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Programming Theorems Have the Same Origin 

SZLÁVI Péter, TÖRLEY Gábor, ZSAKÓ László  

Abstract: One of the classical ways of learning programming is to divide programming tasks into large 
groups, so-called programming theorems, and then to trace the specific tasks back to the programming 
theorems. Each teaching method introduces a different amount of programming theorems into the 
learning process, occasionally even combining them. In this article we will show that the basic and 
complex programming theorems have the same origin; consequently, it would be enough to present one 
theorem and trace everything back to it. At the end of the article, then, we will explain the practical use 
of still introducing more theorems. 

Keywords: programming theorem, programming methodology, methodical programming, algorithm, 
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1. Introduction 

In order to be able to solve a programming task, we need to identify its essence: programming tasks 
can be categorized into groups according to their type, which is useful because for each group we 
can create an algorithm rule that solves all of the tasks in that specific group. These task types are 
called programming theorems because their solutions are justifiably the correct solutions. Their 
number can vary from teaching method to teaching method. [1,2,3,4] 

If we are familiar with the programming theorems, all we have to do to solve most tasks is to 
recognize the suitable programming theorem, use the specific data of the general task type, and in 
the general algorithm substitute them with the task-specific data. Applying this method is supposed 
to lead us to the correct solution. [5,6] 

In these tasks we usually have to assign a certain result to one (or more) data collection(s), which, 
for simplicity’s sake, we will handle as some sort of sequences. The essence of a sequence is the 
processing order of the given elements. Most of the times, it is sufficient to deal with sequences 
whose elements can be processed – one by one – one after another. In the input sequence, this 
requires an operation that is capable of giving the elements of the sequence one by one, while in 
the output sequence elements can be followed by a new element. In simple cases sequences can be 
illustrated as arrays. 

The basic programming theorems are those that assign one value to one sequence: [7]: 

• sequential computing 

• counting 

• maximum selection 

• decision 

• selection 

• search 

2. The first programming theorem 

The first programming theorem comes from a simple task, that of calculating the sum of numbers. 
In the following, we will provide the specification and the algorithm of the task, which are the two 
pillars of the programming theorem. We are applying the marking system from [5,6]. 
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Input:  Nℕ, XHN, :H*→H, +:H×H→H (where H=ℕ or H=ℤ or H=ℝ) 

   (X1,...,XN)=  (X1,...,XN-1)+XN, F()=0  

Output:  SH 

Precondition:  ─  

Postcondition: S= (X1,...,XN) 

Sum(N,X,S): 

  S:=0 

  For i:=1 to N do  

    S:=S+X[i] 

  End For 

End. 

Generalizing this task, we will get the so-called sequential computing programming theorem. 
We generalize the operation +: 

1) the generalized, binary (f) operation should have a (left-side) zero element (F0);  

2) when we apply the operations one after another, the result should not depend on the execution 
order; that is, the operations should be associative. 

The operation, based on binary operation f and zero element F0, and interpreted at H*, is indicated 
with F. 

Input:  Nℕ, XHN, F:H*→H, f:H×H→H, F0H 
  F(X1,...,XN)=f(F(X1,...,XN-1),XN), F()=F0  

Output:  SH 

Precondition: ─ 

Postcondition: S=F(X1,...,XN) 

Note: many times F is , average, deviation, scalar multiplication, , , , , , writing one after 
another, Max, Min. 

Computing(N,X,S): 

  S:=F0 

  For i:=1 to N do 

    S:=f(S,X[i]) 

  End For 

End. 

Note: we are indicating changes from the previous algorithms with bold, both here and from now 
on. 

3. Counting 

Sequential computing can be formulated so that its result is the sum of all elements with T feature; 
thus, leading us to the counting programming theorem. 

Function F will be a conditional sum. This means that we define function f as a conditional 
function, whose value is the first parameter+1 if the second parameter is of T feature, otherwise 
it is the value of the first parameter. 
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Input:  Nℕ, XHN, F:H*→ℕ, f:ℕ×H→ℕ, F0ℕ 
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Output:  Countℕ 

Precondition: ─ 

Postcondition: Count=F(X1,...,XN)  → Count = ∑ 1N
i=1

T(Xi)

  

Counting(N,X,S): 

  Count:=0 

  For i:=1 to N do 

    Count:=f(Count,X[i])  →  If T(X[i]) then Count:=Count+1* 
  End For 

End. 

Note: the change marked with * is the normalized algorithmic transformation of the conditional 
expression. 

4. Maximum selection 

If we replace function f with function max, we will get to one of the versions of the maximum 
selection theorem. 

Input:  Nℕ, XHN, F:H*→H, max:H×H→H, F0H, (H ordered set) 
  F(X1,...,XN)=max(F(X1,...,XN-1),XN), 
  F()=F0 

  ( )


 

=
otherwiseb

ba ifa
ba,max ,  

  F0=- 

Output:  MaxValH 

Precondition: N>0 

Postcondition: MaxVal=F(X1,...,XN) 

Maximum(N,X,MaxVal): 

  MaxVal:=- 

  For i:=1 to N do 

    MaxVal:=max(MaxVal,X[i]) → If X[i]>MaxVal then MaxVal:=X[i] 
  End For 

End. 

With a very simple modification, we can even define the version that provides the maximum index 
as well. The output, the post-condition and the algorithm change as follows: 
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Output:  MaxValH, MaxIndℕ 

Postcondition: MaxVal=F(X1,...,XN) and 1≤MaxInd≤N and XMaxInd=MaxVal 

Maximum(N,X,MaxVal,MaxInd): 

  MaxVal:=- 

  For i:=1 to N do 

    If X[i]>MaxVal then MaxVal:=X[i]; MaxInd:=i 

  End For 

End. 

If we make use of the precondition, we can leave out the check of the first element from the 
iteration; in fact, in the classical version we do not need the maximum value either. Hence, the final 
version is like this: 

Maximum(N,X,MaxInd): 

  MaxInd:=1 
  For i:=2 to N do 

    If X[i]>X[MaxInd] then MaxInd:=i 

  End For 

End. 

5. Decision 

In sequential computing, function F can be operator  too, which leads us to the decision theo-
rem. The operator ‘or’ is associative, its zero element is ‘false’; thus, we can include it in the basic 
version. 

Input:  Nℕ, XHN, :H*→L, T:H→L, or:L×L→L, F0L 

  F(X1,...,XN)=i(1≤i≤N): T(Xi) 

  i(1≤i≤N): T(Xi)  i(1≤i≤N-1): T(Xi) or T(XN),  
  f(a,b)=a or b, F()=F0=false 

Output:  ExistsL 

Precondition: ─ 

Postcondition: Exists=i(1≤i≤N) T(Xi) 

Decision(N,X,Exists): 

  Exists:=false 

  For i:=1 to N do 

    Exists:=Exists or T(X[i]) 

  End For 

End. 

Note: in the iteration the variable Exists can change in the following way: 

• false, ..., false, true, ..., true  

• false, ..., false  

that is, either it remains to be false all through, or it becomes true and stays like that. Consequently, 
once it becomes true, the iteration can stop. Before it does, it is constantly false, so we do not need 
to change value. The decision programming theorem derives from this: by the end of the iteration 
we will be able to distinguish which of the two cases we are dealing with. 
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Input:  Nℕ, XHN, T:H→L  

Output:  ExistsL 

Precondition: ─ 

Postcondition: Exists=i(1≤i≤N) T(Xi) 

Decision(N,X,Exists): 

  i:=1 

  While i≤N and not T(X[i]) 

    i:=i+1 

  End While 

  Exists:=(i≤N) 

End. 

6. Selection, Search 

At the end of the decision iteration, the value of variable i is the ordinal number of the item of 
feature T, provided that we know such an item exists (that is, the iteration will stop once an item 
is found) → Selection theorem 

Input:  Nℕ, XHN, T:H→L 

Output: Sℕ 

Precondition: i(1≤i≤N) T(Xi)  

Postcondition: 1≤S≤N and T(XS) 

Selection(N,X,S): 

  i:=1 

  While i≤N and not T(X[i]) 

    i:=i+1 

  End While 

  S:=i 

End. 

The ordinal number of an element of T quality is N+1 if it has not gone beyond the end of the 
sequence. If it has → Search theorem 

Input: Nℕ, XHN, T:H→L  

Output: ExistsL, Sℕ 

Precondition: ─ 

Postcondition: Exists=i(1≤i≤N) T(Xi) and Exists → 1≤S≤N and T(XS) 

Search(N,X,Exists,S): 

  i:=1 

  While i≤N and not T(X[i]) 

    i:=i+1 

  End While 

  Exists:=(i≤N) 

  If Exists then S:=i 

End. 
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7. Complex programming theorems 

Complex programming theorems belong to problems that assign sequence(s) to sequence(s) [8]: 

• copying, 

• multiple item selection, 

• partitioning, 

• intersection, 

• union. 

8. Copying – function calculation 

We can also define the theorem of sequence computing by applying function (g) to each element 
of the input array and placing the element (f) at the end of the output array (Y). This way, the null 
element (F0) of Y will be the empty array, and function F will add the elements of g(Xi) to the 
elements of Y. Practically, function F will be an addition operation interpreted for the array (which 
is what have signaled below with operation „push back”). 

Input:  NN, XHN, g:H→G, F: GN→G, f: G*G→G, f – push back 

Output:  YGN 

Precondition: − 

Postcondition: i(1≤i≤N): Y=F(g(X1),…, g(XN)) 

Copying(N,X,Y): 

  Y:=empty 

  For i:=1 to N do 

    Y:=push_back(Y,g(X[i])) 

  End For 

End. 

If we assigned string type variables to the input and output arrays, the above algorithm would look 
like this:  

Copying(N,X,Y): 

  Y:=”” 

  For i:=1 to N do 

    Y:=Y+g(X[i]) 

  End For 

End. 

This refers even more to sequence computation. 

Since each element of Y will be g(Xi), the theorem can be expressed like this as well (we are indi-
cating function g from the previous algorithm with f now): 

Input:  NN, XHN, f:H→G 

Output:  YGN 

Precondition:  − 

Postcondition: i(1≤i≤N): Yi=f(Xi) 
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Copying(N,X,Y): 

  For i:=1 to N do 

    Y[i]:=f(X[i]) 

  End For 

End. 

Finally, we will arrive to the theorem of conditional copying with a simple modification, namely, 
that we apply function calculation only to elements with property T. 

Input:  NN, XHN, f:H→G, T:H→L 

Output:  YGN 

Precondition:  − 

Postcondition: i(1≤i≤N) T(Xi)→Yi=f(Xi) and not T(Xi)→Yi=Xi 

Copying(N,X,Y): 

  For i:=1 to N do 

    If T(X[i]) then Y[i]:=f(X[i]) else Y[i]:=X[i] 

  End For 

End. 

9. Multiple item selection 

In sequence computing we may substitute function F with conditional addition interpreted for the 
array, which will lead us to the theorem of multiple item selection. Xi will be added to array Y if it 
has property T, otherwise it is not added (that is, we add nothing). 

Input:  NN, XHN, T:H→L 

Output:  YH* 

Precondition: − 

Postcondition: i(1≤i≤N): T(Xi)→XiY and not T(Xi)→XiY 

Multiple_item_selection(N,X,Y): 

  Y:=empty 

  For i:=1 to N do 

    If T(X[i]) then Y:=push_back(Y,X[i]) {else nothing to do} 

  End For 

End. 

Starting from counting: 

Counting(N,X,Count): 

  Count:=0 

  For i:=1 to N do 

    If T(X[i]) then Count:=Count+1 

  End For 

End. 

Connecting the two algorithms: 
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Multiple_item_selection(N,X,Count,Y): 

  Count:=0 

  For i:=1 to N do 

    If T(X[i]) then Count:=Count +1; Y[Count]:=X[i] 

  End For 

End. 

Or a different approach: 

Input:   NN, XHN, T:H→L,  

  f:H*H→H,  

  f(x,e):={
push back(x, e), T(e)

x,           otherwise 
 

Output:  YH* 

Precondition: − 

Postcondition: i(1≤i≤N): Yi=f(X,Xi) 

Multiple_item_selection(N,X,Y): 

  Y:=empty 

  For i:=1 to N do 

    Y:=f(Y,X[i])  

  End For 

End. 

We arrive to the final version after inserting the core of function f:  

Multiple_item_selection(N,X,Y): 

  Y:=empty 

  For i:=1 to N do 

    If T(X[i]) then Y:=push_back(Y,X[i]) else {nothing to do} 

  End For 

End. 

10. Partitioning 

The previously mentioned operation of conditional addition interpreted for the array will be ap-
plied with two conditions now. If Xi has property T, then we add it to array Y, otherwise to array 
Z. 

Input:  NN, XHN, T:H→L 

Output:  CountN, Y,ZN* 

Precondition: − 

Postcondition:  

Count = ∑ 1

N

i=1
T(Xi)

 

  and i(1≤i≤Count): T(Xi) and i(1≤i≤N-Count): not T(Xi) and  

  Y(1,2,…,N) and Z(1,2,…,N) 
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Partitioning(N,X,Count,Y,Z): 

  Count:=0 

  For i:=1 to N do 

    If T(X[i]) then Count:=Count+1; Y[Count]:=i  

  End For  

  CountZ:=0 

  For i:=1 to N do 

    If not T(X[i]) then CountZ:=CountZ+1; Z[CountZ]:=i 

  End For 

End. 

In the above algorithm, independent loops with the same amount of steps or branches with the 
same conditions can be handled together. This is how we get to the well-known algorithm of sort-
ing in two. 

Partitioning(N,X,Count,Y,Z): 

  Count:=0; CountZ:=0 

  For i:=1 to N do 

    If T(X[i]) then Count:=Count+1; Y[Count]:=i 

               else CountZ:=CountZ+1; Z[CountZ]:=i 

  End For 

End. 

Therefore, sequential computing led to copying, copying led to multiple item selection, and multi-
ple item selection led to partitioning; in short, even partitioning originates from the theorem of 
computing. 

11. Intersection (decision in multiple item selection)  

The theorem of intersection is essentially the combination of two theorems, that of multiple item 
selection and that of decision. We have already proven that both derive from the theorem of se-
quential computing. 

Input:  N,MN, XHN, YHM 

Output:  CountN, ZHCount 

Precondition: isSet(X,N) and isSet(Y,M) 

Postcondition:  

Count = ∑ 1

N

i=1
Xi∈Y

 

  and i(1≤i≤Count): ZiX and ZiY and isSet(Z,Count) 

Definition: isSet:H*N→L 

  isSet(h,n)=i,j(1≤i≠j≤n): i≠j→hi≠hj 

Intersection(N,X,M,Y,Count,Z): 

  Count:=0 

  For i:=1 to N do 

    If (X[i] in Y) then Count:=Count+1; Z[Count]:=X[i] 

  End For 

End. 
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operator in(x,Y): 

  j:=1 

  While j≤M and x≠Y[j] 

    j:=j+1 

  End While 

  in:=(j≤M) 

End. 

After inserting the function: 

Intersection(N,X,M,Y,Count,Z): 

  Count:=0 

  For i:=1 to N do 

    j:=1 

    While j≤M and X[i]≠Y[j] 

      j:=j+1 

    End While 

    If j≤M then Count:=Count+1; Z[Count]:=X[i] 

  End For 

End. 

12. Union (copying + decision in multiple item selection)  

Practically, the theorem of union is the blend of the copying, multiple item selection, and decision 
theorems. It has already been demonstrated that all three are based on the theorem of sequential 
computing. 

Input:  N,MN, XHN, YHM 

Output:  CountN, ZHCount 

Precondition: isSet(X,N) and isSet(Y,M) 

Postcondition:   

Count = N +  ∑ 1

M

j=1
Yj∈X

   

  and i(1≤i≤Count): ZiX or ZiY and isSet(Z,Count) 

Union(N,X,M,Y,Count,Z): 

  For i:=1 to N do 

    Z[i]:=X[i] 

  End For 

  Count:=N 

  For j=1 to M do 

    If not (Y[j] in X) then Count:=Count +1; Z[Count]:=Y[j] 

  End For 

End. 

After inserting the function and assigning value to the arrays: 
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Union(N,X,M,Y,Count,Z): 

  Z:=X; Count:=N 

  For j=1 to M do 

    i:=1 

    While i≤N and X[i]≠Y[j] 

      i:=i+1 

    End While 

    If i>N then Count:=Count+1; Z[Count]:=Y[j] 

  End For 

End. 

13. Conclusion 

From the above analysis, we can see that the first 6 theorems (sequential computing, counting, 
maximum selection, decision, selection, and search) all originate from one programming theorem, 
namely sequential computing, which is simple addition. 

Furthermore, it was proven that 5 additional complex theorems (copying, multiple item selection, 
partitioning, intersection, and union) derive from the same theorem, that of computing, as well. 

It is worth dedicating some time to uncovering why even complex theorems can be traced back to 
one of the simplest programming theorems. We can derive copying, multiple item selection, and 
partitioning back to sequential computing because copying applies addition interpreted for the ar-
ray (that is, we start out from an empty array and while processing the elements of X, we add them 
to Y, to which we have referred with the operation “push back” in the theorem of copying). Mul-
tiple item selection is different from this only in the fact that we apply conditional addition. (The 
relation is similar to summing and conditional summing as explained in our previous article.) If 
multiple item selection can be traced back to computing, so can partitioning, and since intersection 
and union are based on the above, even those theorems are proven to originate from sequential 
computing. 

Among complex theorems, we have not dealt with sorting. It is so because the specific algorithms 
of sorting can be traced back to different programming theorems, for example minimum selection 
sort comes from minimum selection and copying, insertion sort comes from search and (while) 
copying, counting distribution sort comes from counting and copying, etc. 

Despite all the above, we are not saying that it is useless to manage these theorems independently. 
Beginner programmers will recognize the programming theorems while dealing with the different 
task types, which, in the case of basic theorems, correspond to the above defined six, while with 
complex theorems, they are most likely the above five. [1,5] With more advanced programmers, it 
would be worth to base the theorems not on the task types but on the solution types. In that case, 
decision, selection and search are three sub-types of the same solution principle; therefore, they 
can be considered as one programming theorem. [2] 

This article was supposed to demonstrate that theoretically it is sufficient to check the validity of 
the first programming theorem because all the rest can be deducted from it. In sum, if sequential 
computing is correct, so are the others. 
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