times. During the evaluation of each performance indicator value,
we dropped the smallest and the largest values and we took the average of the
remaining three values. The measurement scripts and the source code for the test
binaries are readily available at [21], thus our measurements are easily replicable
on any other hardware.

We experienced that if the size of the vector is really small (smaller than 4KiB)
then the read-side performance of the RCU mechanisms are outperformed by a sim-
ple standard mutex. However, as the data grows, the RCU mechanism is getting
an advantage over the standard mutex and over the read-write mutexes (Figure
4.8). In Figure 4.8 we display the performance of the different techniques when the
size of the used data is 32KiB (i.e. the vector has 8192 elements). Note that the
y-axis presents a logarithmic scale. The x-axis presents how many reader threads
were active during the measurement. Similarly to Figure 4.8, Figure 4.9 and 4.10

136

4.4. PERFORMANCE EVALUATION

0 5 10 15 20 25
Number of Reader Threads

104

105

106

107

108

109

N
u
m
b
er

of
R
ea
d
O
p
er
at
io
n
s
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Figure 4.8: Read-side performance, data size: 32KiB

0 5 10 15 20 25
Number of Reader Threads

103

104

105

106

107

108

109

N
u
m
b
er

of
R
ea
d
O
p
er
at
io
n
s
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Figure 4.9: Read-side performance, data size: 512KiB

137

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

0 5 10 15 20 25
Number of Reader Threads

103

104

105

106

107

108

109

N
u
m
b
er

of
R
ea
d
O
p
er
at
io
n
s
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Figure 4.10: Read-side performance, data size: 4MiB

show the read performance in case of 512KiB and 4MiB data size respectively.
Figure 4.9 and 4.10 illustrate that our rcu_ptr implementation can outperform
the traditional mutex based implementation with more than two orders of magni-
tude. Also, rcu_ptr can outperform the read-write mutex based realizations with
more than one order of magnitude. The rcu_ptr based techniques have some
degradation until the readers’ number is less than 5 (approximately). From that
point, the performance has no or minimal degradation as depicted in Figure 4.11:
The lock-free implementation of the atomic shared_ptr results in some minimal
degradation, while the spin lock based one provides a slight increase in the per-
formance. We suspect that the reason behind this minimal degradation in case of
the lock-free shared_ptr version is caused by the saturation of the system by the
double world CAS operations. This slight increase (or even a minimal degrada-
tion) is in contrast to the read-write mutex and the URCU based methods, where
the performance is growing continuously and in a faster pace as the number of the
readers grows.

Compared to URCU, our technique can be outperformed up to two orders
of magnitudes. This is the price we pay for the higher level of abstraction and
for the general usability: we lose most of the performance because of the extra
administration done with the reference counting in the underlying shared_ptr
implementations while the bulletproof URCU uses only memory barrier instruc-

138

4.4. PERFORMANCE EVALUATION

5 10 15 20 25
Number of Reader Threads

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

N
u
m
b
er

of
R
ea
d
O
p
er
at
io
n
s
*
10

6
/
se
co
n
d

rcuptr jss

rcuptr

Figure 4.11: Read-side performance of variants of the rcu_ptr, data size: 512KiB

tions.
Figure 4.12 presents that RCU write-side performance is outperformed by the

mutex variants (32KiB data size). This is the expected behaviour since RCU
solutions are tuned for the read-side performance, but this implies some trade-offs
on the write-side. However, our technique can outperform the bulletproof version
of URCU in write-side performance. E.g, when the data size is 512 KiB then our
method can be twice as fast (Figure 4.13). This is because with urcu bp one
cannot use the call_rcu() to deallocate memory asynchronously, thus the writer
thread must wait for all the pre-existing readers to be completed. This wait is
done by synchronize_rcu() function and the duration actually waited is called
an RCU grace period. Regarding write-side performance, we measured that all
RCU based approaches are outperformed by all the mutex based solutions. The
difference can be up to 20x, based on the used RCU and mutex implementation and
on the size of the data. Interestingly, our measurements show that the lock-free
implementation of shared_ptr does not provide higher read or write performance
compared to the non lock-free version.

139

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

0 5 10 15 20 25
Number of Reader Threads

0.0

2.0

4.0

6.0

8.0

10.0

N
u
m
b
er

of
W
ri
te

O
p
er
at
io
n
s
*
10

5
/
se
co
n
d

tbb qrw mutex

urcu bp

rcuptr

tbb srw mutex

rcuptr jss

std mutex

Figure 4.12: Write-side performance, data size: 32KiB

0 5 10 15 20 25
Number of Reader Threads

0

2000

4000

6000

8000

10000

12000

14000

N
u
m
b
er

of
W
ri
te

O
p
er
at
io
n
s
/
se
co
n
d

rcuptr jss

urcu bp

rcuptr

Figure 4.13: Write performance of RCU, data size: 512KiB

140

4.5. CORRECTNESS AND TESTING

4.5 Correctness and Testing
To validate the correctness of our data structure we used different testing methods.
We executed unit tests in a sequential manner (i.e. no parallel execution) to
validate the basic behaviour of the class template. We used oriented stress testing
[223] and sanitizers from the LLVM/Clang infrastructure [82] to verify behaviour
during concurrent execution. During our stress tests, we focused on pairs of public
methods of rcu_ptr and we executed these functions from different threads. We
executed the operations in a loop on each thread and we added random delays in
between each call. This way we tested different execution timings and we could
make race windows slightly larger.

4.6 Future Work
It is our ongoing work to create performance measurements of our rcu_ptr on a
weekly ordered architecture like ARMv7 as well. In order to reach the consume
semantics in rcu_ptr, we may use hardware specific instructions in the future to
overcome the problem of the deprecated memory_order_consume.

4.7 Conclusion
RCU is a technique in concurrent programming which is getting used more and
more often nowadays. It has been introduced in the Linux kernel first, but the
efficiency of the technique became proven so people demanded an implementation
which could be used in user space too. The currently available user space RCU
solutions do not provide a mechanism for automatic memory reclamation, also
they provide a low-level C API, which may be prone to errors. In this section,
we presented a high-level C++ implementation for the read-copy-update pattern,
which provides automatic memory deallocation. Our technique complements the
existing user space RCU implementation by providing a well performing safe and
hard-to-misuse library. Thus, this library may be a good default choice by C++
developers who expect more readers than writers in their application.

141

CHAPTER 4. THE READ-COPY-UPDATE PATTERN

4.8 Contribution
Thesis 4 (High-level abstraction for the read-copy-update pattern). I have pre-
sented a high-level abstraction to utilize the read-copy-update pattern and to support
efficient concurrent programming in C++. I have designed a library to optimise
performance in a heavily multithreaded environment, at the same time providing
high-level abstractions, like smart pointers and other C++11/14/17 features. I
have demonstrated that the technique complements the existing user space RCU
implementation by providing a well performing, safe and hard-to-misuse library.

thesis name relevant publications
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

(1) New non-intrusive testing
methods ◦ ◦ ◦ ◦ ◦

(2) Extending access for non-
intrusive and white-box testing ◦ ◦ ◦

(3) Selective friend ◦
(4) High-level abstraction
for the read-copy-update
pattern

• •

Note that the related publications have another author (Imre Szekeres2) besides
my advisor and me.

2Imre created the wrapper above the free atomic function overloads of std::shared_ptr and
we discussed C++ memory order related issues. His overall contribution is roughly 20-30% of the
whole research. I have created the rcu_ptr smart pointer library including the implementation,
the public API and the memory order related details. Also, I have executed the measurements
with the different variants of rcu_ptr and with the various existing synchronization mechanisms
and evaluated the results.

142

Chapter 5

Summary

This dissertation presented novel research results in three fundamental areas of
software development: testing, encapsulation and abstraction. The first two theses
are centred around non-intrusive testing, a testing technique which does not require
any structural modification in the production code. In Chapter 2 we discussed
the existing non-intrusive testing methods and we enlisted their advantages and
disadvantages. We introduced our new method which is based on function call
interception and has numerous clear benefits compared to preexisting efforts. With
this method, we can replace functions with test doubles even if they are inline
functions. Furthermore, we described two new experimental approaches which
make it possible to substitute types with test double types: one which exploits
syntax tree transformations and another which is based on compile-time reflection
(Thesis 1).

We presented that often it is needed to access private members in order to have
non-intrusive tests. To solve this problem, we introduced new techniques to access
private members of a class for the purpose of non-intrusive or white-box testing:
a library based on explicit template instantiation and out-of-class friends (Thesis
2).

Regarding encapsulation, we demonstrated that certain language constructs
like the friend in C++ may provide exaggerated access to the internals of a class.
This excessive access may be the source of errors in the software. We suggested a
new language construct which makes it possible to restrict access of a friend only
to a certain well-specified set of members, this way it strengthens encapsulation
and information hiding (Chapter 3, Thesis 3).

Besides encapsulation, abstraction plays an essential role in large scale software
system development, especially when multiple threads of execution are involved.
We demonstrated a new high-level abstraction for the read-copy-update concur-
rency pattern, which provides reasonable performance meanwhile it gives a generic
and safe to use C++ API (Chapter 4, Thesis 4).

143

CHAPTER 5. SUMMARY

5.1 Results
Thesis 1 (New non-intrusive testing methods). I have analysed the existing depen-
dency replacement techniques of C++ for testing and evaluated their advantages
and disadvantages. I have introduced and analysed three new non-intrusive testing
approaches: (1) I have implemented a method based on compiler instrumentation
and function call interception. The new technique has clear advantages, thus it
provides an alternative way to replace dependencies. I have created and evalu-
ated a prototype implementation which is publicly available. (2) I have presented
an experimental procedure which transforms the original abstract syntax tree of
the production code for testing. With this procedure, it is possible to replace not
just simple functions but also types. I have created a proof-of-concept prototype to
demonstrate that the idea is feasible. (3) I have proposed a static reflection based
approach as a future direction. Besides replacing types this solution could be used
to implement generic proxy and mock objects for unit test frameworks.

Thesis 2 (Extending access for non-intrusive and white-box testing). I have anal-
ysed the various existing methods available for accessing private members in C++.
To support non-intrusive and white-box testing I have developed two different ap-
proaches eliminating the existing drawbacks. (1) I have created a library which ex-
ploits the explicit template instantiation mechanism of C++ and this way enables
access to private members. Currently, this library is the only generic solution to
access private members without violating the C++ standard. (2) I have presented
how friend declarations added outside of a class could provide a full, non-intrusive
solution to separate test related code from the source of the unit under test. I have
realized a prototype based on C++ attributes to justify the feasibility of out-of-class
friends.

Thesis 3 (Selective friend). I have investigated how the friendship mechanism is
used in C++ programs. I have shown that there are various holes and errors in
friend usage like friend functions accessing only public members or not accessing
members at all. I have proposed a selective friend language construct for C++
which can restrict friendship only to well-defined members. I have demonstrated
that such a new language element may decrease the degradation of encapsulation
and significantly increase the diagnostic capacity of the compiler. To underpin my
statements, I have made a publicly available friend inspection tool, which can list
the possible erroneous uses of friend declarations and I have created a proof-of-
concept implementation of selective friends based on the LLVM/Clang compiler
infrastructure.

Thesis 4 (High-level abstraction for the read-copy-update pattern). I have pre-
sented a high-level abstraction to utilize the read-copy-update pattern and to support

144

5.1. RESULTS

efficient concurrent programming in C++. I have designed a library to optimise
performance in a heavily multithreaded environment, at the same time providing
high-level abstractions, like smart pointers and other C++11/14/17 features. I
have demonstrated that the technique complements the existing user space RCU
implementation by providing a well performing, safe and hard-to-misuse library.

thesis name relevant publications
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

(1) New non-intrusive testing
methods • • • • •

(2) Extending access for non-
intrusive and white-box testing • • •

(3) Selective friend •
(4) High-level abstraction for
the read-copy-update pattern • •

145

References

[1] G. Márton and Z. Porkoláb, “Unit Testing in C++ with Compiler Instrumen-
tation and Friends,” ACTA CYBERNETICA, vol. 23, no. 2, pp. 659–686,
2017.

[2] G. Márton and Z. Porkoláb, “Compile-Time Function Call Interception for
Testing in C/C++,” STUDIA UNIVERSITATIS BABES-BOLYAI SERIES
INFORMATICA, vol. 63, no. 1, pp. 17–32, 2018.

[3] G. Márton and Z. Porkoláb, Utilize Syntax Tree Transformations as a
C/C++ Test Seam. Novi Sad; Beograd: CEUR-WS.org, 2018, ch. 10,
pp. 1–8.

[4] G. Márton and Z. Porkoláb, “C++ Compile-time Reflection and Mock Ob-
jects,” STUDIA UNIVERSITATIS BABES-BOLYAI SERIES INFORMAT-
ICA, vol. LIX, pp. 5–20, 2014.

[5] G. Márton and Z. Porkoláb, “Selective friends in C++,” SOFTWARE-
PRACTICE & EXPERIENCE, vol. 48, no. 8, pp. 1493–1519, 2018.

[6] G. Márton, I. Szekeres, and Z. Porkoláb, “Towards a High-level C++
Abstraction to Utilize the Read-Copy-Update Pattern,” ACTA ELEC-
TROTECHNICA ET INFORMATICA, vol. 18, no. 3, pp. 03–10, 2018.

[7] G. Márton, I. Szekeres, and Z. Porkoláb, High Level C++ Implementation
of the Read-Copy-Update Pattern. Košice: IEEE Hungary Section, 2017,
pp. 243–348.

[8] G. Márton and Z. Porkoláb, “Unit Testing and Friends in C++,”
Marosvásárhely, 2015.09.04 2015.09.02.

[9] G. Márton and Z. Porkoláb, “Compile-Time Function Call Intercep-
tion to Mock Functions in C/C++,” https://www.youtube.com/watch?v“
mv60fYkKNHc, Bristol, England, April 2018, presentation at EuroLLVM
Conference.

146

https://www.youtube.com/watch?v=mv60fYkKNHc
https://www.youtube.com/watch?v=mv60fYkKNHc

REFERENCES

[10] G. Márton and Z. Porkoláb, “Friendship in Service of Testing,” https://
www.youtube.com/watch?v“U9Up_OfiW24, Aspen, USA, May 2016, pre-
sentation at C++Now Conference.

[11] G. Márton and Z. Porkoláb, “Unit testing and friends in c++,” R. Ferenc,
B. Bánhelyi, T. Gergely, A. Kertész, and Z. Kincses, Eds. Szeged: University
of Szeged, Institute of Informatics, 2016.06.29 2016.06.27, p. 40.

[12] G. Márton and Z. Porkoláb, “Journey to C++ Compile-time Reflection,”
http://www.meetup.com/Hungarian-Cpp-Community/events/213166252/,
Budapest, Hungary, October 2014, presentation at Hungarian C++
Community Meetup.

[13] G. Márton and Z. Porkoláb, “Friendship in Service of Testing,” http:
//www.meetup.com/Hungarian-Cpp-Community/events/227145136/, Bu-
dapest, Hungary, December 2015, presentation at Hungarian C++ Com-
munity Meetup.

[14] G. Márton. (2018) Instrumentation for testing. [Online]. Available:
https://github.com/martong/finstrument_mock

[15] G. Márton. (2018) Modified Clang ASTImporter for testing. [Online]. Avail-
able: https://github.com/martong/clang/tree/mock_with_astimporter

[16] G. Márton. (2014) Extended Clang reflection prototype with
__record_member_function_count. [Online]. Available: https://github.
com/martong/clang-reflection/tree/member_function

[17] G. Márton. (2016) Access private. [Online]. Available: https://github.com/
martong/access_private

[18] G. Márton. (2016) Out-of-class friend. [Online]. Available: https:
//github.com/martong/clang/tree/out-of-class_friend_attr

[19] G. Márton. (2015) Friend statistics. [Online]. Available: https://github.
com/martong/friend-stats

[20] G. Márton. (2017) Selective friend. [Online]. Available: https://github.com/
martong/clang/tree/selective_friend

[21] G. Márton. (2018) rcu_ptr. [Online]. Available: https://github.com/
martong/rcu_ptr

[22] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John
Wiley & Sons, 2011.

147

https://www.youtube.com/watch?v=U9Up_OfiW24
https://www.youtube.com/watch?v=U9Up_OfiW24
http://www.meetup.com/Hungarian-Cpp-Community/events/213166252/
http://www.meetup.com/Hungarian-Cpp-Community/events/227145136/
http://www.meetup.com/Hungarian-Cpp-Community/events/227145136/
https://github.com/martong/finstrument_mock
https://github.com/martong/clang/tree/mock_with_astimporter
https://github.com/martong/clang-reflection/tree/member_function
https://github.com/martong/clang-reflection/tree/member_function
https://github.com/martong/access_private
https://github.com/martong/access_private
https://github.com/martong/clang/tree/out-of-class_friend_attr
https://github.com/martong/clang/tree/out-of-class_friend_attr
https://github.com/martong/friend-stats
https://github.com/martong/friend-stats
https://github.com/martong/clang/tree/selective_friend
https://github.com/martong/clang/tree/selective_friend
https://github.com/martong/rcu_ptr
https://github.com/martong/rcu_ptr

REFERENCES

[23] D. Spinellis, “State-of-the-art software testing,” IEEE Software, vol. 34,
no. 5, pp. 4–6, 2017.

[24] S. Planning, “The economic impacts of inadequate infrastructure for software
testing,” National Institute of Standards and Technology, 2002.

[25] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[26] K. Beck, Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

[27] D. Janzen and H. Saiedian, “Test-driven development concepts, taxonomy,
and future direction,” Computer, vol. 38, no. 9, pp. 43–50, 2005.

[28] H. Sutter and A. Alexandrescu, C++ Coding Standards: 101 Rules, Guide-
lines, and Best Practices (C++ in Depth Series). Addison-Wesley Profes-
sional, 2004.

[29] M. Siniaalto and P. Abrahamsson, “Does test-driven development improve
the program code? alarming results from a comparative case study,” in
Balancing Agility and Formalism in Software Engineering. Springer, 2008,
pp. 143–156.

[30] M. Feathers, Working Effectively with Legacy Code. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2004.

[31] O. Nierstrasz, “A survey of object-oriented concepts,” in Object-Oriented
Concepts, Databases, and Applications, W. Kim and F. H. Lochovsky, Eds.
New York: ACM PRESS, 1989, pp. 3–21.

[32] A. Snyder, “Encapsulation and inheritance in object-oriented programming
languages.” SIGPLAN Not., vol. 21, no. 11, pp. 38–45, 1986.

[33] N. Schärli, A. P. Black, and S. Ducasse, “Object-oriented encapsulation
for dynamically typed languages,” in Proceedings of the 19th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’04. New York, NY, USA:
ACM, 2004, pp. 130–149. [Online]. Available: http://doi.acm.org/10.1145/
1028976.1028988

[34] isocpp.org. (2016) C++ FAQ, Friends, Do friends violate encapsulation?
Https://isocpp.org/wiki/faq/friends#friends-and-encap. [Online]. Available:
https://isocpp.org/wiki/faq/friends#friends-and-encap

148

http://doi.acm.org/10.1145/1028976.1028988
http://doi.acm.org/10.1145/1028976.1028988
https://isocpp.org/wiki/faq/friends#friends-and-encap

REFERENCES

[35] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik,
“Abstractions for software architecture and tools to support them,” IEEE
transactions on software engineering, vol. 21, no. 4, pp. 314–335, 1995.

[36] J. Greenfield and K. Short, “Software factories: assembling applications with
patterns, models, frameworks and tools,” in Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications. ACM, 2003, pp. 16–27.

[37] ISO, ISO/IEC 14882:2017 Information technology — Programming lan-
guages — C++. Geneva, Switzerland: International Organization for Stan-
dardization, 2017.

[38] B. Stroustrup, “Exception safety: concepts and techniques,” in Advances in
exception handling techniques. Springer, 2001, pp. 60–76.

[39] P. E. McKenney, Is Parallel Programming Hard, And, If So, What Can You
Do About It? Corvallis, OR, USA: kernel.org, 2010. [Online]. Available: http:
//kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

[40] A. Bertolino and E. Marchetti, “1 a brief essay on software testing,” 2004.

[41] M. E. Khan and F. Khan, “Importance of software testing in software de-
velopment life cycle,” 2014.

[42] M. Fowler. The new methodology.
Http://www.martinfowler.com/articles/newMethodology.html. [Online].
Available: http://www.martinfowler.com/articles/newMethodology.html

[43] T. A. Majchrzak, Improving Software Testing: Technical and Organizational
Developments. Springer Publishing Company, Incorporated, 2012.

[44] T. Winters and H. Wright, “All your tests are terrible,” 2015.

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[46] wikipedia.org. Service locator pattern. Https://goo.gl/1KFxKj
https://en.wikipedia.org/wiki/Service_locator_pattern. [Online]. Available:
https://en.wikipedia.org/wiki/Service_locator_pattern

[47] M. Fowler. Using a service locator.
Http://martinfowler.com/articles/injection.html#UsingAServiceLocator.
[Online]. Available: http://martinfowler.com/articles/injection.
html#UsingAServiceLocator

149

http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.martinfowler.com/articles/newMethodology.html
https://en.wikipedia.org/wiki/Service_locator_pattern
http://martinfowler.com/articles/injection.html#UsingAServiceLocator
http://martinfowler.com/articles/injection.html#UsingAServiceLocator

REFERENCES

[48] N. Schwarz, M. Lungu, and O. Nierstrasz, “Seuss: Decoupling
responsibilities from static methods for fine-grained configurability,”
Journal of Object Technology, vol. 11, no. 1, pp. 3:1–23, Apr. 2012. [Online].
Available: http://www.jot.fm/contents/issue_2012_04/article3.html

[49] M. Seemann, Dependency Injection in .NET, M. Seemann, Ed. Manning,
2011.

[50] wikipedia.org. Dependency injection. Https://goo.gl/OjlpOY
http://en.wikipedia.org/wiki/Dependency_injection. [Online]. Available:
http://en.wikipedia.org/wiki/Dependency_injection

[51] M. D. Network. Unity container. Https://goo.gl/YQwWlE
https://msdn.microsoft.com/en-us/library/ff647202.aspx. [Online]. Avail-
able: https://msdn.microsoft.com/en-us/library/ff647202.aspx

[52] D. Mane, N. Ojha, and K. Chitnis, “The spring framework: An open
source java platform for developing robust java applications,” International
Journal of Innovative Technology and Exploring Engineering. [Online].
Available: http://www.ijitee.org/attachments/File/v3i2/B1010073213.pdf

[53] M. Rüegg and P. Sommerlad, “Refactoring towards seams in c++,” in
Proceedings of the 7th International Workshop on Automation of Software
Test, ser. AST ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 117–123.
[Online]. Available: http://dl.acm.org/citation.cfm?id“2663608.2663632

[54] mockator.com. An eclipse cdt plug-in for c++ seams and mock objects.
Http://mockator.com/. [Online]. Available: http://mockator.com/

[55] J. Mihalicza, Z. Porkoláb, and A. Gabor, “Type-preserving heap
profiler for C++,” in IEEE 27th International Conference on Software
Maintenance, ICSM 2011, Williamsburg, VA, USA, September 25-30,
2011. IEEE Computer Society, 2011, pp. 457–466. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2011.6080813

[56] gcc.gnu.org. (2019) The c preprocessor: Search path. [Online]. Available:
https://gcc.gnu.org/onlinedocs/cpp/Search-Path.html

[57] B. Stroustrup, H. Sutter et al. (2016) C++ core
guidelines. Https://goo.gl/7ZXiov https://github.com/isocpp/-
/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-scoped.
[Online]. Available: https://github.com/isocpp/CppCoreGuidelines/blob/
master/CppCoreGuidelines.md#Rr-scoped

150

http://www.jot.fm/contents/issue_2012_04/article3.html
http://en.wikipedia.org/wiki/Dependency_injection
https://msdn.microsoft.com/en-us/library/ff647202.aspx
http://www.ijitee.org/attachments/File/v3i2/B1010073213.pdf
http://dl.acm.org/citation.cfm?id=2663608.2663632
http://mockator.com/
http://dx.doi.org/10.1109/ICSM.2011.6080813
https://gcc.gnu.org/onlinedocs/cpp/Search-Path.html
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-scoped
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-scoped

REFERENCES

[58] K. Driesen and U. Holzle, “The Direct Cost of Virtual Function Calls in
C++,” in Proceedings of the 11th Conference on Object-Oriented Program-
ming Systems, Languages and Applications, L. Anderson and J. Coplien,
Eds. ACM, 1996, pp. 306–323.

[59] S. Parent, “Inheritance is the base class of evil,” 2013.

[60] S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and
Designs (3rd Edition). Addison-Wesley Professional, 2005, item 41, Under-
stand implicit interfaces and compile-time polymorphism.

[61] W. Bright. (2010, August) C++ compilation speed.
Http://www.drdobbs.com/cpp/c-compilation-speed/228701711. [Online].
Available: http://www.drdobbs.com/cpp/c-compilation-speed/228701711

[62] S. Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use
of C++11 and C++14, 1st ed. O’Reilly Media, Inc., 2014.

[63] ISO, ISO/IEC 14882:2014 Information technology — Programming lan-
guages — C++. Geneva, Switzerland: International Organization for Stan-
dardization, 2014.

[64] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Education,
2007.

[65] S. Venkatakrishnan. Build operate check clear - test pattern. [Online]. Avail-
able: http://developer-in-test.blogspot.hu/2009/05/build-operate-check-
clear-test-pattern.html

[66] D. North, “Introducing bdd, better software magazine,” 2006.

[67] M. Fowler. Givenwhenthen
. [Online]. Available: https://martinfowler.com/bliki/GivenWhenThen.html

[68] R. C. Martin, Clean code: a handbook of agile software craftsmanship. Pear-
son Education, 2009.

[69] P. Kang, “Function call interception techniques,” Software: Practice
and Experience, pp. n/a–n/a, spe.2501. [Online]. Available: http:
//dx.doi.org/10.1002/spe.2501

[70] L. P. Manual. (2017) ld.so, ld-linux.so - dynamic linker/loader. [Online].
Available: http://man7.org/linux/man-pages/man8/ld.so.8.html

151

http://www.drdobbs.com/cpp/c-compilation-speed/228701711
http://developer-in-test.blogspot.hu/2009/05/build-operate-check-clear-test-pattern.html
http://developer-in-test.blogspot.hu/2009/05/build-operate-check-clear-test-pattern.html
https://martinfowler.com/bliki/GivenWhenThen.html
http://dx.doi.org/10.1002/spe.2501
http://dx.doi.org/10.1002/spe.2501
http://man7.org/linux/man-pages/man8/ld.so.8.html

REFERENCES

[71] L. P. Manual. (2017) dlsym, dlvsym - obtain address of a symbol in a
shared object or executable. [Online]. Available: http://man7.org/linux/
man-pages/man3/dlsym.3.html

[72] Intel, CodeSourcery, Compaq, EDG, HP, IBM, R. Hat, and SGI. (2017)
Itanium c++ abi. [Online]. Available: http://refspecs.linuxbase.org/cxxabi-
1.83.html

[73] L. P. Manual. (2017) ptrace - process trace. [Online]. Available:
http://man7.org/linux/man-pages/man2/ptrace.2.html

[74] P. Padala, “Playing with ptrace, Part I,” vol. 103, Nov. 2002.

[75] gnu.org. (2017) Gdb: The gnu project debugger. [Online]. Available:
https://www.gnu.org/software/gdb/

[76] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’05. New York, NY, USA: ACM, 2005, pp.
190–200. [Online]. Available: http://doi.acm.org/10.1145/1065010.1065034

[77] Intel. (2017) Pintool api reference - rtn: Routine object. [On-
line]. Available: https://software.intel.com/sites/landingpage/pintool/docs/
53271/Pin/html/group__RTN__BASIC__API.html

[78] gnu.org. (2017) Using gnu ld. [Online]. Available: ftp://ftp.gnu.org/old-
gnu/Manuals/ld-2.9.1/html_node/ld_3.html

[79] K. Avijit, P. Gupta, and D. Gupta, “Binary rewriting and call interception
for efficient runtime protection against buffer overflows: Research articles,”
Softw. Pract. Exper., vol. 36, no. 9, pp. 971–998, Jul. 2006. [Online].
Available: http://dx.doi.org/10.1002/spe.v36:9

[80] gcc.gnu.org. (2017) Program instrumentation options. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

[81] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization (CGO’04), Palo
Alto, California, Mar 2004.

[82] llvm.org. (2016) clang: a c language family frontend for llvm.
Http://clang.llvm.org. [Online]. Available: http://clang.llvm.org

152

http://man7.org/linux/man-pages/man3/dlsym.3.html
http://man7.org/linux/man-pages/man3/dlsym.3.html
http://refspecs.linuxbase.org/cxxabi-1.83.html
http://refspecs.linuxbase.org/cxxabi-1.83.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://www.gnu.org/software/gdb/
http://doi.acm.org/10.1145/1065010.1065034
https://software.intel.com/sites/landingpage/pintool/docs/53271/Pin/html/group__RTN__BASIC__API.html
https://software.intel.com/sites/landingpage/pintool/docs/53271/Pin/html/group__RTN__BASIC__API.html
ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
http://dx.doi.org/10.1002/spe.v36:9
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
http://clang.llvm.org

REFERENCES

[83] llvm.org. (2017) Llvm language reference manual. [Online]. Available:
http://llvm.org/docs/LangRef.html

[84] llvm.org. (2019) Clang cfe internals manual. [Online]. Available: https:
//clang.llvm.org/docs/InternalsManual.html

[85] L. P. Manual. (2017) mmap, munmap - map or unmap files or devices
into memory. [Online]. Available: http://man7.org/linux/man-pages/man2/
mmap.2.html

[86] gcc.gnu.org. (2017) Declaring attributes of functions. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Function-Attributes.html

[87] gcc.gnu.org. (2017) Extracting the function pointer from a bound pointer to
member function. [Online]. Available: https://gcc.gnu.org/onlinedocs/gcc-
4.9.0/gcc/Bound-member-functions.html

[88] llvm.org. (2017) Clang will not accept a conversion from a bound pmf to
a regular method pointer. [Online]. Available: https://bugs.llvm.org/show_
bug.cgi?id“22121

[89] Adobe. (2017) C++ performance benchmarks. [Online]. Available: https:
//stlab.adobe.com/performance

[90] M. Müller, “Abstraction benchmarks and performance of c++ applications,”
in Proceedings of the Fourth International Conference on Supercomputing in
Nuclear Applications. Citeseer, 2000.

[91] K. Chen, S. Chan, R.-C. Ju, and P. Tu, “Optimizing structures in object ori-
ented programs,” in 9th Annual Workshop on Interaction between Compilers
and Computer Architectures (INTERACT’05). IEEE, 2005, pp. 94–103.

[92] A. Stepanov. Stepanov benchmark. [Online]. Available: http://www.open-
std.org/jtc1/sc22/wg21/docs/D_3.cpp

[93] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, pp. 89–100,
Jun. 2007. [Online]. Available: http://doi.acm.org/10.1145/1273442.1250746

[94] D. Bruening and Q. Zhao, “Practical memory checking with dr. memory,”
in Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, ser. CGO ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 213–223. [Online]. Available:
http://dl.acm.org/citation.cfm?id“2190025.2190067

153

http://llvm.org/docs/LangRef.html
https://clang.llvm.org/docs/InternalsManual.html
https://clang.llvm.org/docs/InternalsManual.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
https://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Bound-member-functions.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Bound-member-functions.html
https://bugs.llvm.org/show_bug.cgi?id=22121
https://bugs.llvm.org/show_bug.cgi?id=22121
https://stlab.adobe.com/performance
https://stlab.adobe.com/performance
http://www.open-std.org/jtc1/sc22/wg21/docs/D_3.cpp
http://www.open-std.org/jtc1/sc22/wg21/docs/D_3.cpp
http://doi.acm.org/10.1145/1273442.1250746
http://dl.acm.org/citation.cfm?id=2190025.2190067

REFERENCES

[95] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and
access errors,” in In Proc. of the Winter 1992 USENIX Conference, 1991,
pp. 125–138.

[96] Intel. (2017) Intel inspector. [Online]. Available: https://software.intel.com/
en-us/intel-inspector-xe

[97] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dresssanitizer: A fast address sanity checker,” in Proceedings of the
2012 USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 28–28.
[Online]. Available: http://dl.acm.org/citation.cfm?id“2342821.2342849

[98] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection
in practice,” in Proceedings of the Workshop on Binary Instrumentation and
Applications, ser. WBIA ’09. New York, NY, USA: ACM, 2009, pp. 62–71.
[Online]. Available: http://doi.acm.org/10.1145/1791194.1791203

[99] D. M. Berris, A. Veitch, N. Heintze, E. Anderson, and N. Wang, “Xray: A
function call tracing system,” 2016.

[100] llvm.org. (2017) Xray instrumentation. [Online]. Available: https:
//llvm.org/docs/XRay.html

[101] llvm.org. (2017) Memory sanitizer. [Online]. Available: https://clang.llvm.
org/docs/MemorySanitizer.html

[102] llvm.org. (2017) Undefined behavior sanitizer. [Online]. Available: https:
//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

[103] N. Nethercote and J. Seward, “How to shadow every byte of memory used
by a program,” in Proceedings of the 3rd International Conference on Virtual
Execution Environments, ser. VEE ’07. New York, NY, USA: ACM, 2007,
pp. 65–74. [Online]. Available: http://doi.acm.org/10.1145/1254810.1254820

[104] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient
flow tracing with dynamic binary rewriting,” in Proceedings of the 11th
IEEE Symposium on Computers and Communications, ser. ISCC ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 749–754.
[Online]. Available: http://dx.doi.org/10.1109/ISCC.2006.158

[105] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A low-
overhead practical information flow tracking system for detecting security
attacks,” in Proceedings of the 39th Annual IEEE/ACM International

154

https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
http://dl.acm.org/citation.cfm?id=2342821.2342849
http://doi.acm.org/10.1145/1791194.1791203
https://llvm.org/docs/XRay.html
https://llvm.org/docs/XRay.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://doi.acm.org/10.1145/1254810.1254820
http://dx.doi.org/10.1109/ISCC.2006.158

REFERENCES

Symposium on Microarchitecture, ser. MICRO 39. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 135–148. [Online]. Available:
https://doi.org/10.1109/MICRO.2006.29

[106] M. Brünink, M. Süßkraut, and C. Fetzer, “Boundless memory allocations for
memory safety and high availability,” in 2011 IEEE/IFIP 41st International
Conference on Dependable Systems Networks (DSN), June 2011, pp. 13–24.

[107] Q. Zhao, D. Bruening, and S. Amarasinghe, “Efficient memory shadowing for
64-bit architectures,” in Proceedings of the 2010 International Symposium on
Memory Management, ser. ISMM ’10. New York, NY, USA: ACM, 2010, pp.
93–102. [Online]. Available: http://doi.acm.org/10.1145/1806651.1806667

[108] Q. Zhao, D. Bruening, and S. Amarasinghe, “Umbra: Efficient and
scalable memory shadowing,” in Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser. CGO
’10. New York, NY, USA: ACM, 2010, pp. 22–31. [Online]. Available:
http://doi.acm.org/10.1145/1772954.1772960

[109] N. Hasabnis, A. Misra, and R. Sekar, “Light-weight bounds checking,”
in Proceedings of the Tenth International Symposium on Code Generation
and Optimization, ser. CGO ’12. New York, NY, USA: ACM, 2012, pp.
135–144. [Online]. Available: http://doi.acm.org/10.1145/2259016.2259034

[110] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, techniques,”
Addison Wesley, vol. 7, no. 8, p. 9, 1986.

[111] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet, Groovy in action.
Manning Publications Co., 2007.

[112] C. Lattner, “Llvm and clang: Next generation compiler technology,” in The
BSD Conference, 2008, pp. 1–2.

[113] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and E. Visser, “Design of the
codeboost transformation system for domain-specific optimisation of c++
programs,” in Source Code Analysis and Manipulation, 2003. Proceedings.
Third IEEE International Workshop on. IEEE, 2003, pp. 65–74.

[114] O. S. Bagge and M. Haveraaen, “Domain-specific optimisation with user-
defined rules in CodeBoost,” in Proceedings of the 4th International Work-
shop on Rule-Based Programming (RULE’03), ser. Electronic Notes in The-
oretical Computer Science, J.-L. Giavitto and P.-E. Moreau, Eds., vol. 86/2.
Valencia, Spain: Elsevier, 2003.

155

https://doi.org/10.1109/MICRO.2006.29
http://doi.acm.org/10.1145/1806651.1806667
http://doi.acm.org/10.1145/1772954.1772960
http://doi.acm.org/10.1145/2259016.2259034

REFERENCES

[115] K. Olmos and E. Visser, “Strategies for source-to-source constant propaga-
tion,” in Workshop on Reduction Strategies (WRS’02), ser. Electronic Notes
in Theoretical Computer Science, B. Gramlich and S. Lucas, Eds., vol. 70,
no. 6. Copenhagen, Denmark: Elsevier Science Publishers, July 2002, p. 20,
http://www.elsevier.nl/locate/entcs/volume70.html.

[116] B. Fischer and E. Visser, “Adding concrete syntax to a prolog-based program
synthesis system,” in International Symposium on Logic-Based Program Syn-
thesis and Transformation. Springer, 2003, pp. 56–58.

[117] G. Horvath, “Cross translation unit analysis in clang static analyzer,”
2017, euroLLVM. [Online]. Available: https://www.youtube.com/watch?v“
7AWgaqvFsgs

[118] Oracle. (2015) Trail: The reflection api. [Online]. Available: http:
//docs.oracle.com/javase/tutorial/reflect/

[119] M. D. Network. (2015) Reflection (c# and visual basic). [Online]. Available:
http://msdn.microsoft.com/en-us/library/ms173183.aspx

[120] (2015) Scala documentation, reflection. [Online]. Available: http:
//docs.scala-lang.org/overviews/reflection/overview.html

[121] (2015) D programming language, traits. [Online]. Available: http:
//dlang.org/traits.html

[122] R. Ramey. (2004) Boost serialization library. [Online]. Available: http:
//www.boost.org/doc/libs/1_55_0/libs/serialization/doc/index.html

[123] Google. (2017) Google test. [Online]. Available: https://github.com/google/
googletest

[124] J. de Guzman, D. Marsden, and T. Schwinger. (2001) Boost fusion library.
[Online]. Available: http://www.boost.org/doc/libs/1_55_0/libs/fusion/
doc/html/

[125] J. Snyder and C. Carruth. (2013) Call for compile-time reflection proposals
(n3814). [Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3814.html

[126] A. Tomazos and C. Käser. (2013) Enumerator list property queries
(n3815). [Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3815.html

156

http://www.elsevier.nl/locate/entcs/volume70.html
https://www.youtube.com/watch?v=7AWgaqvFsgs
https://www.youtube.com/watch?v=7AWgaqvFsgs
http://docs.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/reflect/
http://msdn.microsoft.com/en-us/library/ms173183.aspx
http://docs.scala-lang.org/overviews/reflection/overview.html
http://docs.scala-lang.org/overviews/reflection/overview.html
http://dlang.org/traits.html
http://dlang.org/traits.html
http://www.boost.org/doc/libs/1_55_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_55_0/libs/serialization/doc/index.html
https://github.com/google/googletest
https://github.com/google/googletest
http://www.boost.org/doc/libs/1_55_0/libs/fusion/doc/html/
http://www.boost.org/doc/libs/1_55_0/libs/fusion/doc/html/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3814.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3814.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3815.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3815.html

REFERENCES

[127] A. Tomazos and C. Käser. (2014) Type member property queries. [Online].
Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/
n4027.pdf

[128] A. Tomazos and C. Käser. (2014) Reflection type traits for classes, unions
and enumerations. [Online]. Available: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2014/n4113.pdf

[129] A. Tomazos and C. Käser. (2015) Type property queries. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf

[130] C. Kaeser. (2013) Clang reflection - n3815 reference implementation.
[Online]. Available: https://github.com/ChristianKaeser/clang-reflection

[131] C. S. Silva and D. Auresco. (2014) C++ type reflection via variadic
template expansion (n3951). [Online]. Available: http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2014/n3951.pdf

[132] C. S. Silva and D. Auresco. (2016) C++ static reflection via template pack
expansion (p0255r0). [Online]. Available: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2016/p0255r0.pdf

[133] M. Chochlik, A. Naumann, and D. Sankel. (2016) Static reflection
rationale, design and evolution (p0385r1). [Online]. Available: http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0385r1.pdf

[134] P. Németh. (2014) Code checkers & generators (n3883). [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3883.html

[135] A. Sutton and H. Sutter. (2017) A design for static reflection
(p0590r0). [Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2017/p0590r0.pdf

[136] M. Price. (2014) Compile-time string draft (d3933). [Online]. Available:
https://groups.google.com/a/isocpp.org/forum/#!forum/reflection

[137] S. Chiba, “A metaobject protocol for c++,” in ACM Sigplan Notices, vol. 30,
no. 10. ACM, 1995, pp. 285–299.

[138] S. Chiba, “Open c++ programmer’s guide for version 2,” SPL-96-024, Xerox
PARC, Tech. Rep., 1996.

[139] Oracle. (2014) Java platform standard ed. 7, class proxy. [Online]. Available:
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html

157

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4027.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4027.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4113.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4113.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
https://github.com/ChristianKaeser/clang-reflection
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3951.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3951.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0255r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0255r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0385r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0385r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3883.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0590r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0590r0.pdf
https://groups.google.com/a/isocpp.org/forum/#!forum/reflection
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html

REFERENCES

[140] llvm.org. (2018) Clang cfe internals manual - how to add an ex-
pression or statement. [Online]. Available: https://clang.llvm.org/docs/
InternalsManual.html#how-to-add-an-expression-or-statement

[141] G. D. Reis. A module system for c++.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4047.pdf.
[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n4047.pdf

[142] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood,
A. Jaleel, C.-K. Luk, G. Lyons, H. Patil et al., “Analyzing parallel programs
with pin,” Computer, vol. 43, no. 3, pp. 34–41, 2010.

[143] S. Nidhra and J. Dondeti, “Black box and white box testing techniques-a
literature review,” International Journal of Embedded Systems and Applica-
tions (IJESA), vol. 2, no. 2, pp. 29–50, 2012.

[144] M. E. Khan, F. Khan et al., “A comparative study of white box, black box
and grey box testing techniques,” Int. J. Adv. Comput. Sci. Appl, vol. 3,
no. 6, 2012.

[145] Oracle. Java platform, standard edition 6 api specification, class accessi-
bleobject. Https://goo.gl/rfKFRA https://docs.oracle.com/javase/6/docs/-
/api/java/lang/reflect/AccessibleObject.html. [Online]. Avail-
able: https://docs.oracle.com/javase/6/docs/api/java/lang/reflect/
AccessibleObject.html

[146] llvm.org. Llvm programmer’s manual.
http://releases.llvm.org/3.6.0/docs/ProgrammersManual.html. [Online].
Available: http://releases.llvm.org/3.6.0/docs/ProgrammersManual.html

[147] J. Schaub. Access to private members: Safer nasti-
ness. Https://goo.gl/aG6HEv http://bloglitb.blogspot.hu/2010/07/access-
to-private-members-thats-easy.html. [Online]. Available: http://bloglitb.
blogspot.hu/2010/07/access-to-private-members-thats-easy.html

[148] C. Kumar, Advanced C++ Faqs: Volumes 1 & 2. Createspace
Independent Pub, 2014. [Online]. Available: https://books.google.hu/
books?id“pMTroAEACAAJ

[149] N. Schärli, “Composable encapsulation policies,” ser. ECOOP ’04, 2004, pp.
248–274.

158

https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement
https://clang.llvm.org/docs/InternalsManual.html#how-to-add-an-expression-or-statement
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4047.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4047.pdf
https://docs.oracle.com/javase/6/docs/api/java/lang/reflect/AccessibleObject.html
https://docs.oracle.com/javase/6/docs/api/java/lang/reflect/AccessibleObject.html
http://releases.llvm.org/3.6.0/docs/ProgrammersManual.html
http://bloglitb.blogspot.hu/2010/07/access-to-private-members-thats-easy.html
http://bloglitb.blogspot.hu/2010/07/access-to-private-members-thats-easy.html
https://books.google.hu/books?id=pMTroAEACAAJ
https://books.google.hu/books?id=pMTroAEACAAJ

REFERENCES

[150] J. Hogg, “Islands: Aliasing protection in object-oriented languages,”
in Conference Proceedings on Object-oriented Programming Systems,
Languages, and Applications, ser. OOPSLA ’91. New York, NY, USA:
ACM, 1991, pp. 271–285. [Online]. Available: http://doi.acm.org/10.1145/
117954.117975

[151] P. S. Almeida, “Balloon types: Controlling sharing of state in data types,” in
Proceedings ECOOP’97, ser. LNCS, vol. 1241. Springer-Verlag, Jun. 1997,
pp. 32–59.

[152] J. Noble, J. Vitek, and J. Potter, “Flexible alias protection,” in Proceedings
ECOOP’98, ser. LNCS, 1998, pp. 158–185.

[153] J. Aldrich, V. Kostadinov, and C. Chambers, “Alias annotations for
program understanding,” SIGPLAN Not., vol. 37, no. 11, pp. 311–330, Nov.
2002. [Online]. Available: http://doi.acm.org/10.1145/583854.582448

[154] G. Kniesel and D. Theisen, “JAC - Java with transitive readonly access con-
trol,” in Proceedings of the Intercontinental Workshop on Aliasing in Object-
Oriented Systems, Lisbon, Portugal, Jun. 14-18 1999.

[155] C. Boyapati, B. Liskov, and L. Shrira, “Ownership types for object
encapsulation,” SIGPLAN Not., vol. 38, no. 1, pp. 213–223, Jan. 2003.
[Online]. Available: http://doi.acm.org/10.1145/640128.604156

[156] D. Eiffel. (2016) Adding class features, making features available to clients.
[Online]. Available: https://docs.eiffel.com/book/platform-specifics/adding-
class-features#Making_Features_Available_to_Clients

[157] isocpp.org. (2016) C++ FAQ, Friends, Should my class
declare a member function or a friend function?
Https://isocpp.org/wiki/faq/friends#member-vs-friend-fns. [Online]. Avail-
able: https://isocpp.org/wiki/faq/friends#member-vs-friend-fns

[158] B. Stroustrup, The C++ programming language. Pearson Education, 2013.

[159] B. Stroustrup, The Design and Evolution of C++. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1994, p. 53.

[160] A. R. Bolton. (2006, January) Friendship and the attorney-
client idiom. Http://www.drdobbs.com/friendship-and-the-attorney-client-
idiom/184402053. [Online]. Available: http://www.drdobbs.com/friendship-
and-the-attorney-client-idiom/184402053

159

http://doi.acm.org/10.1145/117954.117975
http://doi.acm.org/10.1145/117954.117975
http://doi.acm.org/10.1145/583854.582448
http://doi.acm.org/10.1145/640128.604156
https://docs.eiffel.com/book/platform-specifics/adding-class-features#Making_Features_Available_to_Clients
https://docs.eiffel.com/book/platform-specifics/adding-class-features#Making_Features_Available_to_Clients
https://isocpp.org/wiki/faq/friends#member-vs-friend-fns
http://www.drdobbs.com/friendship-and-the-attorney-client-idiom/184402053
http://www.drdobbs.com/friendship-and-the-attorney-client-idiom/184402053

REFERENCES

[161] T. Misfeldt, G. Bumgardner, A. Gray, and L. Xiaoping, The Elements of
C++ Style. Cambridge University Press, 2004, p. 77.

[162] N. Josuttis, Object-Oriented Programming in C++. Wiley, 2002.

[163] Oracle. (2015) Controlling access to members of a class.
Https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html.
[Online]. Available: https://docs.oracle.com/javase/tutorial/java/javaOO/
accesscontrol.html

[164] Stackoverflow. (2008) Is there a way to simulate the c++
’friend’ concept in java? Http://stackoverflow.com/questions/182278/is-
there-a-way-to-simulate-the-c-friend-concept-in-java. [Online]. Avail-
able: http://stackoverflow.com/questions/182278/is-there-a-way-to-
simulate-the-c-friend-concept-in-java

[165] Stackoverflow. (2009) Why can outer java classes access inner class
private members? Http://stackoverflow.com/questions/1801718/why-
can-outer-java-classes-access-inner-class-private-members. [Online]. Avail-
able: http://stackoverflow.com/questions/1801718/why-can-outer-java-
classes-access-inner-class-private-members

[166] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. (2016) The
java language specification, java se 7 edition, determining accessibility.
[Online]. Available: http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.
html#jls-6.6.1

[167] D. N. Microsoft. (2016) Access modifiers (c# reference). [Online]. Available:
https://msdn.microsoft.com/en-us/library/wxh6fsc7.aspx

[168] Stackoverflow. (2008) What is the c# equivalent of friend? [On-
line]. Available: http://stackoverflow.com/questions/204739/what-is-the-c-
sharp-equivalent-of-friend

[169] D. N. Microsoft. (2016) Internalsvisibletoattribute class. [On-
line]. Available: https://msdn.microsoft.com/en-us/library/system.runtime.
compilerservices.internalsvisibletoattribute.aspx

[170] dlang.org. (2016) D programming language, friends. [Online]. Available:
http://dlang.org/cpptod.html#friends

[171] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM SIGAda
Ada Letters, vol. 34, no. 3. ACM, 2014, pp. 103–104.

160

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://stackoverflow.com/questions/182278/is-there-a-way-to-simulate-the-c-friend-concept-in-java
http://stackoverflow.com/questions/182278/is-there-a-way-to-simulate-the-c-friend-concept-in-java
http://stackoverflow.com/questions/1801718/why-can-outer-java-classes-access-inner-class-private-members
http://stackoverflow.com/questions/1801718/why-can-outer-java-classes-access-inner-class-private-members
http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.6.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.6.1
https://msdn.microsoft.com/en-us/library/wxh6fsc7.aspx
http://stackoverflow.com/questions/204739/what-is-the-c-sharp-equivalent-of-friend
http://stackoverflow.com/questions/204739/what-is-the-c-sharp-equivalent-of-friend
https://msdn.microsoft.com/en-us/library/system.runtime.compilerservices.internalsvisibletoattribute.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.compilerservices.internalsvisibletoattribute.aspx
http://dlang.org/cpptod.html#friends

REFERENCES

[172] The Rust Project Developers. (2018) Rust documentation. Accessed:
2018-02-20. [Online]. Available: https://doc.rust-lang.org/

[173] S. F. Python. (2016) The python language reference. [Online]. Available:
https://docs.python.org/2/reference/

[174] Comprehensive Perl Archive Network. (2018) perltoot - tom’s object-
oriented tutorial for perl. Accessed: 2018-02-20. [Online]. Available:
http://search.cpan.org/dist/perl-5.8.9/pod/perltoot.pod

[175] V. Savikko, “Design patterns in python,” in Proceedings of the 6th Interna-
tional Python Conference. Citeseer, 1997.

[176] llvm.org. (2016) Clang 3.7 documentation, tutorial
for building tools using libtooling and libastmatchers.
Http://clang.llvm.org/docs/LibASTMatchersTutorial.html. [Online]. Avail-
able: http://clang.llvm.org/docs/LibASTMatchersTutorial.html

[177] boost.org. (2008) Boost operators library. [Online]. Available: http:
//www.boost.org/doc/libs/1_56_0/libs/utility/operators.htm

[178] J. O. Coplien, “Curiously recurring template patterns,” C++ Rep.,
vol. 7, no. 2, pp. 24–27, Feb. 1995. [Online]. Available: http:
//dl.acm.org/citation.cfm?id“229227.229229

[179] B. Schling, The Boost C++ Libraries. XML Press, 2011. [Online].
Available: https://theboostcpplibraries.com/

[180] boost.org. (2016) Boost c++ libraries. [Online]. Available: http:
//www.boost.org/

[181] o. t. N. I. o. H. US National Library of Medicine. (2016) Insight segmentation
and registration toolkit (itk). [Online]. Available: http://www.itk.org/

[182] Qt. (2018) Cross-platform software development for embedded & desktop.
Accessed: 2018-01-30. [Online]. Available: https://www.qt.io/

[183] ISO, ISO/IEC 25436:2006 - Eiffel: Analysis, Design and Programming Lan-
guage. Geneva, Switzerland: International Organization for Standardiza-
tion, 2006.

[184] wikpedia.org. (2016) Eiffel (programming language). [Online]. Available:
http://en.wikipedia.org/wiki/Eiffel_(programming_languageq

161

https://doc.rust-lang.org/
https://docs.python.org/2/reference/
http://search.cpan.org/dist/perl-5.8.9/pod/perltoot.pod
http://clang.llvm.org/docs/LibASTMatchersTutorial.html
http://www.boost.org/doc/libs/1_56_0/libs/utility/operators.htm
http://www.boost.org/doc/libs/1_56_0/libs/utility/operators.htm
http://dl.acm.org/citation.cfm?id=229227.229229
http://dl.acm.org/citation.cfm?id=229227.229229
https://theboostcpplibraries.com/
http://www.boost.org/
http://www.boost.org/
http://www.itk.org/
https://www.qt.io/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)

REFERENCES

[185] M. English, J. Buckley, and T. Cahill, “A friend in need is a friend indeed
[software metrics and friend functions],” in Empirical Software Engineering,
2005. 2005 International Symposium on. IEEE, 2005, pp. 10–pp.

[186] F. G. Wilkie and B. Kitchenham, “An investigation of coupling, reuse and
maintenance in a commercial c++ application,” Information and Software
Technology, vol. 43, no. 13, pp. 801–812, 2001.

[187] S. Counsell and P. Newson, “Use of friends in c++ software: an empirical
investigation,” Journal of Systems and Software, vol. 53, no. 1, pp. 15–21,
2000.

[188] M. English, J. Buckley, T. Cahill, and T. Lynch, “An empirical study of the
use of friends in c++ software,” in Program Comprehension, 2005. IWPC
2005. Proceedings. 13th International Workshop on. IEEE, 2005, pp. 329–
332.

[189] M. English, J. Buckley, T. Cahill, K. Lynch, and M. English, “An analysis
of the use of friends in c++ software systems.”

[190] M. English, J. Buckley, and T. Cahill, “A replicated and refined empiri-
cal study of the use of friends in c++ software,” Journal of Systems and
Software, vol. 83, no. 11, pp. 2275–2286, 2010.

[191] M. English, T. Cahill, and J. Buckley, “Construct specific coupling mea-
surement for c++ software,” Computer Languages, Systems & Structures,
vol. 38, no. 4, pp. 300–319, 2012.

[192] Stackoverflow. (2010) How to name this key-oriented access-protection
pattern? [Online]. Available: http://stackoverflow.com/questions/3324248/
how-to-name-this-key-oriented-access-protection-pattern

[193] A. Bergé. (2013) Tales of c++, friends with benefits. [Online].
Available: http://talesofcpp.fusionfenix.com/post-4/episode-three-friends-
with-benefits

[194] wikibooks.org. (2014) More c++ idioms, friendship and the attorney-
client. [Online]. Available: http://en.wikibooks.org/wiki/More_C%2B%
2B_Idioms/Friendship_and_the_Attorney-Client

[195] P. E. McKenney and J. D. Slingwine, “Read-copy update: Using execution
history to solve concurrency problems,” in Parallel and Distributed Comput-
ing and Systems, 1998, pp. 509–518.

162

http://stackoverflow.com/questions/3324248/how-to-name-this-key-oriented-access-protection-pattern
http://stackoverflow.com/questions/3324248/how-to-name-this-key-oriented-access-protection-pattern
http://talesofcpp.fusionfenix.com/post-4/episode-three-friends-with-benefits
http://talesofcpp.fusionfenix.com/post-4/episode-three-friends-with-benefits
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Friendship_and_the_Attorney-Client
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Friendship_and_the_Attorney-Client

REFERENCES

[196] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell, D. Sarma,
and M. Soni, “Read-copy update,” in AUUG Conference Proceedings.
AUUG, Inc., 2001, p. 175.

[197] J. M. Mellor-Crummey and M. L. Scott, “Scalable reader-writer
synchronization for shared-memory multiprocessors,” SIGPLAN Not.,
vol. 26, no. 7, pp. 106–113, Apr. 1991. [Online]. Available: http:
//doi.acm.org/10.1145/109626.109637

[198] P. E. McKenney and J. Walpole, “What is RCU, fundamentally?” Decem-
ber 2007, available: http://lwn.net/Articles/262464/ [Viewed December 27,
2007].

[199] P. McKenney, “The design of preemptible read-copy-update,” October 2007,
available: http://lwn.net/Articles/253651/ [Viewed October 25, 2007].

[200] P. E. McKenney, D. Sarma, I. Molnar, and S. Bhattacharya, “Extending rcu
for realtime and embedded workloads,” in Ottawa Linux Symposium, pages
v2, 2006, pp. 123–138.

[201] P. E. McKenney and D. Sarma, “Adapting rcu for real-time operating system
usage,” Oct. 23 2007, uS Patent 7,287,135.

[202] P. E. McKenney, “Sleepable RCU,” October 2006, available: http://
lwn.net/Articles/202847/ Revised: http://www.rdrop.com/users/paulmck/
RCU/srcu.2007.01.14a.pdf [Viewed August 21, 2006].

[203] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole, “The read-
copy-update mechanism for supporting real-time applications on shared-
memory multiprocessor systems with Linux,” IBM Systems Journal, vol. 47,
no. 2, pp. 221–236, May 2008.

[204] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and J. Walpole,
“User-level implementations of read-copy update,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 2, pp. 375–382, 2012.

[205] M. Desnoyers, “[RFC git tree] userspace RCU (urcu) for Linux,” February
2009, http://lttng.org/urcu.

[206] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole, “Performance
of memory reclamation for lockless synchronization,” J. Parallel Distrib.
Comput., vol. 67, no. 12, pp. 1270–1285, 2007.

[207] P. E. McKenney. (2016) Read-copy update (rcu) for c++. [Online]. Available:
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0279r0.html

163

http://doi.acm.org/10.1145/109626.109637
http://doi.acm.org/10.1145/109626.109637
http://lwn.net/Articles/262464/
http://lwn.net/Articles/253651/
http://lwn.net/Articles/202847/
http://lwn.net/Articles/202847/
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://lttng.org/urcu
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0279r0.html

REFERENCES

[208] P. Goodman. (2018) C++ implementation of rcu based on reference counting
and hazard pointers. [Online]. Available: https://github.com/pgoodman/rcu

[209] M. Khizhinsky. (2018) A c++ library of concurrent data structures.
[Online]. Available: https://github.com/khizmax/libcds

[210] H. Sutter, “Atomic smart pointers, rev. 1,” ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming Language C++, Tech. Rep.
n4162, Oct. 2014.

[211] stackoverflow.com, “Understanding std::atomic::compare_exchange_weak()
in c++11,” 2017. [Online]. Available: https://goo.gl/jwjgGC

[212] R. K. Treiber, Systems programming: Coping with parallelism. International
Business Machines Incorporated, Thomas J. Watson Research Center, 1986.

[213] D. Dechev, P. Pirkelbauer, and B. Stroustrup, “Understanding and effec-
tively preventing the aba problem in descriptor-based lock-free designs,”
in Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2010 13th IEEE International Symposium on. IEEE, 2010, pp.
185–192.

[214] A. Williams, “Why do we need atomic_shared_ptr?” August 2015, avail-
able: https://www.justsoftwaresolutions.co.uk/threading/why-do-we-need-
atomic_shared_ptr.html.

[215] Anthony Williams, C++ concurrency in action: practical multithreading.
Manning Publ., 2012.

[216] stackoverflow.com, “Why are std::atomic objects not copyable?” 2017.
[Online]. Available: https://goo.gl/fvuY3f

[217] P. E. McKenney, T. Riegel, J. Preshing, H. Boehm, C. Nelson,
O. Giroux, and L. Crowl, “Towards implementation and use of mem-
ory_order_consume,” ISO/IEC JTC 1, Information Technology, Subcom-
mittee SC 22, Programming Language C++, Tech. Rep. P0098R0, 2015.

[218] H.-J. Boehm, “Temporarily deprecate memory_order_consume,” ISO/IEC
JTC 1, Information Technology, Subcommittee SC 22, Programming Lan-
guage C++, Tech. Rep. P0371R0, May 2016.

[219] M. McCarty, “Implementing a lock-free atomic_shared_ptr,” 2016, cppNow
2016. [Online]. Available: https://goo.gl/qErf1h

164

https://github.com/pgoodman/rcu
https://github.com/khizmax/libcds
https://goo.gl/jwjgGC
https://www.justsoftwaresolutions.co.uk/threading/why-do-we-need-atomic_shared_ptr.html
https://www.justsoftwaresolutions.co.uk/threading/why-do-we-need-atomic_shared_ptr.html
https://goo.gl/fvuY3f
https://goo.gl/qErf1h

REFERENCES

[220] A. Williams, “Implementation of a lock-free atomic_shared_ptr class
template as described in n4162,” 2016. [Online]. Available: https:
//bitbucket.org/anthonyw/atomic_shared_ptr

[221] D. Hart, “A futex overview and update,” LWN. net, 2009.

[222] Intel®, “Intel® threading building blocks documentation,” 2018. [Online].
Available: https://software.intel.com/en-us/tbb-documentation

[223] M. Desnoyers, “Proving the correctness of nonblocking data structures,”
Communications of the ACM, vol. 56, no. 7, pp. 62–69, 2013.

[224] Intel. (2017) Pin user guide. [Online]. Available: https://software.intel.com/
sites/landingpage/pintool/docs/97438/Pin/html/

[225] llvm.org. (2019) The llvm compiler infrastructure. Https://llvm.org.
[Online]. Available: https://llvm.org/

[226] llvm.org. (2019) Clang documentation.
Https://clang.llvm.org/docs/index.html. [Online]. Available:
https://clang.llvm.org/docs/index.html

165

https://bitbucket.org/anthonyw/atomic_shared_ptr
https://bitbucket.org/anthonyw/atomic_shared_ptr
https://software.intel.com/en-us/tbb-documentation
https://software.intel.com/sites/landingpage/pintool/docs/97438/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/97438/Pin/html/
https://llvm.org/
https://clang.llvm.org/docs/index.html

Appendices

166

Appendix A

Intel Pin: a Run-time FCI Seam

Intel Pin is a run-time FCI framework which can be exploited to create non-
intrusive tests. (The various FCI techniques are described in detail in section
2.3.1.) Intel Pin is essentially a "just in time" (JIT) compiler [224, 76]. The input
to this compiler is not bytecode, however, but a regular executable. Pin intercepts
the execution of the first instruction of the executable and generates ("compiles")
new code for the straight line code sequence starting at this instruction. It then
transfers control to the generated sequence. The generated code sequence is almost
identical to the original one, but Pin ensures that it regains control when a branch
exits the sequence. After regaining control, Pin generates more code for the branch
target and continues execution. Pin supports two modes of instrumentation: JIT
mode and Probe mode. JIT mode uses a just-in-time compiler to recompile all
program code and insert instrumentation, while Probe mode uses code trampolines
for instrumentation.

In JIT mode, the only code ever executed is the generated code. The orig-
inal code is only used for reference. When generating code, Pin gives the user
an opportunity to inject their own code (instrumentation). Pin instruments all
instructions that are actually executed. It does not matter what section they re-
side in. Although there are some exceptions for conditional branches, generally
speaking, if an instruction is never executed then it will not be instrumented.

Probe mode is a method of using Pin to insert probes at the start of specified
routines. A probe is a jump instruction that is placed at the start of the specified
routine. The probe redirects the flow of control to the replacement function.
Before the probe is inserted, the first few instructions of the specified routine are
relocated. In probe mode, the application and the replacement routine are run
natively; this improves performance. It is the tool writer’s responsibility to ensure
that no thread is currently executing the code where a probe is inserted. Tool
writers are encouraged to insert probes when an image is loaded to avoid this
problem.

167

APPENDIX A. INTEL PIN: A RUN-TIME FCI SEAM

Let us consider the legacy graphics program presented in Figure 2.5 and de-
scribed in details in 2.3.1. The Painter class has a hard-wired dependency on the
concrete Turtle class. Our goal is to write a non-intrusive test with the help of In-
tel Pin. Figure A.1 lists the non-intrusive test application which we will instrument
with Pin to set up the function replacements. The code for this test application
is very similar to the code we used in Figure 2.6 in case of the compile-time FCI
seam. However, there is a very important difference: this time we cannot use the
SUBSTITUTE macro, so the body of the TurtleTest fixture class is empty. Instead
of the SUBSTITUTE macro, we will use Pin to set up the replacement functions for
each member functions of the Turtle class. Similarly to the compile-time FCI
based seam, the replacement functions behave like a proxy; they forward each
function call on a given Turtle instance to a corresponding test double.

In Figure A.2 we present the Pin tool which we use to set up the func-
tion replacements. In main() we initialize the Pin runtime system, register the
ImageLoad() function to be called when an image is loaded and we start the
tool in probe mode. The ImageLoad() function is called when a shared library
or the image of the test application is loaded into memory. We try to find the
Turtle::PenDown() function by its mangled name (lines 7-8). If the loaded im-
age contains the function then we replace the function – in probed mode – with
the proxy::PenDown(Turtle*) function (lines 9-14). Note, the signature of the
original and the substituted function differ, but that is not a problem. In order to
be able to replace inline functions, the test application must be built with inlining
disabled (e.g. with -fno-inline-functions).

If we executed the test binary as it is – i.e. without involving the Pin tool into
the execution – then the test would fail.

168

1 #include "Turtle.hpp"
2 #include <gmock/gmock.h>
3 #include <access_private.hpp>
4 #include <hook.hpp> // for SUBSTITUTE
5

6 class MockTurtle {
7 public:
8 MOCK_METHOD0(PenUp, void());
9 // PenDown, Forward, ...

10 };
11

12 MockTurtle& GetMockObject(Turtle*) {
13 static MockTurtle m;
14 return m;
15 }
16

17 namespace proxy {
18 void PenUp(Turtle* self) {
19 return GetMockObject(self).PenUp();
20 }
21 // Similarly to PenDown, Forward, ...
22 }
23

24 ACCESS_PRIVATE_FIELD(Painter, Turtle, turtle)
25

26 TEST_F(TurtleTest, TestDrawLine) {
27 using ::testing::AtLeast;
28
29 Painter painter;
30 Turtle& turtle = access_private::turtle(painter);
31 MockTurtle& mockTurtle = GetMockObject(&turtle);
32

33 EXPECT_CALL(mockTurtle, PenDown())
34 .Times(AtLeast(1));
35 painter.DrawLine(0, 0, 10, 10);
36 }
37

38 int main(int argc, char **argv) {
39 ::testing::InitGoogleTest(&argc, argv);
40 return RUN_ALL_TESTS();
41 }

Figure A.1: Test application for the legacy program

169

APPENDIX A. INTEL PIN: A RUN-TIME FCI SEAM

1 #include "pin.H"
2 #include <iostream>
3

4 VOID ImageLoad(IMG img, VOID * v) {
5 // Replace Turtle::PenDown() with
6 // proxy::PenDown(Turtle*)
7 RTN rtn =
8 RTN_FindByName(img, "_ZN6Turtle7PenDownEv");
9 if (RTN_Valid(rtn)) {

10 RTN_ReplaceProbed(
11 rtn,
12 RTN_Funptr(RTN_FindByName(
13 img, "_ZN5proxy7PenDownEP6Turtle")));
14 }
15

16 // Replace other member functions of Turtle
17 // ...
18 }
19

20 int main(INT32 argc, CHAR * argv[]) {
21

22 PIN_InitSymbols();
23 if (PIN_Init(argc, argv))
24 return -1;
25

26 IMG_AddInstrumentFunction(ImageLoad, 0);
27

28 PIN_StartProgramProbed();
29 return 0;
30 }

Figure A.2: Pin tool to replace functions in the test application

170

We would receive the following failure:
turtle.cpp:57: Failure
Actual function call count doesn’t match
EXPECT_CALL(mockTurtle, PenDown())...
Expected: to be called at least once
Actual: never called - unsatisfied and active

However, if we execute the binary with the Pin tool,
> pin -t TurtleReplaceFun.so -- turtle_test

then we no longer receive this failure and the test passes. Note that
TurtleReplaceFun.so is the Pin tool and turtle_test is the test application.

There are the following disadvantages if we use Intel Pin as a test seam for
non-intrusive testing:

• The most obvious drawback is that the test setup (i.e. where we do the func-
tion replacements) is entirely separated from the test code. In the context
of the given-when-then pattern (see 2.2.2), the "given" part is isolated from
the rest of the test, thus it violates the pattern.

• Some platforms are not supported at all. For instance, replacing functions
with Pin is not possible on macOS.

• We need a completely new tool (Pin) to be introduced into the existing build
chain. Developers and maintainers of the project must learn and understand
Pin.

• We must use mangled names. This means we need some additional software
tool to receive the mangled names for a specific platform.

• The setup or tear-down of different test case may require clearing the sub-
stitutions of the functions. There is no obvious way to clear all the function
replacements, therefore the easiest way is to have a new Pin tool for each
test case. To launch a new process for each test cases may decrease the run
time of the test suite compared to the case where all test cases are in one
process.

• To replace inline functions in the application binary, we have to rebuild the
application with inlining disabled.

171

Appendix B

The LLVM/Clang Compiler
Infrastructure

The measurements and prototypes presented in this dissertation are implemented
with the help of the LLVM/Clang compiler infrastructure. In this appendix, we
give an excerpt of the (online available) documentation of the infrastructure and
its usage. We cannot describe the entire framework because of its extent, rather
we focus on those methods which we used frequently. The extensive and thorough
documentation is available online at [225, 82, 226, 83, 84].

The LLVM Project is a collection of modular and reusable compiler and
toolchain technologies. Despite its name, LLVM has little to do with traditional
virtual machines. The name "LLVM" itself is not an acronym; it is the full name
of the project. LLVM began as a research project at the University of Illinois,
with the goal of providing a modern, SSA-based compilation strategy capable of
supporting both static and dynamic compilation of arbitrary programming
languages. Since then, LLVM has grown to be an umbrella project consisting of a
number of subprojects, many of which are being used in production by a wide
variety of commercial and open source projects as well as being widely used in
academic research.

Some of the LLVM sub-projects are:

• The LLVM Core libraries provide a modern source- and target-independent
optimizer, along with code generation support for many popular CPUs.
These libraries are built around a well-specified code representation known
as the LLVM intermediate representation ("LLVM IR"). The LLVM Core
libraries are well documented, and it is particularly easy to invent a new
language (or port an existing compiler) to use LLVM as an optimizer and
code generator.

• Clang is an "LLVM native" C/C++/Objective-C compiler, which aims to

172

B.1. INTRODUCTION TO THE LLVM IR

deliver amazingly fast compiles, extremely useful error and warning messages
and to provide a platform for building great source level tools.

• The compiler-rt project provides highly tuned implementations of the low-
level code generator support routines and other calls generated when a target
doesn’t have a short sequence of native instructions to implement a core IR
operation. It also provides implementations of run-time libraries for dynamic
testing tools such as AddressSanitizer, ThreadSanitizer, MemorySanitizer,
and DataFlowSanitizer.

B.1 Introduction to the LLVM IR
This section is a very brief extract of the LLVM language reference focusing only on
the types and instructions used in this dissertation. The full reference is available
at [83].

LLVM is a Static Single Assignment (SSA) based representation that provides
type safety, low-level operations, flexibility, and the capability of representing ‘all’
high-level languages cleanly. It is the common code representation used throughout
all phases of the LLVM compilation strategy.

LLVM identifiers come in two basic types: global and local. Global identifiers
(functions, global variables) begin with the ’@’ character. Local identifiers (reg-
ister names, types) begin with the ’%’ character. Additionally, there are three
different formats for identifiers, for different purposes:

1. Named values are represented as a string of characters with their prefix.
For example, %foo, @DivisionByZero, %a.really.long.identifier. The
actual regular expression used is ‘[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*’.

2. Unnamed values are represented as an unsigned numeric value with their
prefix. For example, %12, @2, %44.

3. Constants.

Reserved words in LLVM are very similar to reserved words in other languages.
There are keywords for different opcodes (‘add’, ‘bitcast’, ‘ret’, etc. . .), for prim-
itive type names (‘void’, ‘i32’, etc. . .), and others. These reserved words cannot
conflict with variable names, because none of them start with a prefix character
(’%’ or ’@’).

Here is an example of LLVM code to multiply the integer variable ‘%X’ by 8:
%result = mul i32 %X, 8 ; multiply by 8

Note that comments are delimited with a ‘;’ and go until the end of the line.

173

APPENDIX B. THE LLVM/CLANG COMPILER INFRASTRUCTURE

B.1.1 Type System
The LLVM type system is one of the most important features of the intermediate
representation. Being typed enables a number of optimizations to be performed
on the intermediate representation directly.

The Integer Type

The integer type is a very simple type that simply specifies an arbitrary bit width
for the integer type desired. The syntax ’iN’ represents a type where the number
of bits the integer will occupy is specified by the N value. Examples:

• i1 a single-bit integer.

• i32 a 32-bit integer.

The Pointer Type

The pointer type is used to specify memory locations. Pointers are commonly used
to reference objects in memory. Note that LLVM does not permit pointers to void
(void*) nor does it permit pointers to labels (label*). Use i8* instead. Syntax:

<type> *

The Function Type

The function type can be thought of as a function signature. It consists of a return
type and a list of formal parameter types. The return type of a function type is a
void type or first class type. Syntax:

<returntype> (<parameter list>)

Examples:

• i32 (i32) function taking an i32, returning an i32.

• i8 (i16, i32 *) * Pointer to a function that takes an i16 and a pointer to
i32, returning an i8.

B.1.2 Instructions
The ’bitcast .. to’ Instruction

<result> = bitcast <ty> <value> to <ty2> ; yields ty2

174

B.2. INTRODUCTION TO THE CLANG AST

The ‘bitcast’ instruction converts value to type ty2 without changing any bits.

The ’icmp’ Instruction

<result> = icmp <cond> <ty> <op1>, <op2> ; yields i1

The ‘icmp’ instruction returns a boolean value based on comparison of its two
integer or pointer operands. The ‘icmp’ instruction takes three operands. The
first operand is the condition code indicating the kind of comparison to perform.
It is not a value, just a keyword. The remaining two arguments must be integer
or pointer typed. They must also be identical types.

The ’br’ Instruction

br i1 <cond>, label <iftrue>, label <iffalse>
br label <dest> ; Unconditional branch

The ‘br’ instruction is used to cause control flow to transfer to a different basic
block in the current function. There are two forms of this instruction,
corresponding to a conditional branch and an unconditional branch. Upon
execution of a conditional ‘br’ instruction, the ‘i1’ argument is evaluated. If the
value is true, control flows to the ‘iftrue’ label argument. If “cond” is false,
control flows to the ‘iffalse’ label argument.

The ’phi’ Instruction

<result> = phi <ty> [<val0>, <label0>], ...

The ‘phi’ instruction is used to implement the phi node in the SSA graph repre-
senting the function. The type of the incoming values is specified with the first
type field. After this, the ‘phi’ instruction takes a list of pairs as arguments, with
one pair for each predecessor basic block of the current block. For the purposes
of the SSA form, the use of each incoming value is deemed to occur on the edge
from the corresponding predecessor block to the current block.

B.2 Introduction to the Clang AST
Clang’s AST is different from ASTs produced by some other compilers in that it
closely resembles both the written C++ code and the C++ standard. For example,
parenthesis expressions and compile-time constants are available in an unreduced
form in the AST. This makes Clang’s AST a good fit for refactoring tools. Clang
has a builtin AST-dump mode, which can be enabled with the flag -ast-dump.
Let us look at a simple example AST:

175

APPENDIX B. THE LLVM/CLANG COMPILER INFRASTRUCTURE

$ cat test.cc
int f(int x) {

int result = (x / 42);
return result;

}

Clang by default is a frontend for many tools; -Xclang is used to pass
options directly to the C++ frontend.
$ clang -Xclang -ast-dump -fsyntax-only test.cc
TranslationUnitDecl 0x5aea0d0 <<invalid sloc>>
... cutting out internal declarations of clang ...
‘-FunctionDecl 0x5aeab50 <test.cc:1:1, line:4:1> f ’int␣(int)’
|-ParmVarDecl 0x5aeaa90 <line:1:7, col:11> x ’int’
‘-CompoundStmt 0x5aead88 <col:14, line:4:1>
|-DeclStmt 0x5aead10 <line:2:3, col:24>
| ‘-VarDecl 0x5aeac10 <col:3, col:23> result ’int’
| ‘-ParenExpr 0x5aeacf0 <col:16, col:23> ’int’
| ‘-BinaryOperator 0x5aeacc8 <col:17, col:21> ’int’ ’/’
| |-ImplicitCastExpr 0x5aeacb0 <col:17> ’int’ <LValueToRValue>
| | ‘-DeclRefExpr 0x5aeac68 <col:17> ’int’ lvalue ParmVar 0x5aeaa90 ’x’ ’int’
| ‘-IntegerLiteral 0x5aeac90 <col:21> ’int’ 42
‘-ReturnStmt 0x5aead68 <line:3:3, col:10>
‘-ImplicitCastExpr 0x5aead50 <col:10> ’int’ <LValueToRValue>
‘-DeclRefExpr 0x5aead28 <col:10> ’int’ lvalue Var 0x5aeac10 ’result’ ’int’

The top-level declaration in a translation unit is always the translation unit dec-
laration. In this example, our first user-written declaration is the function decla-
ration of “f”. The body of “f” is a compound statement, whose child nodes are a
declaration statement that declares our result variable, and the return statement.

All information about the AST for a translation unit is bundled up in the
class ASTContext. It allows traversal of the whole translation unit starting from
TranslationUnitDecl.

Clang’s AST nodes are modelled on a class hierarchy that does not have a com-
mon ancestor. Instead, there are multiple larger hierarchies for basic node types
like declarations (Decl) and statements (Stmt). Note that expressions (Expr) are
also statements in Clang’s AST. Many important AST nodes derive from Type,
Decl, DeclContext or Stmt, with some classes deriving from both Decl and De-
clContext.

There are also a multitude of nodes in the AST that are not part of a larger
hierarchy and are only reachable from specific other nodes, like CXXBaseSpecifier
(which represents a base class of a C++ class).

Thus, to traverse the full AST, one starts from the TranslationUnitDecl and
then recursively traverses everything that can be reached from that node - this
information has to be encoded for each specific node type. This algorithm is
encoded in the RecursiveASTVisitor. We used the RecursiveASTVisitor API to
measure the usage statistics of friends in Chapter 3.

B.3 RecursiveASTVisitor
In this section, we describe how to create a FrontendAction that uses a Recur-
siveASTVisitor to find CXXRecordDecl AST nodes (which represent C++ classes)

176

B.3. RECURSIVEASTVISITOR

with a specified name. When writing a clang based tool like a Clang Plugin or a
standalone tool based on LibTooling, the common entry point is the FrontendAc-
tion. FrontendAction is an interface that allows execution of user-specific actions
as part of the compilation. To run tools over the AST clang provides the con-
venience interface ASTFrontendAction, which takes care of executing the action.
The only part left is to implement the CreateASTConsumer method that returns
an ASTConsumer per translation unit.

class FindNamedClassAction : public clang::ASTFrontendAction {
public:

virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
return std::unique_ptr<clang::ASTConsumer>(

new FindNamedClassConsumer);
}

};

ASTConsumer is an interface used to write generic actions on an AST, regardless
of how the AST was produced. ASTConsumer provides many different entry
points, but for our use case, the only one needed is HandleTranslationUnit, which
is called with the ASTContext for the translation unit.

class FindNamedClassConsumer : public clang::ASTConsumer {
public:

virtual void HandleTranslationUnit(clang::ASTContext &Context) {
// Traversing the translation unit decl via a RecursiveASTVisitor
// will visit all nodes in the AST.
Visitor.TraverseDecl(Context.getTranslationUnitDecl());

}
private:

// A RecursiveASTVisitor implementation.
FindNamedClassVisitor Visitor;

};

Now that everything is hooked up, the next step is to implement a RecursiveAST-
Visitor to extract the relevant information from the AST. The RecursiveASTVis-
itor provides hooks of the form bool VisitNodeType(NodeType *) for most AST
nodes; the exception are TypeLoc nodes, which are passed by value. We only need
to implement the methods for the relevant node types. Let us start by writing a
RecursiveASTVisitor that visits all CXXRecordDecl’s.

class FindNamedClassVisitor
: public RecursiveASTVisitor<FindNamedClassVisitor> {

public:
bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {

// For debugging, dumping the AST nodes will show which nodes are already
// being visited.
Declaration->dump();

// The return value indicates whether we want the visitation to proceed.
// Return false to stop the traversal of the AST.
return true;

}
};

In the methods of our RecursiveASTVisitor we can now use the full power of the
Clang AST to drill through to the parts that are interesting for us. For example, to

177

APPENDIX B. THE LLVM/CLANG COMPILER INFRASTRUCTURE

find all class declaration with a certain name, we can check for a specific qualified
name:

bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
if (Declaration->getQualifiedNameAsString() == "n::m::C")
Declaration->dump();

return true;
}

Some of the information about the AST, like source locations and global identifier
information, are not stored in the AST nodes themselves, but in the ASTContext
and its associated source manager. To retrieve them we need to hand the ASTCon-
text into our RecursiveASTVisitor implementation. The ASTContext is available
from the CompilerInstance during the call to CreateASTConsumer. We can thus
extract it there and hand it into our freshly created FindNamedClassConsumer:

virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
return std::unique_ptr<clang::ASTConsumer>(

new FindNamedClassConsumer(&Compiler.getASTContext()));
}

Now that the ASTContext is available in the RecursiveASTVisitor, we can do
more interesting things with AST nodes, like looking up their source locations:

bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
if (Declaration->getQualifiedNameAsString() == "n::m::C") {

// getFullLoc uses the ASTContext’s SourceManager to resolve the source
// location and break it up into its line and column parts.
FullSourceLoc FullLocation = Context->getFullLoc(Declaration->getBeginLoc());
if (FullLocation.isValid())
llvm::outs() << "Found␣declaration␣at␣"

<< FullLocation.getSpellingLineNumber() << ":"
<< FullLocation.getSpellingColumnNumber() << "\n";

}
return true;

}

Now we can combine all of the above into a small example program which is
represented in Figure B.1. We store this into a file called FindClassDecls.cpp and
create the following CMakeLists.txt to link it:

add_clang_executable(find-class-decls FindClassDecls.cpp)

target_link_libraries(find-class-decls clangTooling)

When running this tool over a small code snippet it will output all declarations of
a class n::m::C it found:

$./bin/find-class-decls "namespace n { namespace m { class C {}; } }"
Found declaration at 1:29

178

B.3. RECURSIVEASTVISITOR

#include "clang/AST/ASTConsumer.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Tooling/Tooling.h"

using namespace clang;

class FindNamedClassVisitor
: public RecursiveASTVisitor<FindNamedClassVisitor> {

public:
explicit FindNamedClassVisitor(ASTContext *Context)
: Context(Context) {}

bool VisitCXXRecordDecl(CXXRecordDecl *Declaration) {
if (Declaration->getQualifiedNameAsString() == "n::m::C") {
FullSourceLoc FullLocation = Context->getFullLoc(Declaration->getBeginLoc());
if (FullLocation.isValid())
llvm::outs() << "Found␣declaration␣at␣"

<< FullLocation.getSpellingLineNumber() << ":"
<< FullLocation.getSpellingColumnNumber() << "\n";

}
return true;

}

private:
ASTContext *Context;

};

class FindNamedClassConsumer : public clang::ASTConsumer {
public:

explicit FindNamedClassConsumer(ASTContext *Context)
: Visitor(Context) {}

virtual void HandleTranslationUnit(clang::ASTContext &Context) {
Visitor.TraverseDecl(Context.getTranslationUnitDecl());

}
private:
FindNamedClassVisitor Visitor;

};

class FindNamedClassAction : public clang::ASTFrontendAction {
public:

virtual std::unique_ptr<clang::ASTConsumer> CreateASTConsumer(
clang::CompilerInstance &Compiler, llvm::StringRef InFile) {
return std::unique_ptr<clang::ASTConsumer>(

new FindNamedClassConsumer(&Compiler.getASTContext()));
}

};

int main(int argc, char **argv) {
if (argc > 1) {
clang::tooling::runToolOnCode(new FindNamedClassAction, argv[1]);

}
}

Figure B.1: Clang tool to traverse the AST

179

APPENDIX B. THE LLVM/CLANG COMPILER INFRASTRUCTURE

B.4 Adding a New Attribute to Clang
Several of prototypes of this dissertation are implemented by adding a new at-
tribute to Clang, thus, in this section, we overview how we can extend the compiler
in this way. Attributes are a form of metadata that can be attached to a program
construct, allowing the programmer to pass semantic information along to the
compiler for various uses. For example, attributes may be used to alter the code
generation for a program construct or to provide extra semantic information for
static analysis. This document explains how to add a custom attribute to Clang.

Attributes in Clang are handled in three stages: parsing into a parsed attribute
representation, conversion from a parsed attribute into a semantic attribute, and
then the semantic handling of the attribute.

Parsing of the attribute is determined by the various syntactic forms attributes
can take, such as GNU, C++11, and Microsoft style attributes, as well as other
information provided by the table definition of the attribute. Ultimately, the
parsed representation of an attribute object is a ParsedAttr object. These parsed
attributes chain together as a list of parsed attributes attached to a declarator or
declaration specifier. The parsing of attributes is handled automatically by Clang,
except for attributes spelt as keywords. When implementing a keyword attribute,
the parsing of the keyword and creation of the ParsedAttr object must be done
manually.

Eventually, Sema::ProcessDeclAttributeList() is called with a Decl and a
ParsedAttr, at which point the parsed attribute can be transformed into a semantic
attribute. The process by which a parsed attribute is converted into a semantic
attribute depends on the attribute definition and semantic requirements of the
attribute. The end result, however, is that the semantic attribute object is attached
to the Decl object, and can be obtained by a call to Decl::getAttr<T>().

The structure of the semantic attribute is also governed by the attribute defi-
nition given in Attr.td. This definition is used to automatically generate function-
ality used for the implementation of the attribute, such as a class derived from
clang::Attr, information for the parser to use, automated semantic checking for
some attributes, etc.

The first step to adding a new attribute to Clang is to add its definition to
include/clang/Basic/Attr.td. This definition must derive from the Attr type
or one of its derivatives. Most attributes will derive from the InheritableAttr
type, which specifies that the attribute can be inherited by later redeclarations of
the Decl it is associated with. InheritableParamAttr is similar to InheritableAttr,
except that the attribute is written on a parameter instead of a declaration. If
the attribute is intended to apply to a type instead of a declaration, such an
attribute should derive from TypeAttr, and will generally not be given an AST
representation. An attribute that inherits from IgnoredAttr is parsed but will

180

B.4. ADDING A NEW ATTRIBUTE TO CLANG

generate an ignored attribute diagnostic when used, which may be useful when an
attribute is supported by another vendor but not supported by clang.

The definition will specify several key pieces of information, such as the se-
mantic name of the attribute, the spellings the attribute supports, the arguments
the attribute expects, and more. Most members of the Attr tablegen type do not
require definitions in the derived definition as the default suffice. However, every
attribute must specify at least a spelling list, a subject list, and a documentation
list.

Spellings All attributes are required to specify a spelling list that denotes the
ways in which the attribute can be spelt. For instance, a single semantic attribute
may have a keyword spelling, as well as a C++11 spelling and a GNU spelling.
An empty spelling list is also permissible and may be useful for attributes which
are created implicitly. Some of these spellings are:

• GCC Spelt with a GNU-style __attribute__((attr)) syntax and placement.

• CXX11 Spelt with a C++-style [[attr]] syntax.

Subjects Attributes appertain to one or more Decl subjects. If the attribute
attempts to attach to a subject that is not in the subject list, a diagnostic is
issued automatically. Whether the diagnostic is a warning or an error depends on
how the attribute’s SubjectList is defined, but the default behaviour is to warn.
The diagnostics displayed to the user are automatically determined based on the
subjects in the list. By default, all subjects in the SubjectList must either be a
Decl node defined in DeclNodes.td, or a statement node defined in StmtNodes.td.

Arguments Attributes may optionally specify a list of arguments that can be
passed to the attribute. Attribute arguments specify both the parsed form and
the semantic form of the attribute. For example, if Args is

[StringArgument<"Arg1">, IntArgument<"Arg2">]

then
__attribute__((myattribute("Hello", 3)))

will be a valid use; it requires two arguments while parsing, and the Attr subclass’
constructor for the semantic attribute will require a string and integer argument.
All arguments have a name and a flag that specifies whether the argument is
optional. The associated C++ type of the argument is determined by the argument
definition type.

181

APPENDIX B. THE LLVM/CLANG COMPILER INFRASTRUCTURE

Semantic handling All semantic processing of declaration attributes happens
in SemaDeclAttr.cpp, and generally starts in the ProcessDeclAttribute() func-
tion. If the attribute is a “simple” attribute – meaning that it requires no custom
semantic processing aside from what is automatically provided, we have to add
a call to handleSimpleAttribute<OurAttr>(S, D, Attr) to the switch state-
ment. Otherwise, we write a new handleOurAttr() function, and we add that to
the switch statement.

Unless otherwise specified by the attribute definition, common semantic check-
ing of the parsed attribute is handled automatically. This includes diagnosing
parsed attributes that do not appertain to the given Decl, ensuring the correct
minimum number of arguments are passed, etc. Most attributes are implemented
to have some effect on the compiler. For instance, to modify the way code is
generated, or to add extra semantic checks for an analysis pass, etc. Having
added the attribute definition and conversion to the semantic representation for
the attribute, what remains is to implement the custom logic requiring use of the
attribute. The Decl object can be queried for the presence or absence of an at-
tribute using hasAttr<T>(). To obtain a pointer to the semantic representation
of the attribute, getAttr<T>() may be used.

182

Appendix C

Dissertation Summaries

183

APPENDIX C. DISSERTATION SUMMARIES

C.1 Dissertation Summary
This dissertation presents novel research results in three fundamental areas of soft-
ware development: testing, encapsulation and abstraction. The first two theses
are centered around non-intrusive testing, a testing technique which does not re-
quire any structural modification in the production code. We discuss the existing
non-intrusive testing methods and we enlist their advantages and disadvantages.
We introduce a new method which is based on function call interception and has
numerous clear benefits compared to preexisting efforts. With this method we
can replace functions with test doubles even if they are inline functions. We de-
scribe two new additional and experimental approaches which make it possible to
substitute types with test double types: one which exploits syntax tree transfor-
mations and another which is based on compile-time reflection. We demonstrate
that often it is needed to access private members in order to have non-intrusive
tests. We introduce new techniques to access private members of a class for the
purpose of non-intrusive or white-box testing: a library based on explicit template
instantiation and out-of-class friends.

Regarding encapsulation, we demonstrate that certain language constructs like
the friend in C++ may provide exaggerated access to the internals of a class.
This excessive access may be the source of errors in the software. We suggest a
new language construct which makes it possible to restrict access of a friend only
to a certain well specified set of members, this way it strengthens encapsulation
and information hiding.

Besides encapsulation, abstraction plays an essential role in large scale software
system development, especially when multiple threads of execution are involved.
We demonstrate a new high-level abstraction for the read-copy-update concurrency
pattern, which provides reasonable performance meanwhile it gives a generic and
safe to use C++ API.

We provide a proof of concept implementation for all new techniques with one
exception (the reflection based non-intrusive technique).

184

C.2. DISSZERTÁCIÓ ÖSSZEFOGLALÓ

C.2. Disszertáció Összefoglaló
A disszertáció új kutatási eredményeket mutat be három alapvető szoftver fej-
lesztési területen: tesztelés, egységbezárás és absztrakció. Az első három tézis az
ún. nem-tolakodó teszteléssel foglalkozik, amely egy olyan tesztelési technika mely
során nem szükséges semmilyen strukturális módosítást végrehajtanunk a termék
forráskódján. Megvitatjuk a már létező nem-tolakodó tesztelési módszereket és
felsoroljuk ezek előnyeit és hátrányait. Bevezetünk egy új, nem-tolakodó tesztelési
módszert amely függvény hívás közbeavatkozáson alapszik és számos egyértelmű
előnnyel rendelkezik a korábbi megoldásokhoz képest. Ezzel az új technikával ké-
pesek vagyunk függvényeket teszt dublőrökkel helyettesíteni még akkor is ha azok
inline függvények. Továbbá bemutatunk két új kísérleti eljárást amelyek lehetővé
teszik, hogy akár típusokat is helyettesítsünk teszt dublőrökkel: az egyik metódus
szintaxis fa transzformációkon alapszik, a másik pedig fordítási idejű reflectionön.
Demonstráljuk, hogy gyakran előfordul, hogy szükséges privát tagokhoz hozzáfér-
ni a nem-tolakodó tesztek esetében. Bemutatunk két új módszert a privát tagok
eléréséhez (és ily módon támogatjuk a nem-tolakodó és fehér doboz tesztek létre-
hozását): egy program könyvtárat amely explicit sablon példányosításon alapszik,
illetve az osztályon kívüli barát (friend) nyelvi elemet.

Az egységbezárással kapcsolatosan szemléltetjük, hogy bizonyos nyelvi konst-
rukciók mint a C++ barát (friend) túlzottan erős hozzáférést nyújthat egy osztály
belső elemeihez. Ez a túlzott hozzáférés hibák forrása lehet az adott szoftverben.
Javaslatot teszünk egy új nyelvi elem létrehozására amely lehetővé teszi, hogy
megszorítsuk ezt a hozzáférést csupán néhány jól specifikált taghoz, ily módon
erősítendő az egységbezárást és adatrejtést.

Az egységbezárás mellett az absztrakció a másik alapvető szereplő ha nagymé-
retű szoftverek fejlesztéséről van szó. Különösen, ha többszálú programokról beszé-
lünk. Bemutatunk egy új magas szintű C++ absztrakciót mely a read-copy-update
konkurrens programozási mintán alapszik és elfogadható teljesítményt nyújt amel-
lett, hogy kellően generikus és biztonságos használni.

Az itt bemutatott új módszerek mindegyikéhez tartozik prototípus implemen-
táció (ez alól kivételt képez a reflection alapú nem-tolakodó tesztelés ötlete).

185

Acronyms

ABI Application Binary Interface.

ACPI Advanced Configuration and Power Interface.

AFC Actual Friend Classes.

AFCR Actual Friend Class Relationships.

AFM Actual Friend Methods.

API Application Programming Interface.

AST Abstract Syntax Tree.

CAS Compare and Swap.

CBOF(Back) Coupling Complexity in the Backward direction for Friends.

CCFF(1) Complexity in the Forward Direction for Friends.

CPU Central Processing Unit.

CRTP Curiously Recurring Template Pattern.

DEC Digital Equipment Corporation.

DI Dependency Injection.

FCI Function Call Interception.

GCC GNU Compiler Collection.

GNU GNU’s Not Unix!.

IR Intermediate Representation.

186

Acronyms

ISO International Organization for Standardization.

ITK Insight Segmentation and Registration Toolkit.

KiB Kibibyte, 1 kibibyte is 1024 bytes.

LIFT A Low-Overhead Practical Information Flow Tracking System for Detecting
Security Attacks.

LLVM Low Level Virtual Machine.

MAF Members Accessed by Friends.

MOC Meta Object Compiler.

MOP Meta Object Protocol.

MSVC Microsoft® Visual C++.

ODR One Definition Rule.

OOP Object-oriented Programming.

ORM Object Relational Mapping.

OS Operating System.

POD Plain Old Data.

POSIX Portable Operating System Interface.

QSBR Quiescent-State-Based Reclamation RCU.

RAII Resource Acquisition is Initialization.

RCU Read-Copy-Update.

RFFC(1) Response set For Friend Class.

RTTI Run-time Type Information.

SSA Static Single Assignment.

STL Standard Template Library.

187

Acronyms

SUT System Under Test.

TBB Threading Building Blocks (Intel®).

TDD Test Driven Development.

TU Translation Unit.

URCU Userspace Read-Copy-Update.

188

Glossary

abstract syntax tree A data structure which represents the hierarchical syntac-
tic structure of the source program. During certain compilation stages the
abstract syntax tree is being transformed.

abstraction Abstractions describe system components, the nature of interactions
among the components and the patterns that guide the composition of com-
ponents into systems. It provides a representation of features without in-
cluding background or low-level details.

befriending class A struct/class which declares one or more friend function,
friend function template, friend class or friend class template.

black-box testing A testing strategy which views the program as a black box.
Its goal is to be completely unconcerned about the internal behaviour and
structure of the program.

dependency injection A technique whereby one object supplies the dependen-
cies of another object. A dependency is an object that can be used as a
service. An injection is the passing of a dependency to a dependent ob-
ject (a client) that would use it. Dependency injection is one realization –
amongst many others – of dependency replacement.

dependency replacement An abstract overall concept which involves all various
techniques of substituting the dependencies with test doubles.

encapsulation A fundamental concept in object-oriented programming which is
used to hide the values or state of a structured data object inside a class. It
implies distinction between the specification (interface) and the implementa-
tion of a class, thus minimizing the dependencies among separately-written
modules.

friend A C++ language element which may enable access to specified functions
and classes to the private members of another class.

189

Glossary

function call interception A technique of intercepting function calls at pro-
gram runtime. Without directly modifying the original code, it enables to
undertake certain operations before and/or after the called function or even
to replace the intercepted call.

instrumentation Instrumentation means the ability of an application to monitor
or measure the level of a product’s performance, to diagnose errors and to
write trace information. It is implemented by additional instructions, which
are injected either to the source code or to the binary executable.

intercession A kind of reflection during which the program is capable of modi-
fying its structure or state.

intermediate representation The data structure or code used internally by a
compiler or virtual machine to represent source code. An IR is designed to
be conducive for further processing, such as optimization and translation.

introspection A kind of reflection during which the program is observing its own
state and structure.

intrusive testing A testing approach which requires source code modification.

mock classes Mock classes are used in unit tests to substitute real dependencies
of a unit. Mock classes are special kind of proxy classes.

non-intrusive testing A testing method which does not require any modification
in the production code.

proxy classes Proxy classes are those classes which have the exact same interface
as the original class, but the implementation of each member function could
be different.

read-copy-update A concurrent design pattern which allows extremely low run-
time overhead for readers.

reflection Reflection is the ability of a program to inspect or modify its own
structure.

simple aggregate class A C++ struct with publicly available fields and without
methods.

190

Glossary

simple aggregate proxy class A simple aggregate class is a proxy class, if all
of its fields have a proxy class type. The built in types like int or float are
considered as proxy types.

static single assignment In compiler design, static single assignment form (of-
ten abbreviated as SSA form or simply SSA) is a property of an intermedi-
ate representation (IR), which requires that each variable is assigned exactly
once, and every variable is defined before it is used.

system under test Refers to a system that is being tested for correct operation.

test seam A point in the software development ecosystem via which we can alter
the behaviour of the system under test (SUT) without changing the produc-
tion code of the SUT.

test-driven development A software development practice which requires writ-
ing automated tests prior to developing any functional code. The develop-
ment consists of very short iterations of writing a new test and then providing
implementation for it.

translation unit In C/C++ programming language terminology, a translation
unit is the ultimate input to the compiler from which an object file is gener-
ated.

vpointer A data member silently inserted by the compiler into the class. During
the construction of each object, it is initialized to point to the virtual table
of the dynamic type.

vtable The virtual table is a lookup table of functions used to resolve function
calls in a dynamic/late binding manner.

white-box testing A testing strategy which permits us to examine the internal
structure of the program. This strategy derives test data from an examina-
tion of the program’s logic.

191

	List of Figures
	Acknowledgements
	Introduction
	Thesis Structure

	Non-intrusive Testing
	Motivation
	Dependency Replacement in C++
	C++ Seams
	Test Automation Conventions

	New Non-intrusive Test Seams
	Function Call Interception based Test Seam
	Syntax Tree Transformation based Test Seam
	Reflection based Testing and Test Seam
	Contribution

	Comparison of Existing and New Seams
	Access Private Members
	Existing Methods
	Access via Explicit Instantiation
	Out of Class Friend
	Related Work
	Conclusion
	Contribution

	Selective Friend
	Motivation
	C++ Friends
	Friends in Other Programming Languages
	Java
	CSharp
	Other Languages

	Measurement
	Description of the Measurement Algorithm
	Measurement Results

	Selective Friend
	A New Lingual Element
	Eiffel like Syntax

	Related Work
	Private Usage of Friend Classes
	Friends and Inheritance
	Alternatives for Selective Friends

	Future Research
	Conclusion
	Contribution

	The Read-Copy-Update Pattern
	Context and Motivation
	Towards a Higher Level Abstraction for RCU
	Smart Pointer for RCU Semantics
	Memory Ordering
	Lock-Free atomic_shared_ptr

	Performance Evaluation
	Correctness and Testing
	Future Work
	Conclusion
	Contribution

	Summary
	Results

	References
	Appendices
	Intel Pin: a Run-time FCI Seam
	The LLVM/Clang Compiler Infrastructure
	Introduction to the LLVM IR
	Type System
	Instructions

	Introduction to the Clang AST
	RecursiveASTVisitor
	Adding a New Attribute to Clang

	Dissertation Summaries
	Dissertation Summary
	Disszertáció Összefoglaló

	Acronyms
	Glossary

