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Abstract. We investigate the possibility of the deterministic parsing
(that is, parsing without backtracking) of languages described by (gen-
eralized) P colony automata. We define a subclass of these computing
devices satisfying a property which resembles the LL(k) property of
context-free grammars, and study the possibility of parsing the char-
acterized languages using a k symbol lookahead, as in the LL(k) parsing
method for context-free languages.

1 Introduction

The computational model called P colony is similar to tissue-like membrane sys-
tems. In P colonies, multisets of objects are used to describe the contents of cells
and the environment, and these multisets are processed by the cells in the corre-
sponding colony using rules which enable the evolution of the objects present in
the cells or the exchange of objects between the environment and the cells. These
computing agents have a very confined functionality: they can store a restricted
amount of objects at a given time (this is called the capacity of the cell; every cell
has the same capacity) and they can process a restricted amount of information.
The way of information processing is very simple: The rules are either of the
form a → b (for changing an object a into an object b inside the cell), or a ↔ b
(for exchanging an object a inside a cell with an object b in the environment).
A program is a rule set with exactly the same number of rules as the capacity
of the cell. When a program is executed, the k rules (the capacity of the cell)
that it contains are applied to the k objects simultaneously. A configuration of
a P colony with n cells is a an n-tuple of multisets of objects, those which are
present inside the cells. During a computational step, a maximal number of cells
of the P colony execute one of their programs in parallel. A computation ends
when the P colony reaches one of its final configurations (usually given as the
set of halting configurations, that is, when no program can be applied by any of
the cells).
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There are many theoretical results concerning P colonies. Despite the fact
that they are extremely simple computing systems, they are computation-
ally complete, even with very restricted size parameters and other syntac-
tic or functioning restrictions. For these, and more topics, results, see [4,5,7–
10,12,13,17,18] and for summaries consult [6,22].

P colony automata were introduced in [3]. They are called automata, because
they accept string languages by assuming an initial input tape with an input
string in the environment. The available types of rules are extended by so-called
tape rules. These types of rules in addition to manipulating the objects as their
non-tape counterparts, also read the processed objects from the input tape.

To overcome the difficulty that different tape rules can read different symbols
in the same computational step, generalized P colony automata were introduced
in [19] and studied further in [20,21]. The main idea of this computational model
was to get the process of input reading closer to other kinds of membrane sys-
tems, especially to antiport P systems and P automata. The latter, introduced
in [14] (see also [11]) are P systems using symport and antiport rules (see [23]),
characterizing string languages.

This generality is used in the generalized P colony automata theory, that is,
the idea of characterizing strings through the sequences of multisets processed
during computations. A computation in this model defines accepted multiset
sequences, which are transformed into accepted symbol sequences/strings. In
this model there is no input string, but there are tape rules and non-tape rules
equally for evolution and communication rules. In a single computational step,
this system is able to read more than one symbol, thus reading a multiset. This
way generalized P colony automata are able to avoid the conflicts present in P
colony automata, where simultaneous usage of tape rules in a single computa-
tional step can arise problems. After getting the result of a computation, that
is, the accepted sequence of multisets, it is possible to map them to strings in a
similar way as shown in P automata.

In [19], some basic variants of the model were introduced and studied from
the point of view of their computational power. In [20,21] we continued the
investigations structuring our results around the capacity of the systems, and
different types of restrictions imposed on the use of tape rules in the programs.

The concept of a P colony automata has been developed into another direc-
tion as well, namely, those variants have been introduced and studied where the
environment consists of a string and the communication rules of the cells are
for substituting (replacing a symbol with another symbol), inserting, or eras-
ing symbols of the current environmental string [2]. These constructs are called
APCol systems (Automaton-like P colonies). Notice that this model essentially
differs from the generalized P colony automaton since the whole environment
is given in advance and in the form of a string. APCol systems are also able
to obtain the full computational power, i.e., they are computationally complete
[4,5].

Since P colony automata variants accept languages, different types of char-
acterizations of their language classes are of interest. One possible research
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direction could be investigating their parsing properties in terms of programs and
rules of the (generalized) P colony automata. In this paper we study the possibil-
ity of deterministically parsing the languages characterized by these devices. We
define the so-called LL(k) condition for these types of automata, which enables
deterministic parsing with a k symbol lookahead, as in the case of context-free
LL(k) languages, and present an initial result showing that using generalized P
colony automata we can deterministically parse context-free languages that are
not LL(k) in the “original” sense.

2 Preliminaries and Definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and
let ε be the empty word. The number of occurrences of a symbol a in w where
a ∈ V is denoted by |w|a.

A multiset over a set V is a mapping M : V → N where N denotes the set of
non-negative integers. This mapping assigns to each object a ∈ V its multiplicity
M(a) in M . The set supp(M) = {a | M(a) ≥ 1} is the support of M . If V is
a finite set, then M is called a finite multiset. A multiset M is empty if its
support is empty, supp(M) = ∅. The set of finite multisets over the alphabet V
is denoted by M(V ). A finite multiset M over V will also be represented by a
string w over the alphabet V with |w|a = M(a), a ∈ V , the empty multiset will
be denoted by ∅.

We say that a ∈ M if M(a) ≥ 1, and the cardinality of M , card(M) is
defined as card(M) = Σa∈MM(a). For two multisets M1,M2 ∈ M(V ), M1 ⊆ M2

holds, if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as
(M1 ∪ M2) : V → N with (M1 ∪ M2)(a) = M1(a) + M2(a) for all a ∈ V , the
difference is defined for M2 ⊆ M1 as (M1 − M2) : V → N with (M1 − M2)(a) =
M1(a) − M2(a) for all a ∈ V .

A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a construct

Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F )

where

– V is an alphabet, the alphabet of the automaton, its elements are called objects;
– e ∈ V is the environmental object of the automaton, the only object which is

assumed to be available in an arbitrary, unbounded number of copies in the
environment;

– wE ∈ (V − {e})∗ is a string representing a multiset from M(V − {e}), the
multiset of objects different from e which is found in the environment initially;

– (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is (the representation
of) a multiset over V , it determines the initial contents of the cell, and its
cardinality |wi| = k is called the capacity of the system. Pi is a set of programs,
each program is formed from k rules of the following types (where a, b ∈ V ):

• tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or
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• nontape rules of the form a → b, or a ↔ b, called rewriting (nontape)
rules and communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.
– F is a set of accepting configurations of the automaton which we will specify

in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbol) is read during each
configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system.

A configuration of a genPCol automaton is an (n+1)-tuple (uE , u1, . . . , un),
where uE ∈ M(V − {e}) is the multiset of objects different from e in the envi-
ronment, and ui ∈ M(V ), 1 ≤ i ≤ n, are the contents of the i-th cell. The
initial configuration is given by (wE , w1, . . . , wn), the initial contents of the envi-
ronment and the cells. The elements of the set F of accepting configurations are
given as configurations of the form (vE , v1, . . . , vn), where

– vE ∈ M(V − {e}) denotes a multiset of objects different from e being in the
environment, and

– vi ∈ M(V ), 1 ≤ i ≤ n, is the contents of the i-th cell.

In order to describe the functioning of genPCol automata, let us define the
following multisets. Let r be a rewriting or a communication rule (tape or non-
tape), and let us denote by left(r) and right(r) the objects on the left and on the
right side of r, respectively. Let also, for α ∈ {left, right} and for any program
p, α(p) =

⋃
r∈p α(r) where the union denotes multiset union (as defined above),

and for a rule r and a program p = 〈r1, . . . , rk〉, the notation r ∈ p denotes the
fact that r = rj for some j, 1 ≤ j ≤ k.

Moreover, for any tape program p we also define the multiset of symbols
read(p) =

⋃

r∈p,r=a
T→b,b �=e

right(r)∪⋃

r∈p,r=a
T↔b,a �=e

left(r), the multiset of sym-
bols (different from e) on the right side of rewriting tape rules and on the left
side of communication tape rules. If p is not a tape program, that is, p contains
no tape rules, then read(p) = ∅.

For all communication rules r of the program p, let export(p) =
⋃

r∈p left(r)
and import(p) =

⋃
r∈p right(r), the multiset of objects that are sent out to the

environment and brought inside the cell when applying the program p, respec-
tively.

Moreover, create(p) =
⋃

r∈p right(p) for the rewriting rules r of p, that is,
create(p) is the multiset of symbols produced by the rewriting rules of program p.

Let c = (uE , u1, . . . , un) be a configuration of a genPCol automaton Π, and
let UE = uE ∪ {e, e, . . .}, thus, the multiset of objects found in the environment
(together with the infinite number of copies of e, denoted as {e, e, . . .}, which
are always present). The sequence of programs

(p1, . . . , pn) ∈ (P1 ∪ {#}) × . . . × (Pn ∪ {#})

is applicable in configuration c, if the following conditions hold.
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– The selected programs are applicable in the cells (the left sides of the rules
contain the same symbols that are present in the cell), that is, for each 1 ≤
i ≤ n, if pi ∈ Pi then left(pi) = ui;

– the symbols to be brought inside the cells by the programs are present in the
environment, that is,

⋃
pi �=#,1≤i≤n import(pi) ⊆ UE ;

– the set of selected programs is maximal, that is, if any pi = # is replaced
by some p′

i ∈ Pi, 1 ≤ i ≤ n, then the above conditions are not satisfied any
more.

The set of all applicable sequences of programs in the configuration c =
(uE , u1, . . . , un) is denoted by Appc, that is,

Appc = {Pc = (p1, . . . , pn) ∈ (P1 ∪ {#}) × . . . × (Pn ∪ {#}) | where Pc

is a sequence of applicable programs in the configuration c}.

A configuration c is called a halting configuration if the set of applica-
ble sequences of programs is the singleton set Appc = {(p1, . . . , pn) | pi =
# for all 1 ≤ i ≤ n}.

Let c = (uE , u1, . . . , un) be a configuration of the genPCol automaton. By
applying a sequence of applicable programs Pc ∈ Appc, the configuration c is
changed to a configuration c′ = (u′

E , u′
1, . . . , u

′
n), denoted by c

Pc=⇒ c′, if the
following properties hold:

– If (p1, . . . , pn) = Pc ∈ Appc and pi ∈ Pi, then u′
i = create(pi) ∪ import(pi),

otherwise, if pi = #, then u′
i = ui, 1 ≤ i ≤ n. Moreover,

– U ′
E = UE − ⋃

pi �=#,1≤i≤n import(pi) ∪ ⋃
pi �=#,1≤i≤n export(pi) (where U ′

E

again denotes u′
E ∪ {e, e, . . .} with an infinite number of copies of e).

Thus, in genPCol automata, we apply the programs in the maximally parallel
way, that is, in each computational step, every component cell nondeterministi-
cally applies one of its applicable programs. Then we collect all the symbols that
the tape rules “read” (these multisets are denoted by read(p) for a program p
above): this is the multiset read by the system in the given computational step.

For any Pc sequence of applicable programs in a configuration c, read(Pc)
denotes the multiset of objects read by the tape rules of the programs of Pc,
that is,

read(Pc) =
⋃

pi �=#, (p1,...,pn)=Pc

read(pi).

Then we can also define the set of multisets which can be read in any con-
figuration of the genPCol automaton Π as

in(Π) = {read(Pc) | Pc ∈ Appc}.

Remark 1. Although the set of configurations of a genPCol automaton Π can be
infinite (because the multiset corresponding to the contents of the environment
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is not necessarily finite), the set in(Π) is always finite. To see this, note that
the applicability of a program by a component cell also depends on the contents
of the particular component. Since at most one program can be applied in a
component in one computational step, and the number of programs associated
to each component is finite, the number of different sequences of applicable
programs in any configuration, that is, the cardinality of the set Appc is finite.

A successful computation defines this way an accepted sequence of multisets:
u1u2 . . . us, ui ∈ in(Π), for 1 ≤ i ≤ s, that is, the sequence of multisets entering
the system during the steps of the computation.

Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) be a genPCol automaton. The
set of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ in(Π), 1 ≤ i ≤ s, and there is a configuration
sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, cs halting,

and ci

Pci=⇒ ci+1 with ui+1 = read(Pci) for all 0 ≤ i ≤ s − 1}.

Let Π be a genPCol automaton, and let f : in(Π) → 2Σ∗
be a mapping,

such that f(u) = {ε} if and only if u is the empty multiset.
The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

The class of languages accepted by generalized PCol automata with capacity
k and with mappings from the class F is denoted

– by L(genPCol,F , com-tape(k)) when all the communication rules are tape
rules,

– by L(genPCol,F , all-tape(k)) when all the programs must have at least one
tape rule, and

– by L(genPCol,F , ∗(k)) when programs with any kinds of rules are allowed.

Let V and Σ be two alphabets, and let MFIN (V ) ⊆ M(V ) denote the set
of finite subsets of the set of finite multisets over an alphabet V . Consider a
mapping f : D → 2Σ∗

for some D ∈ MFIN (V ). We say that f ∈ FTRANS, if
for any v ∈ D, we have |f(v)| = 1, and we can obtain f(v) = {w}, w ∈ Σ∗

by applying a deterministic finite transducer to any string representation of the
multiset v, (as w is unique, the transducer must be constructed in such a way that
all string representations of the multiset v as input result in the same w ∈ Σ∗

as output, and moreover, as f should be nonerasing, the transducer produces a
result with w �= ε for any nonempty input).

Besides the above defined class of mappings, we also use the so called permu-
tation mapping. Let fperm : M(V ) → 2Σ∗

where V = Σ be defined as follows.
For all v ∈ M(V ), we have

fperm(v) = {aσ(1)aσ(2) . . . aσ(s) | v = a1a2 . . . as for some permutation
σ of {1, . . . , s} }.
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We denote the language classes that can be characterized with these types
of input mappings as LX(genPCol, Y (k)), where X ∈ {perm,TRANS}, Y ∈
{com-tape, all-tape, ∗}.

Now we recall an example from [20] to demonstrate the above defined notions.

Example 1. Let Π = ({a, b, c}, e, ∅, (ea, P ), F ) be a genPCol automaton where

P = {p1 : 〈e → a, a
T↔ e〉, p2 : 〈e → b, a

T↔ e〉, p3 : 〈e → b, b
T↔ a〉,

p4 : 〈e → c, b
T↔ a〉, p5 : 〈a → b, b

T↔ a〉, p6 : 〈a → c, b
T↔ a〉}

with all the communication rules being tape rules. Let F = {(v, ca) | a �∈ v} be
the set of final configurations.

The initial configuration of this systems is c0 = (∅, ea). Since the number of
components is just one, the sequences of applicable programs are one element
“sequences”. The set of sequences of programs applicable in the initial configu-
ration contains two elements, Appc0 = {(p1), (p2)}.

A possible computation of this system is the following:

(∅, ea) ⇒ (a, ea) ⇒ (aa, ea) ⇒ (aaa, eb) ⇒ (aab, ba) ⇒ (bba, ba) ⇒ (bbb, ac)

where the first three computational steps read the multiset containing an a,
the last three steps read a multiset containing a b, thus the accepted multiset
sequence of this computation is (a)(a)(a)(b)(b)(b).

It is not difficult to see that similarly to the one above, the computations
which end in a final configuration (a configuration which does not contain the
object a in the environment) accept the set of multiset sequences

A(Π) = {(a)n(b)n | n ≥ 1}.

The set of multisets which can be read by Π is in(Π) = {a, b} (where a and
b denote the multisets containing one copy of the object a and b, respectively).

If we consider fperm as the input mapping, we have

L(Π, fperm) = {anbn | n ≥ 1}.

On the other hand, if we consider the mapping f1 ∈ FTRANS where f1 :
in(Π) → 2Σ∗ with Σ = {c, d, e, f} and f1(a) = {cd}, f1(b) = {ef}, we get the
language

L(Π, f1) = {(cd)n(ef)n | n ≥ 1}.

The computational capacity of genPCol automata was investigated in [19–
21]. It was shown that with unrestricted programs systems of capacity one gen-
erate any recursively enumerable language, that is,

LX(genPCol, ∗(k)) = L(RE), k ≥ 1, X ∈ {perm, TRANS}.

A similar result holds for all-tape systems with capacity at least two.

LX(genPCol, all-tape(k)) = L(RE) for k ≥ 2, X ∈ {perm, TRANS}.

.
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3 P Colony Automata and the LL(k) Condition

Let U ⊂ Σ∗ be a finite set of strings over some alphabet Σ. Let FIRSTk(U)
denote the set of length k prefixes of the elements of U for some k ≥ 1, that is,
let

FIRSTk(U) = {prefk(u) ∈ Σ∗ | u ∈ U}
where prefk(u) denotes the string of the first k symbols of u if |u| ≥ k, or
prefk(u) = u otherwise.

Definition 1. Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) be a genPCol
automaton, let f : in(Π) → 2Σ∗

be a mapping as above, and let c0, c1, . . . , cs be
a sequence of configurations with ci =⇒ ci+1 for all 0 ≤ i ≤ s − 1.

We say that the P colony Π is LL(k) for some k ≥ 1 with respect to the
mapping f , if for any two distinct sets of programs applicable in configuration
cs, Pcs , P

′
cs ∈ Appcs with Pcs �= P ′

cs , the next k symbols of the input string that
is being read determines which of the two sequences are to be applied in the
next computational step, that is, the following holds.

Consider two computations

cs
Pcs=⇒ cs+1

Pcs+1=⇒ . . .
Pcs+m=⇒ cs+m+1, and cs

P ′
cs=⇒ c′

s+1

P ′
cs+1=⇒ . . .

P ′
c
s+m′
=⇒ c′

s+m′+1

where ucs = read(Pcs) and ucs+i
= read(Pcs+i

) for 1 ≤ i ≤ m, and similarly
u′

cs = read(P ′
cs) and u′

cs+i
= read(P ′

cs+i
) for 1 ≤ i ≤ m′, thus, the two sequences

of input multisets are

ucsucs+1 . . . ucs+m
and u′

csu
′
cs+1

. . . u′
cs+m′ .

Assume that these sequences are long enough to “consume” the next k symbols
of the input string, that is, for w and w′ with

w ∈ f(ucs)f(ucs+1) . . . f(ucs+m
) and w′ ∈ f(u′

cs)f(u′
cs+1

) . . . f(u′
cs+m′ ),

either |w| ≥ k and |w′| ≥ k, or if |w| < k (or |w′| < k), then cs+m+1 (or cs+m′+1)
is a halting configuration.

Now, the P colony Π is LL(k), if for any two computations as above,

FIRSTk(w) ∩ FIRSTk(w′) = ∅.

The class of context-free LL(k) languages will be denoted by L(CF,LL(k)) (see
for example the monograph [1] for more details), while the languages charac-
terized by genPCol automata satisfying the above defined condition, with input
mapping of type fperm or f ∈ TRANS, will be denoted by LX(genPCol,LL(k)),
X ∈ {perm, TRANS}.

Let us illustrate the above definition with an example.



96 E. Csuhaj-Varjú et al.

Example 2. Let Π = ({a, b, c, d, f, g, e}, e, ∅, (ea, P1), F ) where

P1 = {〈e → b, a
T↔ e〉, 〈e → e, b

T↔ a〉, 〈e → c, a
T↔ e〉, 〈e → f, a

T↔ e〉,
〈e → d, c

T↔ b〉, 〈b → c, d
T↔ e〉, 〈e → g, f

T↔ b〉, 〈b → f, g
T↔ e〉} and

F = {(v, ce), (v, fe) | v ∈ V ∗, b �∈ v}.

The language characterized by Π is

L(Π, fperm) = {a} ∪ {(ab)na(cd)n | n ≥ 1} ∪ {(ab)na(fg)n | n ≥ 1}.

To see this, consider the possible computations of Π. The initial configuration
is (∅, ea) and there are three possible configurations that can be reached, namely
(we denote by ⇒u a configuration change during which the multiset of symbols
u was read by the automaton)

1. (∅, ea) ⇒a (a, ce),
2. (∅, ea) ⇒a (a, fe),
3. (∅, ea) ⇒a (a, be).

The first two cases are non-accepting states, but the derivations cannot be con-
tinued, so let us consider the third one.

(a, be) ⇒b (b, ea) ⇒a (ba, be) ⇒b (bb, ea) ⇒a . . . ⇒b (bi, ea).

At this point, the computation can follow two different paths again, either

(bi, ae) ⇒a (bia, ec) ⇒c (bi−1ac, db) ⇒d (bi−1acd, ce) ⇒c . . . ⇒d (acidi, ce),

or

(bi, ae) ⇒a (bia, ef) ⇒f (bi−1af, gb) ⇒g (bi−1afg, fe) ⇒f . . . ⇒g (af igi, fe).

In the first phase of the computation, the system produces copies of b and
sends them to the environment, then in the second phase these copies of b are
exchanged to copies of cd or copies of fg. The system can reach an accepting
state when all the copies of b are used, that is, when an equal number of copies
of ab and either of cd or of fg were produced.

Note that the system satisfies the LL(1) property, the symbol that has to be
read, in order to accept a desired input word, determines the set of programs
that has to be used in the next computational step.

As a consequence of the above example, we can state the following.

Theorem 1. There are context-free languages in LX(genPCol,LL(1)), X ∈
{perm, TRANS}, which are not in L(CF,LL(k)) for any k ≥ 1.

Proof. The language L(Π, fperm) ∈ Lperm(genPCol,LL(1)) from Example 2 is
not in L(CF,LL(k)) for any k ≥ 1. If we consider the mapping f1 ∈ TRANS,
f1 : {a, b, c, d, f, g} → {a, b, c, d, f, g} with f1(x) = x for all x ∈ {a, b, c, d, f, g},
then L(Π, f1) = L(Π, fperm), thus, LTRANS(genPCol,LL(1)) also contains the
non-LL(k) context-free language.
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4 Conclusions

P systems and their variants are able to describe powerful language classes,
thus their applicability in the theory of parsing or analyzing syntactic struc-
tures are of particular interest, see, for example [15,16]. For example, in [15],
so-called active P automata (P automata with dynamically changing membrane
structure) were used for parsing, utilizing the dynamically changing membrane
structure of the P automaton for analyzing the string. In addition to study-
ing the suitability of P system variants for parsing different types of languages,
developing well-known notions like LL(k) property for these models are of inter-
est as well, since the results demonstrate the boundaries of the original concepts.
In this paper we have started investigations in this direction, namely we studied
the possibility of deterministically parsing languages characterized by P colony
automata. We provided the definition of an LL(k)-like property for (general-
ized) P colony automata, and showed that languages which are not LL(k) in
the “original” context-free sense for any k ≥ 1 can be characterized by LL(1) P
colony automata with different types of input mappings. The properties of these
language classes for different values of k and different types of input mappings
are open to further investigations. Our investigations confirmed that concepts,
questions related to parsing are of interest in P systems theory.
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systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC
2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36490-0 14

15. Bel-Enguix, G., Gramatovici, R.: Parsing with active P automata. In: Mart́ın-Vide,
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