

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Programming Theorems Have the Same Origin

SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László

Abstract: One of the classical ways of learning programming is to divide programming tasks into large
groups, so-called programming theorems, and then to trace the specific tasks back to the programming
theorems. Each teaching method introduces a different amount of programming theorems into the
learning process, occasionally even combining them. In this article we will show that the basic and
complex programming theorems have the same origin; consequently, it would be enough to present one
theorem and trace everything back to it. At the end of the article, then, we will explain the practical use
of still introducing more theorems.

Keywords: programming theorem, programming methodology, methodical programming, algorithm,
specification

1. Introduction

In order to be able to solve a programming task, we need to identify its essence: programming tasks
can be categorized into groups according to their type, which is useful because for each group we
can create an algorithm rule that solves all of the tasks in that specific group. These task types are
called programming theorems because their solutions are justifiably the correct solutions. Their
number can vary from teaching method to teaching method. [1,2,3,4]

If we are familiar with the programming theorems, all we have to do to solve most tasks is to
recognize the suitable programming theorem, use the specific data of the general task type, and in
the general algorithm substitute them with the task-specific data. Applying this method is supposed
to lead us to the correct solution. [5,6]

In these tasks we usually have to assign a certain result to one (or more) data collection(s), which,
for simplicity’s sake, we will handle as some sort of sequences. The essence of a sequence is the
processing order of the given elements. Most of the times, it is sufficient to deal with sequences
whose elements can be processed – one by one – one after another. In the input sequence, this
requires an operation that is capable of giving the elements of the sequence one by one, while in
the output sequence elements can be followed by a new element. In simple cases sequences can be
illustrated as arrays.

The basic programming theorems are those that assign one value to one sequence: [7]:

• sequential computing

• counting

• maximum selection

• decision

• selection

• search

2. The first programming theorem

The first programming theorem comes from a simple task, that of calculating the sum of numbers.
In the following, we will provide the specification and the algorithm of the task, which are the two
pillars of the programming theorem. We are applying the marking system from [5,6].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/249366211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Programming Theorems Have the Same Origin 2

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Input: Nℕ, XHN, :H*→H, +:H×H→H (where H=ℕ or H=ℤ or H=ℝ)

 (X1,...,XN)= (X1,...,XN-1)+XN, F()=0

Output: SH

Precondition: ─

Postcondition: S= (X1,...,XN)

Sum(N,X,S):

 S:=0

 For i:=1 to N do

 S:=S+X[i]

 End For

End.

Generalizing this task, we will get the so-called sequential computing programming theorem.
We generalize the operation +:

1) the generalized, binary (f) operation should have a (left-side) zero element (F0);

2) when we apply the operations one after another, the result should not depend on the execution
order; that is, the operations should be associative.

The operation, based on binary operation f and zero element F0, and interpreted at H*, is indicated
with F.

Input: Nℕ, XHN, F:H*→H, f:H×H→H, F0H
 F(X1,...,XN)=f(F(X1,...,XN-1),XN), F()=F0

Output: SH

Precondition: ─

Postcondition: S=F(X1,...,XN)

Note: many times F is , average, deviation, scalar multiplication, , , , , , writing one after
another, Max, Min.

Computing(N,X,S):

 S:=F0

 For i:=1 to N do

 S:=f(S,X[i])

 End For

End.

Note: we are indicating changes from the previous algorithms with bold, both here and from now
on.

3. Counting

Sequential computing can be formulated so that its result is the sum of all elements with T feature;
thus, leading us to the counting programming theorem.

Function F will be a conditional sum. This means that we define function f as a conditional
function, whose value is the first parameter+1 if the second parameter is of T feature, otherwise
it is the value of the first parameter.

SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László 3

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Input: Nℕ, XHN, F:H*→ℕ, f:ℕ×H→ℕ, F0ℕ

 ()
()
()

−

+−=
otherwise1NX,...,1XF

)NT(X if11NX,...,1XF

NX,...,1XF ,

 F()=F0

 ()

 +

=
otherwisea

T(b) if1a
:ba,f ,

 F0=0

Output: Countℕ

Precondition: ─

Postcondition: Count=F(X1,...,XN) → Count = ∑ 1N
i=1

T(Xi)

Counting(N,X,S):

 Count:=0

 For i:=1 to N do

 Count:=f(Count,X[i]) → If T(X[i]) then Count:=Count+1*
 End For

End.

Note: the change marked with * is the normalized algorithmic transformation of the conditional
expression.

4. Maximum selection

If we replace function f with function max, we will get to one of the versions of the maximum
selection theorem.

Input: Nℕ, XHN, F:H*→H, max:H×H→H, F0H, (H ordered set)
 F(X1,...,XN)=max(F(X1,...,XN-1),XN),
 F()=F0

 ()

=
otherwiseb

ba ifa
ba,max ,

 F0=-

Output: MaxValH

Precondition: N>0

Postcondition: MaxVal=F(X1,...,XN)

Maximum(N,X,MaxVal):

 MaxVal:=-

 For i:=1 to N do

 MaxVal:=max(MaxVal,X[i]) → If X[i]>MaxVal then MaxVal:=X[i]
 End For

End.

With a very simple modification, we can even define the version that provides the maximum index
as well. The output, the post-condition and the algorithm change as follows:

Programming Theorems Have the Same Origin 4

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Output: MaxValH, MaxIndℕ

Postcondition: MaxVal=F(X1,...,XN) and 1≤MaxInd≤N and XMaxInd=MaxVal

Maximum(N,X,MaxVal,MaxInd):

 MaxVal:=-

 For i:=1 to N do

 If X[i]>MaxVal then MaxVal:=X[i]; MaxInd:=i

 End For

End.

If we make use of the precondition, we can leave out the check of the first element from the
iteration; in fact, in the classical version we do not need the maximum value either. Hence, the final
version is like this:

Maximum(N,X,MaxInd):

 MaxInd:=1
 For i:=2 to N do

 If X[i]>X[MaxInd] then MaxInd:=i

 End For

End.

5. Decision

In sequential computing, function F can be operator too, which leads us to the decision theo-
rem. The operator ‘or’ is associative, its zero element is ‘false’; thus, we can include it in the basic
version.

Input: Nℕ, XHN, :H*→L, T:H→L, or:L×L→L, F0L

 F(X1,...,XN)=i(1≤i≤N): T(Xi)

 i(1≤i≤N): T(Xi) i(1≤i≤N-1): T(Xi) or T(XN),
 f(a,b)=a or b, F()=F0=false

Output: ExistsL

Precondition: ─

Postcondition: Exists=i(1≤i≤N) T(Xi)

Decision(N,X,Exists):

 Exists:=false

 For i:=1 to N do

 Exists:=Exists or T(X[i])

 End For

End.

Note: in the iteration the variable Exists can change in the following way:

• false, ..., false, true, ..., true

• false, ..., false

that is, either it remains to be false all through, or it becomes true and stays like that. Consequently,
once it becomes true, the iteration can stop. Before it does, it is constantly false, so we do not need
to change value. The decision programming theorem derives from this: by the end of the iteration
we will be able to distinguish which of the two cases we are dealing with.

SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László 5

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Input: Nℕ, XHN, T:H→L

Output: ExistsL

Precondition: ─

Postcondition: Exists=i(1≤i≤N) T(Xi)

Decision(N,X,Exists):

 i:=1

 While i≤N and not T(X[i])

 i:=i+1

 End While

 Exists:=(i≤N)

End.

6. Selection, Search

At the end of the decision iteration, the value of variable i is the ordinal number of the item of
feature T, provided that we know such an item exists (that is, the iteration will stop once an item
is found) → Selection theorem

Input: Nℕ, XHN, T:H→L

Output: Sℕ

Precondition: i(1≤i≤N) T(Xi)

Postcondition: 1≤S≤N and T(XS)

Selection(N,X,S):

 i:=1

 While i≤N and not T(X[i])

 i:=i+1

 End While

 S:=i

End.

The ordinal number of an element of T quality is N+1 if it has not gone beyond the end of the
sequence. If it has → Search theorem

Input: Nℕ, XHN, T:H→L

Output: ExistsL, Sℕ

Precondition: ─

Postcondition: Exists=i(1≤i≤N) T(Xi) and Exists → 1≤S≤N and T(XS)

Search(N,X,Exists,S):

 i:=1

 While i≤N and not T(X[i])

 i:=i+1

 End While

 Exists:=(i≤N)

 If Exists then S:=i

End.

Programming Theorems Have the Same Origin 6

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

7. Complex programming theorems

Complex programming theorems belong to problems that assign sequence(s) to sequence(s) [8]:

• copying,

• multiple item selection,

• partitioning,

• intersection,

• union.

8. Copying – function calculation

We can also define the theorem of sequence computing by applying function (g) to each element
of the input array and placing the element (f) at the end of the output array (Y). This way, the null
element (F0) of Y will be the empty array, and function F will add the elements of g(Xi) to the
elements of Y. Practically, function F will be an addition operation interpreted for the array (which
is what have signaled below with operation „push back”).

Input: NN, XHN, g:H→G, F: GN→G, f: G*G→G, f – push back

Output: YGN

Precondition: −

Postcondition: i(1≤i≤N): Y=F(g(X1),…, g(XN))

Copying(N,X,Y):

 Y:=empty

 For i:=1 to N do

 Y:=push_back(Y,g(X[i]))

 End For

End.

If we assigned string type variables to the input and output arrays, the above algorithm would look
like this:

Copying(N,X,Y):

 Y:=””

 For i:=1 to N do

 Y:=Y+g(X[i])

 End For

End.

This refers even more to sequence computation.

Since each element of Y will be g(Xi), the theorem can be expressed like this as well (we are indi-
cating function g from the previous algorithm with f now):

Input: NN, XHN, f:H→G

Output: YGN

Precondition: −

Postcondition: i(1≤i≤N): Yi=f(Xi)

SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László 7

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Copying(N,X,Y):

 For i:=1 to N do

 Y[i]:=f(X[i])

 End For

End.

Finally, we will arrive to the theorem of conditional copying with a simple modification, namely,
that we apply function calculation only to elements with property T.

Input: NN, XHN, f:H→G, T:H→L

Output: YGN

Precondition: −

Postcondition: i(1≤i≤N) T(Xi)→Yi=f(Xi) and not T(Xi)→Yi=Xi

Copying(N,X,Y):

 For i:=1 to N do

 If T(X[i]) then Y[i]:=f(X[i]) else Y[i]:=X[i]

 End For

End.

9. Multiple item selection

In sequence computing we may substitute function F with conditional addition interpreted for the
array, which will lead us to the theorem of multiple item selection. Xi will be added to array Y if it
has property T, otherwise it is not added (that is, we add nothing).

Input: NN, XHN, T:H→L

Output: YH*

Precondition: −

Postcondition: i(1≤i≤N): T(Xi)→XiY and not T(Xi)→XiY

Multiple_item_selection(N,X,Y):

 Y:=empty

 For i:=1 to N do

 If T(X[i]) then Y:=push_back(Y,X[i]) {else nothing to do}

 End For

End.

Starting from counting:

Counting(N,X,Count):

 Count:=0

 For i:=1 to N do

 If T(X[i]) then Count:=Count+1

 End For

End.

Connecting the two algorithms:

Programming Theorems Have the Same Origin 8

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Multiple_item_selection(N,X,Count,Y):

 Count:=0

 For i:=1 to N do

 If T(X[i]) then Count:=Count +1; Y[Count]:=X[i]

 End For

End.

Or a different approach:

Input: NN, XHN, T:H→L,

 f:H*H→H,

 f(x,e):={
push back(x, e), T(e)

x, otherwise

Output: YH*

Precondition: −

Postcondition: i(1≤i≤N): Yi=f(X,Xi)

Multiple_item_selection(N,X,Y):

 Y:=empty

 For i:=1 to N do

 Y:=f(Y,X[i])

 End For

End.

We arrive to the final version after inserting the core of function f:

Multiple_item_selection(N,X,Y):

 Y:=empty

 For i:=1 to N do

 If T(X[i]) then Y:=push_back(Y,X[i]) else {nothing to do}

 End For

End.

10. Partitioning

The previously mentioned operation of conditional addition interpreted for the array will be ap-
plied with two conditions now. If Xi has property T, then we add it to array Y, otherwise to array
Z.

Input: NN, XHN, T:H→L

Output: CountN, Y,ZN*

Precondition: −

Postcondition:

Count = ∑ 1

N

i=1
T(Xi)

 and i(1≤i≤Count): T(Xi) and i(1≤i≤N-Count): not T(Xi) and

 Y(1,2,…,N) and Z(1,2,…,N)

SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László 9

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Partitioning(N,X,Count,Y,Z):

 Count:=0

 For i:=1 to N do

 If T(X[i]) then Count:=Count+1; Y[Count]:=i

 End For

 CountZ:=0

 For i:=1 to N do

 If not T(X[i]) then CountZ:=CountZ+1; Z[CountZ]:=i

 End For

End.

In the above algorithm, independent loops with the same amount of steps or branches with the
same conditions can be handled together. This is how we get to the well-known algorithm of sort-
ing in two.

Partitioning(N,X,Count,Y,Z):

 Count:=0; CountZ:=0

 For i:=1 to N do

 If T(X[i]) then Count:=Count+1; Y[Count]:=i

 else CountZ:=CountZ+1; Z[CountZ]:=i

 End For

End.

Therefore, sequential computing led to copying, copying led to multiple item selection, and multi-
ple item selection led to partitioning; in short, even partitioning originates from the theorem of
computing.

11. Intersection (decision in multiple item selection)

The theorem of intersection is essentially the combination of two theorems, that of multiple item
selection and that of decision. We have already proven that both derive from the theorem of se-
quential computing.

Input: N,MN, XHN, YHM

Output: CountN, ZHCount

Precondition: isSet(X,N) and isSet(Y,M)

Postcondition:

Count = ∑ 1

N

i=1
Xi∈Y

 and i(1≤i≤Count): ZiX and ZiY and isSet(Z,Count)

Definition: isSet:H*N→L

 isSet(h,n)=i,j(1≤i≠j≤n): i≠j→hi≠hj

Intersection(N,X,M,Y,Count,Z):

 Count:=0

 For i:=1 to N do

 If (X[i] in Y) then Count:=Count+1; Z[Count]:=X[i]

 End For

End.

Programming Theorems Have the Same Origin 10

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

operator in(x,Y):

 j:=1

 While j≤M and x≠Y[j]

 j:=j+1

 End While

 in:=(j≤M)

End.

After inserting the function:

Intersection(N,X,M,Y,Count,Z):

 Count:=0

 For i:=1 to N do

 j:=1

 While j≤M and X[i]≠Y[j]

 j:=j+1

 End While

 If j≤M then Count:=Count+1; Z[Count]:=X[i]

 End For

End.

12. Union (copying + decision in multiple item selection)

Practically, the theorem of union is the blend of the copying, multiple item selection, and decision
theorems. It has already been demonstrated that all three are based on the theorem of sequential
computing.

Input: N,MN, XHN, YHM

Output: CountN, ZHCount

Precondition: isSet(X,N) and isSet(Y,M)

Postcondition:

Count = N + ∑ 1

M

j=1
Yj∈X

 and i(1≤i≤Count): ZiX or ZiY and isSet(Z,Count)

Union(N,X,M,Y,Count,Z):

 For i:=1 to N do

 Z[i]:=X[i]

 End For

 Count:=N

 For j=1 to M do

 If not (Y[j] in X) then Count:=Count +1; Z[Count]:=Y[j]

 End For

End.

After inserting the function and assigning value to the arrays:

SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László 11

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

Union(N,X,M,Y,Count,Z):

 Z:=X; Count:=N

 For j=1 to M do

 i:=1

 While i≤N and X[i]≠Y[j]

 i:=i+1

 End While

 If i>N then Count:=Count+1; Z[Count]:=Y[j]

 End For

End.

13. Conclusion

From the above analysis, we can see that the first 6 theorems (sequential computing, counting,
maximum selection, decision, selection, and search) all originate from one programming theorem,
namely sequential computing, which is simple addition.

Furthermore, it was proven that 5 additional complex theorems (copying, multiple item selection,
partitioning, intersection, and union) derive from the same theorem, that of computing, as well.

It is worth dedicating some time to uncovering why even complex theorems can be traced back to
one of the simplest programming theorems. We can derive copying, multiple item selection, and
partitioning back to sequential computing because copying applies addition interpreted for the ar-
ray (that is, we start out from an empty array and while processing the elements of X, we add them
to Y, to which we have referred with the operation “push back” in the theorem of copying). Mul-
tiple item selection is different from this only in the fact that we apply conditional addition. (The
relation is similar to summing and conditional summing as explained in our previous article.) If
multiple item selection can be traced back to computing, so can partitioning, and since intersection
and union are based on the above, even those theorems are proven to originate from sequential
computing.

Among complex theorems, we have not dealt with sorting. It is so because the specific algorithms
of sorting can be traced back to different programming theorems, for example minimum selection
sort comes from minimum selection and copying, insertion sort comes from search and (while)
copying, counting distribution sort comes from counting and copying, etc.

Despite all the above, we are not saying that it is useless to manage these theorems independently.
Beginner programmers will recognize the programming theorems while dealing with the different
task types, which, in the case of basic theorems, correspond to the above defined six, while with
complex theorems, they are most likely the above five. [1,5] With more advanced programmers, it
would be worth to base the theorems not on the task types but on the solution types. In that case,
decision, selection and search are three sub-types of the same solution principle; therefore, they
can be considered as one programming theorem. [2]

This article was supposed to demonstrate that theoretically it is sufficient to check the validity of
the first programming theorem because all the rest can be deducted from it. In sum, if sequential
computing is correct, so are the others.

Bibliography

1 Péter Szlávi, László Zsakó: Módszeres programozás. (Methodical programming) Műszaki Könyvki-
adó, Budapest. 1986.

2 Tibor Gregorics: Programozás – Tervezés. (Programming – Design) ELTE-Eötvös Kiadó, 2013.

Programming Theorems Have the Same Origin 12

Central-European Journal of New Technologies in Research, Education and Practice
Volume 1, Number 1, 2019.

3 Ákos Fóthi: Bevezetés a programozáshoz. (Introduction to programming) Fóthi Ákos, 2012.
(http://people.inf.elte.hu/fa/pdf/konyv.pdf − Last Retrieved 05/05/2017)

4 Tibor Gregorics: Programming theorems on enumerator. Teaching Mathematics and Computer
Science 8/1, 2010. DOI: 10.5485/TMCS.2010.0243
(http://tmcs.math.unideb.hu/load_doc.php?p=186&t=abs − Last retrieved 05/05/2017)

5 Péter Szlávi, László Zsakó at al.: Programozási alapismeretek. (Programming basics) online course
material, (http://progalap.elte.hu/downloads/seged/etananyag/ - Last retrieved
05/05/2017), ELTE Informatikai Kar, 2012.

6 Péter Szlávi, László Zsakó at al.: Módszeres programozás: programozási tételek. (Methodical pro-
gramming: programming theorems) Mikrológia 19. ELTE Informatikai Kar, 2008.

7 Péter Szlávi, Gábor Törley, László Zsakó: Programming theorems have the same origin. XXX.
Didmattech 2017, Trnava University, Faculty of Education, 2017
(http://real.mtak.hu/55421/1/szp_tg_zsl_programming_theo-
rems_have_the_same_origin.pdf − Last retrieved 05/05/2017)

8 Péter Szlávi, Gábor Törley, László Zsakó: Az összetett programozási tételek is egy tőről fakadnak.
(Complex theorems have the same origin too) Infodidact2017, Webdidaktika Alapítvány, 2017
(http://people.inf.elte.hu/szlavi/infodidact17/manuscripts/zsltgszp.pdf − Last retrieved
02/18/2018)

Authors

SZLÁVI Péter

Eötvös Loránd University, Faculty of Informat-
ics, Department of Media and Educational In-
formatics, Hungary, e-mail: szlavip@elte.hu

TÖRLEY Gábor

Eötvös Loránd University, Faculty of Informat-
ics, Department of Media and Educational In-
formatics, Hungary,
e-mail: pezsgo@inf.elte.hu

ZSAKÓ László

Eötvös Loránd University, Faculty of Informat-
ics, Department of Media and Educational In-
formatics, Hungary,
e-mail: zsako@caesar.elte.hu

About this document

Published in:

CENTRAL-EUROPEAN JOURNAL OF
NEW TECHNOLOGIES IN RESEARCH,
EDUCATION AND PRACTICE

Volume 1, Number 1. 2019.

ISSN: 2676-9425 (online)

DOI:

10.36427/CEJNTREP.1.1.380

License

Copyright © SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László, 2019.

Licensee CENTRAL-EUROPEAN JOURNAL OF NEW TECHNOLOGIES IN RESEARCH,
EDUCATION AND PRACTICE, Hungary. This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC-BY) license.

http://creativecommons.org/licenses/by/4.0/

http://people.inf.elte.hu/fa/pdf/konyv.pdf
https://doi.org/10.5485/TMCS.2010.0243
http://tmcs.math.unideb.hu/load_doc.php?p=186&t=abs
http://progalap.elte.hu/downloads/seged/eTananyag/
http://real.mtak.hu/55421/1/SzP_TG_ZsL_Programming_Theorems_Have_the_Same_Origin.pdf
http://real.mtak.hu/55421/1/SzP_TG_ZsL_Programming_Theorems_Have_the_Same_Origin.pdf
http://people.inf.elte.hu/szlavi/infodidact17/manuscripts/zsltgszp.pdf%20−%20Last%20retrieved%2002/18/2018
http://people.inf.elte.hu/szlavi/infodidact17/manuscripts/zsltgszp.pdf%20−%20Last%20retrieved%2002/18/2018
http://creativecommons.org/licenses/by/4.0/

